The number of routine surgical modifications we perform has grown (17 procedures). Many other non-routine procedures can also be done to your specifications. All surgery is performed on our premises to retain control of all environmental factors.

To be sure of accurate and consistent data always start with a dependable, healthy animal that has consistent characteristics.

We invite you to compare the quality of both animals and our services with your present supplier. Whether you want animals that come “with” or “without”, you can be sure you’ll be getting the best animal for your needs when you start with Taconic.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Procedure</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Olfactory Bulb Ablation</td>
<td>2 Orbital Enucleation</td>
<td>3 Pinealectomy</td>
</tr>
<tr>
<td>4 Hypophysectomy</td>
<td>5 Submaxillary Salivary Duct Ligation</td>
<td>10 Adrenalectomy</td>
</tr>
<tr>
<td>6 Parathyroidectomy</td>
<td>7 Thyroidectomy</td>
<td>8 Thymectomy</td>
</tr>
<tr>
<td>9 Splenectomy</td>
<td>11 Nephrectomy (Unilateral)</td>
<td>12 Ovariectomy</td>
</tr>
<tr>
<td>13 Oophorohysterectomy</td>
<td>14 Hysterectomy</td>
<td>15 Ureter Ligation</td>
</tr>
<tr>
<td>16 Vasectomy</td>
<td>17 Castration</td>
<td>15 Ureter Ligation</td>
</tr>
<tr>
<td>(17 routine surgical procedures)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All Surgically Modified animals are packed in Disposable Filtered Shipping Containers equipped with TRANSPORT KITS.

* A disposable water system consists of a water filled plastic pouch reservoir and automatic drinking valves. (Clinical additives added in percentage required depending on degree of modification performed).
Council 1978–79

President, DeWitt Stetten, Jr.
National Institutes of Health

President-Elect, Robert W. Berliner
Yale University

Past President, Dennis W. Watson
University of Minnesota

Treasurer, Gregory W. Siskind
Cornell Medical Center

Secretary and Ass’t Treasurer, Mero R. Nocenti
Columbia University

D. L. Azarnoff ’79
Univ. of Kansas

I. J. Fox ’81
Univ. of Minnesota

R. J. Peanasky ’79
Univ. of South Dakota

A. H. Briggs ’81
University of Texas

J. P. Gilmore ’81
Univ. of Nebraska

E. E. Selkurt ’81
Univ. of Indiana

H. F. DeLuca ’81
University of Wisconsin

M. D. Siperstein ’79
Univ. of California

P. P. Foa ’79
Sinai Hosp. of Detroit

M. Orsini ’81
Univ. of Wisconsin

D. B. Zilversmit ’81
Cornell Univ.

MEMBERSHIP APPLICATION

"Membership in the Society for Experimental Biology and Medicine is open to all individuals who have independently published original meritorious investigations in experimental biology or experimental medicine and who are actively engaged in experimental research. In general, applicants should be beyond a supervised post-doctoral experience in order to be able to demonstrate the ability to conduct independent investigations.

Application forms may be obtained from the Office of the Secretary, Society for Experimental Biology and Medicine, 630 W. 168th St., N.Y., N.Y. 10032."
Board of Editors

M. R. NOCENTI
Managing Editor
630 W. 168th Street
New York, N. Y. 10032
212 WA-7-6914

HLOQUIST R. R. GALA C. S. LIEBER R. B. ROBERTS
SON, JR. R. C. GALLO C. W. LLOYD R. ROSS
Z. N. GAUT P. D. LOTLIKAR I. ROTHCHILD
LUTURA G. L. GEBBER C. C. LUSHBAUGH J. RUDICK
ISTRONG J. GENEST G. J. MACDONALD W. SAWYER
BACH D. G. GILMOUR D. F. MALAMUD B. B. SAXENA
AESHER E. C. GOTSLICH I. MANDL A. J. SBARRA
ARRACLOUGH M. GREENWOOD A. J. MARCUS A. V. SCHALLY
ARRON G. GUROFF A. MAZUR R. A. SCHEMSEL
CK N. S. HALMI S. M. MCCANN R. SCHMID
ERG C. G. HARFORD L. C. MCLAREN N. J. SCHMIDT
GS P. C. HARPEL J. MEITES H. A. SCHNEIDER
OHR M. R. HILLEMAN T. C. MERIGAN, JR. E. E. SELKURT
YD F. G. HOFMANN F. H. MEYERS J. H. SHAW
RAND J. J. HOLLAND F. N. MILLER E. M. SHEVACH
SOME J. A. HOLOWCZAK S. MIRVISH N. SHOCK
UCKER D. HORROBIN C. R. MORGAN M. M. SIGEL
OOKS C. HOWE S. I. MORSE G. W. SISKIND
AIN E. D. JACOBSON P. J. MULROW N. E. SLADEK
SIGNELL H. D. JANOWITZ L. H. MUSCHEL A. A. SPECTOR
ARK D. C. JOHNSON D. NATHAN R. S. SPIERS
& R. C. JOHNSON G. D. NISWENDER J. G. STEVENS
LIFTON T. J. KINDT S. OPARIL A. STRACHER
OHEN S. KLAHR P. Y. PATRISON E. D. THOMAS
OOPER S. KOLETSKY P. N. PATIL G. J. THORBECKE
ORRADINO C. A. KRAKOWER W. E. PAUL M. L. TYAN
REMERM L. C. KREY M. J. PEACH J. L. VAITUKAITIS
RFLER M. KUSCHNER V. A. PEDRINI C. M. VENEZIALE
P. L. LACELLE G. L. PLAA C. S. WESTLING
HYAN B. N. LAU S. A. PLOTKIN S. R. WAGLE
SCH M. E. LAMM D. D. PORTER M. E. WEKSLER
JKESTEN C. A. LANG A. S. RABSON J. M. WELLER
SHER J. H. LARAGH J. A. RAMALEY R. M. WELSH
A C. LENFANT M. M. RAPPORT D. L. WIEGMAN
RERER C. E. LEROY W. D. REID E. E. WINDHAGER
RANKEL R. LEVERE J. A. RESKO D. B. ZILVERSMIT
ANKLIN J. V. LEVY J. A. RILLEMA M. B. ZUCKER

Editorial and Publications Committee

M. ZUCKER, '82, Chairperson; I. CLARK, '80; M. HILLEMAN, '82;
S. I. MORSE, '78; S. SEIFTER, '82.
The President, President-Elect and Secretary
Members can help considerably by mentioning our PROCEEDINGS when communicating with or ordering supplies from our advertisers.

NOW AVAILABLE FOR IMMEDIATE DELIVERY

Sprague-Dawley Osborne / Mendel Wistar RATS

Certified Pathogen Free

WITH DEFINED ASSOCIATED FLORA
Caesarean derived · Barrier reared

WE SHIP EVERYWHERE
By Company Truck and Direct Route Air Express

CAMM RESEARCH LAB ANIMALS
414 Black Oak Ridge Road, Wayne, New Jersey 07470
201/694-0703

superlative is the word that best describes the new CAMM Certified Pathogen Free Rats and you can now get them in Sprague-Dawley, Osborne, Mendel or Wistar strains.

Researchers and scientists from facilities all over the country have been writing to us telling us how pleased they are with these new CAMM rats. They are available now. Ready for shipment today by company trucks or Direct Route Air Express. Please contact us with your requirements. Ask for our price list.
OUR GROWTH FACTORS BUILD STRONG CELLS MANY WAYS!

If you are having difficulty growing cells in Tissue Culture, our Growth Factors will help you. They increase survival times, accelerate growth rates and improve plating efficiency. In many instances, they also affect DNA, RNA and protein synthesis rates and a host of transport mechanisms. Collaborative Research Growth Factors now available from stock include:

Epidermal Growth Factor (CR-EGF)
Fibroblast Growth Factor (CR-FGF)
Multiplication Stimulating Activity (CR-MSA)
Nerve Growth Factor (CR-NGF)
Endothelial Cell Growth Supplement (CR-ECGS)
Human Thrombin (CR-HT)

In addition, we have \(^{125}\mathrm{I}\) labelled derivatives and antisera for EGF, FGF, MSA and NGF.

To find out more about our Growth Factors and what they can mean to your research, call or write for our free technical bulletins. Or for immediate delivery of these products call our Order Department 617-899-1133.

For Research Use Only

Collaborative Research, Inc.
1365 Main Street. Waltham, Mass. 02154
Tel. (617) 899-1133 TWX 710-324-7609
INDEX TO ADVERTISERS

Members and subscribers are requested to cooperate with our advertisers

Camm Research Inst ... v
Charles River ... Cover 4
Collaborative Research .. vi
Gilson Medical Electronics .. vii
Taconic Farms .. i
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guest Editors Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOCHEMISTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDORCINOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinetics of Testosterone Induced-Cholesterol Synthesis in Rat Ventral Prostate</td>
<td>A. K. Singhal, D. P. Bonner, C. P. Schaffner</td>
<td></td>
</tr>
<tr>
<td>The Role of Cyclic AMP in CRF-Induced ACTH Secretion</td>
<td>R. Portanova, W. J. Brattin</td>
<td></td>
</tr>
<tr>
<td>Ketamine as an Anesthetic for Obtaining Plasma for Rat Prolactin Assays</td>
<td>H. Y. Meltzer, D. Stancisic, M. Simonovic, V. S. Fang</td>
<td></td>
</tr>
<tr>
<td>Effects of Thyroxine, Epinephrine and Cold Exposure on Lipolysis in Genetically Obese (ob/ob) Mice</td>
<td>S. W. Thenen, R. H. Carr</td>
<td></td>
</tr>
<tr>
<td>Apomorphine-Induced Inhibition of Epidemic LH Release in Ovariectomized Rats with Complete Hypothalamic Deafferentation</td>
<td>G. W. Arendash, R. V. Gallo</td>
<td></td>
</tr>
<tr>
<td>Effects of Administration of a LH-RH Inhibitory Analogue on Stages of the Rat Estrous Cycle</td>
<td>J. A. Vilchez-Martinez, E. Pedroza, D. Coy, A. Arimura, A. V. Schally</td>
<td></td>
</tr>
<tr>
<td>ENZYMEOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppressed Dietary Inducibility of Glucose 6-Phosphate Dehydrogenase and Elevated Cyclic AMP in Acute Hepatic Injury</td>
<td>K. Taketa, A. Watanabe, M. Ueda, M. Kobayashi</td>
<td></td>
</tr>
<tr>
<td>GROWTH AND DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superoxide Dismutase in Bovine Fetal Ductus Arteriosus, Thoracic Aorta, and Pulmonary and Umbilical Arteries</td>
<td>P. D. Frazer, F. O. Brady</td>
<td></td>
</tr>
<tr>
<td>Polybrominated Biphenyls in Chicken Eggs vs. Hatchability</td>
<td>D. Polin, R. K. Ringer</td>
<td></td>
</tr>
<tr>
<td>Blood Volume Changes during the First Week after Birth in the Beagle and Pig</td>
<td>S. I. Deavers, R. A. Huggins, H.-P. Sheng</td>
<td></td>
</tr>
<tr>
<td>HEMATOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape Change and the Percentage of Sialic Acid Removed by Neuraminidase from Human Platelets</td>
<td>E. I. Peerschke, M. B. Zucker</td>
<td></td>
</tr>
<tr>
<td>Stimulation of Erythropoietin Secretion by Single Amino Acids</td>
<td>A. Anagnostou, S. G. Schade, W. Fried</td>
<td></td>
</tr>
<tr>
<td>IMMUNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced Granulocyte Mobility Induced by Chemotactic Factor in the Agarose Plate</td>
<td>T. Tono-oka, M. Nakayama, S. Matsu-moto</td>
<td></td>
</tr>
<tr>
<td>Protein-Calorie Malnutrition Impairs the Anti-Viral Function of Macrophages</td>
<td>L. C. Olson, D. R. Sisk, E. Izsak</td>
<td></td>
</tr>
<tr>
<td>Exometabolites of Leishmania donovani Promastigotes. I. Isolation and Initial Characterization</td>
<td>L. H. Semprevivo</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

MICROBIOLOGY

Adorption to *Clostridium botulinum* Cultures of Phage Controlling Type C Botulinum Toxin Production
K. Oguma, H. Sugiyama 61

Endotoxin Induced Metabolic Alterations in BCG Infected (Hyperreactive) Mice
V. C. Senterfitt, J. W. Shands, Jr 69

The Effect of Leukocyte Hydrolases on Bacteria. XI. Lysis by Leukocyte Extracts and by Myeloperoxidase of a *Staphylococcus aureus* Mutant Which is Deficient in Teichoic Acid, and the Inhibition of Bacteriolysis by Lipoteichoic Acid

NUTRITION

Thymidine Kinase and DNA Polymerase Activity in Normal and Zinc Deficient Developing Rat Embryos
J. R. Duncan, L. S. Hurley 39

l-Histidine-Induced Hypercholesterolemia: Characteristics of Cholesterol Biosynthesis in Rat Livers
J. K. Solomon, R. L. Geison 44

l-Histidine-Induced Facilitation of Cholesterol Biosynthesis in Rats
A. A. Qureshi, J. K. Solomon, B. Eichelmann 57

ONCOLOGY

Suppression of Chemical (DEN) Carcinogenesis in SWR/J Mice by Goat Antibodies Against Endogenous Murine Leukemia Viruses
R. Pottathil, R. J. Huebner, H. Meier 65

Metabolism of Acyclic and Cyclic N-Nitrosamines by Cultured Human Colon
H. Autrup, C. C. Harris, B. F. Trump 111

Ornithine Decarboxylase Activity in Cells Acutely and Chronically Transformed by Murine Sarcoma Virus
L. J. Kilton, A. F. Gazdar 142

PHYSIOLOGY

Pyrazinoic Acid and Urate Transport in the Rat
S. J. Frankfurt, E. J. Weinman 16

The Effects of Indomethacin and Meclomenamate on Estrogen Induced Vasodilation in the Rabbit Uterus
D. Mueller, B. Stoehr, Jr., T. Pernetton, J. H. G. Rankin 25

Effect of Cholera Toxin on Renal Tubular Reabsorption of Glucose and Bicarbonate

Hypophysectomy Alters the Diurnal Food Intake Patterns in Rats
L. L. Bellinger, V. E. Mendel 80

Interserythrocyte pH and Physiochemical Homogeneity
J. Warth, J. F. Desforges 136

TISSUE CULTURE

The Effect of Heparin on Growth of Mammalian Cells in Vitro
T. K. Yang, H. M. Jenkin 88

VIROLOGY

Decreased Antiviral Effect of Phosphonoacetic Acid on the Poxvirothermic Herpesvirus of Channel Catfish Disease
R. W. Koment, H. Haines 21

Mouse Hepatitis Virus (MHV) Infection in Thymectomized C3H Mice
P. Sheets, K. V. Shah, F. B. Bang 34

Immune Interferon Activates Cells More Slowly Than Does Virus-Induced Interferon
F. Dianzani, L. Salter, W. R. Fleischmann, Jr., M. Zucca 94
s of Testosterone Induced-Cholesterol Synthesis in Rat Ventral Prostate (40271)

ANIL K. SINGHAL, DANIEL P. BONNER AND CARL P. SCHAFFNER

Institute of Microbiology, Rutgers-The State University of New Jersey, New Brunswick, New Jersey 08903

It has been well established that under conditions testosterone administration significantly affects the rates of DNA, and protein synthesis in the rat ventral prostate (1-4). Testosterone also maintains morphology and secretory activity of the exocrine gland, both in vitro and in vivo (5-7). On castration, there is rapid cessation of the ventral prostate and is secretory function (8). Testosterone has been found to be one of the constituents of the prostate secretion.

In this paper, we are reporting the ion of cholesterol synthesis by testosterone in the ventral prostate. Kinetics of cholesterol synthesis in the ventral prostate of testosterone administration to castrates was studied in relation to prostate gain, DNA and protein synthesis.

Materials and Methods. Animals. Groups of male intact and castrated Wistar rats (50 g) were maintained on Purina rat and water ad libitum and were kept alternating 12-hr light and 12-hr dark cycle. At necropsy, final body weights were determined.

Injection of testosterone to castrates. Castrated animals were injected subcutaneously with 2 mg of testosterone propionate dissolved in sesame oil (10 mg/ml), at the time every day for different periods up to 14 days.

Incorporation of radioactive precursors to cholesterol, proteins, and DNA by prostate tissues. At various time intervals of 14 days animals were anesthetized, transperitoneal injections of sodium barbital were sacrificed by exsanguination. The prostate of the ventral prostate gland was free of the fat covering. The tissues rinsed and weighed immediately in eppendorf test tubes and kept in ice until use. Approximately 25-35 mg minced tissues were used to study the incorporation of radioactive precursors into cholesterol, proteins, and DNA.

The radioactive precursors, 2-[14C]acetate (sp. activity 50.3 mCi/mmol), 4,5-3H-L-leucine (sp. activity 5 Ci/mmol), and 3H-methylthymidine (sp. activity 6.7 Ci/mmol) were used in these studies to determine their incorporation into cholesterol, protein, and DNA, respectively. Tissues were incubated with 2 ml of Hank's Balanced Salt solution supplemented with 0.2% glucose and either 1 µCi/ml of 2-[14C]acetate or 1 µCi/ml of 3H-leucine or 3 µCi/ml of 3H-thymidine (pre-gassed with 95% O2 and 5% CO2 at 37°C for 2 hr) on a constant speed shaker. At the end of the incubation period, the reaction was terminated by instant freezing of the tubes in a dry ice-acetone bath. The radioactivity of cholesterol, protein, and DNA in the tissues was then determined.

Analysis of radioactivity in cholesterol. The tissues were saponified by the addition of alcoholic KOH to a final concentration of 10% KOH and 50% ethanol (95%) at 75°C for 75 min. Unsaponified lipids were pooled by repeated extractions with n-hexane. The hexane extracts were evaporated under nitrogen and digitonin precipitation was carried out according to the procedure of Sperry (11). The cholesterol-digitonin complex was dissolved in 1 ml of methanol and 0.1 ml aliquots were counted in duplicate for [14C]activity in a Packard Scintillation Counter. The rates of synthesis were expressed as counts per minute per µg of prostatic DNA.

Analysis of radioactivity in protein and DNA. The tissues were homogenized with a Brinkmann polytron and crude protein or DNA was precipitated with 5 ml of 6% trichloroacetic acid (TCA) at 0°C. After 10 min, the samples were centrifuged at 4°C, and the precipitates were washed twice with 5 ml of 6% cold TCA. The precipitates were then extracted repeatedly with 95% ethanol: chloroform (3:1 v/v) to remove lipids. For radioactivity counting in proteins, the ethanol-chloroform extracted precipitates were dissolved in 2 ml of 10% NaOH and 0.2
ml aliquots were counted in duplicate for \(^{3}H\)-activity. To measure the incorporation of \(^{3}H\) thymidine into DNA, ethanol–chloroform extracted precipitates were dissolved in 2 ml of 0.3 \(N\) KOH at 37\(^{\circ}\) for 60 min. Proteins and DNA were then reprecipitated from supernatants with 8 ml of 6% TCA. The KOH extraction and the TCA precipitation were repeated. The final TCA insoluble fraction was treated with 2 ml of 16% perchloric acid (PCA) for 20 min at 70\(^{\circ}\), followed by centrifugation. Aliquots (0.2 ml) of the acid-soluble fraction were counted in duplicate for determination of radioactivity in the DNA. All tritium determinations were made in a xylene based scintillation cocktail (aquasol-2, New England Nuclear) and counted in a Packard Scintillation Counter.

Colorimetric determinations. The amount of cholesterol was quantitated by first saponifying the tissues and the unsaponified fractions were used for digitonin precipitation. The cholesterol–digitonin complex was used for colorimetric determination by the method of Parekh and Jung (12).

DNA and proteins were extracted in similar manner described in the section above and colorimetric analyses were carried out employing the method of Abraham et al. (13) for DNA and the Biuret procedure (14) for protein assay.

Results. As expected, the data in Table I confirm that on castration the prostate weight declines to about 12% of the normal rat prostate weight. Body weights are not significantly affected. Amounts of cholesterol, protein and DNA in rat prostate gland, quantitated colorimetrically, also decline to 12%, 13% and 25% of their respective normal values. Rates of synthesis of cholesterol and DNA per \(\mu\)g prostatic DNA also decline to about 8% and 5%, respectively, in castrated animals. Contrary to the decreases in rates of synthesis of DNA and cholesterol, the rate of protein synthesis per \(\mu\)g protein DNA remains constant in the castrated animals even though the total amount of protein present in the prostate gland of castrated animals is significantly lower than in normal rats. This may be due to the synthesis of hydrolytic enzymes that would hydrolyze the protein present in the normal gland. The results indicate that testosterone produced by the testicle is essential for the maintenance of gross cholesterol synthesis in the prostate gland among other prostatic functions.

To examine whether testosterone restoration the prostate cholesterol levels as the levels of macromolecules, 2 mg/ml of testosterone propionate in sesame oil was injected daily subcutaneously into castrated rats for varying periods of time up to 12 days. Prostate weight as well as cholesterol, DNA and protein content in the prostate gland were quantitated and the results are presented in Fig. 1. Administration of testosterone to castrated rats increased the amount of cholesterol in the prostate gland and protein content also increased. Prostate weights and the amounts of cholesterol and protein increased more significantly after 2 days of testosterone administration.

The amount of DNA remained constant for the first 2 days and increased significantly after the 3 days of testosterone injections. All parameters tested increased almost equally between 2 and 5 days of testosterone treatment. The amount of protein increases sharply during the 5 days of treatment which is followed by steep increases in prostate weight and the amount of cholesterol. Contrary to the decreases in prostate weight and the amounts of DNA and cholesterol, the rate of protein synthesis per \(\mu\)g protein DNA was highest in normal glands and the values were significantly higher than in castrated glands.

TABLE I. EFFECT OF CASTRATION ON THE SYNTHESIS OF PROSTATE CHOLESTEROL, PROTEIN AND DNA*

<table>
<thead>
<tr>
<th>Type</th>
<th>Body weight (gm)</th>
<th>Wet prostate weight (mg)</th>
<th>Wet protein weight (mg)</th>
<th>Total content ((\mu)g)</th>
<th>Rate of synthesis (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>275.5 ± 11.08</td>
<td>116.02 ± 21.06</td>
<td>237.5 ± 48.1</td>
<td>46.62 ± 11.98</td>
<td>5.83 ± 0.983</td>
</tr>
<tr>
<td>Castrated</td>
<td>252.0 ± 17.75</td>
<td>17.75 ± 21.06</td>
<td>32.04 ± 11.98</td>
<td>3.816 ± 9.46</td>
<td>0.728 ± 0.106</td>
</tr>
</tbody>
</table>

*All the total contents are expressed in terms of per 100 g body wt.

The rate of synthesis are expressed as cpm/\(\mu\)g of prostatic DNA isolated.

Rats were castrated for 7 days.
Prostate cholesterol and testosterone

Cholesterol, the slopes of curves for DNA and protein at 12 days of testosterone administration approached the steady state.

In Fig. 2 the ratios of cholesterol, protein and DNA content of the prostate glands from testosterone treated castrated rats are presented. The ratios of both cholesterol/DNA and protein/DNA increase on the administration of testosterone. This would be expected since de novo synthesis of enzymes for cholesterol synthesis pathway would be required for an increase in cholesterol content.

Figure 3 shows the rate of synthesis of cholesterol, DNA and proteins at various periods of testosterone administration up to 14 days. The rates of synthesis of protein and cholesterol peak 2 days after testosterone injection, whereas DNA synthesis peaks after 4 days of treatment. The two peaks in protein and cholesterol synthesis after 2 days and again after 5 days might indicate the synthesis of structural components followed by synthesis of secretory components. After 5 days, synthesis of DNA, protein and cholesterol decreases and remains at a steady state for the remainder of the 14 days of testosterone treatment. Despite the fact that the rate of cholesterol synthesis per microgram of prostatic DNA reaches a steady state, the sharp increase in cholesterol content upon testosterone administration at day 12 can be accounted for by the increased prostate weight as seen in Fig. 1.
Discussion. Swyer (15) reported an increase in the cholesterol content of the adenomatous portion of enlarged human prostate glands as compared to normal glands. Braunstein (16) reported the presence of refractile and doubly refractile crystals as well as a positive Schultz reaction in the cytoplasm of human prostatic carcinoma cells indicative of a high content of cholesterol. Leav and Ling (17) reported the similar findings on tissues derived from neoplastic canine prostate gland.

Since the discovery that the hypocholesterolemic polyene macrolides (18) by the oral route decreased the size of the enlarged prostate glands of dogs (19) and hamsters (20), there has been increasing clinical evidence (21–27) that these drugs affect the symptoms of prostatism caused by benign prostatic hypertrophy. Other hypocholesterolemic agents such as cholestyramine (28), colestipol (20), simvastatin (29) and β-sitosterol (30) have now also been reported to affect the prostate gland. Considering that hypocholesterolemic drugs in general appear to affect the cholesterol-containing enlarged prostate gland and realizing the importance of cholesterol in this organ, it became necessary to study cholesterol metabolism in the prostate gland and its possible regulation by testosterone, a recognized mediator of other prostatic functions.

It is very evident from these current studies that testosterone is a major factor in the synthesis of cholesterol in the prostate gland. On testosterone administration to castrated rats the amount of cholesterol increases before an increase in DNA content. Liao et al. have shown that the RNA polymerase activity from the prostate of castrated rats is enhanced within a few hours of single injection of testosterone. This may mean that the initial increase in cholesterol content is more likely due to increased RNA and protein synthesis. Following the initial cholesterol curve there is an increase in DNA content and then another increase in cholesterol content.

The observed two different phases in the amount of prostate cholesterol, the first of parallel increase with protein from day 0 and the second of a sharp increase in cholesterol between day 8 and 12 can be explained on the basis of cholesterol having a dual function in the gland. In the first phase, it is likely that only structural or membrane cholesterol is synthesized. After 8 days of testosterone administration when the gland approaches the normal state, since cholesterol is an important secretory product of the prostate gland, greater amounts of cholesterol-synthesizing enzymes might be produced as indicated by the large increase in protein content. This would be followed by the synthesis of a large amount of secretory cholesterol. Prostate weight rises in parallel with the amount of cholesterol.

The sharp increases in the synthesis of cholesterol, DNA and protein is followed by a sharp decrease on continuous testosterone administration. This may be due to a shift in testosterone metabolism in the prostate gland where testosterone may be converted to inactive or less active metabolites as compared to the conversion to a highly active metabolite such as dihydrotestosterone (31). This indicates that testosterone may be acting both as a positive and negative regulator of cholesterol synthesis in the prostate gland.

Summary. The absolute cholesterol content and rate of cholesterol synthesis was compared in rat ventral prostates obtained from adult normal and castrated rats. Cholesterol content and synthesis reduces to about 8–12% in the ventral prostate of castrated animals as compared to normal rats. Daily testosterone injections to castrated rats elicits a sharp increase in cholesterol content which correlates with an increase in prostate weight. The rate of cholesterol synthesis per microgram of prostatic DNA increases steeply 2 days after testosterone administration and then goes down and reaches a steady state after 5 days.

as, C., and Clark, P. J., J. Exp. Med. 72, 747

G. I., Cancer Res. 2, 372 (1942).

H., The Amer. J. Clin. Pathol. 41, 44

The Role of Cyclic AMP in CRF-Induced ACTH Secretion¹ (40272)

RONALD PORTANOVA AND W. J. BRATTIN

Department of Physiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

Experiments in this (1) and other (2-4) laboratories have shown that cyclic-3',5'-adenosine monophosphate (cyclic AMP) and its derivatives stimulate the secretion of ACTH. Recently, we have reported that the stimulation of ACTH secretion by hypothalamic median eminence-corticotrophin releasing factor (HME-CRF) is associated with a concomitant increase in adenylate cyclase activity; however, cordycepin (3'-deoxyadenosine) at sufficient concentration to reduce adenylate cyclase activity to undetectable levels, reduces but does not abolish the HME-CRF induced secretion of the hormone (5). These data suggest that while cyclic AMP may be involved in CRF-stimulated ACTH secretion, the cyclic nucleotide may not act as an obligatory intermediate, but rather may act to potentiate secretion. The experiments described in the present communication were designed to provide further information on this hypothesis.

Materials and methods. The techniques used in the preparation and incubation of isolated pituitary cells have been described in detail elsewhere (6, 7). In brief, anterior pituitary glands were removed from male Sprague-Dawley rats which had been adrenalectomized 14–28 days prior to sacrifice, and were maintained after adrenalectomy on 0.9% saline drinking solution without steroid hormone replacement. Cells were dispersed from the glands by mechanical agitation in Krebs-Ringer bicarbonate (KRB) buffer containing 0.2% glucose and 0.25% trypsin. After dispersion, cells were collected by centrifugation and resuspended in KRB buffer containing 0.2% glucose and 0.5% bovine serum albumin (KRBGA), plus 0.1% lima bean trypsin inhibitor. Aliquots (0.9 ml) of cell suspension were incubated for various times together with appropriate combinations of HME-CRF, N⁶,O²-dibutyryl-cyclic AMP (DBC), corticosterone, or vehicle (controls).

At the end of the incubation period, cells were removed by centrifugation, and the incubation medium was acidified, appropriately diluted, and assayed for ACTH. In most cases, the samples were bioassayed according to the isolated adrenal cortex cell technique described by Sayers et al. (8), using synthetic ACTH 1-24 (Cortrosyn, Organon) as standard. In one experiment (employing concentrations of DBC greater than 1 mM, see Fig. 5), in order to circumvent the problem of direct DBC stimulation of steroidogenesis by isolated adrenal cells, pituitary cell incubation medium was assayed for ACTH by a radioimmunoassay (RIA) technique. Rabbit anti-human ACTH serum was purchased from Burroughs-Wellcome, and ¹²⁵I-ACTH 1-24 was obtained from Amersham. Samples or standards (ACTH 1-24, Cortrosyn, Organon) were incubated with immune serum in 0.1 M sodium phosphate (pH 7.4), for 20 hr (4°), at which time ¹²⁵I-ACTH was added and the incubation was continued for 6 additional hr. Un-bound ¹²⁵I-ACTH was adsorbed to charcoal, collected by centrifugation, and counted in a Packard auto-gamma spectrometer. The method appears valid as judged by several criteria: (a) both extracts of pituitary cells and samples of pituitary cell incubation media gave log dose-displacement curves parallel to synthetic ACTH 1-24; (b) a number of polypeptides, including ACTH 5-10, ACTH 5-13, and a-MSH, showed no significant cross-reactivity; and (c) analysis of samples of pituitary cell extracts or incubation media by bioassay and RIA gave essentially identical values. In all experiments, the ACTH content of control incubates was determined and subtracted from that of incubates receiving test substance(s). In each experiment, data obtained from incubates receiving identical treatments were pooled, and means and standard errors of the means (SEM) were calculated. Statistical significance was assessed by means of Student's t test.

Extracts of rat hypothalamic median emi-

¹ This work was supported by USPHS Grant No. AM-13820-08.
nence tissue (HME-CRF) were prepared by homogenizing freshly excised ventral hypothalamic-median eminence tissue in 0.2 M acetic acid. Insoluble material was removed by centrifugation (20,000 g, 15 min), and was reextracted twice with 0.2 M acetic acid. The extracts were combined and stored frozen. For use, a portion of the extract was adjusted to pH 7.0, appropriately diluted (with KRBA) and added to the incubates in a volume of 0.1 ml. Doses of HME-CRF are expressed as tissue equivalents (i.e., fractions of an HME), which in these experiments had a wet weight of approximately 15 mg. Corticosterone (Sigma) in 0.9% saline plus 2.5% methanol, was added to appropriate incubates in a volume of 10 μl. DBC (Sigma) was added to appropriate incubates in a volume of 0.1 ml of KRBA.

Results. Both HME-CRF and DBC stimulate the secretion of ACTH by isolated pituitary cells (Fig. 1), and at the concentrations tested (0.2 HME/ml, 1 mM DBC) the ACTH secretory responses are nearly identical (150 pg/min/10⁶ cells). This concentration of DBC (1 mM) in the medium did not interfere in the subsequent steroidogenic bioassay for ACTH, as shown by the fact that addition of DBC at the end of the incubation period with HME-CRF does not significantly alter the response from that of HME-CRF alone. When pituitary cells are exposed to DBC throughout the exposure to HME-CRF, the rate of ACTH secretion is markedly enhanced. The rate of hormone secretion in the presence of HME-CRF plus DBC (575 pg/min/10⁶ cells) is almost twice that expected if the response to the two agents were simply additive. As shown in Fig. 2, the potentiating effect of DBC on HME-CRF induced ACTH secretion occurs without an obvious time-lag and persists throughout the duration of a 45 min incubation. The data in Fig. 3 indicate that the exposure of pituitary cells to DBC potentiates HME-CRF induced ACTH secretion, even if the cyclic nucleotide is removed prior to addition of HME-CRF. In these experiments cells were preincubated for 15 min in the presence or absence of DBC (1 mM) and then challenged with HME-CRF in the presence or absence of DBC (1 mM). HME-CRF induced ACTH secretion by cells exposed to DBC was more than twice that of

![Fig. 1. Interaction of CRF and DBC on ACTH secretion. Isolated pituitary cells prepared from adrenalectomized rats were incubated for 35 min. Substances added, and their time of addition during this interval, are indicated below each bar: H, HME-CRF (2 HME/ml); D, DBC (1 mM). Secretory rates are for the 30 min-period following the addition of HME-CRF; vertical lines represent combined SEM of pituitary and adrenal assays (N = 8).](image1)

![Fig. 2. Interaction of CRF and DBC on ACTH secretion; time course. Pituitary cells were incubated for indicated times in the presence of: DBC (1 mM), HME-CRF (2 HME/ml), or DBC (1 mM) plus HME-CRF (2 HME/ml). The ACTH content of control incubates (920 ± 42 pg/10⁶ cells, mean ± SEM, N = 10) did not change from 15 to 45 min, and has been subtracted from the experimental values presented. Vertical lines represent combined SEM of pituitary and adrenal assays (N = 4).](image2)
preincubation and the incubation.

The experiments described above demonstrate the interaction of submaximal doses of DBC and HME-CRF. In order to determine whether these secretagogues also interact at maximal dose levels, two experiments were performed. First, isolated pituitary cells were exposed to graded doses of HME-CRF in the presence or absence of DBC (Fig. 4). In the absence of DBC, maximum ACTH secretion is noted at a concentration of about 1.8 HME-CRF/ml. In the presence of DBC (1 mM), the secretory response to each dose of HME-CRF is increased more than twofold, even at maximum doses of HME-CRF. In the second experiment, isolated pituitary cells were exposed to graded doses of DBC in the presence or absence of HME-CRF (Fig. 5). In the absence of HME-CRF, maximum ACTH secretion is produced at a concentration of about 10 mM DBC. In the presence of HME-CRF (0.4 HME/ml), the secretory response is more than doubled at each dose of DBC, including the maximal doses.

Previous findings in our laboratory have shown that the secretion of ACTH by isolated pituitary cells in response to a variety of secretagogues, including DBC, is inhibited by corticosterone (9). We therefore carried out an experiment to determine if the potentiating effect of DBC on HME-CRF stimulated ACTH secretion is also inhibited by steroid. Pituitary cells were incubated for 30 min in the presence or absence of corticosterone (0.1 μg/ml) and were then stimulated (for 30 additional min) with either HME-CRF (0.2 HME/ml), DBC (1 mM), or HME-CRF (0.2 HME/ml) plus DBC (1 mM). The data in Fig. 6 show, as expected, that in the absence of exposure to corticosterone, both HME-CRF and DBC stimulate the secretion of ACTH, and HME-CRF stimulated secretion is potentiated by DBC. When the cells are exposed to corticosterone, ACTH secretion
Fig. 5. Effect of HME-CRF on ACTH secretion in response to graded doses of DBC. Isolated pituitary cells were incubated for 30 min with various doses of DBC in presence or absence of HME-CRF (0.4 HME/ml). TH was determined by RIA; data presented are net ACTH secreted. Vertical lines represent combined SEM of pituitary and radioimmune assays (N = 6).

Fig. 6. Interaction of CRF and DBC on ACTH secretion; effect of corticosterone. Isolated pituitary cells were incubated for 60 min. Substances added, and their time of addition during this interval, are indicated below each bar; H, HME-CRF (.2 HME/ml); D, DBC (1 mM); B, corticosterone (0.1 μg/ml). Secretory rates are for the 30 min-period following the addition of HME-CRF; vertical lines represent combined SEM of pituitary and adrenal assays (N = 8).

Discussion. Several lines of evidence suggest an involvement of cyclic AMP in the racellular mechanisms which regulate TH secretion. Cyclic AMP and its derivatives have been found to stimulate the secretion of ACTH both in vivo and in vitro (1–4). Inhibitors of cyclic nucleotide phosphodiesterase stimulate the secretion of ACTH (4) or synergistically with other secretagogues of hormone (2), presumably elevating the racellular level of cyclic AMP. Recently, observed that addition of HME-CRF to suspensions of isolated pituitary cells produces an increase in adenylate cyclase activity, concomitant with an increase in the rate of ACTH secretion (5). A stimulation of rat pituitary adenylate cyclase activity has also been reported in response to crude extracts of ovine hypothalamus (10) and vasopressin (4), an agent which is distinct from hypothalamic CRF but nevertheless stimulates the secretion of ACTH (11). These observations are all consistent with the notion that cyclic AMP is involved in the process which mediates ACTH secretion, but they provide no information as to the role of the cyclic nucleotide in this process. In this regard it is well to stress that although a large number of secretagogues of ACTH are known, no "authentic" hypothalamic CRF is yet available in pure form. Experiments employing crude extracts of hypothalamus (including those reported above) are limited in that responses observed may be the consequence of the interaction of several factors. Indeed, it is for this reason that little is known of the cellular and molecular processes which mediate ACTH secretion or the biochemical pathways by which these processes are regulated.

If the role of cyclic AMP in ACTH secretion is that of an obligatory "second messen-
ger"; then it would be expected than an agent which inhibits adenylate cyclase activity would interfere with secretion of the hormone. Cordycepin has been found to be an inhibitor of adenylate cyclase activity in fat cell membranes (12) and guinea pig lung (13). Experiments in our laboratory (5) have shown that a dose of cordycepin sufficient to reduce adenylate cyclase activity to undetectable levels in isolated pituitary cells only partially reduces the rate of HME-CRF induced ACTH secretion. We interpreted these data to mean that while cyclic AMP may indeed be involved in CRF-stimulated ACTH secretion, the cyclic nucleotide may not act as an obligatory intermediate but rather may act to potentiate secretion. Sundberg et al. (14) have advanced a similar proposal with respect to the role of cyclic AMP in the secretion of several other adenohypophysial hormones.

The data presented in this communication are consistent with this view. DBC potentiates HME-CRF induced ACTH secretion both at submaximal and maximal doses of HME-CRF (Fig. 4), and HME-CRF potentiates DBC induced ACTH secretion both at submaximal and maximal doses of DBC (Fig. 5). The mechanism of the interaction between HME-CRF and DBC is unknown. Potentiation occurs without an apparent lag period and persists for at least 30-45 min (Fig. 2). Significantly, pretreatment of isolated pituitary cells with DBC (followed by removal of the cyclic nucleotide prior to exposure to HME-CRF) potentiates the secretory response to HME-CRF to almost a similar degree as does exposure to HME-CRF in the presence of DBC (Fig. 3). This finding does not rule out the possibility that cyclic AMP has been sequestered within the cells during the pre-treatment period, and subsequently potentiates hormone secretion during exposure to HME-CRF. Alternatively, this finding is consistent with the view that the potentiating effect following DBC pretreatment may represent a physical and/or chemical change in the cell which is exerted after the cyclic nucleotide has been removed.

The data in Fig. 6 dramatically illustrate the potent inhibitory effect of corticosterone on ACTH secretion. At concentrations (0.1 μg/ml) within the physiological range, the steroid markedly suppresses hormone secretion in response to HME-CRF acting singly or in combination. These findings indicate that whatever the role of AMP in ACTH secretion, the site of inhibitory action of the steroid is distinct from the appearance of the cyclic nucleotide.

In conclusion, the data of the present communication support the hypothesis that AMP acts within corticotrophs to potentiate CRF-induced ACTH secretion. In our previous findings (5) indicate that an increased level of cyclic AMP is not necessary for ACTH secretion to occur. Taken together, these data suggest that CRF has (at least) two actions on the corticotroph: (a) the induction of a series of events which eventually leads to the formation of the secretory granule; (b) the potentiation of cyclic AMP levels within the corticotroph which then facilitates (through some unknown mechanism) the secretory process.

Summary. ACTH secretion by isolated pituitary cells is stimulated both by HME-CRF and DBC, and when given in combination, the two secretagogues interact synergistically. Although the mechanism of this interaction is unknown, the potentiating effect of DBC is displayed without an apparent lag period and persists after removal of the cyclic nucleotide. Corticosterone inhibits ACTH secretion induced by HME-CRF and DBC, acting singly or in combination. The implications of these findings are discussed.

The authors are grateful to Beth Wiblin and James Roe for their expert technical assistance.

Ketamine as an Anesthetic for Obtaining Plasma for Rat Prolactin Assays (40):

H. Y. MELTZER, D. STANISIC, M. SIMONOVIC, AND V. S. FANG

Departments of Psychiatry, Pharmacology and Physiological Sciences, and Medicine, University of Chicago, School of Medicine, Chicago, Illinois 60637

Various procedures have been utilized to obtain blood from laboratory rats for assay of plasma prolactin levels. Because of the effect of stress and general anesthetic agents on plasma prolactin levels (1-4), blood sampling procedures which do not themselves affect plasma prolactin levels are limited. Dohler et al. (5) recently compared the influence of four methods of blood collection under three anesthetics, ether, chloroform and pentobarbital, to decapsulation on the release of prolactin; in all instances they observed an increase in plasma prolactin ranging from 2- to 13-fold.

Lawson and Gala (6) reported that ketamine, which is a dissociative anesthetic, not a general anesthetic (6), produced no effect on plasma prolactin levels at 10, 30, 60 and 120 min after intraperitoneal (ip) or intraarterial (i.a.) injection in ovariectomized rats with indwelling catheters. Lawson and Gala (7) subsequently reported that ketamine, 100 mg/kg, ip, also produced no change in plasma prolactin levels in catheterized, ovariectomized, estrogen-treated Sprague-Dawley rats, with sampling at 10, 30, 60 and 120 min after injection. However, ketamine, 50 mg/kg, i.a., significantly decreased plasma prolactin levels at 10, 60 and 120 min. They suggested that ketamine differed from other anesthetics in its effects on prolactin secretion because it induced only stage II anesthesia.

We were interested in determining what effects if any, ketamine had on plasma prolactin levels in male rats. Since ketamine has been shown to inhibit both dopamine and serotonin uptake (8, 9), two neurotransmitters which have a profound effect on rat prolactin secretion (10, 11), it was of further interest to see if ketamine affected baseline prolactin levels or the reserpine, α-methylparatyrosine (AMPT)- or 5-hydroxytryptophan (5-HTP)-induced increase in prolactin secretion. Drugs which inhibit 5-HT uptake will promote the increase in prolactin produced by (12).

Methods. Male Sprague-Dawley (Sprague-Dawley, Inc., Madison, WI; ing 200-225 g were housed for at least in a temperature-controlled (25°) air conditioned (6 AM-8 PM light period) controlled (6 AM-8 PM light period) room. They received food and water. Ten groups of five rats each had their ovariectomies performed under ketamine anesthesia and maintained for 13 days in the right jugular vein was used for prolactin assays. C. The c were kept patent with flushing with saline alternate days. These rats were handled quently and accustomed to the proce withdrawal of 0.3 ml blood. These was no anesthesia at the time of withdrawal. Another ten groups of five rats each were administered ketamin mg/kg, ip. Immediately after they were responsive to toe pinch (usually 2 blood was withdrawn from the inferior cava. Finally, ten groups of five rats were decapitated rapidly.

Reserpine, 5 mg/kg, ip, was given min or 3 hr 30 min before ketami mg/kg, ip, or saline. Rats were sacri 4 hr after reserpine. AMPT, 100 mg was given 15 min before ketami mg/kg, ip and rats were sacrificed later. To determine the effects of ketami 5-HTP-induced increases in plasma tin, ketamine, 25, 50, and 100 mg/kg, given 30 min before 5-HTP, 30 mg. For comparison purposes, one group was pretreated with fluoxetine (Lilly) and a known 5-HT reuptake blocker (14) was pretreated with saline, followed by HTP, as described for the ketami treated rats.

Following sacrifice, plasma sample frozen and assayed later for prolactin modification of a double antibody r munoassay originally developed for prolactin assay (15). Prolactin levels
l in terms of NIAMDD-rat prolactin. All samples utilized in this report were assayed in duplicate. The sensitivity of the assay was 0.5 ng/ml. The intra-assay variation is less than 5%.

To determine if there was a difference in prolactin levels between types of sacrifice means for the 10 groups of each type compared with a one way analysis of variance (ANOVA). To examine for differences in variance within each of the three treatments, a completely randomized hierarchical analysis of variance was performed. The effect of drugs on the increase in plasma prolactin produced by 5-HTP was determined by an ANOVA.

Urine HCl was generously supplied by Davis-Warner-Chilcott, Inc., Ann Arbor, Mich. Alpha-methylparatyrosine methyl ester and 5-hydroxytryptophan methylester were supplied by Sigma, Inc., St. Louis, Mo. Reserpine was obtained from Ciba-Geigy, Summit, NJ. Fluoxetine was a gift from Eli Lilly, Co., Indianapolis, IN. All other reagents were of the highest purity.

Prolactin levels for the various groups of sacrifice are summarized in Table I. Median, range and coefficient of variation were calculated utilizing the mean for each group of five rats. The results of an ANOVA indicated there was a significant difference between any of the three methods of blood collection. However, five of the ten groups of catheter samples had mean levels that exceeded the highest mean of the ketamine groups (10.2 ng/ml). Only one of the decapitated groups had a mean plasma prolactin which exceeded 10.2 ng/ml. The ketamine-treated group had the lowest prolactin levels and the smallest coefficient of variation of the three types of treatment.

Ketamine did not significantly affect the increase in plasma prolactin levels produced by reserpine or AMPT (Table II).

5-Hydroxytryptophan, 30 mg/kg, or fluoxetine, 10 mg/kg, did not increase plasma prolactin levels (Table III). Fluoxetine, together with this dose of 5-HTP, produced a very significant increase in plasma prolactin. However, none of the three doses of ketamine, plus 5-HTP had any effect on plasma prolactin levels. Fluoxetine plus ketamine, 100 mg/kg, also did not augment plasma prolactin.

Discussion. The results of the studies in untreated male rats strongly indicate that anesthesia with ketamine does not affect plasma prolactin levels. Blood obtained from the inferior vena cava within 5 min of administration of ketamine has levels of prolactin not significantly different from that obtained from decapitated rats or from rats with indwelling venous catheters. The latter method

<table>
<thead>
<tr>
<th>GROUP</th>
<th>N</th>
<th>MEAN ± SEM</th>
<th>MEDIAN</th>
<th>RANGE*</th>
<th>MEAN COEFFICIENT OF VARIATION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mine</td>
<td>5 rats, ×10</td>
<td>6.0 ± 0.8</td>
<td>6.3</td>
<td>1.9–10.2</td>
<td>58.0</td>
</tr>
<tr>
<td>cipation</td>
<td>5 rats, ×10</td>
<td>6.4 ± 1.2</td>
<td>6.8</td>
<td>1.8–13.5</td>
<td>72.0</td>
</tr>
<tr>
<td>et</td>
<td>5 rats, ×10</td>
<td>9.4 ± 1.9</td>
<td>8.9</td>
<td>2.2–19.8</td>
<td>63.4</td>
</tr>
</tbody>
</table>

is of each group of 5.

TABLE II. EFFECT OF KETAMINE ON PLASMA PROLACTIN LEVELS FOLLOWING RESPERINE OR AMPT.

<table>
<thead>
<tr>
<th>DOSE (mg/kg)</th>
<th>SALINE</th>
<th>KETAMINE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserpine (A)</td>
<td>5</td>
<td>18.5 ± 3.7</td>
<td>25.0 ± 3.1</td>
</tr>
<tr>
<td>Reserpine (B)</td>
<td>5</td>
<td>21.7 ± 2.7</td>
<td>21.3 ± 1.7</td>
</tr>
<tr>
<td>AMPT</td>
<td>100</td>
<td>15.4 ± 4.6</td>
<td>15.2 ± 3.9</td>
</tr>
</tbody>
</table>

in ± SEM Ketamine, 100 mg/kg ip or saline was given 3 hr 55 min (A) or 3 hr 30 min (B) following 5 and 15 min following AMPT. Rats were sacrificed by decapitation 5 min (A) or 30 min (B) after ketamine or reserpine-pretreated rats, and 15 min after ketamine in the AMPT-pretreated rats. All groups consisted of 5
TABLE III. Effect of Ketamine and Fluoxetine on Increase in Prolactin Produced by 5-HTP.

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>Dose (mg/kg)</th>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Plasma prolactin* (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.4 ± 1.5</td>
</tr>
<tr>
<td>Saline</td>
<td>—</td>
<td>5-HTTP</td>
<td>30</td>
<td>8.4 ± 1.5</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>10</td>
<td>Saline</td>
<td>—</td>
<td>7.5 ± 1.4</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>10</td>
<td>5-HTTP</td>
<td>30</td>
<td>38.7 ± 4.6</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>10</td>
<td>Ketamine</td>
<td>100</td>
<td>6.4 ± 1.3</td>
</tr>
<tr>
<td>Ketamine</td>
<td>25</td>
<td>5-HTTP</td>
<td>30</td>
<td>6.7 ± 2.3</td>
</tr>
<tr>
<td>Ketamine</td>
<td>50</td>
<td>5-HTTP</td>
<td>30</td>
<td>8.6 ± 1.3</td>
</tr>
<tr>
<td>Ketamine</td>
<td>100</td>
<td>5-HTTP</td>
<td>30</td>
<td>7.0 ± 1.4</td>
</tr>
</tbody>
</table>

* Mean ± SEM. The first injection was given 60 min before the second injection. Groups of five rats were sacrificed by decapitation 15 min after saline or 5-HTTP.

of blood sampling tended to produce the highest levels and the greatest variance within a given group of 5 rats, the usual size of our control groups. These results indicate that where a single blood sample is required from a given male rat, ketamine anesthesia is acceptable. For studies in which anesthetized rats might be desirable, ketamine is clearly preferable to other anesthetics which themselves affect prolactin secretion. The reported ability of ketamine, 50 mg/kg, i.e., to lower prolactin levels, in ovariectomized estrogen-treated rats (7), if confirmed, would indicate that ketamine might affect the estrogen-stimulated prolactin secretion process and thus be less suitable for use in studies with female rats than it appears to be for male rats. The lack of effect of ketamine on prolactin secretion further documents the difference between the anesthesia produced by this agent and classical general anesthetics.

The inability of ketamine to reverse the increase in plasma prolactin levels produced by reserpine or AMPT is strong evidence that ketamine does not have direct dopamine agonist effects in vivo at the pituitary dopamine receptors which regulate prolactin secretion. Direct dopamine agonists such as apomorphine, bromocriptine or lysergic acid diethylamide readily reverse the increase in prolactin produced by reserpine or AMPT (17, 18 and unpublished data from this laboratory). Similarly, the inability to reverse the reserpine or AMPT-induced increase in prolactin indicates ketamine differs significantly from d-amphetamine, which has been shown to reverse the increase in prolactin secretion produced by reserpine or AMPT (19), presumably by increasing the release of dopamine from tubero-infundibular dopamine neurons or blocking its uptake. Previous studies of the effect of ketamine on dopaminergic mechanisms have been in vitro and have dealt with the nigro-striatal dopaminergic pathway. These differences may account for the differences between the results of these studies and this one.

The ability of fluoxetine but not ketamine to potentiate the effects of a subthreshold dose of 5-HTTP on prolactin secretion indicates that ketamine is not an effective inhibitor of serotonin uptake in vivo at those neurons which release the serotonin that potentiates prolactin secretion. These are believed to be the median raphe serotonergic neurons (20). However, an effect of ketamine on uptake of serotonin by other serotonergic neurons is not excluded.

The lack of effect of ketamine on the reserpine-, AMPT- and 5-HTTP-induced increase in prolactin secretion indicates the suitability of ketamine for anesthesia in studies of the effect of dopaminergic and serotonergic drugs on prolactin secretion.

Summary. Mean plasma prolactin levels obtained from male rats following anesthesia with ketamine, decapitation or via indwelling venous catheters were not significantly different although a larger variance was found in the samples obtained via catheters. Ketamine, at anesthetic doses, did not affect the increases in prolactin produced by reserpine or α-methylparatyrosine. Ketamine, at various doses, did not potentiate the effect of subthreshold doses of 5-hydroxytryptophan on prolactin secretion. Thus, ketamine would appear to be a suitable anesthetic for use in studies of prolactin secretion in male rats. Further studies in female rats are required.

Supported in part by grant nos. USPHS MH 30938, 29206, and RCSA MH 47868 to HYM.

EFFECT OF KETAMINE ON PROLACTIN

Pyrazinico Acid and Urate Transport in the Rat (40274)

SEYMOUR J. FRANKFURT and EDWARD J. WEINMAN

Renal Section, Department of Medicine, Veterans Administration Hospital and Baylor College of Medicine, Houston, Texas 77211

The decrease in urinary excretion of urate following the administration of pyrazinamide or its active metabolite, pyrazinico acid (PZA), has been extensively utilized as a pharmacologic aid in dissecting out the contribution of secreted urate to the urinary excretion of uric acid (1, 2). As originally proposed, the use of the "Pyrazinamide Suppression Test" was based upon the assumptions that this compound was a specific and perhaps complete inhibitor of urate secretion and was without effect on the urate reabsorptive processes (3, 4). Indirect evidence has been presented, however, that neither of these assumptions is totally valid (5–8). Published studies on the separate effects of PZA on urate reabsorption and secretion, however, have been limited and somewhat conflicting (8–11). The current studies were designed to examine the effect of PZA, in varying dosages, on net urate transport and on the urate reabsorptive and secretory mechanisms in the rat.

Methods. Male Sprague-Dawley rats with free access to food and water until the time of study were used in all experiments. Anesthesia was induced with Inactin (Promonta, Hamburg, Germany), 0.5–0.6 mM/kg body wt injected intraperitoneally. After a tracheostomy, the right and left jugular veins were cannulated and the urinary bladder catheterized. In the clearance experiments, the left femoral artery was cannulated for collection of blood samples. In the microinjection and precession studies, the left kidney was prepared for micropuncture as previously described (12, 13). The ureter of the left kidney was catheterized with PE-50 tubing to permit separate urine collections from each kidney. Only animals in which the urine flow rate of the left kidney was at least 85% of that from the contralateral kidney were included for study. In all animals, surgical losses of fluid were replaced with a volume of isotonic saline equal to 1% of body wt. Body temperature was maintained at 37°. Pyrazinico acid dissolved in a solution of sodium hydriodide (0.1 M); the pH was then adjusted to 7.4 with either hydrochloric acid or sodium bicarbonate. In all control periods, the diluent was infused to control for the effect of diluent infusion.

Clearance studies. Clearance studies performed in diuretic rats receiving 5% nitro in isotonic saline at a rate of 12.0 ml/hr so as to reproduce the protocol of the microperfusion studies which require high urine flow rates. A priming dose of 50 μCi of [met-3H] inulin in one ml of isotonic saline was infused followed by a sustaining infusion of isotonic saline containing 25 μCi/ml of [oxy-3H] inulin at a rate of 1.2 ml/hr. A 90-min equilibration period, two 20-min ine collections were obtained. 1.5 ml of arterial blood was obtained at the midpoints of each clearance period and was replaced with the same volume of blood from a donor rat.

After collection of samples in each period, pyrazinico acid in a dose of 0.40, 0.80, or 1.6 μM/kg body wt (50, 1200 mg/kg body wt respectively) was intravenously as a bolus followed by the dose infused per hour. After a 90-min equilibration period, two or three additional clearance periods were obtained. In order to control for possible changes in renal function over the time course of these experiments five rats were studied under the same protocol but received no infusion of drug. At the conclusion of all experiments, the kidneys were removed, stripped of perirenal fat and cut and weighed in a Mettler analytic balance (Mettler Instrument Corp., Princeton, N.J.).

Microinjection studies. Microinjections were performed in animals receiving mannitol in isotonic saline at a rate of 0.5 ml/hr. Inulin was not infused systemically. After preparation for study, separate groups of animals received either diluent infusion or a bolus infusion of pyrazinico acid of
1.6 mM/kg body wt followed by the
ose per hour. An equilibration period
nin was permitted to elapse before
microinjections. Intratubular mi-
torizations were performed with a solution
ing [2-14C]urate (50 μCi/ml) and
γ-[3H]inulin (100 μCi/ml) adjusted to
7.4 with a solution of NaHCO3 (0.357
er). The concentration of uric acid in
solution was 0.24 mM/liter. Triples
plets of 12–20 nl were prepared, one
h was utilized for the microinjection
other two counted directly for total
itivity. Microinjections were per-
to early or late proximal tubular
er a 60–90 sec interval and total urine
ons obtained sequentially from both
nd left kidneys. The procedures for
jection, localization of microinjection
d the calculations of the recovery rates
tent to those of Kramp, Lassiter,
tschalk (8) and have been described
from this laboratory previously (12,
get studies). Animals were prepared as
icroinjection studies except that 5% of
 is in isotonic saline was infused at
ient to increase the urine flow rate
0 μl/min per kidney. 100 nanoliters
C]urate and [methoxy-3H]inulin
 were placed upon the surface of the
ey as a droplet and urine collected
ially in 15–30 sec aliquots from both
d left kidneys. A sample of the droplet
ounted directly with each ex-
t to determine the ratio of 14C counts
ounts. Droplet studies were obtained
trol animals and in animals in-
ith PZA in doses of 0.40, 0.80, or 1.6
y body wt/hr as previously indicated.
empt was made to quantitate total
ies.
lytical methods. Radioactivity of blood,
nd microinjection and droplet sam-
as determined in Biofluor (New Eng-
nuclear Corp., Boston, MA) in a Pack-
ri-Carb liquid scintillation counter
rd Instruments Co., Downers Grove,
th appropriate corrections for 14C
paring in the 3H channel. Counts
were converted to disintegrations per
 for quench, crossover,
iciency of counting each isotope. The
urate concentrations of the serum and urine
ere determined by a uricase method using
olarographic sensor in a glucose analyzer
(Beckman Instruments, Fullerton, CA) as
viously described (12). The clearances of
inulin (Cinulin) and urate (Curate) are expressed
μl/min/g kidney wt and are calculated
from standard formulae.
All data are expressed as the mean ± SE
of the mean. P values were calculated by the
isher t test or the Student t test where
ropriate.
Results. Clearance studies (Table 1). Follow-
 the infusion of PZA in a dose of 0.40
M/kg body wt/hr, there was no change in
glomerular filtration rate, plasma urate
centration or in the clearance of urate.
The fractional excretion of urate, therefore,
 was unchanged and averaged 21.0 ± 1.3
4.0 ± 2.3% (P = NS) in control and experi-
mental periods respectively. By contrast, the
fusion of PZA in a dose of 0.80 mM/kg
body wt/hr resulted in significant decreases
in urate clearance from 276.0 ± 25.1 to 210.7
± 20.6 μl/min/g kidney wt (P < 0.005) and
in the fractional excretion of urate from 24.4
± 2.6 to 19.4 ± 2.4% (P < 0.01). The plasma
centration of urate increased from 58.3
± 4.2 to 86.8 ± 5.4 μM/liter (P < 0.001). The
fusion of PZA in a dose of 1.6 mM/kg body
wt/hr resulted in no change in plasma urate
centration, the glomerular filtration rate,
or the clearance of urate.
In order to control for the time course of
es experiments, animals studied in identi-
fashion but not receiving an infusion of
ZA, had no significant change in the
glomerular filtration rate, the plasma urate
centration, or the clearance of urate.
Microinjection studies (Fig. 1). To assess the
effects of varying dosages of PZA on the
urate reabsorption process and to localize
the nephron site of altered reabsorption, intratu-
ляр microinjections were performed into
early or late portions of the proximal tubule.
Only samples in which inulin recoveries were
95% or greater were included for analysis.
Delayed recoveries ranged from 0 to 6% with
no significant differences between the groups
of animals. Accordingly, the results are ex-
pressed as total urate recoveries and are sum-
morized on Fig. 1. Recoveries from early
proximal tubule sites averaged 73 ± 2% in
controls. Following infusion of PZA in doses of 0.40, 0.80, or 1.6 mM/kg body wt/hr, recoveries from early proximal tubule sites were 73 ± 1, 64 ± 2, and 71 ± 1% respectively. The urine recoveries after infusion of 0.80 mM/kg body wt/hr PZA (64 ± 2%) were significantly lower than those obtained in controls and in animals infused with PZA in doses of either 0.40 or 1.6 mM/kg body wt/hr. There were no differences in urine recoveries following microinjections in late proximal tubule sites between any of the groups of animals.

Droplet studies (Table II). Urate secretion was considered to be present when the ratio of [2-14C]urate to [methoxy-3H]inulin in the first urine sample to contain inulin divided by the ratio of [14C]/[3H] in the droplet solution was greater than one. In control animals not receiving PZA, the [14C]/[3H] urine-to-droplet ratio of counts averaged 1.79 ± 0.10 in the experimental left kidney and 0.79 ± 0.07 in the contralateral kidney. The infusion of PZA in a dose of 0.40 mM/kg body wt/hr resulted in an 11% decrease in the ratio of counts in the left kidney (P < 0.05) and no significant change in the right kidney. Compared to controls, PZA in a dose of 0.80 mM/kg body wt/hr resulted in a significant decrease in the ratio of counts from 1.79 ± 0.04 to 1.19 ± 0.12 (P < 0.05) and 0.79 ± 0.04 to 0.57 ± 0.07 (P < 0.05) in the left and right kidneys respectively. The largest dose of PZA tested (1.6 mM/kg body wt/hr) resulted in a 38% decrease in the ratio of counts in the experimental left kidney (P < 0.05) but no significant change in the right kidney.

Discussion. The presence of active mechanisms for the bidirectional transport of urate by renal tubular cells has made it difficult to assess the individual contribution of urate reabsorption or secretion to the urinary excretion of urate by classical clearance techniques. Pyrazinamide or its active metabolite, pyrazinonic acid (PZA), has been extensively utilized in man and in the intact animal as a pharmacologic aid in assessing the magnitude of each of these transport processes (1–3). The use of PZA in such studies was based upon the observation that, following its administration, the urinary excretion of urate was markedly reduced, an effect ascribed to an inhibition of urate secretion (1–3). More recently, doubt has been cast upon the results of studies utilizing the PZA-induced decrease of urate excretion as an index of urate secretion (4–6).

Prior studies from this and other laboratories have attempted to estimate urate reabsorption and urate secretion utilizing intratubular microinjection and droplet precession techniques, respectively. The rationale behind these techniques has been previously discussed (8, 9, 12–15). PZA in a dose of 0.40 mM/kg body wt/hr did not affect the fractional excretion of urate or the rate of urate

TABLE I. The Effects of PZA on the Clearance of Uric Acid.

<table>
<thead>
<tr>
<th>Dose of PZA infused</th>
<th>C_{urine} µM/min/g</th>
<th>C_{urine} µM/liter</th>
<th>FF_{urate} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>No PZA (n = 5)</td>
<td>1016 ± 89.3</td>
<td>953 ± 56.4</td>
<td>67.8 ± 0.5</td>
</tr>
<tr>
<td>P</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>0.40 mM/kg/hr (n = 8)</td>
<td>1069 ± 54.7</td>
<td>1007 ± 65.2</td>
<td>70.8 ± 3.0</td>
</tr>
<tr>
<td>P</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>0.80 mM/kg/hr (n = 6)</td>
<td>1169 ± 75.8</td>
<td>1175 ± 92.8</td>
<td>58.3 ± 4.2</td>
</tr>
<tr>
<td>P</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>1.60 mM/kg/hr (n = 9)</td>
<td>967 ± 36.4</td>
<td>1054 ± 62.9</td>
<td>61.9 ± 4.8</td>
</tr>
</tbody>
</table>

* Values expressed as mean ± SEM. FF_{urate} = fractional excretion of uric acid; C = control period; E = experimental period; NS = not significant; (n) = number of animals studied.

FIG. 1. Percent of total [2-14C]-urate recovered following microinjections in early and late proximal tubule sites. *P < 0.01.
ies following intratubular microinjection; did, however, have a small but measurably significant effect on urate secretion as assessed by droplet studies. This apparent discrepancy may indicate that either the degree of effect on secretion was not physiologically relevant, or that it could not be detected by arance or microinjection techniques. ontreatment with 0.40 mM dose, PZA in of 0.80 mM/kg body wt/hr resulted in an increase in fractional excretion of urate. if either inhibition of urate secretion, of reabsorption, or a combination of the two. The results of the precusor studies confirm that PZA inhibits urate on a degree of inhibition being with the 0.80 mM dose than with the 0.40 mM dose. The intratubular microinjection studies indicate that urate absorption is inhibited. The mechanism by which PZA inhibits urate absorption is unknown, few possibilities might be considered. hand, the decrease in urate recoveries represent a direct pharmacologic effect of urate reabsorption from the renal tubule. This suggestion has been proposed from clearance experiments (6, 7). On the other hand, the decreased fractional recovery of urate following intratubular microinjection in animals receiving 0.80 mM may be due to an inhibition of peritubular uptake of urate rather than urate secretion alone. It is possible that inhibition of urate uptake at the antiluminal border of the renal tubular cells reduces concentration of urate, thereby creating a more favorable gradient. Moreover, inhibition of secretion of urate into the tubular lumen would increase specific activity of the microinjected urate. Prior studies from this laboratory suggested that reducing the specific activity of isotopically labeled urate in the tubular lumen does not affect the fractional rate of [2-14C]urate absorption (13). The effect of increasing the specific activity, however, has not been examined directly and, thus, the expected changes in specific activity of [2-14C]urate microinjected into the tubular lumen cannot be excluded as a possible mechanism, at the present time. The current studies do not permit us to differentiate between a direct pharmacologic effect of PZA on the urate absorptive mechanisms and an effect of PZA solely on the secretory process with a secondary change in the absorptive process, but the results of studies using PZA in a dose of 1.6 mM/kg body wt/hr suggest that the latter is the more likely explanation, namely that PZA in a dose of 0.80 mM enhances urate absorption, primarily by inhibition of the secretory process. With the largest dose of PZA tested, fractional urate excretion and fractional urate recoveries following microinjections were similar to control values. This dose of PZA also significantly inhibited urate secretion. It seems likely that PZA, 1.6 mM/kg body wt/hr, not only inhibits secretion, but also inhibits reabsorption and, at this dose, secretion and reabsorption were inhibited to an equal extent. When viewed from this perspective, PZA appears to inhibit both urate secretion and urate reabsorption, and the inhibition of these processes is dose-dependent, but not necessarily of equal sensitivity. It was unfortunate that, due to an unacceptable high death rate of the animals, higher doses of PZA could not be examined.

Three previously published studies on the effect of pyrazinamide or PZA on the renal handling of urate in the rat bear directly on the results in the present study. A significant decrease in urate reabsorption has been reported by Kramp et al. when single bolus doses of PZA of either 10, 50, or 100 mg/kg body wt/hr were infused (8). The differences between their results and those of the current study can not be readily reconciled. In a series
of clearance studies, Boudry observed a small antiuricosuric effect of PZA, an effect which became more pronounced when the plasma urate concentration was increased (16). In a more recent study by Abramson and Levitt, there was an increase in net reabsorption by the end of the proximal tubule following PZA administration, a result ascribed to inhibition of secretion (11). Also observed in that study was a significant reabsorptive flux of urate in the loop of Henle following PZA infusion. In the current study, recoveries from late proximal tubule sites were lower than controls following PZA administration, but the changes were not statistically significant. Thus, we can not confirm or deny, at this time, an effect of PZA in nephron sites beyond the proximal convoluted tubule.

The use of pyrazinoic acid depression of urate excretion as an index of urate secretion has been based upon the assumptions that PZA inhibits urate secretion and is without effect on urate reabsorption. The results of the present studies confirm that PZA inhibits urate secretion, and thereby may secondarily enhance urate absorption. In high doses, however, PZA has the additional effect of inhibiting urate reabsorption. To the degree that PZA may affect both urate secretion and reabsorption, any conclusions derived from the use of PZA as to the magnitude of the contribution of secreted urate to the urinary excretion of urate cannot be considered quantitative.

Summary. These results indicate that urate secretion is inhibited by PZA and that the degree of inhibition is dose dependent. In the highest dose tested (1.6 mM/kg body wt/hr), PZA not only inhibits secretion but also inhibits urate absorption. Thus, PZA appears to inhibit both urate secretion and reabsorption. The inhibition of these processes is dose dependent but not necessarily of equal sensitivity.

These studies were presented in part to the American Federation for Clinical Research, Southern meeting, New Orleans, La., January 27-29, 1977, national meeting, Washington, D.C., April 30-1977, and have appeared in abstract form in Clin 24: 416A, 1976. The studies were supported in part by a Clinical Investigator award to Dr. Weismann from the Veterans Administration, and were performed with the help of a Fellow in Nephrology of the Mayo Clinic. PZA is kindly supplied by Dr. George Fanelli of the Merck Institute. The author gratefully acknowledges the technical assistance of L. Hawk and S. Sansom and the secretarial assistance of P. Dunham. Dr. Wadi N. Suki provided guidance and advice.

Received February 27, 1978. P.S.E.B.M. 1978, \
Increased Antiviral Effect of Phosphonoacetic Acid on the Poikilothermic Herpesvirus of Channel Catfish Disease (40275)

ROGER W. KOMENT1 and HAROLD HAINES2

Departments of Dermatology, Microbiology and Pathology, University of Miami, School of Medicine, Miami, Florida 33152

Recently, a characteristic sensitivity to the phosphonoacetic acid (PAA) has been demonstrated for representative herpesviruses of mammalian (1–8) and avian (9) species. In each reported system virus expression has been significantly inhibited in the presence of 100 μg/ml or less concentration of PAA. This mode of inhibition has been defined to be interference of virus-coded polymerase activity (10, 11) and due to specificity the therapeutic aspects of this in mammalian herpesvirus systems curiously appear quite promising (12).

We have investigated PAA in a cold-water (poikilothermic) herpesvirus system of potential possiblity of disease control. Channel catfish herpesvirus (CCV) is the etiologic agent of an economically devasting disease well known to the commercial aquaculture industry (15). We found expression in cell culture to be inhibited by PAA. However, 10–20 times the drug concentration required to inhibit warm-blooded (eothermic) herpesvirus systems.

Materials and methods. Viruses, cell, reagents. Channel catfish virus strain Auburn (A) originally received from Dr. John Rab (Auburn University, Auburn, AL) was adapted to 25°C in a continuous cell line of bullhead catfish (BB) cells. Channel catfish virus strain Homestead (CCVh) was adapted from an epizootic of channel catfish disease which occurred in South Florida (Koment, unpublished). This strain differs from the Auburn strain in its plaque morphology and complete lack of syncytial cell lysis and cytopathic effects in BB cell culture. BB cells were grown at 25°C in 75cm2 plastic tissue culture flask under Eagle's medium supplemented with 10% fetal calf serum, 0.075% sodium bicarbonate, 100 units/ml of penicillin and 100 μg/ml streptomycin.

Stocks of herpes simplex viruses (HSV) type 1 (HSV-1) strain 2bb and herpes simplex virus type 2 (HSV-2) strain 196 were prepared in human embryo lung cell cultures (Flow 2000). Primary rabbit kidney (pRK) and baby hamster kidney (BHK) cells were cultured at 37°C under the same growth medium as described above for BB cell cultures.

Disodium phosphonoacetate was obtained from Abbott Laboratories (Chicago, IL). Dilutions were prepared in either maintenance medium (Eagle's medium supplemented with 2% fetal calf serum, 0.075% sodium bicarbonate, 100 units/ml of penicillin and 100 μg/ml of streptomycin) or overlay medium (Eagle's medium supplemented with 0.5% methylcellulose, 5% fetal calf serum, 0.23% sodium bicarbonate, 100 units/ml of penicillin and 100 μg/ml of streptomycin). Virus plaque assay, plaque reduction by PAA. A standard virus plaque assay was developed for channel catfish virus in BB cells under Eagle's medium containing 0.5% methylcellulose. This was with modifications based on procedures previously described for the in vitro assay of herpes simplex virus (16).

Briefly, tenfold serial dilutions of CCV were prepared and inoculated onto confluent monolayers of BB cells in 35 mm plastic dishes. After 1 hr. incubation at 25°C to allow virus adsorption, 2 ml of overlay medium was added per dish and cultures incubated at 25°C in a 5% CO2 atmosphere. After 72 hr the overlay medium was removed, monolayers washed once with phosphate buffered saline and stained with 1% crystal violet. Plaques formed by HSV at 37°C were stained at 48 hr after inoculation. All plaques were counted with the aid of a stereomicroscope.

Reference:
1. Current address: Dr. Roger Koment, Department of Biology, The University of South Dakota, School of Medicine, Vermillion, South Dakota 57069.

Address reprint requests to Dr. Harold Haines, Department of Pathology, University of Miami School of Medicine, P. O. Box 520875, Miami, Florida 33152.
To determine plaque reduction a known number of plaque forming units (PFU) was inoculated onto cell monolayers in 35 mm dishes and overlay medium containing increasing concentrations of PAA was added. The average number of plaques counted on replicate cultures without PAA was regarded as the 100% value of plaques formed.

Inhibition of virus by PAA-containing medium. For multiplicity of infection (MOI) studies BB cells were grown in 16 × 125 mm tissue culture tubes and monolayers were inoculated with different multiplicities of CCV_A. Maintenance medium containing increasing amounts of PAA was added, 1 ml per tube. Inoculated control tubes contained no PAA. Cultures were maintained at 25°C for 1 week with daily observation for cytopathic effect (CPE). We define effective concentration of PAA as that amount of drug which completely inhibited the induction of detectable virus CPE.

Results. Virus plaque reduction by PAA. CCV in amounts of 200, 100 or 50 plaque forming units in separate experiments was inoculated onto confluent monolayers of BB cells in 35 mm dishes. Concentrations of PAA ranging from 50 to 2000 μg/ml in overlay medium was applied for 72 hr. The resulting data listed in Table I indicates that greater than 95% of CCV_A plaques were inhibited at a final drug concentration of 1000 μg/ml. This relationship remains the same whether cultures were infected with 200, 100 or 50 virus plaque forming units. Likewise, the wild-type isolate, CCV_H, was similarly inhibited in the plaque reduction assay. However, plaques of this strain were reduced 100% by concentrations of 500 μg PAA/ml, half the amount required for the laboratory adapted CCV_A strain.

In similar experiments using HSV, 200 PFU were inoculated onto either BHK or pRK cell cultures and concentrations of PAA in overlay medium applied for 48 hr. Table II indicates that in all cases 97% or more of both HSV-1 and HSV-2 plaques were inhibited at a final PAA concentration of 50 μg/ml.

Effect of PAA on host cell viability. The effect of PAA in high concentrations on BB cells was determined as follows. At the beginning of each experiment viable cell counts, as calculated by trypan blue dye exclusion, were done on BB cells grown in 35 mm dishes. Representative cultures were randomly selected. Overlay medium containing PAA in final concentrations of 0, 500, and 2000 μg/ml was added to cell cultures containing no virus, and at 72 hr viable cell counts were done. The data in Table III demonstrate that the total number of viable cells was the same in PAA treated and untreated BB cell cultures. This indicates that no drug toxicity occurred during the 72 hr-CCV assay period. In addition, parallel BB cell cultures containing either 0, 500, or 2000 μg/ml of PAA were

<table>
<thead>
<tr>
<th>Virus*</th>
<th>PAA Conc*</th>
<th>No. plaques*</th>
<th>% Plaque reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCV_A 200 PFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>183</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>175</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>191</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>162</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>84</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>100 PFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>75</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>71</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>79</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>68</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>23</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>3</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>50 PFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>29</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>24</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>27</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>9</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CCV_H 200 PFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>195</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>194</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>134</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>109</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>50 PFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>69</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>54</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>28</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>11</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

* Channel catfish virus strains Auburn (CCV_A) and Homestead (CCV_H).

* In μg/ml final concentration.

* Average of four plates per PAA concentration.
TABLE II. HERPES SIMPLEX VIRUS PLAQUE REDUCTION BY PAA.

<table>
<thead>
<tr>
<th>Cell</th>
<th>PAA Conc</th>
<th>No. plaques</th>
<th>% Plaque reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHK</td>
<td>0</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>pRK</td>
<td>0</td>
<td>165</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>BHK</td>
<td>0</td>
<td>199</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>pRK</td>
<td>0</td>
<td>165</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

*Note: simplex virus type 1 (HSV-1) strain 2bb and HSV-2 strain 196.

y hamster kidney (BHK) cells and primary rab-

y (pRK) cells.

g/ml final concentration.

rage of four plates per PAA concentration.

I, trypsinized and successfully subcul-
wice under PAA-free growth medium.

sion of PAA to multiplicity of infect-
do determine if a PAA dose dependency

CCV similar to that reported (2) 3V, CCVA was prepared in various
ns and inoculated onto BB cells grown
se culture tubes. These virus dilutions
onded to multiplicities of infection of
, 1.0, and 6.0 plaque forming units
Maintenance media containing the
AA concentrations as listed in Table
aded to each MOI group of inocu-
B cell cultures. Viral CPE for all cul-
lid not progress beyond 4 days after
ation, but cultures were observed for a
of 1 week. Results of these experiments
ed that a direct relationship does in-
xist between PAA concentration and
OI. For every tenfold increase in
put a twofold increase of drug was
ed for total inhibition of virus cytopath-

This ranged from 500 μg PAA/ml = 0.01 PFU/cell) to more than 2000
A/ml (MOI = 6.0 PFU/cell). The tox-
vel of PAA in BB cells was evident at
μg PAA/ml of culture medium.

usion. The herpesviruses are widely
ed throughout animal phylogeny (17).
gh they infect a range of species the
resultant interaction may vary subtly from
subclinical infection to severe disease to on-
cogenicity. For many reasons those herpes-
viruses that parasitize homeothermic animals,
the mammals and birds, have received most
research attention. It has been consistently
found that PAA in amounts of 100 μg or less
inhibits the expression of each herpesvirus
tested. Likewise, our results agree with the
results of others (2, 4) whereby HSV-1 and
HSV-2 expression at 37° is inhibited by less
than 100 μg PAA/ml.

The data presented in this report support
the developing contention that susceptibility
to inhibition by PAA is a new characteristic
of the herpesviruses. Furthermore, this char-
acteristic is apparent in poikilothermic as well
as homeothermic animal-virus systems. Our
findings indicate, however, that up to 20 times
the amount of drug required for other her-
pesvirus systems is necessary to inhibit CCV.

Currently the precise mode of virus inhibi-
tion which occurs in our system is unclear.

In poikilothermic systems PAA has been
shown to interfere with enzymes of viral
DNA replication (10, 11). In view of the vast
phylogenetic distance between the mamma-
lian and teleostean cell however, there may
be differences in metabolic reactions to anti-
viral drugs. If the mode of action is similar
then the action of PAA may be dependent
upon either temperature or, relatedly, the
physiology and metabolic rate of the host cell.
It is well known that enzyme-substrate reac-
tions can be directly influenced by tempera-
ture, and the importance of temperature as a
catalytic mechanism has been demonstrated
in the regulation of many life functions of
poikilothermic species (18). The importance
of host cell physiology is also suggested by
the increased tolerance of BB cells to PAA.

We have observed drug toxicity to occur at

TABLE III. Viable BB cell counts after
Exposure to PAA.

<table>
<thead>
<tr>
<th>PAA conc</th>
<th>Time</th>
<th>Viable cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1.4 × 10^6</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>1.9 × 10^6</td>
</tr>
<tr>
<td>500</td>
<td>72</td>
<td>1.9 × 10^6</td>
</tr>
<tr>
<td>2000</td>
<td>72</td>
<td>2.3 × 10^6</td>
</tr>
</tbody>
</table>

*In μg/ml final concentration.

*In hours.

*Trypan blue dye exclusion, total number of cells per culture.
or about the 2500 µg/ml level as determined by loss of monolayer integrity with concurrent decrease in viable cell counts.

An alternative hypothesis is that the poikilothermic virus is itself responsible for the increased amount of drug required for inhibition of virus expression. One means to resolve this question would be a determination through a range of temperatures of PAA levels inhibiting homeothermic herpesviruses in BB cells or CCV in homeothermic cells. Unfortunately, these experiments are not now possible as CCV will not support the replication of those broad host range homeothermic herpesviruses tested (HSV, pseudorabies virus) and CCV will only replicate in selected cells of catfish origin.

The investigation of anti-viral drugs serves a twofold purpose: The realization of potential for control of acute viral disease and the attainment of a further understanding of the mechanisms of virus host-cell interaction. A clearer insight into both these objectives may be obtained by study of the mechanism by which poikilothermic channel catfish herpesvirus is less sensitive than homeothermic herpesviruses to PAA.

Summary. Both the laboratory adapted Auburn strain and a recently isolated wild-type strain of channel catfish herpesvirus (CCV) were found to be inhibited by phosphonoacetic acid (PAA) when replicated in catfish cell cultures. The inhibition of virus cytopathic effect by PAA exhibited a direct relationship between the multiplicity of infection and amount of drug required. However, in this poikilothermic system up to 20 times the amount of PAA required for inhibition of homeothermic herpesvirus systems was found necessary to inhibit CCV cytopathology.

Effects of Indomethacin and Meclofenamate on Estrogen Induced Vasodilation in the Rabbit Uterus

J. M. L. Mueller, Bruce Stoehr, Jr., Terrance Phernetton, and John H. G. Rankin

Institute of Physiology and Gynecology-Obstetrics, University of Wisconsin Medical School and Wisconsin Perinatal Center, Madison General Hospital, Madison, Wisconsin 53715

Studies have shown that estrogens increase blood flow to the pregnant and non-pregnant uterus (1-3), but the mechanism by which this vasodilation occurs has not been determined. It has been postulated that prostaglandins mediate this vasodilation. Prostaglandins have been shown to play a role in the control of blood flow in the pregnant uterus (4) and some studies have indicated that prostaglandins affect blood flow in non-pregnant uteri (5). Some investigators have reported finding increased prostaglandin synthesis in uterine tissue following estrogen treatment (6, 7).

The following experiment was designed to determine the response of the uterine vascular system in estrogen treatment in the rabbit and to determine the role of prostaglandins in the response through the use of the known prostaglandin synthetase inhibitors, indomethacin and meclofenamate.

Materials and Methods: Non-pregnant female New Zealand white rabbits weighing 1-3 kg were used in this study. Surgery was performed under Nembutal (Abbott Pharmaceutical). A left ventricular catheter, 0.0288 mm in size, was placed via the left carotid artery and a second polyvinyl catheter was sutured to a subcutaneous tunnel. The femoral catheter was then led to an incision via a subcutaneous tunnel. The catheters were secured to a pocket made of gauze and attached to the rabbit's back. Experiments were performed on the morning of the day with the awake animal resting in a restraining cage.

The mean arterial pressure was monitored with a Statham P23Db transducer attached to the femoral catheter. Records were made with an R411 Beckman recorder with an EO-18 oscilloscope display.

Blood flows were determined by the left ventricular injection of 15 micron microspheres (3M Co., New England Nuclear) labelled with either 106Gd, 113Sn, 85Sr or 46Sc. The spheres were prepared as a suspension in 10% Dextran in saline. Each microsphere injection had a volume of 0.1-0.2 ml and contained approximately 0.5 million spheres.

Withdrawal. The microspheres were injected into the left ventricle while simultaneously withdrawing an integrated arterial blood sample from the femoral catheter at a rate of 2.06 ml/min for 1.5 min, starting from the time of sphere injection.

Response to estrogen. In five animals, the control organ blood flows were determined. A solution of 1 mg/ml beta estradiol diacetate (Sigma) in 95% ETOH was then administered at a dosage of 100 μg/kg of body weight via the left ventricle. A second determination of the organ blood flow was made 2 hr after the estrogen treatment.

Effect of indomethacin pretreatment. In this series seven rabbits were pretreated with a 100 mg/ml solution of indomethacin dissolved in dimethyl sulfoxide at a dosage of 20 mg/kg of body wt. Indomethacin was given 30 min prior to the control blood flow measurement, and again 30 min before the final measurement of blood flow. The effect of estrogen on the uterine blood flow was measured as described above.

Effect of meclofenamate pretreatment. In this series meclofenamate was administered to eight rabbits as a 20 mg/ml saline solution in a dosage of 20 mg/kg of body wt. The meclofenamate was given 30 min prior to the control blood flow measurement and again 30 min before the final measurement of blood flow.
flow. The effect of estrogen on the uterine blood flow was measured as described above.

Assay. Upon completion of the experiment, the animal was sacrificed and the uterus, kidneys and lungs were removed. Care was taken to dissect free any adipose or connective tissue from the organs. The uterus was dissected into five separate samples, and the kidneys into three samples each. Two lung samples were also taken, one sample coming from each main lobe of the lungs. Lung samples were taken for assay to determine that no shunting of microspheres across the vascular bed had occurred. The tissues were weighed and placed in counting vials. No sample vial contained tissue which extended more than 1 cm above the bottom of the vial.

Standard vials were used in assaying the samples. Each standard vial contained a known number of spheres of one of the isotopes used in the experiment embedded in wax approximately 0.5 cm from the bottom of the vial. All measurements of radioactivity were made with a three-channel, well-type, automatic γ counting system (Nuclear Chicago, model 1185). A standard pattern of counting the samples was used in which the standard vials were followed by the blood samples, obtained during the integrated arterial withdrawal, followed by the tissue samples. The data were printed on paper tape which was fed into a Univac 1110 computer via an interactive terminal. The data were then processed through programs developed by our laboratory. The spillovers of each isotope into the other channels was determined from the standard vials and the counts per minute per sphere were also calculated at this time. Data were reduced to counts per minute and the number of spheres in each sample. Organ blood flows and vascular resistances per gram of tissue and the ratios of test resistance to control resistance (T/C) for each tissue sample were also calculated. All results are expressed as the mean ± the standard error of the mean. Statistical analysis included paired and un-paired t tests (where appropriate) to compare control and test observations.

Dosage and vehicle. The vehicle for the estrogen was ethanol. The dosage administered was small (<.35 ml) and the measurements of blood flow were made 2 hr after the administration of this substance. It is unlikely that the presence of ethanol was a significant factor in these experiments because ethanol was present in both the control (estrogen only) studies and in the studies using prostaglandin synthetase inhibitors. The indomethacin was administered with <1 ml of DMSO (dimethyl sulfoxide) and our observations were made after a delay of 30 min. We have examined the cardiovascular effects of DMSO in the sheep and have observed no significant cardiovascular responses to this agent 30 min after its administration.

The dose levels of indomethacin and meclofenamate were selected to ensure some degree of prostaglandin synthetase inhibition. Ryan et al. (5) used 20 mg/kg/day of meclofenamate and 5 mg/kg/day of indomethacin. Venuto et al. (8) have shown that 2 mg/kg of indomethacin or meclofenamate both reduce uterine venous prostaglandin E2 levels in pregnant rabbits.

Results. Part 1. Responses to estrogen. The results obtained in five rabbits are presented in Table I. Organ blood flows were measured before (Control) and 2 hr after (Test) treatment with 0.1 mg/kg estrogen. Mean arterial blood pressures were not affected by the estrogen treatment. In each of the five animals, the vascular resistance of the uterus decreased in response to estrogen. The change in mean resistance of 192.96 ± 32.5 in the control state to 36.92 ± 8.5 mm Hg × min/ml × g after estrogen, was significant (P < .003). The renal vascular resistance was not affected by estrogen treatment.

Part 2. Pretreatment with indomethacin. The organ blood flows in seven rabbits which had been pretreated with 20 mg/kg indomethacin were measured both before (Control) and again 2 hr after (Test) estrogen treatment. The results are presented in Tables II and III. Mean arterial blood pressures were not affected by indomethacin pretreatment. Uterine vascular resistance was also not significantly affected by the indomethacin. The renal vascular resistance increased from a mean control value of 24.63 ± 3.0 to 38.51 ± 5.2 mm Hg × min/ml × g (Table III). This was a significant increase (P < .04) due to indomethacin pretreatment.

Following indomethacin pretreatment, mean arterial blood pressures were not af-
fected by estrogen treatment. Uterine vascular resistance decreased from a control value of 299.13 ± 69.1 to 137.90 ± 47.3 mm Hg × min/ml × g (P < .004) after pretreatment with estrogen (Table II). The renal vasculature was not affected by the estrogen treatment.

Comparisons were made of the resistance ratios (T/C) between normal rabbits and rabbits which had been pretreated with indomethacin to determine any affect which indomethacin might have on the vascular response to estrogen treatment (Table IV). The untreated uterus had a mean T/C value of

<table>
<thead>
<tr>
<th>Table I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance (mm Hg × min)/ml × g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal</th>
<th>C (Hg)</th>
<th>T</th>
<th>C</th>
<th>T</th>
<th>T/C</th>
<th>C</th>
<th>T</th>
<th>T/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>92</td>
<td>216.48</td>
<td>50.29</td>
<td>0.233</td>
<td>13.37</td>
<td>25.48</td>
<td>1.905</td>
</tr>
<tr>
<td>2</td>
<td>112</td>
<td>102</td>
<td>231.56</td>
<td>53.29</td>
<td>0.231</td>
<td>29.26</td>
<td>24.66</td>
<td>0.843</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>86</td>
<td>104.22</td>
<td>11.00</td>
<td>0.106</td>
<td>23.09</td>
<td>15.11</td>
<td>0.654</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>86</td>
<td>279.98</td>
<td>47.42</td>
<td>0.169</td>
<td>28.32</td>
<td>27.53</td>
<td>0.972</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>92</td>
<td>132.57</td>
<td>22.48</td>
<td>0.170</td>
<td>29.09</td>
<td>30.77</td>
<td>1.058</td>
</tr>
<tr>
<td>Mean</td>
<td>90</td>
<td>92</td>
<td>192.96</td>
<td>36.92</td>
<td>0.182</td>
<td>24.62</td>
<td>24.71</td>
<td>1.086</td>
</tr>
<tr>
<td>SEM</td>
<td>±7</td>
<td>±3</td>
<td>±32.5</td>
<td>±8.5</td>
<td>±0.02</td>
<td>±3.0</td>
<td>±2.6</td>
<td>±0.24</td>
</tr>
</tbody>
</table>

*The uterine and renal vascular resistance per gram of tissue of five rabbits before (C) and 2 h after (T) the administration of 0.1 mg/kg estrogen. Mean arterial blood pressures and resistance ratios (T/C) are also given.

<table>
<thead>
<tr>
<th>Table II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance (mm Hg × min)/ml × g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal</th>
<th>Blood pressure (mm Hg)</th>
<th>C</th>
<th>T</th>
<th>Uterine resistance</th>
<th>C</th>
<th>T</th>
<th>T/C</th>
<th>Renal resistance</th>
<th>C</th>
<th>T</th>
<th>T/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>108</td>
<td>220.88</td>
<td>218.16</td>
<td>0.988</td>
<td>23.65</td>
<td>77.01</td>
<td>3.256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>80</td>
<td>233.67</td>
<td>33.79</td>
<td>0.145</td>
<td>33.50</td>
<td>22.59</td>
<td>0.674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>88</td>
<td>143.72</td>
<td>37.01</td>
<td>0.257</td>
<td>30.45</td>
<td>30.35</td>
<td>0.997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>94</td>
<td>543.48</td>
<td>302.89</td>
<td>0.557</td>
<td>41.38</td>
<td>44.44</td>
<td>1.074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>106</td>
<td>575.03</td>
<td>283.85</td>
<td>0.494</td>
<td>65.52</td>
<td>85.73</td>
<td>1.308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>76</td>
<td>136.67</td>
<td>59.81</td>
<td>0.437</td>
<td>31.89</td>
<td>21.71</td>
<td>0.681</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>108</td>
<td>100</td>
<td>240.43</td>
<td>29.77</td>
<td>0.124</td>
<td>43.17</td>
<td>38.56</td>
<td>0.893</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>91</td>
<td>93</td>
<td>299.13</td>
<td>137.90</td>
<td>0.429</td>
<td>38.51</td>
<td>45.77</td>
<td>1.269</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>±4</td>
<td>±5</td>
<td>±69.1</td>
<td>±47.3</td>
<td>±0.11</td>
<td>±5.2</td>
<td>±9.9</td>
<td>±0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The uterine and renal vascular resistances per gram of tissue of seven rabbits pretreated with 20 μg/kg indomethacin before (C) and 2 h after (T) the administration of 0.1 mg/kg estrogen. Mean arterial blood pressures und resistance ratios (T/C) are also given.

<table>
<thead>
<tr>
<th>Table III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance (mm Hg × min)/ml × g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blood pressure (mm Hg)</th>
<th>N</th>
<th>P</th>
<th>Uterine resistance</th>
<th>N</th>
<th>P</th>
<th>Renal resistance</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>90</td>
<td>91</td>
<td>192.96</td>
<td>299.13</td>
<td>24.63</td>
<td>38.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>±7</td>
<td>±4</td>
<td>±32.5</td>
<td>±69.1</td>
<td>±3.0</td>
<td>±5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A comparison of the uterine and renal vascular resistance per gram of tissue during the control period of five normal (N) rabbits and seven rabbits pretreated (P) with 20 mg/kg indomethacin. A comparison of the mean arterial blood pressures is also provided.
0.182 which differed significantly \((P < .05)\) from the pretreated \(T/C\) value of 0.429. Indomethacin depressed the uterine response to estrogen.

Part 3. Pretreatment with meclofenamate.

The organ blood flows in eight animals pretreated with 20 mg/kg meclofenamate were measured both before (Control) and again 2 hr after (Test) estrogen treatment. The results are presented in Tables V and VI. Meclofenamate pretreatment had no effect on the mean arterial blood pressure. The uterine vascular resistance increased from a mean control value of 192.96 ± 32.5 to 416.42 ± 72.6 mm Hg \(\times\) min/ml \(\times\) g \((P < .02)\) following the meclofenamate treatment. The renal vascular resistance significantly increased from 24.63 ± 3.0 to 40.33 ± 6.1 mm Hg \(\times\) min/ml \(\times\) g \((P < .04)\) after pretreatment with meclofenamate (Table VI).

Following pretreatment with meclofenamate the mean arterial blood pressure was not affected by estrogen treatment. The uterine vascular resistance significantly decreased from a mean value of 416.42 ± 72.6 before estrogen to 69.58 ± 21.8 mm Hg \(\times\) min/ml \(\times\) g \((P < .001)\) after estrogen (Table V). The renal vasculature was not affected by the

TABLE IV. *

<table>
<thead>
<tr>
<th>Resistance ratios</th>
<th>Indomethacin pretreatment</th>
<th>Meclofenamate pretreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal T/C</td>
<td>Normal T/C</td>
<td>Normal T/C</td>
</tr>
<tr>
<td>Mean 0.182</td>
<td>0.182</td>
<td>0.182</td>
</tr>
<tr>
<td>SEM ±0.02</td>
<td>±0.02</td>
<td>±0.03</td>
</tr>
<tr>
<td>SEM 7</td>
<td>5</td>
<td>SEM 8</td>
</tr>
</tbody>
</table>

* The effect of 0.1 mg/kg estrogen on the uterine vasculature of five normal rabbits and rabbits pretreated with either 20 mg/kg indomethacin or 20 mg/kg meclofenamate. The data are expressed as ratios (T/C) of the resistance 2 hr after estrogen treatment (T) to that seen before administration of the estrogen (C).

TABLE V. *

<table>
<thead>
<tr>
<th>Blood pressure (mm Hg)</th>
<th>C</th>
<th>T</th>
<th>Uterine resistance</th>
<th>C</th>
<th>T</th>
<th>Renal resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>84</td>
<td>82</td>
<td>685.06</td>
<td>28.30</td>
<td>0.041</td>
<td>38.99</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>92</td>
<td>298.94</td>
<td>60.84</td>
<td>0.204</td>
<td>37.94</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>86</td>
<td>315.82</td>
<td>47.82</td>
<td>0.151</td>
<td>73.20</td>
</tr>
<tr>
<td>4</td>
<td>86</td>
<td>80</td>
<td>674.91</td>
<td>198.78</td>
<td>0.295</td>
<td>57.13</td>
</tr>
<tr>
<td>5</td>
<td>108</td>
<td>100</td>
<td>611.76</td>
<td>122.55</td>
<td>0.200</td>
<td>25.01</td>
</tr>
<tr>
<td>6</td>
<td>82</td>
<td>93</td>
<td>172.58</td>
<td>16.89</td>
<td>0.098</td>
<td>41.13</td>
</tr>
<tr>
<td>7</td>
<td>88</td>
<td>90</td>
<td>268.15</td>
<td>25.74</td>
<td>0.096</td>
<td>23.81</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>102</td>
<td>304.17</td>
<td>55.69</td>
<td>0.183</td>
<td>40.33</td>
</tr>
<tr>
<td>Mean</td>
<td>88</td>
<td>91</td>
<td>416.42</td>
<td>69.58</td>
<td>0.158</td>
<td>±6.1</td>
</tr>
<tr>
<td>SEM ±3</td>
<td>±3</td>
<td>±3</td>
<td>±72.6</td>
<td>±21.8</td>
<td>±0.03</td>
<td>NS</td>
</tr>
</tbody>
</table>

* The uterine and renal vascular resistances per gram of tissue of eight rabbits pretreated with 20 mg/kg meclofenamate before (C) and 2 hr after (T) the administration of 0.1 mg/kg estrogen. Mean arterial blood pressures and resistance ratios (T/C) are also given.

TABLE VI. *

<table>
<thead>
<tr>
<th>Blood pressure (mm Hg)</th>
<th>N</th>
<th>P</th>
<th>Uterine resistance</th>
<th>N</th>
<th>P</th>
<th>Renal Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>90</td>
<td>88</td>
<td>192.96</td>
<td>416.42</td>
<td>24.63</td>
<td>40.33</td>
</tr>
<tr>
<td>SEM ±7</td>
<td>±3</td>
<td>±3</td>
<td>±32.5</td>
<td>±72.6</td>
<td>±3.0</td>
<td>±6.1</td>
</tr>
<tr>
<td>SEM 5</td>
<td>8</td>
<td>8</td>
<td>NS</td>
<td>P < .02</td>
<td>P < .04</td>
<td></td>
</tr>
</tbody>
</table>

* A comparison of the uterine and renal vascular resistance per gram of tissue during the control period of five normal (N) rabbits and eight rabbits pretreated (P) with 20 mg/kg meclofenamate. A comparison of the mean arterial blood pressures is also provided.
ESTROGEN INDUCED UTERINE HYPEREMIA

In treatment. Meclofenamate did not the uterine vascular response to estrogen. It has been postulated that estrogen-induced uterine vasodilation is mediated via a biochemical chain of events initiated by estrogen receptor binding and conformational changes of the intermediate steps in the synthesis of new mRNA and protein. Iliam et al. (10) have described the mechanism of estrogen on the sheep uterus and indicated a possible release of acetylcholine or histamine as the intermediate step in the synthesis of new mRNA and protein. Clark et al., however, determined that the administration of estrogen to pregnant rats has no effect on the synthesis of new mRNA and protein. Several studies have indicated an increase in the synthesis of uterine prostaglandins after estrogen treatment (5-7). Ryan et al. have shown that glandular epithelial cells and glands exhibit properties concurrent with those of estrogen. They showed that blocking prostaglandin synthesis with both indomethacin and meclofenamate depressed the uterine response to estrogen in rats. Castracane and Jordan, however, found that inhibiting protein synthesis and thereby blocking the biosynthesis of prostaglandins has no effect on the estrogen-induced hyperemia (13). They concluded that the production of prostaglandins by the uterine cells may be a function of estrogen synthesis and not a function of estrogen synthesis. The study was designed to determine if prostaglandin synthesis is a necessary step in the mediation of the estrogenic effect. The experimental data presented in this paper indicate that estrogen-induced vasodilation is not mediated by prostaglandin synthesis. The vasoconstriction shown to be present in the kidneys following treatment with indomethacin or meclofenamate suggests that prostaglandin synthesis blocked in concordance with the study by Malik and McGiff on prostaglandin modulation of vascular resistance in rabbit kidneys (14). The uterus showed no vasoconstriction due to indomethacin so that the vasoconstriction seen after meclofenamate may have been due to a side effect of the drug. The fact that indomethacin depressed the uterine response to estrogen is in concordance with the literature, but must be examined in view of the fact that meclofenamate did not produce a similar response. It is our conclusion that the indomethacin-induced depression of the uterine response to estrogen was not due to the blockade of prostaglandin synthesis, but due to a side effect of indomethacin or its vehicle. Therefore, prostaglandin synthesis does not appear to be essential to estrogen-induced vasodilation in the rabbit uterus.

Superoxide Dismutase in Bovine Fetal Ductus Arteriosus, Thoracic Aorta, and Pulmonary and Umbilical Arteries (40277)

PAUL D. FRAZER AND FRANK O. BRADY
Division of Biochemistry, Physiology and Pharmacology, The University of South Dakota School of Medicine, Vermillion, South Dakota 57069

Soon after birth the lumens of the ductus arteriosus and the umbilical artery are obliterated. Some researchers have suggested that oxygen toxicity, resulting from the increased arterial oxygen tension occurring after birth and the development of an "active hypersensitivity" reaction to oxygen prior to birth, is the cause of widespread intracellular and extracellular destruction noted in the subintimal regions of the media (muscular layer), as well as the intimal layer itself in the ductus arteriosus (1, 2). This is similar to the explanation offered for the closure of premature infants' retinal arteries and consequent retrolental fibroplasia and blindness from exposure to excessively high oxygen levels in the hyperbaric chamber (1, 3). Other workers (4–6) have presented histological and other evidence that the ductus arteriosus of guinea pig, rabbit, rat, and mouse fetuses allowed to breathe showed widespread intracellular and matrix destruction in the histological regions previously mentioned; such changes were not noted in fetuses frozen without permitting respiration.

A suitable explanation for the temporal relationship between increasing arterial oxygen tensions and cellular degeneration could certainly be superoxide radicals, hydroperoxides, and hydroxyl radicals, all powerful oxidants which are destructive in biological systems of cells existing in aerobic conditions (3, 7, 8). It has been demonstrated that rats exposed to gradually increasing levels of O₂ in their environment had significantly greater levels of SOD in lung tissue and survived for significantly longer periods of time after exposure to toxic levels of O₂ than did control rats (7, 8). We postulated that an overproduction of hydroxyl radicals could result after an increase in oxygen tension in tissues such as the ductus arteriosus and umbilical artery, if such tissues possessed lower levels of SOD, as compared with such permanent tissues as the pulmonary artery and thoracic aorta. Superoxide dismutase catalyzes the dismutation of two molecules of the superoxide anion forming one molecule each of oxygen and hydrogen peroxide, while the superoxide anion and hydrogen peroxide can react to form the hydroxyl radical:

(a) \[2O₂^- + 2H^+ \underset{SOD}{\overset{\text{SOD}}{\longrightarrow}} O₂ + H₂O₂ \]

(Superoxide Dismutase Reaction)

(b) \[O₂^- + H₂O₂ \rightarrow HO^- + HO \cdot + O₂ \] (Haber-Weiss Reaction)

SOD functions to remove one of the reactants of the Haber-Weiss reaction, and this enzyme has been extensively studied by McCord and Fridovich (3), as well as by others.

In this study we chose to examine the levels of SOD in several tissues of bovine fetuses, using an enzymic activity assay and a radial immunodiffusion assay. There were two groups of two tissues used for comparative purposes; the two fetal blood vessels which obliterate after birth, the ductus arteriosus and umbilical artery, and the two blood vessels which do not obliterate after birth, the pulmonary artery and the thoracic aorta. Reported herein are the results of this study which we feel are in support of our hypothesis.

Materials and methods. A local meat packing firm allowed us access to fetal calves approximately forty minutes following the killing of the mother. Gestational ages of the calves were estimated using such criteria as crown-rump length, body hair patterns, and the presence of erupted incisor teeth (9). Eighty percent of the calves in this study were “full-term” by the criteria mentioned. The thoracic cavity was then entered and an en bloc excision of the heart, great vessels, and the entire length of the thoracic aorta was performed; additionally, a small segment of
ical artery was obtained from the umbilical cord. The great vessels were then identically dissected, free, excised, washed three in 0.15 M NaCl, immediately frozen on the surface and stored for 2 weeks at −30°C. The samples were then thawed, washed again three in 0.15 M NaCl, homogenized in 4 vol 5 M NaCl with a Tenbroeck glass homogenizer, and centrifuged at 100,000g for 90 min at 2°C. The supernatant was then used as a lysate of SOD activity. If there is significant blood in the prepared tissue, this will affect the total SOD activity of the sample, as erythrocytes do possess significant SOD activity. Whole blood was obtained from four fetal calves in the study. The erythrocytes were lysed with an equal volume of distilled water and the solution then reconstituted to 0.15 M NaCl. The lysed erythrocytes were then centrifuged and the supernatant was diluted with 0.15 M NaCl to solutions with hemoglobin concentrations comparable to the tissue supernatants from the blood vessel preparations. Hemoglobin levels of the lysed erythrocyte and blood vessel supernatants were measured at 247 nm using a Cary spectrophotometer. SOD activity of the erythrocyte supernatants was measured. The activity was measured using the xanthine oxidase–cytochrome c assay of McCord and Fridovich (10). Bovine erythrocyte SOD was purified to electrophoretic homogeneity the method of McCord and Fridovich. This preparation was used to prepare standards in rabbits. Immune rabbit γ-globulins were isolated as previously described, these were used to determine the levels of SOD using a radial immunodiffusion assay. Bovine xanthine oxidase was purified to homogeneity from raw cream (12). Protein concentrations were determined by the method of Lowry et al. (13).

Results and discussion. The results of enzymatic and immunochromatographic assays for SOD activity from 13 bovine fetuses are presented in Table I. In all individual cases the levels of SOD determined in the four tissues indicated that the ductus arteriosus and umbilical artery were always lower than the pulmonary artery and thoracic aorta although a comparison between animals did not always follow this pattern.

The data were compared using the “t” test of significance and the results of such comparisons are shown in Table II. As can be seen, in nearly all comparisons the levels of SOD in the ductus arteriosus and umbilical artery were statistically significantly lower than those found in the pulmonary artery and thoracic aorta. The level of SOD in the ductus arteriosus and the umbilical artery were not statistically significantly different from each other. Likewise, the levels of SOD in the pulmonary artery and thoracic aorta were not statistically significantly different from each other.

Erythrocytes do contribute to the SOD activity of tissue extracts although this contribution is negligible if it is possible to wash the tissues relatively free from blood (7). In this study the hemoglobin in the tissue supernatants was in the range of 1–2 × 10−6 M.

TABLE I. BOVINE FETAL SUPEROXIDE DISMUTASE.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Activity enzyme units mg protein</th>
<th>Radial immunodiffusion µg mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ductus Arteriosus</td>
<td>2.32 ± 0.33*</td>
<td>77.8 ± 5.8*</td>
</tr>
<tr>
<td>Umbilical Artery</td>
<td>1.97 ± 0.16</td>
<td>80.2 ± 7.8</td>
</tr>
<tr>
<td>Pulmonary Artery</td>
<td>3.64 ± 0.32</td>
<td>94.7 ± 6.7</td>
</tr>
<tr>
<td>Thoracic Aorta</td>
<td>3.45 ± 0.31</td>
<td>113.9 ± 8.3</td>
</tr>
</tbody>
</table>

* Determined with xanthine oxidase–cytochrome c assay, expressed per mg cytosolic protein.

TABLE II. "T" TEST OF SIGNIFICANCE.

<table>
<thead>
<tr>
<th>Paired tissues</th>
<th>Enzyme assay</th>
<th>RID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA-PA</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>DA-TA</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>UA-PA</td>
<td>0.001</td>
<td>0.05</td>
</tr>
<tr>
<td>UA-TA</td>
<td>0.001</td>
<td>0.02</td>
</tr>
<tr>
<td>DA-UA</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>PA-TA</td>
<td>0.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* The data of Table I were analyzed by pairing the indicated tissues. The confidence levels are indicated for the two types of assay, enzymic and immunochromatographic (RID, radial immunodiffusion).
The SOD activity of the lysed erythrocyte supernatants in this hemoglobin concentration range was negligible (less than one percent). Additional evidence to discount the contribution of erythrocytes in this study is noted in that the hemoglobin concentrations varied randomly in the tissue samples and did not correlate with the differences between the SOD activity of the blood vessel preparations.

Undoubtedly the etiology of ductus arteriosus closure is multifactorial, and it is not possible here to elaborate the numerous mechanisms proposed (14–16). It is helpful to view ductus arteriosus closure as both a physiological and anatomical event; that is to say, the ductus arteriosus responds to varying oxygen tensions and hemodynamic changes by changing its lumen size in situ, and it undergoes obliterative fibrotic changes to ultimately become the ligamentum arteriosum in the usual case. The in vitro responsiveness of this vessel to varying oxygen tensions has been consistently reported in the literature. The role of prostaglandins in the closure of the ductus arteriosus is also of current interest (17–19).

This study suggests that a deficiency of SOD could contribute to the degenerative cellular changes presumed to occur as part of the obliterative process in the bovine ductus arteriosus and umbilical arteries. Further studies need to be conducted to determine if the rise in arterial oxygen tension at parturition is sufficient to create the oxidant stress this study is proposing. In addition we are not capable of ascertaining the distribution of SOD across the wall of the tissues we have examined, which might be of importance in the degeneration of the ductus arteriosus and umbilical artery. Perhaps in the future a histological stain for SOD of sufficient sensitivity will be developed and can be used to answer such questions.

The levels of SOD seen in the ductus arteriosus and in the umbilical artery are 54–67% (activity assay) and 68–84% (RID assay) of the levels found in the pulmonary artery and in the thoracic aorta. Michelson et al. (20) have suggested that "levels of less than 50% of the normal mean for superoxide dismutase are more or less lethal due to the increased toxicity of uncontrolled superoxide." This contention was based on a survey of SOD activities in a cross section of the human population in France, comparing normal and abnormal populations. Extremely low levels of SOD correlated in several cases with associated physical and mental problems. The ability of a newborn to handle an increased flux of superoxide, consequent to exposure to increased oxygen tensions, may reflect the absolute and quantitative amounts of SOD present in particular tissues. Those with high levels of SOD will survive, and those with low levels of SOD will degenerate.

Summary. Soon after birth the lumens of the ductus arteriosus (DA) and umbilical artery (UA) are obliterated. It has been suggested that oxygen toxicity, resulting from an increased oxygen tension, is the cause of this destruction with superoxide radicals and hydroxyl radicals being implicated as mediators. A deficiency of superoxide dismutase (SOD) in these tissues was hypothesized as being responsible for an increase in the levels of superoxide and hydroxyl radicals. SOD levels were determined enzymatically and immunochemically in four tissues obtained from thirteen bovine fetuses. SOD levels in the DA and UA were found by both assays to be statistically significantly lower than that found in such permanent vessels as the pulmonary artery and thoracic aorta. These data are in support of the hypothesis that a lower level of SOD in the ductus arteriosus and umbilical artery may contribute to the rapid deterioration of these tissues upon exposure to greatly increased oxygen tensions.

The kind assistance of Iowa Beef Processors of Dakota City, Nebraska in obtaining calf fetuses is acknowledged. The technical assistance of two fellow medical students, Curt Bucholz and Ron Thune, and of an undergraduate student, Mark Martin, is appreciated. Supported by General Research Support Grant from the National Institutes of Health (USPHS 01 RR 05421-14). Frank O. Brady is a Research Career Development Awardee of the National Institute of Environmental Health Sciences, NIH (ES 00022).

DUCTUS ARTERIOSUS SUPEROXIDE DISMUTASE

Mouse Hepatitis Virus (MHV) Infection in Thymectomized C₃H Mice (40278)

PATRICIA SHEETS, KEERTI V. SHAH, AND FREDERIK B. BANG

Department of Pathobiology, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205

The macrophage plays a crucial role in the genetic susceptibility of mice to develop fatal hepatitis when infected with mouse hepatitis virus (MHV) (1). The adult C₃H mice do not die after inoculation of MHV grown in Princeton mice (MHV(PRI)) and their macrophages do not support MHV(PRI) multiplication. On the other hand, infant C₃H and infant and adult Princeton (PRI) mice develop a fatal infection after inoculation with MHV(PRI) and their macrophages support the multiplication of this virus and are destroyed by it (2). Intermediate susceptibility of macrophages in vitro is associated with virus persistence in vivo (3). A variety of treatments which depress the cell mediated immune response makes the MHV infection pathogenic for the genetically resistant mouse. Adult C₃H mice develop fatal MHV infection after neonatal thymectomy (4) or after treatment with cortisone (5), cytoxan (6) or preinfection with Eperythrozoon coccoides (7) and adult A strain mice are rendered susceptible to fatal MHV infection by a variety of treatments such as x-irradiation, administration of antilymphocyte serum and neonatal thymectomy (8, 9).

We report here that although the outcome of MHV(PRI) inoculation in adult PRI and C₃H mice is very different, both strains are infected by the same minimal infectious dose of MHV(PRI). In addition, although MHV(PRI) infection is fatal both for adult neonatally thymectomized C₃H mice and the genetically susceptible PRI mouse, the course of infection in these two strains is quite dissimilar. These findings suggest that the routine recovery of adult C₃H mice from MHV(PRI) infection requires both virus resistant macrophages and normal thymic function.

Materials and methods. Virus. MHV-2 strain of virus originally obtained from Dr. John Nelson (10) was maintained in our laboratory by intraperitoneal (ip) inoculation of 4 week old PRI mice. This strain is referred to as MHV(PRI). A variant of MHV(C₃H) which was derived MHV(PRI) but which is lethal for both C₃H and adult PRI mice (11) was maintained by ip inoculation of 4-week old C₃H mice. The stock virus preparations were 10% homogenates of livers from virus infected inbred mice. Titrations were performed by inoculation of 0.2 ml of serial tenfold dilutions in each of three tubes of cultured monolayer macrophages from PRI mice prepared as described previously (12), but maintained in Eagle's minimum essential medium (Earle's salts) supplemented with 20% calf serum (FCS). The cultures were observed for viral cytopathic effect (CPE) for 8 days. The 50% tissue culture infectious (TCID₅₀) was calculated by the method of Reed and Muench (13).

Mice. Three strains of inbred mice, C₃H and C₃Hss were used (12, 14, 15). C₃Hss strain is congenic with the C₃H, but is susceptible to fatal infection by MHV(PRI) and its macrophages support MHV (PRI) multiplication. It was deve-loped by introducing the PRI gene for susceptibility to MHV(PRI) into C₃H mice (15). Mice infected by the ip route. Thymectomy was performed on C₃H mice within 24 hr of birth, and right sections of the thymus were removed by gentle suction. Thymectomized mice were infected at 4–6 weeks of age in Sham-operated mice served as controls.

Immunofluorescence. Anti-serum was prepared in vaccinated PRI mice. PRI mice inoculated for four successive weeks with propiolactone inactivated vaccine (6). Mice were challenged with live virus and bled one later. The serum was stored at -20°C. Sections were cut from a cryostat on 4 µm Fluorescein conjugated goat anti-mouse serum (Meloy Laboratories, Springfield, VA) was used with a count of Evans Blue prepared as a 0.5% stock.
and used at a 1:8 concentration.

tology. Sections of liver were placed in buffered formalin, cut and stained hematoxylin and eosin for histopathology.

ults. Infectivity and pathogenicity of (PRI) for PRI and C3H mice. MHV was titrated in 4-6 week old PRI and mice using four mice per dilution and inoculated mice were observed for 7 days mortality. On day 7, the surviving mice of titrations were challenged ip with 2.6 units of MHV(C3H) virus. Ability of a mouse to resist MHV(C3H) challenge was evidence that it was previously immunized with MHV(PRI).

MHV(PRI) had a LD50 titer of 10^8.3 RI mice (Table 1). None of the PRI mice died during the titration. The increase in mortality indicated that MHV(PRI) did not cause a nonfatal immunizing infection in mice. In contrast, MHV(PRI) produced mortality in C3H mice inoculated with 10^7.0 dilutions of the virus and all but one of the survivors of this titration resisted infection with MHV(C3H). The immunizing dose of the virus was 10^7.0 for C3H mice. These results indicate that PRI and C3H mice were equally susceptible to infection with (PRI) but that the infection was uniformly fatal in PRI and uniformly nonfatal in C3H mice.

Use of MHV(PRI) infection in thymectomized C3H mice. Neonatally thymectomized or sham operated C3H mice were inoculated ip with 10^6.0 TCID50 of MHV(PRI) observed for mortality, virus titers in liver, and liver pathology. All thymectomized mice were checked for the completeness of thymus remnants at the time they died or were sacrificed and animals with thymus remnants excluded from the study.

The 13 mice infected with MHV(PRI) iso were completely thymectomized, the mortality was 100% (Fig. 1). This was in contrast to the 0% mortality in intact C3H mice which were inoculated with MHV(PRI). Deaths occurred between day 5 and 10 after inoculation of virus with an average survival time of between 7 and 8 days. This timing of mortality was very different from that in PRI mice which, while they also have a mortality of 100%, survive only 2-3 days postinfection (Fig. 1).

Virus titers in livers of thymectomized and sham operated C3H mice are shown in Fig. 2. Until day 7 postinfection, the titers in the two groups were comparable and ranged between 10^6.0 and 10^7.2. Exceptions to this were two sham operated mice which had titers between 10^2.0 and 10^3.0 on day 6. After day 7, there was a marked reduction in liver titers of sham operated mice. Of eight livers titrated between days 8 and 12, seven were negative for virus and the eighth had a titer of <10^1.0. In contrast, virus titers in completely thymectomized mice continued to remain high; all of four livers harvested from this group between days 8 and 10 had titers between 10^9.0 and 10^7.0.

The pathologic lesions in sham operated and thymectomized C3H mice were very similar until day 5. By day 4 the livers showed general architectural disruption with coagulative change with diffuse and focal inflammation in which polymorphonuclear leukocytes were most prominent. Eosinophilic bodies as described by Rube and Miyai (16) could be seen in areas of necrosis. The liver
MHV INFECTION IN THYMECTOMIZED C3H MICE

sections from sham operated C3H mice taken on day 6 showed perivascular infiltration of mainly mononuclear cells with small foci of mononuclear cells on top of necrotic parenchymal cells. The livers of C3H thymectomized mice of the same time period had large areas of acute fulminating lesions with tissue hemorrhage, necrotic debris, and the presence of polymorphonuclear leukocytes and mononuclear cells. On day 8, liver sections of sham operated C3H mice showed a few focal areas of resolving lesions, while liver sections from C3H thymectomized mice showed foci of degeneration with larger foci showing centers of liquefaction. Sections of livers of sham operated C3H mice from 9 through 14 days were normal with the exception of two mice whose livers showed occasional resolving lesions. In summary, liver sections from sham operated C3H controls showed focal hepatitis with subsequent recovery, whereas liver sections from thymectomized C3H mice showed focal hepatitis progressing to diffuse hepatitis with no recovery. The sham operated mice described above had more severe pathologic lesions and higher virus titers in livers than what is ordinarily found in normal C3H mice infected with MHV(PRI). The reason for this was not clear.

We also compared the pattern of viral multiplication in livers of PRI, C3H and C3Hss mice by histopathology, immunofluorescence and viral titrations. Mice were infected ip with 10^5.0 TCID_{50} of MHV(PRI) and were sacrificed at 3, 6, 10, 24, 48 and 72 hr infection. Liver sections from PRI showed increased cellular infiltration hr which progressed to necrosis of parenchymal cells with eosinophilic bodies by and extensive tissue destruction with hemorrhage by 72 hr. Immunofluorescence detected and observed to spread as the l and cellular destruction grew. In C3H an infiltration of mononuclear cells was detected as early as 6 hr postinfection. necrotic foci were observed by 48 hr. In liver sections very little fluorescence noted in the first 10 hr. Small fluorescence of necrosis containing eosinophilic and Kupffer cells were apparent by . There was a striking difference in growth between the susceptible (PRI, C and resistant (C3H) mice (Fig. 3). Virus in PRI livers were higher than those in livers by 2 log_{10} units by 24 hr and difference increased to 6 log_{10} units by The C3Hss mice resembled PRI mice respect to both virus titers in liver and p of mortality.

Growth of MHV(PRI) in macrophages from thymectomized and nonthymec tomized C3H mice. Earlier work has show the pathogenic effect of MHV(PRI) a mouse was closely correlated with the of the peritoneal macrophage of that is support multiplication of the virus (. It was therefore of interest to see if cu of macrophages derived from thymecto C3H mice supported growth of MHV

![Figure 2](image_url)

Fig. 2. Virus titers in livers from virus infected sham operated C3H and thymectomized C3H mice on PRI macrophage cultures. This graph includes the results of several experiments. ○ = liver from one C3H sham operated mouse; x = liver from one C3H thymectomized mouse, TR = Trace of virus, only one of three cultures inoculated with lowest dilution affected.

![Figure 3](image_url)

Fig. 3. Virus titers in livers of PRI, C3H and mice in the first 3 days after infection with MHV ○ = PRI mice. x = C3H mice. Δ = C3Hss mice.
phages were removed from 4 to 6 week thymectomized and nonthymectomized Only those thymectomized mice which \(^{+} \) had no grossly visible thymus rem- were used as macrophage donors. In- n containing 10\(^{8.0} \) infective units of vi- s allowed to adsorb for 30 min and the es were then washed and fresh medium . The tubes of cultures were observed at CPE and harvested at various time s after infection. They were stored fro- \(-70^\circ \) until they were titrated on mac- ges from PRI mice.

virus did not produce CPE in either r C\(_{3}\)H thymectomized macrophage cul- and there was no difference between macrophages in their ability to support \(^{+} \) PRI multiplication (Fig. 4). Low titers as were recovered from both kinds of phages through the observation period s. This pattern of virus growth in C\(_{3}\)H phages was markedly different from \(^{+} \) PRI macrophages (Fig. 4), in which us grows rapidly with complete lysis of lls in 48 hr.

\textit{Discussion}. Our studies confirm the pre-reports of Stutman and Yunis (4) and Provost and his colleagues (8, 9) that homy increases the pathogenicity of in genetically resistant mice. \(^{+} \) PRI produced no mortality in the in- s\(_{3}\)H mouse but it infected this strain as \(^{+} \) as it did the PRI mouse. Thymectomy sed the mortality in the C\(_{3}\)H mouse

![Graph](image)

4. Growth of MHV\(^{+} \)PRI in PRI, C\(_{3}\)H and thy- ized C\(_{3}\)H macrophage cultures. Data for PRI ages taken from Shif and Bang 1970 (11). \(\triangle \) = \(^{-} \)phages. \(\bigcirc \) = C\(_{3}\)H macrophages. \(\times \) = thymec- C\(_{3}\)H macrophages.

from 0 to 100%. The pathologic studies as well as virus titers in the liver clearly indicated that the death of the thymectomized C\(_{3}\)H mouse was due to its inability to resolve the early hepatic lesions which occurred in both thymectomized and nonthymectomized animals. These lesions progressed to fulmi- nant hepatitis in the thymectomized C\(_{3}\)H mouse resulting in death about 6–10 days after inoculation of virus, but were com- pletely resolved in the intact C\(_{3}\)H mouse. This requirement of thymic function for the recov- ery of C\(_{3}\)H mice from MHV hepatitis appears to be similar to that described by Blanden (17) for the resolution of ectromelia infection of mice.

Although the MHV\(^{+} \)PRI infection was uniformly fatal in thymectomized C\(_{3}\)H mice as well as in PRI mice, the course of the disease was very different in these two strains. In PRI mice the virus multiplies very rapidly leading to death in 2–3 days whereas in the thymectomized C\(_{3}\)H mice mortality occurred later and over a longer period. This difference very likely reflects the fact that the PRI macrophages support very well the multiplication of MHV\(^{+} \)PRI while the macrophages of thymectomized C\(_{3}\)H mice do not. The C\(_{3}\)Hss mouse resembled the PRI mouse in its sus- ceptibility to MHV\(^{+} \)PRI. Differences in sur- vival time after MHV infection has been shown even among susceptible strains of mice (18). This difference in susceptibility was rel- ated to the varying ability of the macro- phages as the primary targets of the virus to support viral growth. These observations indi- cate that resistance to MHV\(^{+} \)PRI infection, as in the intact adult C\(_{3}\)H mouse, requires \(\text{both} \) a resistant macrophage which limits the spread and multiplication of the virus and an intact thymic function which is necessary for the resolution of focal hepatic lesions. In mice that have susceptible macrophages, namely, infant C\(_{3}\)H, infant and adult PRI, and the congenic C\(_{3}\)Hss strain (15), the infection is so overwhelming that it kills the mouse before it has had a chance to develop an effective T cell response. In experiments not described here, transfer of immune C\(_{3}\)H spleen cells to C\(_{3}\)Hss animals with susceptible macrophages failed to confer resistance to challenge with MHV\(^{+} \)PRI (19). MHV\(^{+} \)PRI infection of C\(_{3}\)H mice can also be made more pathogenic
by treatment of these mice with cortisone (5) or cytoxan (6). The mechanism by which these drugs bring about this effect is not clear but it could be by their destruction of T cells
per se, or as suggested by Weiser and Bang (20), by release of lymphokines which alter macrophage susceptibility. LeBlond et al (21) have shown that both macrophages and T cells are necessary in the transfer of resistance to MHV to infant mice.

Summary. MHV(PRI) virus produced a non-fatal immunizing infection in adult C3H mice over a greater than 6.0 log _10_ unit range but a uniformly fatal infection in adult Princeton (PRI) mice. Neonatally thymectomized 4–6 week old C3H mice died by day 10 after inoculation with MHV(PRI). Intact and thymectomized C3H mice had comparable virus titers in their livers until day 7 postinfection after which time virus was undetectable in intact C3H mice but remained at high titers in thymectomized C3H mice. The liver pathology was similar in both groups until day 6 post infection after which time resolving lesions were seen in livers of intact C3H mice whereas thymectomized C3H mice developed fulminating fatal hepatitis. In _in vitro_ tests, the macrophages of the thymectomized C3H mice did not support growth of MHV(PRI) virus to any greater extent than the macrophages of nonthymectomized C3H mice.

Although infection with MHV(PRI) was fatal for both PRI and thymectomized C3H mice, the course of infection was much more rapid in PRI mice. C3Hss mice which are congenic with C3H mice but have macrophages which support growth of MHV(PRI) responded to MHV(PRI) infection with a rapidly fatal illness in the same way as PRI mice. These data suggest that macrophages resistant to viral multiplication and intact thymic function are both necessary for resistance to the lethal effects of MHV(PRI) virus.

This research was supported in part by Science Foundation Grant No. GB 31479.

Received February 13, 1978. P.S.E.B.M. 1978
hymidine Kinase and DNA Polymerase Activity in Normal and Zinc Deficient Developing Rat Embryos (40279)

JOHN R. DUNCAN AND LUCILLE S. HURLEY

Department of Nutrition, University of California, Davis, California 95616

rapidly dividing cells, DNA synthesis is ed by zinc deficiency (1–5). It has been ed that the severe teratogenesis result-

m maternal dietary zinc deficiency in y arise as a consequence of impaired synthesis during fetal organogenesis (2, lies on regenerating rat liver (6), tumor 7), and rat connective tissue (8) have ed that the decrease in DNA synthesis ult of zinc deficiency may be linked to
iciation of zinc with one or more of the endependent enzymes involved in DNA sis. The activity of two regulatory en-

d DNA synthesis, thymidine kinase NA polymerase (9), was found to be d in zinc deficient rats (7, 8). Thymidin enase is of particular importance since efficiency produced a significant reduct-

activity of this enzyme in regenerating r within 10 hr after partial hepatoc-

whereas DNA polymerase activity, synthesis, and protein synthesis were ected until some hours later (10). Re-

Dreosti and Hurley (11) found the of thymidine kinase to be signifi-

lower in embryos taken at 12 days of on from zinc deficient dams than in ron controls.

he present study, the effect of zinc ncy on the activity of DNA polymerase vestigated in 12-day embryos. In ad-

ince a previous report suggested that mbryos are relatively less sensitive to efficiency than are older embryos (12), tivity of both thymidine kinase and polymerase was measured in 9, 10, and embryos from zinc deficient con-

t determine whether zinc was acting ilar sites at early stages of gestation. r studies were also undertaken to test ect of in vitro supplementation with d other divalent metal ions on the of DNA polymerase. Similar data t to thymidine kinase have been re-

previously (11).

Materials and methods. Materials. (Methyl-

H) thymidine (spec. act. 2 Ci/mM) and (methyl-3H) thymidine 5'-triphosphate (spec. act. 15 Ci/mM) were purchased from Amersham/Searle Corporation, Arlington Heights, Illinois. All other chemicals were purchased from Sigma Chemical Company, St Louis, MO. Whatman DEAE cellulose (DE 23) filter paper circles were obtained from Reeve Angel, 9 Bridewell Place, Clifton, NJ.

Animals and diets. Virgin female Sprague-

Dawley rats weighing 210 ± 10 g were bred overnight with stock fed males. On day zero of gestation, as determined by the presence of sperm in the vaginal smear, the animals were placed individually in stainless steel cages. The animals were fed a zinc deficient diet ad libitum, or a control diet ad libitum, or a control diet in amounts limited to the mean daily food intake of the deficient group (referred to as "restricted intake").

The zinc deficient diet contained less than 0.5 ppm zinc as measured by atomic absorption spectroscopy. The control diet was the same purified diet as the zinc deficient diet except that it was supplemented with zinc as zinc carbonate to a level of 100 μg/g. The composition of the diet has been described previously (13). In addition, all animals received vitamins in glucose three times per week.

Collection of samples. On day 9, 10, 11, or 12 of gestation, the animals were killed and embryos were removed by caesarean section. In order to obtain sufficient tissue for the enzyme assay it was necessary to pool litters of embryos. Five litters were pooled for each 9-day sample, three litters for each 10-day sample, two litters for each 11-day sample, one litter for each 12-day sample.

Enzyme assays. Pooled embryos were ho-

genized in 12 vol of chilled 0.25 N Tris–HCl buffer, pH 8.0, and an enzyme solution was prepared for use in the subsequent assays as described by Witschi (14).
Thymidine kinase was assayed by a modified procedure described by Witschi (14). The reaction mixture contained in a final volume of 0.5 ml, 0.25 N Tris-HCl buffer (pH 8.0), 5.5 µM ATP, 6.6 µM 3-phosphoglyceric acid, 5.5 µM MgCl₂ and 2.5 µM (5.0 µCi) (methyl-³H) thymidine and 0.1 ml of the enzyme extract. The reaction mixture was incubated at 37° for 15 min and the reaction was stopped by immersing the assay tubes in boiling water for 1 min. After cooling and centrifugation at 1000g for 10 min, 50 µl aliquots of the protein-free supernatants were spotted onto DEAE cellulose filter paper discs and the papers were washed in 1.0 mM ammonium formate, water, and 95% ethanol. Radioactivity on the dried paper discs was measured in a Nuclear Chicago Mark I liquid scintillation spectrophotometer.

DNA polymerase was determined by a modified procedure described by Witschi (14) and Lehman et al. (15). The reaction mixture contained in a final volume of 0.5 ml, 0.25 N Tris-HCl buffer (pH 8.0), 0.05 µM d-ATP, 0.05 µM d-CTP, 0.05 µM d-GTP, 1.5 µM MgCl₂, 1.5 µM KCl, 0.05 µM 2-mercaptoethanol, 50 µg heat denatured DNA (70° for 15 min), 0.05 µM (5 µCi) dTTP and 0.1 ml of the enzyme extract. After incubation at 37° for 1 hr, the reaction was stopped by the addition of 0.1 ml cold 1.0 M HClO₄. The precipitate was washed twice with 0.5 M HClO₄, dissolved in 0.3 M KOH (3 ml), incubated for 60 min at 37°, reprecipitated with cold 0.5 M HClO₄, and washed once more. The pellet was dissolved in 1 M NaOH (2 ml) and 0.5 ml aliquots were withdrawn for radioactivity determinations.

Metal ion supplementation. In certain DNA polymerase assays, supplementary zinc and other metal ions (0.01–0.2 mM) were added to the incubation mixture before addition of ³H-dTTP. All metal salts used were spectrophotometrically pure and, except for the zinc salt, contained less than 0.05 µg zinc/g.

Protein assay. The concentration of protein in the fetal homogenates was determined by the method of Lowry et al. (16).

Statistical analysis. Mean ± SEM are reported. The statistical significance of differences between means was tested by Student's 't' test.

Results. The activity of thymidine kinase was significantly lower in 9, 10, 11, and 12 days embryos taken from females fed a zinc deficient diet than in embryos from either ad libitum fed (P < 0.05) or restricted intake (P < 0.05) controls (Table I). However, the percentage decrease in activity in the zinc deficient animals when compared with restricted intake controls was not as great in early embryos as in the 12-day embryos. In addition, the activity of thymidine kinase increased with increasing age of embryos in all three dietary groups (Table I). The percentage increase in activity was greatest at early stages of gestation. Activity in the 9-day groups was only twice that of background values.

DNA polymerase activity was also significantly lower in 9, 10, 11, and 12 day embryos from dams fed the zinc deficient diet than in embryos from either the ad libitum fed (P <

Table 1: Effect of Zinc Deficiency and Day of Gestation on Activity of Thymidine Kinase in Rat Embryos

<table>
<thead>
<tr>
<th>Groups</th>
<th>Control ad libitum</th>
<th>Control restricted intake</th>
<th>Zinc deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of gestation</td>
<td>Activity</td>
<td>Daily increase in activity (%)</td>
<td>Activity</td>
</tr>
<tr>
<td></td>
<td>Activity</td>
<td>Daily increase in activity (%)</td>
<td>Activity</td>
</tr>
<tr>
<td>9</td>
<td>79 ± 9**</td>
<td>81 ± 14**</td>
<td>64 ± 6***</td>
</tr>
<tr>
<td>10</td>
<td>323 ± 66**</td>
<td>351 ± 52**</td>
<td>196 ± 32**</td>
</tr>
<tr>
<td>11</td>
<td>665 ± 95</td>
<td>659 ± 101**</td>
<td>372 ± 76**</td>
</tr>
<tr>
<td>12***</td>
<td>729 ± 101**</td>
<td>950 ± 48</td>
<td>356 ± 79**</td>
</tr>
</tbody>
</table>

*Thymidine kinase activity expressed as pM ³H-thymidine incorporated/mg protein/hr.
**P < 0.05 compared to ad libitum and restricted intake controls.
or restricted intake \((P < 0.01)\) controls (Table II). The percentage decrease in the zinc deficient groups when compared with restricted intake controls was similar at all 4 days of gestation. DNA polymerase activity also increased with increasing age of embryos in all three dietary groups, but the percentage daily increase was not as great as that found with thymidine kinase (Table II). Even at 9 days of gestation, embryos had appreciable levels of DNA polymerase activity.

Addition of zinc, as zinc chloride, to the assay medium (at levels between 0.01 mM and 0.05 mM) had little effect on the activity of DNA polymerase in extracts from zinc deficient and control embryos at 12 days of gestation (Table III). However, supplementation of these extracts with a higher level, 0.2 mM zinc, resulted in a statistically significant depression of activity in extracts from both zinc deficient and control embryos (19% and 21%, respectively).

In a further experiment (Table IV), addition of Cu\(^{2+}\), Cd\(^{2+}\), Mn\(^{2+}\), Mg\(^{2+}\), Co\(^{2+}\), and Fe\(^{2+}\) had no effect on the activity of DNA polymerase when added to the medium at concentrations of 0.01 mM or 0.2 mM.

Discussion. The low activity of thymidine kinase and DNA polymerase in embryos from zinc deficient dams confirms previous reports of reduced activity of these enzymes in zinc deficient mammalian tissues (6–8). It further suggests that impaired DNA synthesis and teratogenesis associated with zinc deficiency may be related to reduced activity of these enzymes during organogenesis.

The thymidine kinase salvage pathway is important for DNA synthesis only in rapidly dividing cells, not in normal adult cells where the *de novo* pathway of DNA synthesis is predominant (9, 17). Therefore, the thymidine kinase pathway may be of critical importance in the developing embryo. Since the effect of zinc deficiency on cell division is most manifest in rapidly proliferating tissues, it is reasonable to suppose that thymidine kinase may be involved. In contrast, while the activity of certain DNA polymerase enzymes is enhanced in rapidly dividing cells, these enzymes, unlike thymidine kinase, are also important in DNA synthesis in normal resting cells (18, 19).

Further support for the idea that thymidine kinase, and possibly DNA polymerase, are possibly primary sites of action of zinc in embryonic tissue is provided by the finding of decreased activity of both enzymes with decreasing age of embryos. Hurley *et al.* (12) have found a low incidence of congenital

TABLE III. Effect of Supplementary Zinc on the Activity of DNA Polymerase in 12-Day Rat Embryos.

<table>
<thead>
<tr>
<th>Zinc added (mM)</th>
<th>Zinc supplemented control</th>
<th>Zinc deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>100 (±3.5)</td>
<td>100 (±3.2)</td>
</tr>
<tr>
<td>0.01</td>
<td>106 (±2.7)</td>
<td>113 (±4.5)</td>
</tr>
<tr>
<td>0.05</td>
<td>114 (±6.3)</td>
<td>121 (±7.3)</td>
</tr>
<tr>
<td>0.2</td>
<td>79 (±3.7)*</td>
<td>81 (±3.1)*</td>
</tr>
</tbody>
</table>

* DNA polymerase activity expressed as nM H-TTP incorporated/mg protein/hr.
* \(P < 0.05\) compared to extracts with no zinc added.

TABLE II. Effect on Zinc Deficiency and Day of Gestation on Activity of DNA Polymerase in Rat Embryos.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Control ad libitum</th>
<th>Control restricted intake</th>
<th>Zinc deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of gestation</td>
<td>Activity</td>
<td>Daily increase in activity (%)</td>
<td>Activity</td>
</tr>
<tr>
<td>9</td>
<td>2.32 ± 0.12**</td>
<td>2.19 ± 0.24**</td>
<td>1.44 ± 0.30****</td>
</tr>
<tr>
<td>10</td>
<td>2.68 ± 0.25**</td>
<td>2.51 ± 0.22</td>
<td>1.62 ± 0.25****</td>
</tr>
<tr>
<td>11</td>
<td>2.96 ± 0.28</td>
<td>2.62 ± 0.42</td>
<td>1.88 ± 0.25**</td>
</tr>
<tr>
<td>12</td>
<td>3.06 ± 0.35</td>
<td>2.59 ± 0.38</td>
<td>1.97 ± 0.26*</td>
</tr>
</tbody>
</table>

* DNA polymerase activity expressed as nM H-TTP incorporated/mg protein/hr.
* \(P < 0.01\) compared to *ad libitum* and restricted intake controls.
** \(P < 0.05\) compared to activity in 1-day older embryos in the same group.
TABLE IV. EFFECT OF SUPPLEMENTARY METAL IONS ON THE ACTIVITY OF DNA POLYMERASE IN 12-DAY EMBRYOS FROM ZINC DEFICIENT DAMS.*

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>Concentration (mM)</th>
<th>Percent of original DNA polymerase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu²⁺</td>
<td>0.01</td>
<td>100 (±3.5)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>92 (±3.6)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>85 (±6.8)</td>
</tr>
<tr>
<td>Cd²⁺</td>
<td>0.01</td>
<td>95 (±4.9)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>90 (±2.8)</td>
</tr>
<tr>
<td>Mn²⁺</td>
<td>0.01</td>
<td>98 (±3.7)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>98 (±5.7)</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0.01</td>
<td>100 (±8.0)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>99 (±4.7)</td>
</tr>
<tr>
<td>Co²⁺</td>
<td>0.01</td>
<td>100 (±5.8)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>96 (±3.9)</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.01</td>
<td>97 (±9.1)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>93 (±4.0)</td>
</tr>
</tbody>
</table>

* DNA polymerase activity expressed as nM 3H-TTP incorporated/mg protein/hr.

abnormalities in rats fed a zinc deficient diet from days 0 to 8 of pregnancy. The incidence of malformations increased when the animals were fed a zinc deficient diet for longer periods during gestation or for the same length of time but at a later stage of gestation. The very low activity of thymidine kinase in rat embryos at 9 days of gestation, together with the relatively smaller decrease in enzyme activity in 9-day embryos than in 12-day embryos from zinc deficient animals, may therefore make the early embryo relatively less sensitive to zinc deficiency than are later embryonic stages.

The failure of zinc added at the time of assay to restore the activity of DNA polymerase in zinc deficient enzyme extracts confirms earlier observations with extracts from regenerating rat liver (10) and suggests that zinc may not be associated with the enzyme as a readily dissociable cofactor. This finding is similar to observations with thymidine kinase and may be explained by a lack of incorporation of zinc into the enzyme at the time of synthesis. The possibility of reduced synthesis of the enzyme as a result of general reduced protein synthesis in the zinc deficient animals is unlikely since it has been shown in regenerating rat liver that protein synthesis was not affected by zinc deficiency until 10–20 hr after a change in DNA polymerase activity was noted (10).

The inhibitory effect of a high level of zinc (0.2 mM) on DNA polymerase activity in vitro was similar to that reported by Dreosti and Hurley (11) for thymidine kinase. Such inhibition of activity of these two enzymes may account for the reduced DNA synthesis produced by high levels of zinc in cultured rat lymphocytes (20) and transplanted rat tumors (21).

Unlike thymidine kinase, which was relatively sensitive to Cd²⁺ and Cu²⁺, addition of various metal ions at both low (0.01 mM) and high (0.2 mM) concentrations had little effect on the activity of DNA polymerase in vitro. This observation supports the data of Springate et al. (22) using a zinc free apoenzyme and suggests that DNA polymerase is specifically zinc dependent.

In conclusion, the findings reported here indicate that the teratogenic effects of zinc deficiency in rats may arise from impaired activity of fetal thymidine kinase and DNA polymerase after day 8 of gestation and that the primary effect may be on the regulatory enzyme, thymidine kinase. The in vitro addition of metal ions to zinc deficient enzyme extracts suggests that zinc may not be associated with DNA polymerase as a readily dissociable cofactor and that DNA polymerase is specifically zinc dependent.

Summary: Thymidine kinase and DNA polymerase activities were significantly (P < 0.05 and P < 0.01, respectively) lower in 9, 10, 11, and 12-day embryos taken from dams fed a zinc deficient diet than in those from ad libitum fed and restricted intake controls. An additional finding was that of increased activity of both thymidine kinase and DNA polymerase with increasing age of embryos. As previously found with thymidine kinase, addition of zinc and other divalent metal ions in vitro had little effect on restoration of DNA polymerase activity from zinc deficient extracts when added at concentrations of 0.01 and 0.05 mM. When added at a level of 0.2 mM, zinc, but not other metal ions, had an inhibitory effect on DNA polymerase activity. These findings support the hypothesis that the teratogenic effects of zinc deficiency are associated with the enzymes involved in DNA synthesis.

This research was supported in part by NIH Research Grant No. HD-01743 from the National Institute of Child Health and Human Development.
ZINC DEFICIENT RAT EMBRYOS

L. S., Gowan, J., and Swenerton, H., Tera-

tology. 4, 199 (1971).

L-Histidine-Induced Hypercholesterolemia: Characteristics of Cholesterol Biosynthesis in Rat Livers

JIRAPA K. SOLOMON AND RONALD L. GEISON

Biomedical Research Unit, Waisman Center, and the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706

Dietary enrichment with high levels of single amino acids induced decreased food intake and growth suppression in young animals (1). The effects depend upon the kind and concentration of amino acid supplemented. Waisman and his colleagues have described in Rhesus monkeys a marked hyperlipemia associated with the dietary administration of L-histidine (2, 3). Histidine was the only amino acid of nine studied which induced this hyperlipemia. The hyperlipemia involved all circulating lipids. Serum phospholipids increased twofold, cholesterol twofold, triglycerides three to eightfold. Geison and Waisman fed 5% and 8% excess L-histidine diets to rabbits for 4 weeks and found a 50% increase in the plasma cholesterol level (4). Phospholipid levels did not change. The effect in rabbits was less pronounced than that observed in monkeys.

Our report presents the effect of dietary L-histidine supplementation in rats. We observe alterations in the incorporation of [2-14C] acetate or [1-14C] octanoate into lipids, studied in liver slices taken from rats fed a diet supplemented 5% with L-histidine.

Materials and methods. The basic diet fed in all experiments was Purina Formula Chow containing 23% protein, 6.5% fat, 0.58% histidine, carbohydrate, vitamins and minerals. L-histidine (free base) was purchased from Ajinomoto, Co., Tokyo. [2-14C] acetate (specific activity 53.3 mCi/mmole), [1-14C] octanoate (specific activity 3.5 mCi/mmole), Aquasol (scintillation solution) and Protosol were purchased from Nuclear Chicago scintillation counter and cap/300.

Male albino rats from Holtzman Farms Madison, WI, were obtained at 21 days of age and weighed 55 ± 5 g. They were housed individually in wire-bottom cages with a light–dark cycle changing every three hours throughout all experiments. Rats in the control group were fed ground Purina Formula Chow ad lib. In the histidine-treated group, L-histidine constituted 5% of the diet weight. It was added to the ground chow and fed to the rats ad lib. Since histidine-treated rats eat less than untreated controls, a second control group (pair-fed control) was used. This group was fed the same amount of food eaten by the histidine-treated group. After 4 days of feeding, the rats were killed by decapitation. Livers were is and either homogenized with 9 vol of di water for DNA and protein determin or sliced for the in vitro experiments.

Liver protein was estimated by the method of Lowry et al. (5) using bovine serum albumin as standard. DNA estimation was done using the method of Schneider (6) with DNA standard from Salmon testes.
bation of liver slices with $[2^{-14}C]$ acetate-$[1^{-14}C]$ octanoate was done under op-
conditions suggested by Dietschy and orry (7). CO$_2$ released was trapped by
β_i in a cup hanging above the incuba-
niture and the radioactivity was
d by dropping the cup into a scintilla-
al containing Aquasol. Liver slices were
1 with 0.9% NaCl three times and ho-
ized in distilled water using the Poly-
The homogenate was extracted with
form-methanol in a 2:1 ratio. The ex-
was dried and dissolved in a small vol-
f chloroform, then spotted on a silica
plate (0.25 mm thick). The plate was
ped in a solvent system which con-
heptane-ether-acetic acid in a 75:25:5
Lipid fractions were visualized by
the plate with 0.1% $2',7'$-dichloroflu-
in in methanol. Each band was assayed
ioactivity and the rate of synthesis is
osed as nanomoles of the labeled pre-
incorporated into the product per gram
r per hour. The percent deviation from
1 in each fraction was calculated. All
al analysis was done by using the
ed Student's t test.
ults. $[2^{-14}C]$ Acetate and $[1^{-14}C]$ octa-
were found to incorporate into every
n of liver lipids and the released CO$_2$
ous rates. l-histidine primarily affected
corporation of the labeled substrates
olesterol and triglycerides. When $[2$
cectate was used as substrate, the in-
crease in its incorporation compared to con-
trols was found to be 107% for unesterified
olesterol and 100% for cholesterol esters
(Fig. 1-A). Both increases were statistically
ificant, $P < 0.02$ and $P < 0.01$ respectively. The opposite effect was observed in
the case of triglycerides, which showed a
ificant ($P < 0.05$) decrease of 36%.
When $[2^{-14}C]$ octanoate was used as sub-
strate, there were significant ($P < 0.02$)
creases in the incorporation of the labeled
strate of 90% and 71% for unesterified
olesterol and cholesterol esters, respec-
tively, compared to controls (Fig. 1-B). The
orporation into triglycerides was signifi-
ificant ($P < 0.01$) decreased by 39%.
Histidine did not significantly alter the in-
corporation of the labeled substrates into
other liver lipids such as phospholipids, free
atty acids, monoglycerides and diglycerides.
Histidine did not alter the activity of the
tricarboxylic acid cycle, as indicated by the
insignificant change of the incorporation of the
labeled substrates into released CO$_2$.
The effects of excess dietary l-histidine on
cell size as estimated by liver DNA and pro-
tein contents are shown in Table I. The DNA
to protein ratio in histidine-treated rat livers
was significantly lower than the ratio ob-
served in both ad lib. ($P < 0.05$) and pair-fed
($P < 0.01$) controls. The decrease in the ratio
was 19.4% compared to pair-fed controls. Liver DNA and protein contents in histidine-
treated rats were significantly ($P < 0.01$)

1. Percent change from control of the incorporation of $[14C]$ acetate (A) and $[14C]$ octanoate (B) into liver ctions and CO$_2$ by liver due to L-histidine supplementation. The conditions of the incubation and separation fractions are described in the methods. Asterisks indicate P values for comparison with ad lib. controls: *P
$P < 0.02$ and *$P < 0.01$.

lower than levels in the pair-fed controls.

Discussion. L-histidine induces in young rats a hypercholesterolemia which occurs after a brief period of feeding (4 days). Histidine-treated rats are smaller than controls, have larger livers and 30–40% higher levels of plasma cholesterol (8). In the present study, the incorporation of [2-14C]acetate into cholesterol by liver was found to increase by 100% with the feeding of an L-histidine enriched diet. However, Dietschy and McGarry (7) have shown that the acetyl-CoA available for cholesterol synthesis in the cytosol is not in isotopic equilibrium with the intramitochondrial pool. In order to verify the result, [1-14C]octanoate was used as substrate under the same conditions. Octanoate is incorporated into cholesterol by the cytosolic biosynthesis pathway only after its intramitochondrial oxidation to acetyl-CoA. In this way the C2 units entering the cholesterol biosynthetic pathway were in isotopic equilibrium with the intramitochondrial C2 pool. Increases in the incorporation of the [1-14C]octanoate into unesterified cholesterol and cholesterol esters by 90% and 71%, respectively, were observed.

The second significant effect of histidine on liver in this study was the 36–39% decrease in the incorporation of the labeled substrates into triglycerides. Kerr et al. (3) showed that histidine-induced hyperlipemia in monkeys was easily detected by the appearance of a "creamy" serum reflecting the predominant presence of triglyceride-laden chylomicrons. The decrease in triglyceride synthesis observed in our experiments was in accord with the absence of "creamy" serum in the rat.

Dietschy and McGarry have shown the concentrations of the labeled substrates used in these experiments (4 mM for acetate and 1.1 mM for octanoate) to be saturate the metabolic process under study (7) and also have reported that octanoate was an efficient precursor than acetate for stearic acid. This contrasts with the data obtained in the present study where we observed in liver the rate of cholesterol synthesis from [2-14C]acetate was not significantly different from that obtained with [1-14C]octanoate.

Changes in the liver DNA to proteoglycan increase in hepatic cell size correlates well with previous results of a 100% increase in liver glycogen content. In summary, the present study demonstrates that dietary enrichment with L-histidine induces specific effects in cholesterol metabolism: gliceride synthesis in weanling rats effects might represent the regulation of specific enzymes in cholesterol biosynthesis: lipogenesis such as β-hydroxy-β-methyl-oenzyme A reductase and fat synthetase.

Summary. A diet supplemented 5% histidine caused a 100% increase in the incorporation of [2-14C]acetate or [1-14C]octanoate into cholesterol in liver slices of w rats after four days of feeding. The incorporation of the labeled substrates into triglycerides decreased 38%. The hepatic D protein ratio decreased 19% with feeding, suggesting an increase in hepatic cell size.

We wish to thank Dr. Burr Eichelmann for his cooperation throughout the preparation of this manuscript.

3. Kerr, G. R., Wolf, R. C., and Waisman,
HISTIDINE-INDUCED HYPERCHOLESTEROLEMIA

Effect of Cholera Toxin on Renal Tubular Reabsorption of Glucose and Bicarbo
(40281)1

ROBERT M. FRIEDLER, SAMIR TUMA,2 ALAN KOFFLER, AND SHAUL G. MASSRY

Division of Nephrology and the Department of Medicine, University of Southern California School of Med
Los Angeles, California 90033

Cholera toxin (CT) produces fluid and electrolyte secretion in the small intestine due to stimulation of adenylate cyclase and increased production of adenosine 3'5' cyclic monophosphate (cAMP) (1–6). Other studies have shown that the adenylate cyclase–cyclic AMP system is stimulated by CT in a variety of tissues such as liver, thyroid, adrenal, fat and leukocytes with no demonstration of any other major structural or enzymatic changes (7–13). Thus, CT may provide a pharmacologic tool for the study of the effects of stimulating adenylate cyclase–cyclic AMP systems (10, 11).

We have previously shown that the infusion of cholera toxin into one renal artery of dogs is followed by decreased net tubular reabsorption of sodium, potassium, calcium, magnesium and phosphate with interrelationships similar to those observed during expansion of the extracellular fluid volume with saline (14). Further studies from our laboratory have demonstrated that expansion of the extracellular fluid with a Ringer bicarbonate solution is accompanied by increased net production of cyclic AMP by the kidney suggesting a role for cyclic AMP in the reabsorption of these various ions (15).

Since extracellular fluid volume expansion is accompanied by decreased tubular reabsorption of glucose (16, 17) and bicarbonate (18–20) due to suppression in their reabsorption, which occurs mostly in the proximal tubule (20–25), this study was designed to evaluate whether the stimulation of renal adenylate cyclase with CT also affects the reabsorption of these two substances in animals to further document a relationship between renal cAMP and tubular reabsorptive processes.

Material and methods. Twelve experiments were carried out in female mongrel weighing from 18 to 27 kg, anesthetized with pentobarbital (30 mg/kg). The dog was ventilated through auffed endotracheal tube with a Harvard Respirator. Both ureters were cannulated through bilateral flank incisions and a curved 23 gauge needle was placed in the left renal artery in the direction of blood flow. Isotonic saline was infused in renal artery at a rate of 1 ml per min throughout the studies. A catheter was placed aorta through a femoral artery to blood samples and to measure arteria with an aneroid manometer. All samples were started at least 60 min after injection of surgery. Glomerular filtration rate (GFR) was measured using the clearance of exogenous creatinine with standard doses and constant infusion technique. collections of 10 min duration were obtained throughout the studies with blood taken at the midpoint of each period. After control periods purified cholera (Schwarz-Mann, Orangeburg, NY added to the renal arterial infusion to 8 mg/min for 180 min.

The effect of CT on glucose reabsorption was evaluated in five dogs. An intraarterial infusion of glucose (10–15%), i.e., (23 mEq/1), potassium (10 mEq/1) and sodium (33 mEq/1) was given at a rate of 1 ml/min in order to attain a stable high level of blood glucose at the time of the m value effect of CT on tubular transport of electrolytes which usually occurs 100–140 min after the administration of CT (14). Both arterial and venous samples were collected in ice.
test tubes and triplicate determinations of glucose were performed.

The effect of CT on bicarbonate resorption was studied in seven dogs. In order to raise the blood bicarbonate to a stable level of 33-37 mEq/l, the animals received pulse injections of bicarbonate 50-90 mEq at the beginning of the study and every 40 min thereafter and a constant infusion of a solution containing bicarbonate (240 mEq/l), sodium (263 mEq/l), potassium (10 mEq/l), and chloride (33 mEq/l) at a rate of 4 ml/min. The rate of respiration was adjusted by the Harvard Respirator to keep PCO₂ stable around 40 mm Hg. Urine was collected anaerobically under mineral oil from the ureteral catheters and blood samples were obtained anaerobically in syringes containing heparin.

These protocols allowed us to compare tubular reabsorption of glucose (TRG) and bicarbonate (TRHCO₃) by both kidneys when all variables other than the infusion of CT into one renal artery were equal.

The concentration of creatinine in the blood and urine samples were determined with Technicon autoanalyzer (Tarrytown, NY), sodium and potassium with Instrumentation Laboratory flame photometer (Lexington, MA), chloride with CMT 10 chloridometer (Radiometer, Copenhagen), glucose with Beckman glucose analyzer (Beckman Instruments Incorporated, Palo Alto, California) which utilizes glucose oxidase (26), and pH and PCO₂ with a Radiometer acid base analyzer, Model BMS 3-PHM71 (Radiometer, Copenhagen). The concentration of bicarbonate in plasma and urine were calculated from the Henderson-Hasselbach equation utilizing the following factors: Solubility coefficient for CO₂ in plasma and urine of 0.0301 and 0.0309, respectively; a pk of 6.10 for plasma and a pk for urine calculated from its ionic strength according to the formula, pKa = 6.33 - 0.5√Na⁺ + K⁺ with the concentrations of Na and K given in equivalents per liter (27). Paired data analysis was used to evaluate the statistical significance of the results which are expressed as mean ± SEM.

Results. Effect of CT on glucose reabsorption (TRG). The effect of the infusion of CT on GFR, fractional excretion of sodium (FEₜₐₙ) and glucose reabsorption are given in Table I and Fig. 1. There were no significant differences among these parameters between both kidneys prior to the infusion of glucose and CT. Renal TRG after 100-140 min of CT was 80.1 ± 20.2 mg/min, a value significantly (P < .05) lower than that observed for the contralateral kidney (98.7 ± 20.7 mg/min). Renal TRG per 100 ml GFR was 254 ± 32.7 mg, a value significantly (P < .01) lower than that observed in the opposite kidney (363 ± 43.5 mg per 100 ml GFR). The FEₜₐₙ increased significantly from both kidneys but it was markedly higher (P < .01) from the kidney receiving CT (11.2 ± 2.82%) than the contralateral kidney (4.62 ± 1.42%).

The values for TRG per 100 ml GFR in all measurements made from both kidneys during the period of 100-140 min after the initiation of the infusion of CT and when filtered glucose ranged between 700-1900 mg per 100 ml GFR are shown in Fig. 1. For any given level of filtered glucose, TRG per 100 ml GFR was lower in the kidney infused with CT.

Effect of CT on bicarbonate reabsorption. The effects of CT infusion on GFR, FEₜₐₙ, TRHCO₃/GFR and the urinary excretion of sodium, chloride and bicarbonate are given in Table II and Figs. 2 and 3. Again, there were no significant differences between these parameters prior to the infusion of bicarbonate and CT. Renal TRHCO₃ after 100-140 min of CT was not different between both kidneys while TRHCO₃/GFR x 100 by the infused kidney was 2.09 ± .06 mEq per 100 ml GFR, a value significantly lower (P < .01) than that observed in the contralateral kidney (2.53 ± .06 mEq per 100 ml GFR). Figure 2 provides data on TRHCO₃/GFR for all measurements obtained during the maximal effect of CT and a filtered bicarbonate ranging between 2.8 to 4.1 mEq per 100 ml GFR. Again, TRHCO₃/GFR x 100 for any given level of filtered carbonate was lower under the effect of CT.

The FEₜₐₙ increased in both kidneys but was significantly higher (P < .01) in the kidney receiving CT (15.9 ± 0.74%) than that of the contralateral kidney (7.1 ± .26%). The increments in urinary sodium in the CT kidney were due to both NaCl diuresis (40%) and NaHCO₃ excretion (60%) while the ex-
TABLE I. Effects of Cholera Toxin on Renal Tubular Reabsorption of Glucose.*

<table>
<thead>
<tr>
<th>Experiment</th>
<th>C×, ml/min</th>
<th>C×/C× × 100 %</th>
<th>PG mg/dl</th>
<th>TRG mg/min</th>
<th>TRG/C× × 100 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>1. Control</td>
<td>14.5</td>
<td>19.8</td>
<td>0.06</td>
<td>0.04</td>
<td>161</td>
</tr>
<tr>
<td>CT + glucose</td>
<td>23.0</td>
<td>23.7</td>
<td>6.50</td>
<td>1.23</td>
<td>993</td>
</tr>
<tr>
<td>2. Control</td>
<td>24.6</td>
<td>26.1</td>
<td>0.50</td>
<td>0.70</td>
<td>142</td>
</tr>
<tr>
<td>CT + glucose</td>
<td>21.1</td>
<td>16.6</td>
<td>16.20</td>
<td>8.50</td>
<td>975</td>
</tr>
<tr>
<td>3. Control</td>
<td>39.4</td>
<td>39.6</td>
<td>0.14</td>
<td>0.19</td>
<td>156</td>
</tr>
<tr>
<td>CT + glucose</td>
<td>51.6</td>
<td>38.2</td>
<td>14.70</td>
<td>1.41</td>
<td>1027</td>
</tr>
<tr>
<td>4. Control</td>
<td>37.8</td>
<td>37.0</td>
<td>0.99</td>
<td>0.27</td>
<td>124</td>
</tr>
<tr>
<td>CT + glucose</td>
<td>24.2</td>
<td>24.5</td>
<td>9.50</td>
<td>6.20</td>
<td>1570</td>
</tr>
<tr>
<td>5. Control</td>
<td>38.8</td>
<td>36.0</td>
<td>0.73</td>
<td>0.67</td>
<td>164</td>
</tr>
<tr>
<td>CT + glucose</td>
<td>29.3</td>
<td>26.6</td>
<td>9.13</td>
<td>5.77</td>
<td>1553</td>
</tr>
<tr>
<td>Control, mean</td>
<td>31.0</td>
<td>31.7</td>
<td>0.48</td>
<td>0.37</td>
<td>149.4</td>
</tr>
<tr>
<td>SEM</td>
<td>4.95</td>
<td>3.75</td>
<td>0.17</td>
<td>0.13</td>
<td>7.38</td>
</tr>
<tr>
<td>CT + glucose, mean</td>
<td>29.8</td>
<td>25.9</td>
<td>11.20</td>
<td>4.62</td>
<td>1123.6</td>
</tr>
<tr>
<td>SEM</td>
<td>5.61</td>
<td>3.50</td>
<td>1.82</td>
<td>1.42</td>
<td>138.2</td>
</tr>
</tbody>
</table>

* Each point represents the mean of three to five consecutive collections. The results obtained during cholera toxin (CT) and glucose infusion represent the mean of three to five consecutive 10 min collections during the maximum response to CT and stable high plasma glucose. C× = clearance of exogenous creatinine. C×/C× × 100 = fraction of filtered sodium excreted. PG = plasma glucose. TRG/C× × 100 = renal tubular reabsorption of glucose per 100 ml of glomerular filtration. L = left kidney infused with cholera toxin 8 μg per min; R = right noninfused kidney; Control = collections obtained of prior to the infusion of cholera toxin and glucose. CT + glucose = collections obtained at peak effects of cholera toxin (100-180 min) and stable levels of high plasma glucose.

![Graph](image_url)

Fig. 1. The relationship between tubular reabsorption of glucose and filtered load of glucose in dogs receiving cholera toxin into the left renal artery. Data from the left kidney receiving cholera toxin infusion are shown in black dots and from the right kidney not receiving cholera toxin infusion are presented in open circles. Data is expressed as mg per 100 ml GFR.

creatin of NaCl comprised only 8% of urinary sodium from the contralateral kidney with the rest (92%) being NaHCO₃ (Fig. 3).

Discussion. The results of the present study demonstrate that the infusion of CT into one renal artery is accompanied by a decrease in the renal tubular reabsorption of both glucose and bicarbonate by the infused kidney.

Changes in glomerular filtration rate and alterations in status of extracellular fluid volume (ECF) are known to influence tubular reabsorption of glucose (16, 17, 20, 28, 29). Thus, when the absolute amount of glucose reabsorbed is plotted against GFR in animals in which the rates of sodium reabsorption were unchanged, a direct linear relationship was found (17). In our studies, GFR was either unchanged or modestly increased in the infused kidney at a time when TRG was lower. This observation clearly excludes changes in GFR as the cause for the reduced TRG by CT.

During expansion of ECF, there is an inverse relationship between tubular reabsorption of glucose per unit GFR and the fraction of filtered sodium excreted (17) suggesting that the mechanism responsible for the tubular reabsorption of glucose and sodium may be related. Furthermore, factors that inhibit renal transport of sodium such as ouabain or acetazolamide suppress the reabsorption of glucose as well (30). Changes in the status of ECF could not account for
TABLE II. Effects of Cholera Toxin on Renal Tubular Reabsorption of Bicarbonate.*

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(C_{\text{T}})</th>
<th>(C_{\text{Na}}/C_{\text{T}} \times 100)</th>
<th>TRHCO(_3)</th>
<th>TRHCO(_3/)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml/min</td>
<td>%</td>
<td>mmol/L</td>
<td>(\mu \text{Eq/min})</td>
</tr>
<tr>
<td>1. Control</td>
<td>24.3</td>
<td>24.9</td>
<td>1.49</td>
<td>1.62</td>
</tr>
<tr>
<td>CT + NaHCO(_3)</td>
<td>41.2</td>
<td>30.0</td>
<td>17.65</td>
<td>6.80</td>
</tr>
<tr>
<td>2. Control</td>
<td>45.8</td>
<td>46.4</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>CT + HCO(_3)</td>
<td>25.4</td>
<td>26.1</td>
<td>17.40</td>
<td>6.54</td>
</tr>
<tr>
<td>3. Control</td>
<td>26.6</td>
<td>22.9</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>CT + HCO(_3)</td>
<td>28.8</td>
<td>26.0</td>
<td>15.05</td>
<td>6.79</td>
</tr>
<tr>
<td>4. Control</td>
<td>32.2</td>
<td>32.1</td>
<td>0.27</td>
<td>0.31</td>
</tr>
<tr>
<td>CT + HCO(_3)</td>
<td>40.1</td>
<td>34.0</td>
<td>15.97</td>
<td>6.63</td>
</tr>
<tr>
<td>5. Control</td>
<td>37.7</td>
<td>38.7</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>CT + HCO(_3)</td>
<td>45.7</td>
<td>45.3</td>
<td>11.90</td>
<td>8.04</td>
</tr>
<tr>
<td>6. Control</td>
<td>37.0</td>
<td>36.0</td>
<td>2.21</td>
<td>2.20</td>
</tr>
<tr>
<td>CT + HCO(_3)</td>
<td>33.1</td>
<td>27.1</td>
<td>16.85</td>
<td>8.17</td>
</tr>
<tr>
<td>7. Control</td>
<td>38.9</td>
<td>32.6</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>CT + HCO(_3)</td>
<td>43.2</td>
<td>37.1</td>
<td>16.20</td>
<td>6.69</td>
</tr>
<tr>
<td>Control, mean</td>
<td>34.6</td>
<td>33.4</td>
<td>0.62</td>
<td>0.65</td>
</tr>
<tr>
<td>SEM</td>
<td>2.82</td>
<td>3.04</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>CT + NaHCO(_3), mean</td>
<td>36.8</td>
<td>32.2</td>
<td>15.86</td>
<td>7.09</td>
</tr>
<tr>
<td>SEM</td>
<td>2.92</td>
<td>2.70</td>
<td>0.74</td>
<td>0.26</td>
</tr>
</tbody>
</table>

* Each point represents the mean of three to five consecutive collections. The results during cholera toxin and bicarbonate infusion represent the mean of three to five consecutive collections during the peak effect of cholera toxin (100-180 min) and stable high plasma bicarbonate. \(C_{\text{T}} \) = clearance of creatinine; \(C_{\text{Na}}/C_{\text{T}} \times 100 \) = fraction of filtered sodium excreted; PHCO\(_3\) = plasma bicarbonate; TRHCO\(_3\) = tubular reabsorption of bicarbonate; TRHCO\(_3/\) \(C_{\text{T}} \times 100 \) = renal tubular reabsorption of bicarbonate per 100 ml of glomerular filtration; L = left kidney infused with cholera toxin, 8 \(\mu \text{g} \) per ml; R = right noninfused kidney; control = collections obtained prior to the infusion of cholera toxin and bicarbonate; CT + HCO\(_3\) = collections obtained during maximum effect of cholera toxin and during stable high levels of serum bicarbonate.

FIG. 2. The relationship between tubular reabsorption of bicarbonate and filtered load of bicarbonate in dogs receiving cholera toxin into the left renal artery. Data from the left kidney receiving cholera toxin infusion are shown in block dots and from the right kidney without infusion are presented in open circles. Data is expressed as mEq per 100 ml GFR.

FIG. 3. Urinary excretions of sodium, bicarbonate and chloride during cholera toxin and bicarbonate infusion. Values are the mean and SEM of all experiments during maximal effects of cholera toxin.

directly or indirectly have influenced glucose reabsorption.

The tubular reabsorption of bicarbonate is affected by at least five factors. These include GFR (31), PCO\(_2\) (32, 33), potassium metabolism (34), status of ECF (18, 19), and carbonic anhydrase activity (33). Most of these
factors could not account for the differences in TRHCO₃/GFR from both kidneys. Acute reductions in GFR are associated with a fall in absolute TRHCO₃ but TRHCO₃/GFR remains unchanged (31), thus one would anticipate that a rise in GFR should be associated with a proportional increase in TRHCO₃ with TRHCO₃/GFR remaining constant. In our bicarbonate infusion studies, the GFR in infused kidney was higher than the control kidney but TRHCO₃/GFR was lower. The blood levels of PCO₂, potassium, as well as the state of ECF could not provide explanation for the unilateral decrease in TRHCO₃/GFR since both kidneys were exposed to the same conditions.

The mechanism(s) through which CT affects glucose and bicarbonate reabsorption are not evident. Several possibilities should be considered. First, CT most probably affects renal tubular transport processes by the stimulation of a renal adenylate cyclase with increased production of cyclic AMP (14, 35). Several lines of evidence exist indicating that cyclic AMP reduces reabsorption of various ions in the proximal tubule (36-38). The studies of Lorentz (39) and Jacobsen (46) suggest this effect of cAMP is mediated by an increase in tubular permeability allowing augmented back flux. It is therefore, plausible that the decrease in glucose and bicarbonate reabsorption during CT infusion is secondary to enhanced back flux of reabsorbate produced by cAMP. The observation of Karlinsky et al. (41) who showed that the infusion of dibutyl cyclic AMP reduced the tubular reabsorption of bicarbonate provides further support for the role of CT induced cAMP production in the genesis of reduced TRHCO₃.

Second, cholera toxin may directly affect the tubular transport of glucose and bicarbonate. In the ileum, CT enhances bicarbonate secretion (1) but there is no evidence for an effect of CT on glucose transport by the gut (42). Finally, CT may inhibit carbonic anhydrase activity and result in reduced reabsorption of bicarbonate; there is no evidence as yet supporting such a contention.

Most of glucose (21, 24, 25) and bicarbonate (22, 23) reabsorption occur in the proximal tubule. Our present observations of decreased TRG and TRHCO₃ and natriuresis are consistent with an effect of CT in the proximal tubule. However, marked decreases in proximal tubular reabsorption of sodium may not be followed by substantial natriuresis unless distal reabsorption of sodium is also reduced (43, 44). It seems, therefore, that CT should have an effect on tubular reabsorption in more distal portions of the nephron as well. Indeed, the observation that during bicarbonate loading 40% of the natriuresis in the infused kidney was due to NaCl as opposed to only 8% in the control noninfused kidney (Fig. 3) suggests that CT may have an effect on tubular reabsorption of Na at more distal sites of the nephron where Na is reabsorbed mostly as NaCl.

The present results together with our previous observations (14) have shown certain analogies between the natriuresis of expansion of ECF and that induced by CT: (a) Both are accompanied by depressed tubular reabsorption of glucose and bicarbonate, phosphate, calcium, magnesium and sodium chloride and (b) the relations between the fraction of filtered Na excreted and that of calcium and magnesium are similar in both conditions. Since extracellular fluid volume expansion with saline is accompanied by increased renal production of cyclic AMP (15) and the renal effects of CT are presumably mediated by stimulation of a renal adenylate cyclase-cyclic AMP system (14, 35), it could be postulated that at least part of the reduction in the tubular reabsorption of these various substances which occur during expansion of ECF may be mediated by increased production of cyclic AMP.

Summary. Cholera toxin (CT) reduces tubular reabsorption of Na, Cl, Ca, Mg and P most probably through stimulation of a renal adenylate cyclase-cyclic AMP system, and it is possible that an increased production of nephrogenous cyclic AMP during extracellular fluid volume expansion may be partly responsible for the observed natriuresis. In order to further evaluate the role of renal cyclic AMP in renal tubular transport, we studied the effect of CT on glucose (TRG) and bicarbonate reabsorption (TRHCO₃).

During the period of maximal effect of CT on tubular transport (100-140 min of CT infusion into one renal artery) both the TRG and TRHCO₃ were lower in the infused kid-
ney than in the contralateral noninfused kidney, TRG as mg per 100 ml GFR was 254 ± 32.7 vs 363 ± 43.5 (P < .01), and TRHCO₃⁻ as mEq per 100 ml GFR was 2.09 ± 0.06 vs 2.53 ± 0.06 (P < .01). The data indicate that CT suppresses glucose and bicarbonate reab- sorption together with that of sodium and as such assign to role for renal cyclic AMP in the regulation of the tubular transport of these substances.

The authors wish to thank Mr. Barry Gammel and Mrs. Virginia Barbanari for their technical assistance, and Ms. Melinda Ayers, Ms. Jamie Jimenez, Ms. Alice Momjean and Ms. Alberta Ward for their secretarial assistance.

Shape Change and the Percentage of Sialic Acid Removed by Neuraminidase from Human Platelets\(^1\) (40282)

ELLINOR I. PEERSCHKE AND MARJORIE B. ZUCKER

Department of Pathology, New York University Medical Center, New York, New York 10016

\(N\)-acetylneuraminic acid is the only sialic acid found in human platelets (1) and 7–15 \(\mu g\) is found per mg of platelet protein (2). Bacterial neuraminidases from Clostridium perfringens and Vibrio cholera, which cleave the \(\alpha\)-ketoside linkage between sialic acid and the penultimate galactose or galactosamine, liberate 40–60% of sialic acid from human platelets (1–5). This is thought to be derived from surface membrane glycoproteins.

In a recent study, Motamed et al. (6) conclude that platelet surface sialic acid increases after shape change. This report is based on data obtained from platelets fixed in plasma. A nonspecific attachment of plasma proteins to the platelet surface is observed after fixation (7). As many of these plasma proteins contain sialic acid, and the platelet surface area increases after shape change (6), it is difficult to establish on the basis of these studies whether the increase in the amount of sialic acid removed by neuraminidase represents increased platelet surface sialic acid, or merely an increase in the amount of plasma proteins fixed onto the platelet membrane.

Ku and Wu (4, 5), using washed platelets, reported that thrombin-, collagen- and ADP-induced platelet activation increased the amount of neuraminidase-removable sialic acid. The increases observed after thrombin and collagen treatment were inhibited by aspirin, suggesting that material containing sialic acid is released during platelet activation, and that the increase in sialic acid observed after activation does not represent surface sialic acid.

This study was designed to determine whether ADP-induced shape change alters the amount of sialic acid on the surface of unfixed, aspirin-treated, gel-filtered platelets.

Materials and methods. C. perfringens neur-

\(^1\) This research was supported by USPHS Grant No. HL-15596 from the National Heart, Lung and Blood Institute.
ith 0.1 N HCl. One ADP-treated and saline control sample than received 40 neuraminidase (0.21 U/ml). The other treated and saline control sample re-
al 40 \mu l of ammonium acetate buffer. All es were incubated for 15 min at 37°.
incubation, phase microscope observa-
howed that the saline control platelets retained their discoid shape and the sus-
ion exhibited the characteristic "swirl" agitated. In contrast, the ADP-treated es were spiny spheres and failed to swirl shaken. A portion of the platelet sus-
sions not treated with neuraminidase was
ated to mild acid hydrolysis (0.1 N
4, 1 hr, 80°) and total sialic acid was
ined. Platelets were counted in another
with a Coulter Counter. The remain-
f the control samples as well as the
idase-treated samples were then
ed in a Serofuge (Clay Adams) for
. The supernatants were removed and
id measured without hydrolysis (11).
order to determine whether sialic acid is
ed from platelets after treatment with
in and connective tissue as reported
and Wu (4), 9 ml of blood was col-
 into 1.5 ml of ACD containing 10 \mu l
otonin (Amersham, 8 \mu Ci/ml) (16) and
sed as previously described. Fifty \mu l of
ension of 14C-serotonin-labeled gel-
d platelets was placed in glass counting
aining 10 ml Aquasol (New Eng-
duclear) and counted in a Packard Liq-
citillation Counter. Another aliquot,
, was used to determine total sialic acid
id acid hydrolysis. The remaining
ision was divided into three equal al-
and treated with 1 U/ml (final concen-
t) of highly purified human thrombin
ven to us by Dr. John W. Fenton
 York State Department of Health,
y), a suspension of ground human sub-
ous connective tissue (given to us by
. Lackner, New York University Med-
center), or isotonic saline. After gentle
g, the suspensions were incubated at
10 min. The samples were then chilled
rifuged at 4°C at 2100 g for 20 min
let the platelets. The sialic acid was
ed on 190 \mu l of each supernatant after
id hydrolysis (11) and 50 \mu l of each
atant was used to measure 14C.

Results. The total sialic acid content of the
ADP-treated and saline control samples did
not differ. Hence, both values were included
the average, which was 60 nmol/10^9
platelets (Table I). Neuraminidase removed
47% of sialic acid from both control and
ADP-treated platelets. There was no sialic
acid in the supernatants of samples treated
with buffer instead of enzyme, even after
hydrolysis.

Two experiments were carried out in which
platelets were incubated with thrombin or
connective tissue for 10 min without shaking.
The platelets lost their "swirl" but no aggreg-
gates were seen on gross inspection. 14C-sero-
tonin release in the saline control platelets
was 13.6% and 4.2% (Table II). This material
is presumably released when platelets come
into contact with Sepharose beads during gel
filtration (17). Platelets treated with thrombin
released 89.1% and 81.2% of their 14C-sero-
tonin, and 30% and 43% of their total sialic
acid, respectively. Platelets treated with
collagen released 57.6% and 33.2% of their 14C
serotonin, and 30% and 31% of their total
sialic acid.

Discussion. ADP-induced shape change
does not cause the release of material con-
taining sialic acid from aspirin-treated plate-
lets, as none was detected in the supernatants
even after hydrolysis. Thus the sialic acid
measured in the supernatant of suspensions
treated with neuraminidase presumably rep-
resents sialic acid cleaved from membrane
glycoproteins.

The amount of sialic acid removed by
neuraminidase is not altered by ADP-in-
duced shape change. This finding agrees with
the results of Bunting and Zucker (3) who
demonstrated that the same amount of trit-
um was incorporated into the sialic acid of
discoid platelets and platelets which had un-
dergone shape change after exposure to ADP.

Like others (2, 18), we found that collagen
and thrombin release material containing
sialic acid from human platelets. As neu-
minidase will cleave sialic acid from both the
platelet membrane and the released material,
it is essential to prevent the release reaction
in order to quantitate changes in membrane
sialic acid during platelet stimulation.

Since we find no difference in the amount
of sialic acid removed by neuraminidase from
TABLE I. THE EFFECT OF SHAPE CHANGE ON THE AMOUNT OF SIALIC ACID REMOVED BY NEURAMINIDASE FROM HUMAN PLATELETS.

<table>
<thead>
<tr>
<th>Expt. No.</th>
<th>NaCl (nmol)</th>
<th>ADP (nmol)</th>
<th>Avg (nmol)</th>
<th>NaCl (%)</th>
<th>ADP (%)</th>
<th>Change in sialic acid removed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>40</td>
<td>39</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>91</td>
<td>90</td>
<td>40</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>42</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>46</td>
<td>48</td>
<td>52</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>44</td>
<td>42</td>
<td>33</td>
<td>30</td>
<td>-3</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>82</td>
<td>81</td>
<td>59</td>
<td>63</td>
<td>+4</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>50</td>
<td>47</td>
<td>49</td>
<td>44</td>
<td>-5</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>44</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>47</td>
<td>-0.375*</td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>0.8</td>
<td>0.98</td>
</tr>
</tbody>
</table>

* t = 0.382, not statistically significant.

TABLE II. PERCENT RELEASE OF 14C SEROTONIN AND SIALIC ACID BY STIMULATED PLATELETS.

<table>
<thead>
<tr>
<th>Expt. No.</th>
<th>Agent added</th>
<th>14C Release (% of Total)</th>
<th>Sialic acid removed in supernatant (% of Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaCl</td>
<td>13.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Thrombin</td>
<td>89.1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>C.T.</td>
<td>57.6</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>NaCl</td>
<td>4.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Thrombin</td>
<td>81.2</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>C.T.</td>
<td>33.2</td>
<td>31</td>
</tr>
</tbody>
</table>

We conclude that ADP-induced shape change does not alter platelet surface sialic acid. In contrast, sialic acid appears to be lost from platelets which have been aggregated with ADP and disaggregated (3).

Summary: The sialic acid of human gel-filtered platelets was studied before and after ADP-induced shape change. Neuraminidase cleaved 47% of the total sialic acid from both discoid control platelets and platelets that had become spiny spheres after treatment with 5 μM ADP.

We are grateful to the following colleagues for materials used in these experiments: Thomas H. Finlay, Ph.D., for the radiolabeled TAME, Joel U. Harris, Ph.D., for the radiolabeled fibrinogen, Henriette Lackner, M. D., for the connective tissue suspension, and John Fenton, II, Ph.D., for the purified human thrombin.

L-Histidine-Induced Facilitation of Cholesterol Biosynthesis in Rats

ASAF A. QUERSHI, JIRAPA K. SOLOMON, AND BURR EICHELMAN

Laboratory of Behavioral Neurochemistry, Waisman Center, University of Wisconsin; and the Veterans Administration, Madison, Wisconsin 53706

tritional loading of amino acids, particularly phenylalanine, has been used to study metabolic disorders. During such ex- entration Waisman and his colleagues histidine-supplemented diets to infant monkeys and noted a marked hypercholesterolemia (1, 2). Later Geison and Waisman (3) showed that 5 and 8% excess L-histidine diets to 4-week-old rabbits and induced a 50% increase in liver cholesterol levels. Our investigations have been pursued in rats, attempting to expand the concept of dietary histidine supplementa-

sion of cholesterol precursors into liver slices from rats fed excess histidine (4). There is an increase in the concentration of cholesterol precursors into liver slices from rats fed excess histidine (4). This finding prompted further investigation to determine the effect of histidine supplementation on cholesterol biosynthesis in the 5,000g supernatant solution of liver homogenate. Mature rats were used for study because cholesterol and fatty acid metabolism in weanling rats is unstable, and the change of diet from milk to chow reduces the rate of synthesis of cholesterol from acetate (6, 7). When fasted animals were refed a normal diet, the synthesis of cholesterol acetate returned to normal within three days (8). When they were refed a fat-free diet, cholesterol synthesis increased to its normal level within three days and declined to a very low level (8). This investigation studied the effects of histidine supplementation on the rate of synthesis of cholesterol and cholesterol precursors from acetate and mevalonate in both normal and fat-free diets. All measurements were obtained during high and low diurnal levels of cholesterol synthesis.

Materials and methods. Experimental materials were obtained from the following sources: [2-14C] acetate (specific activity 53.3 mCi/mmol), [2-14C] RS-mevalonic acid, N,N'-dibenzylethylene diammonium salt (specific activity 40.2 mCi/mmol, and Aquasol (scintillation solution) from New England Nuclear Corp., Elmhurst, IL; glucose-6-phosphate, NAD, NADP, dithiothreitol, digitonin, and nicotinamide from Sigma Chemical Co., St. Louis, MO; EDTA from Fisher Scientific Co., Itasca, IL; L-histidine (free base) and bovine serum albumin from Nutritional Biochemical Corporation, Cleveland, OH. All other chemicals were of analytical grade. The fat-free diet (Wooley and Sebrrell), Mod. TD-71125 was from Teklad Test Diets, Madison, WI. The normal diet was ground Purina Formulab Chow. In the histidine-supplemented diets, L-histidine constituted 5% of the diets by weight. A standard solidifying agent is Elvehjem homogenizer was used for homogenization. All radioactivity countings were done in a Nuclear Chicago Scintillation Counter, Isocap/300.

Male albino rats weighing 50–60 g each were obtained from Holtzman Rat Co., Madison, WI. Animals were divided into groups of four and fed normal and experimental diets ad lib. for 18 days after they were received. All rats, excluding the control group, then fasted for 2 days and were then refed experimental diets ad lib. for three days. This provided 21 days of experimental diet as used in previous studies of amino acid feeding (9). Rats were housed singly in stainless steel cages. The light cycle was from 7AM to 5:30PM.

Preparation of rat liver homogenate. Rats were sacrificed by decapitation, at 2PM or
10 PM, and the livers were removed quickly and placed on ice. Each liver was weighed, minced, and then homogenized in a 0.1 M potassium phosphate buffer, pH 7.4, containing 0.004 M MgCl₂, 0.001 M EDTA, and 0.002 M dithiothreitol, with five strokes of a Potter-Elvehjem homogenizer. The volume of buffer used was 2 ml/g of liver. The homogenate was centrifuged for 10 min at 5,000 g. The volume of the supernatant solution was recorded. Protein concentrations were measured by a modification of the biuret procedure (10) using bovine serum albumin as standard.

Assays for the conversion of acetate and mevalonate to NSF² and **DPF**³. The rates of conversion of [2⁻¹⁴C] acetate and [2⁻¹⁴C] mevalonate to NSF and DPF were measured by a slight modification of the procedure of Slakey et al. (11). With acetate as the substrate, the incubation mixture contained 125 µl (approximately 5.0 mg protein) of the 5,000 g supernatant solution diluted to 0.5 ml with homogenizing buffer plus cofactors and [2⁻¹⁴C] acetate (2.5 µmoles and 4 × 10⁶ dpm per µmole). With mevalonate as the substrate, the incubation mixture contained 75 µl (approximately 3.0 mg protein) of the 5,000 g supernatant solution diluted to 0.5 ml with homogenizing buffer plus cofactors and [2⁻¹⁴C] RS-mevalonate (2.5 µmoles and 2 × 10⁵ dpm per µmole). The NSF was counted in a toluene scintillation solution and the DPF was counted in Aquasol.

Results. Acetate to NSF and DPF. The incorporation of [¹⁴C] acetate into the NSF and DPF of the 5000 g supernatant solution of rat liver homogenate is shown in Fig. 1. The labeled substrate was incorporated nine times more into the NSF of rats which were refed a histidine-supplemented chow diet than in those of the control group (Fig. 1A). This increase is statistically significant (P < 0.001). Refeeding chow, fat-free, or a histidine-supplemented fat-free diet did not significantly affect the NSF synthesis activity. Refeeding of the histidine-supplemented chow diet induced a seven- to eightfold increase in the incorporation of the labeled substrate into the DPF (Fig. 1B). This difference is also significant (P < 0.001). Histidine supplementation to the fat-free diet did not cause a significant increase in the DPF synthesis activity.

Mevalonate to NSF and DPF. Effects of feeding excess histidine on the incorporation of [¹⁴C] mevalonate into the NSF are shown in Fig. 2A. A 7.5-fold increase in total synthesis activity over the matched control was observed when refeeding the histidine-supplemented chow diet (P < 0.001). Refeeding of chow, fat-free diet, and a histidine-supplemented fat-free diet did not significantly affect the NSF synthesis activity. The amount of [¹⁴C] mevalonate incorporated into the DPF was seven times higher with the refed histidine-supplemented diet than with the refed chow diet (P < 0.001), as shown in Fig. 2B. Synthesis activity was 1.6 times higher in

² NSF = Nonsaponifiable fraction: sterols, squalene, and terpenols.
³ DPF = Digitonin-precipitable fraction: sterols.
HISTIDINE-ENHANCED CHOLESTEROL SYNTHESIS

2. Effects of L-histidine supplementation on the conversion of [2-14C]mevalonate to the non-soluble (A) and digitonin-precipitable (B) fraction of liver homogenates maintained in different nutritional states described in Fig. 1. Vertical bars represent standard deviations four rats in each group.

which were refed the fat-free diet than in continuously fed control (P < 0.05). Histidine supplementation to a fat-free diet did not cause any significant increase over the refed control.

Discussion. L-histidine or a histidine metabolite effectively stimulates sterol synthesis in the fed state. The marked increase (seven- to ninefold) in the incorporation of labeled substrates into both and DPF in this study is considerably greater than the increase in plasma cholesterol (30% over normal) which occurred in a histidine supplementation study (4). A taneous increase in the degradation of sterol in the liver may be responsible for this disparity.

cholesterol synthesis varies diurnally (9), however, none of the enzyme activity converts mevalonate to squalene does not change or changes much less dramatically than that of acetate (7, 14). However, in the case of stimulation of sterol biosynthesis by histidine, a similar rate increase was obtained when either acetate or mevalonate was used as the labeled substrate. The result suggests that histidine probably has a significant effect on an enzyme or enzymes in the synthesizing pathway between mevalonic acid and cholesterol. It will be interesting to investigate the activities of these enzymes in future studies.

Refeeding of either a Chow or fat-free diet did not cause a marked change in sterol and squalene synthesis (1.2- to 1.8-fold increase over controls). This agrees with results obtained by Craig et al. (8) which show that the cholesterol synthesis activity rises from fasting levels to normal levels within three days after refeeding either Chow or fat-free diet. Histidine supplementation to the fat-free diet did not cause a substantial change in the rate of sterol and squalene synthesis from acetate. This contrasts with the marked increase in sterol and squalene synthesis in the histidine-treated Chow fed group.

The livers from rats fed fat-free diets, regardless of histidine treatment, were deep yellow due to fat accumulation. This probably resulted from a higher rate of fatty acid synthesis. If this is true, acetyl-CoA, a common precursor for these two divergent pathways (cholesterol and fatty acid synthesis), could be exhausted from an endogenous pool with long-term feeding, thus impeding histidine's stimulation of cholesterol synthesis from acetate in rats fed a fat-free diet. However, the conversion rate of mevalonate into sterols and squalene in rats which were fed a long-term fat-free diet also did not change when histidine was added to their diet. This result might not be anticipated if the absence of acetate-CoA accounted solely for the lack of a histidine effect in rats fed a fat-free diet. The next step in the study of these processes will be to measure the actual activities of the specific enzymes, such as \(\beta \)-hydroxy-\(\beta \)-methylglutaryl CoA reductase and fatty acid synthetase.
Summary. A diet supplemented 5% with L-histidine induces hypercholesterolemia in rats. To examine the mechanism involved, L-histidine was added to either a chow or fat-free diet and fed to rats for 18 days. After 2 days of fasting, the rats were fed the same diet for three days. There was a ninefold increase in the incorporation of $[^{14}C]$ acetate into the nonsaponifiable fraction in the 5,000g hepatic fraction of histidine-supplemented chow-fed rats compared to controls. The increase in the incorporation of the labeled substrate into the digitonin-precipitable fraction was seven- to eightfold. The incorporation of $[^{14}C]$ mevalonate was increased by sevenfold in both the nonsaponifiable and digitonin-precipitable fractions. Long-term histidine supplementation to fat-free diet did not affect the incorporation of either $[^{14}C]$ acetate or $[^{14}C]$ mevalonate into these fractions.

We wish to thank Ms. Cynthia Birch for her technical assistance.

tion to Clostridium botulinum Cultures of Phage Controlling Type C Botulinum Toxin Production (40284)

K. OGUMA and H. SUGIYAMA

Research Institute and Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706

production by Clostridium botulinum and D is closely associated with phage infection. Cultures become genic when cured of a specific temper phage while nontoxicogenic strains cantered to toxicogenicity when infected by phage (3–6, 8–10). However, the often does not occur with all combinations of phage and cultures; only certain cultures pairings are productive of con.
The needed specificity was explained due to differences in the adsorption to cells when three antigenic groups unified among the competing phages the possibility of other explanations has been by a later report (6) which shows same culture can be made toxicogenicity by genetically distinct phages.

present communication further extends the phage-culture specificity needed genic conversion by comparing the action of one of the type C toxin-con phages to several C. botulinum types D cultures and their nontoxicogenic de.

MATERIALS AND METHODS. Table I shows the cultures used (9–11). Nontoxicogenic C-A02 and (D)-139 can be lysogenically with c-st phage (from C-Stockholm) to produce type C toxin.

Cultures were maintained in Bacto-Meat Medium (Difco Lab., Detroit, or the tests, they were grown in LYG of pH 7.2 made of 1% lactalbumin Chemical Co., St. Louis, MO), 2% tract (Difco), 0.5% glucose and 0.15% HCl. Plating medium was Bacto-

agar (Difco) containing the whole human blood obtained from bank. Plated cultures were incubated aerobic jars but other cultures were incubated in tightly closed screw-capped tubes. All cultures were incubated at 37°C.

Filtrates of C-Stockholm cultured overnight in LYG contained c-st phage titer of 10^3.4 plaque forming units (pfu)/ml when plated with indicator culture (C)-A02. The phage was purified by three successive cycles of incubating a transferred plaque for 4 hr with (C)-A02 actively growing in 5 ml of LYG, filtering culture lysate through Milli-

pore membrane of 450 nm pores, and repositioning.

Two ml of the broth culture from the third passage were added to 15 ml of a young culture (A_20 = 0.2) of (C)-A02 and the culture incubated until lysis occurred during the next 3–4 hr. The lysate, clarified by centrifugation and subsequent filtration through a Millipore membrane, had a titer of about 10^7 pfu/ml but the titer decreased during storage of more than one week at 4°C. The titer was regained when the phage stock was treated as in the last passage used in its preparation.

Adsorption tests were done in T2 buffer made of 0.4% NaCl, 0.5% K_2SO_4, 0.15% K_HPO_4, 0.3% Na_2HPO_4, 1 mM MgSO_4, 0.1 mM CaCl_2, and 0.001% gelatin (7). This buffer was used because of convenience rather than superiority over other media. Preliminary tests have shown that c-st phage adsorbs to (C)-A02 equally well in systems using LYG, T2 buffer, or T2 buffer containing 40 μg tryptophane/ml.

Cells for adsorption tests were collected from overnight incubated cultures by centrifugation at 3000g for 10 min and washed three times with T2 buffer. Suspensions of 1 × 10^8 cells/ml were made on the basis of counts made on a Petroff-Hausser counting chamber.

The phage preparation was diluted 1:10 with T2 buffer. After holding separately in an ice water bath for 5 min, 1.8 ml cell and 0.2 ml phage preparations were combined and held at 4°C. After the desired adsorption...
time, the suspension was centrifuged for 10 min at 4° and 6000g. Unadsorbed phage was quantified by plating 0.1 ml of the decimal dilution series of the supernatant with the indicator strain.

The frequency of conversion was determined by examining isolated colonies. After cell-phage contact, the cells were collected by low speed centrifugation (1000g, 10 min) and plated to obtain isolated colonies. Of the colonies developing during 2 days incubation, 20 random picks were subcultured separately for 3 days in tubes of Cooked Meat Medium. The presence of type C botulinum toxin in these cultures were determined by challenging mice ip with 0.5 ml of culture fluid.

Results. Adsorption curves of c-st phage reacting with (C)-A02 were not different from those reported for most other phage systems. Phage adsorption depended on the multiplicity of infection (MOI): starting with 4.0×10^5 pfu and 1.8×10^6 cells/ml, 98% of phage was adsorbed in 10 min while 50% was adsorbed when the cell concentration was 5.5×10^5 ml.

Adsorption of c-st phage to cells of different cultures during 20 min contact at 4° is shown in Table II. Several controls showed the reduction in free phage was due to specific adsorption. As part of the first experiment of

<table>
<thead>
<tr>
<th>TABLE I. CULTURE STRAINS USED.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>C-Stockholm</td>
</tr>
<tr>
<td>D-1873</td>
</tr>
<tr>
<td>(C)-A02(c-st)</td>
</tr>
<tr>
<td>(D)-139(c-st)</td>
</tr>
<tr>
<td>(C)-A02</td>
</tr>
<tr>
<td>(C)-N71</td>
</tr>
<tr>
<td>(C)-6813</td>
</tr>
<tr>
<td>(C)-6814</td>
</tr>
<tr>
<td>(D)-139</td>
</tr>
<tr>
<td>(D)-151</td>
</tr>
<tr>
<td>(D)-SA</td>
</tr>
</tbody>
</table>

*For toxigenics, letter indicate type of toxin produced; letter in () indicates toxin type of parent from which nontoxigenic was derived.

*AO = acridine orange; NG = nitrosguanidine.

Table II, possible adsorption to a nonproteolytic C. botulinum type B culture (QC strain) and a type E (Morai strain) was examined. The respective titers of 4.5×10^5 and 4.0×10^5 pfu/ml after the adsorption treatments showed that c-st did not adsorb to these cells nor was it adversely affected by them. Phage inactivating factors were not produced by cells since titers of 5.2×10^5 and 4.4×10^5 pfu/ml, respectively, were found after treating the phage suspension with cell-free culture fluids of (D)-151 and (D)-1873.

Some quantitative differences were found in retesting the same cultures, but the conclusion can be drawn that c-st adsorbed to all cultures except (C)-6813 and (C)-6814. The phage adsorbed best to indicator strain (C)-A02, parent toxigenic C-Stockholm, and converted (C)-A02(c-st). The phage adsorbed to a slightly less degree to D toxin producer D-1873 and nontoxigenics derived from parents producing this type of toxin.

As reported previously (11), the phage lysed broth cultures of only (C)-A02 and (D)-139. When the lysates were subcultured in Cooked Meat Medium, type C toxin was formed (12). The phage produced plaques on lawns of these two cultures but not on those of others. However, by degrees of clearing of broth cultures and numbers of plaques formed, the phage was more overtly active against (C)-A02 than (D)-139.

(C)-A02 and (D)-139 differed also in their rates of conversion to toxigenicity (Table III); with optimum conditions of cell-phage con-
RESULTS AND DISCUSSION

II. Conversion Rates of (C)-AO2 and (D)-Strains by c-st Phage with Optimum Incubation Times (4 hr) and in Presence of 2% NaCl.

<table>
<thead>
<tr>
<th>NaCl</th>
<th>MOI*</th>
<th>Incubation min</th>
<th>Toxic colonies among 20 tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>240</td>
<td>19</td>
</tr>
<tr>
<td>1%</td>
<td>0.5</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>240</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>40</td>
<td>9</td>
</tr>
</tbody>
</table>

* - multiplicity of infection.
- cell contact time at 37°C.

O1 = 0.1, 4 hr), the conversion to city of (C)-AO2 was significantly than (D)-139. Raising MOI to 5.0 d the conversion rate for (D)-139.
% NaCl in the adsorption system in s to increase conversion to toxicogenic did not favor greater conversion of iso
erated isolates of the two culture produced approximately the same lev-
4 LD50/ml of toxin. When nontoxi
toxic isolates from the first treatment were d to a second conversion test, the ion rate of (D)-139 was again lower
(C)-AO2.

It was made of the possibility that converted strain (D)-139(c-st) might dfed form that could convert (D) a higher rate than the c-st phage d directly from C-Stockholm. The filtrate of an overnight incubated (c-st) culture was added to separate, growing cultures of (D)-139 and (C)-
fer 4-hr cell-phage contact, the mix-
ture plated and 20 resulting colonies for toxicity tests. None of the (D)-
ates produced toxin although 13 of A02 subcultures had been converted tox.

sion. (C)-AO2 and (D)-139 were both d to type C toxicogenic by c-st although the conversion frequency significantly higher for (C)-AO2. The e in the conversion rates is related to e effective phage adsorption to (C)-
measured by comparative adsorption

Several reasons are involved in only certain phage-cell pairings being productive of conversion to toxicogenicity. Included are cases where the cells lack receptors for phage attachment. This situation is illustrated by (C)-6813 and (C)-6814 to which c-st phage did not adsorb.

Since c-st adsorbed to some extent to all other cultures used, the conversion or non-conversion of these cultures is not determined by phage adsorption only. (C)-N71 is already lysogenized by a nonconverting phage. Since this phage has the same host spectrum and antigenicity as c-st (11), its presence in the cells would confer immunity against the converting c-st phage. The result would be non-conversion to toxicogenicity in spite of adsorption of c-st to the cells.

This nonconverting phage could not be demonstrated in the remaining cultures to which c-st phage adsorbs without converting to toxicogenicity. It is possible that some of these cultures carry a defective phage that confers immunity against c-st phage; in others, host controlled restriction (1, 2) may be important in preventing conversion.

Summary. C-st phage which governs pro-
duction of type C botulinum toxin was mixed at 4°C with cells of C. botulinum type C and D cultures and nontoxicogens derived from them. The phage adsorbed to all three cul-
tures producing type C toxin, the one type D toxin producer, 2 of 4 nontoxicogens from type C parents and the three nontoxicogens originating from type D toxin producers. The phage adsorbed to some cultures without converting to toxicogenicity. The two nontoxicogenic which could be converted to toxicogenicity differed in degrees of phage adsorption and conversion rates.

Research was supported by the College of Agricultural and Life Sciences, University of Wisconsin, Madison, by NIH Grant No. FD00712, and contributions from food companies.

ession of Chemical (DEN) Carcinogenesis in SWR/J Mice by Goat Antibodies Against Endogenous Murine Leukemia Viruses

R. POTTATHIL, R. J. HUEBNER, AND H. MEIER

on Laboratory, Bar Harbor, Maine 04609 and The National Cancer Institute, Bethesda, Maryland 20014

interaction of spontaneous leukemia in mice has been successful following pass-

sionization with IgGs raised against a"ous ecotropic murine leukemia vi-
uLVs), specifically the radiation leuk-

irus (RadLV) (1, 2). Also, passive y against 3-methylcholanthrene-in-

rcomas in weanling C3H/He mice was

using anti-RadLV IgG. Price, et al.

ve shown that Fischer rat embryo-

es required preinfection with MuLVs to be transformed by chemical car-

, and that the requirement of viral and replication could be fulfilled by
tropic (RLV) and xenotropic (AT124

31) MuLVs; inhibition of viral rep-

p specific antiviral antibodies effec-
tioned cell transformation (5). Thus, it

'ds that the expression of endogenous

is a major determining factor in the

ctions following carcinogenic treat-

thane vivo and in vitro.

cogenic effect of nitrosamines in mice is well documented (6–8). Dieth-

mine (DEN) treatment of SWR/J mice yielded a high incidence of lung

is and adenocarcinomas (72% versus untreated controls) 29 weeks after
t (9). Since endogenous MuLV

on in inbred strains of mice generally

; with age (10) and upon chemical

treatment (11), we decided to test

l-SWR/J system as a model for de-
g the involvement, if any, of endog-

lvLs in chemical carcinogenesis in

J mice lack both infectious ecotropic

otropic MuLVs but express the

cific antigen (p30) in both spleens

and thymuses (10). In the following commu-
nication we report that lung-tumorigenesis

duced by diethylnitrosamine (DEN) in

SWR/J mouse is significantly delayed by treat-
ments with antiviral antibodies against both

RadLV and AT124.

Materials and methods. Antiviral antibodies.

Goat IgGs raised against RadLV (Pool #3

IH C5682) and AT124 (Pool #1 NIH

4928) were obtained from the Laboratory of

A Tumor Viruses, NCI, Bethesda, MD

0014. These IgG preparations had neutral-

izing antibody titer of 1:800–1:1600 based on

70–100% inhibition of 60–70 AKR-XC

plaque or 50–60 MSV (AKR) foci on SC-1

cells (12).

Mice and treatments. Twenty 8-week-old

female SWR/J mice were pre- and pos-
treated with each goat anti RadLV and goat

anti-AT124 IgG, and DEN according to the

following schedule:

Day 0

0.1 ml anti

AT124 IgG

RadLV IgG

Day 4

0.1 ml anti

AT124 IgG

RadLV IgG

Day 7

0.1 ml anti

AT124 IgG

RadLV IgG

AT124 IgG

RadLV IgG

AT124 IgG

RadLV IgG

Two groups of twenty control mice each

received only the DEN treatment. DEN was

freshly prepared in trioctanoin (Eastman

Kodak) at a concentration of 10 mg/ml on each
day of treatment. For each intraperitoneal

jection the dose was 90 mg/kg (9).

The mice were set aside for tumor de-

velopment and killed only when moribund. At

ecropsy lung nodules were counted and the

ungs weighed to obtain a measure of tumor

izes. Lungs together with all other visceral

es were processed for histopathological

evaluation according to standard procedures.

65

Copyright © 1978 by the Society for Experimental Biology and Medicine. All rights reserved.
While these experiments were underway, another group of 15 SWR/J mice received normal goat IgGs (Microbiological Associates, Bethesda) and DEN as per schedule used for anti-RadLV IgGs.

Statistical evaluation of data. All graphics and statistical analyses were done on a Tektronix microcomputer (Model 4051). Means, standard errors (S.E.) and analysis of variance were done according to Winner (13). F-tests were performed with 95% confidence intervals. The observed latency periods of AT124- and RadLV-IgGs treated groups of mice were compared with the corresponding untreated controls. The data on the normal goat IgG-treated group of mice was compared separately with all the other groups.

Results and discussion. DEN treated SWR/J mice passively immunized with goat anti-AT124 IgG survived up to 60 weeks following carcinogen treatment. Fifteen of 20 treated mice died from histologically confirmed lung tumors. In this group, 50% mortality because of lung tumors occurred at 54 weeks post-treatment. Thirteen of 20 untreated control mice died with multiple lung tumors and 32 weeks after treatment and the 50% mortality occurred by the 29th week (Fig. 1); seven mice had pneumonia.

Anti RadLV IgG immunized mice survived up to 64 weeks after DEN treatment. Eighteen of 20 mice developed histologically confirmed lung tumors by 64 weeks, with the 50% mortality incidence from lung tumors occurring at 58 weeks. Control mice in this group survived only to 38 weeks with (12/20) lung tumor incidence (Fig. 2) (1). Five mice in this group died prematurely by a water bottle accident and the remaining three suffered from pneumonia. Seven mice receiving normal goat serum from injection accidents.

Eight of 12 normal goat IgG treated mice survived up to 64 weeks after DEN treatment. Eighteen of 20 mice developed histologically confirmed lung tumors by 64 weeks, with the 50% mortality incidence from lung tumors occurring at 58 weeks. Control mice in this group survived only to 38 weeks with (12/20) lung tumor incidence (Fig. 2) (1). Five mice in this group died prematurely by a water bottle accident and the remaining three suffered from pneumonia. Seven mice receiving normal goat serum from injection accidents.

Eight of 12 normal goat IgG treated mice survived up to 64 weeks after DEN treatment. Eighteen of 20 mice developed histologically confirmed lung tumors by 64 weeks, with the 50% mortality incidence from lung tumors occurring at 58 weeks. Control mice in this group survived only to 38 weeks with (12/20) lung tumor incidence (Fig. 2) (1). Five mice in this group died prematurely by a water bottle accident and the remaining three suffered from pneumonia. Seven mice receiving normal goat serum from injection accidents.

Eight of 12 normal goat IgG treated mice survived up to 64 weeks after DEN treatment. Eighteen of 20 mice developed histologically confirmed lung tumors by 64 weeks, with the 50% mortality incidence from lung tumors occurring at 58 weeks. Control mice in this group survived only to 38 weeks with (12/20) lung tumor incidence (Fig. 2) (1). Five mice in this group died prematurely by a water bottle accident and the remaining three suffered from pneumonia. Seven mice receiving normal goat serum from injection accidents.

Eight of 12 normal goat IgG treated mice survived up to 64 weeks after DEN treatment. Eighteen of 20 mice developed histologically confirmed lung tumors by 64 weeks, with the 50% mortality incidence from lung tumors occurring at 58 weeks. Control mice in this group survived only to 38 weeks with (12/20) lung tumor incidence (Fig. 2) (1). Five mice in this group died prematurely by a water bottle accident and the remaining three suffered from pneumonia. Seven mice receiving normal goat serum from injection accidents.

Eight of 12 normal goat IgG treated mice survived up to 64 weeks after DEN treatment. Eighteen of 20 mice developed histologically confirmed lung tumors by 64 weeks, with the 50% mortality incidence from lung tumors occurring at 58 weeks. Control mice in this group survived only to 38 weeks with (12/20) lung tumor incidence (Fig. 2) (1). Five mice in this group died prematurely by a water bottle accident and the remaining three suffered from pneumonia. Seven mice receiving normal goat serum from injection accidents.
SUPPRESSION OF CHEMICAL (DEN) CARCINOGENESIS

Developed lung tumors by 40 weeks after treatment. The mean survival period significantly different from antiviral IgG and groups.

The distribution pattern of lung weights of reared and untreated mice is depicted in 3. Although immunized mice died with tumors after a long latency period, they smaller lung tumors (Fig. 3); obviously, tumors had more time to grow than in control mice which died early. All lung tumors were either alveolar adenomas or ade

cinomas as described previously (9).

Indeed the presence of endogenous VSV is required for in vivo cell transform

ation by chemical carcinogens virus sup

on should either prevent or prolong the survival period of DEN-induced mice probably because of a slowed tumor growth in the antiviral IgG treated vs (Fig. 4). Antiviral IgG treated mice showed an expected average life-span of 30 weeks in SWR/J mice (9). Normal goat IgG had no beneficial effect on the survival time of untreated SWR/J mice.

The data on lung tumor weights suggest the antiviral IgGs had apparently very little effect, if any, on the growth rate of the tumors. Obviously by the time tumors appeared in most mice, the heterologous goat IgGs had long been eliminated.

Goat antiserum against MuLV gp71 as well as FeLV was shown to prevent oncornavirus induced sarcomas in cats (14). Thus it seems that the effectiveness of anti AT124 as well as RadLV IgGs against DEN carcinogenesis in SWR/J mice might be explained by the major homology between the two classes of MuLVs. Although the mechanism of the observed suppression of carcinogenesis is not clearly established, the data presented here tend to definitely indicate a viral involvement in chemical carcinogenesis. Presumably the antiviral IgGs partly suppress and delay the manifestations of chemical lung carcinogenesis in SWR/J mice.

Summary. We pre- and posttreated SWR/J mice given 90 mg/kg of DEN with goat anti RadLV and AT124 IgGs and studied their effects on the induction and latency of lung tumors. The results of these experiments tend to indicate a role of MuLVs in the etiology of the chemically induced lung tumors of SWR/J mice. The rate of tumor occurrence was greatly reduced in IgG treated mice and their survival time was significantly prolonged over nontreated mice. These findings require consideration of both ecotropic and xenotropic virus classes or their structural protein as cofactors in the chemi-
cally induced lung carcinogenesis process. Similar conclusions were drawn previously by others in an in vitro chemical transformation system (5).

8. Rogers, A. E., Sanchez, O., Feinsod, F., Newberne, P. M., Cancer Res. 34, 96 (1974).

Received January 5, 1978. P.S.E.B.M. 1978. Vo
Induced Metabolic Alterations in BCG Infected (Hyperreactive) Mice (40286)

Vernon C. Senterfitt and Joseph W. Shands, Jr.

Department of Immunology and Medical Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610

Endotoxin given to laboratory animals loss of glucose homeostasis which is followed by hypoglycemia and death (1, 2). A accumulated to date suggest that factor responsible for hypoglyce-mia failure of gluconeogenesis rather than glucose consumption, although the has been reported (3). Endotoxin induced hypoglycemia has been most extensively studied in mice by Berry and coworkers. These workers found that a key liver phosphoenolpyruvate carboxykinase(PCK) which regulates gluconeogenesis is longer susceptible to glucocorticoids after endotoxin poisoning (4, 6, 7). We stressed the importance of this in endotoxin hypo-glycemia presumably because this enzyme has a relatively short half-life, i.e., 2 hr in rats while other endogenous enzymes have longer half lives. The published data indicate that three endogenous enzymes, glucose-6-phosphatase, 1,6-diphosphatase and PEPCK at normal or elevated activities in endotoxin poisoned mice until 2 hr. Thereafter, the activities fall (8, 9). The development of hypoglycemia, a scenario for endotoxin induced hypo-glycemia based on these observations is as follows: Mice given endotoxin fail to eat, and thus do not assimilate exogenous carbo-hydrates. Gluconeogenic enzymes are not by endogenous steroids elaborated. Instead, the liver fails during turnover, particularly that of PEPCK, gluconeogenesis fails and hypoglycemia re-insent with Mycobacterium bovis become hyperreactive to endotoxin and the approximately 1/1000th of the 0.0 (10). These mice have a remark-breviated clinical course with aug-mentation of clinical manifestations. One tenth of gram of endotoxin in BCG infected mice often causes profound hypoglycemia in 2 hr, and death with convulsions frequently occurs within 4 hr (11). This is unlike the response of normal mice which die after 17–24 hr and in which the hypoglycemia occurs later and is less severe. The response of the BCG mouse is, therefore, a caricature of that of the normal mouse.

The exaggerated responses and shortened time course of BCG mice provide a suitable model to study metabolic abnormalities caused by endotoxin. We studied the BCG mouse model previously and found that endotoxin induced hypoglycemia is largely due to defective gluconeogenesis (2). Where in the gluconeogenic pathway the defect lies is unknown. In addition, the rapidity with which profound hypoglycemia occurs in BCG mice given endotoxin (2 hr vs 17 hr for normal mice) suggests that failure of enzyme induction and normal enzyme turnover may not account for this abnormality.

In this paper we report experiments designed to determine if the hypoglycemia in endotoxin poisoned BCG mice is due to a selective defect in the gluconeogenic pathway or if there is a general perturbation of the pathway. The studies were performed between one and 2 hr after endotoxin (prior to profound hypoglycemia) to avoid the potential secondary effects of hypoglycemia and shock. Additional studies were performed to determine the effect of glucocorticoid and stimulation of gluconeogenesis by fasting on endotoxin hypoglycemia and mortality.

Materials and methods. Animals. Pathogen free, CD-1 female mice weighing 20–25 g were obtained from Charles River Breeding Laboratories, North Wilmington, Massachusetts. They were fed and watered ad libitum and housed in air conditioned quarters fully accredited by the American Association of Laboratory Animal Care. Unless otherwise indicated, all animals were fasted 18–24 hr prior to experimentation. The mice were ren...
ndered hyperreactive to endotoxin by a systemic infection with *Mycobacterium bovis* BCG given intravenously 13–16 days prior to use according to the method of Suter and Kirsanow (10). 0.2 ml of a 10–14 day culture of BCG in Dubos Liquid Broth (BBL) was injected via tail vein into unanesthetized, restrained mice.

Endotoxin. The endotoxin was prepared from a smooth strain of *Salmonella typhimurium*. The bacteria were grown in glucose minimal salts medium (M-9) supplemented with 0.1% Casamino Acids (Difco). At the stationary phase of growth they were killed with 0.2% formalin, harvested, and extracted by the phenol water procedure of Westphal et al. (12). Endotoxin challenge was by the intravenous route in 0.2 ml saline.

Metabolic studies. Glucose determinations were performed using the "Glucostat" (Worthington Biochemicals) micromethod. A 20 μl sample of blood obtained from the retroorbital plexus was added to 1.0 ml distilled water and deproteinized with 0.5 ml 1.8% Ba(OH)₂·8H₂O and 0.5 ml 2.0% ZnSO₄·7H₂O solutions. One ml of the resulting supernatant fluid was added to one ml "Glucostat" reagent at room temperature. A standard curve was prepared for each series of reactions.

Glucose production in vivo was estimated by the net increase in blood glucose twenty minutes following an intraperitoneal injection of 100 μM glyceraldehyde or fructose. Endotoxin was given intravenously one hour before glyceraldehyde or fructose. In one experiment, the incorporation of C from glucose into ¹⁴C glyceraldehyde (3 μCi in 100 μM) was determined by measuring the cpm/mg glucose in blood obtained via cardiac puncture. The glucose was separated from 1.0 ml whole blood by passage through mixed bed resin columns as described by Corridor et al. (13). The effluent was qualitatively checked chromatographically to insure that the radiolabel resided with the glucose.

Substrate oxidation in vivo in mice was measured by methods previously described (2). The mice were adapted to a gas train in such a way that all expired air was bubbled through 5 ml NCS™ (Nuclear Chicago Corp.) to collect CO₂. Aliquots (0.5 ml) were removed at 15-min intervals and counted in a Packard liquid scintillation spectrometer to determine the activity of ¹⁴CO₂. Amounts of 1-¹⁴Cglycerol, 6-¹⁴Clglucose, 1-¹⁴Cglucose, or 1-¹⁴Cpalmitate (Newland Nuclear) were injected intravenously control BCG infected mice and in BCG infected mice one hour after 1.0 μg endotoxin. The isotopes (specific activities 4.6–10.0 per mM) were injected in 0.2 cc saline vein.

The free fatty acid concentration sera of individual mice was measured metrically at 440 nm and compared similarly treated standards of palmitic acid dissolved in chloroform. The free fatty acid were extracted from the sera by mixing 0.1 ml in 2.0 ml 0.2 M phosphate buffer (pH 7.4) and 6.0 ml chloroform. The mixture shook 2 min and after settling 15 μl upper layer was removed by aspiration. Chloroform layer was filtered into clean form rinsed glass stoppered tubes to 3.0 ml Cu-triethanolamine reagent was added and mixed. The color was developed addition of two drops of sodium diithiocarbamate reagent before reading the 440 nm (14).

Results. Previous experiments have shown that glucose production from pyruvate increased in BCG infected mice as early as 2 hr after endotoxin challenge. The mechanism of pyruvate to glucose involves all of the key gluconeogenic enzymes including phosphoenolpyruvate carboxykinase. Pathways from fructose and glucose do not. Therefore, if the endotoxin-induced defect in gluconeogenesis is the result of the loss of a specific enzyme at the beginning of the pathway one would expect if glucose production from glyceraldehyde and fructose might be unaffected. The results presented in Tables I and II, however, indicate that the metabolic lesion is not limited to the loss of phosphoenolpyruvate carboxykinase since glucose production in vivo was retained from glyceraldehyde or fructose. The increase of exogenous fructose and glyceraldehyde into blood glucose in the control mice, but not preventing a decrease in blood glucose given to BCG infected mice one hour after endotoxin. In a similar experiment, labeled ¹⁴C glyceraldehyde was used to insure that the actual decrease occurred in the incor
TABLE I. THE EFFECT OF EXOGENOUS FRUCTOSE ON
BLOOD GLUCOSE CONCENTRATION IN BCG INFECTED
MICE BEFORE AND AFTER ENDOTOXIN.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean blood glucose, mg percent ± SE</th>
<th>Before</th>
<th>20 min after fructose</th>
<th>(10)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG infected controls</td>
<td>91 ± 3</td>
<td>109 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCG infected mice 1 hr after 1.0 µg endotoxin</td>
<td>81 ± 9</td>
<td>65 ± 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*100 µM fructose injected ip. () Indicates the number of mice per group.

TABLE II. GLUCOSE PRODUCTION FROM GLYCEROL IN
BCG INFECTED MICE BEFORE AND AFTER ENDOTOXIN.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean blood glucose, mg percent ± SE</th>
<th>cpm/ mg</th>
<th>20 min after glycerol</th>
<th>glycerol</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG infected control mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp 1</td>
<td>115 ± 6</td>
<td>142 ± 5</td>
<td>(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp 2</td>
<td>111 ± 9</td>
<td>158 ± 9</td>
<td>9.6 ± 1</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>BCG infected mice 1 hr after 1 µg endotoxin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp 1</td>
<td>76 ± 10</td>
<td>56 ± 5</td>
<td>(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp 2</td>
<td>91 ± 12</td>
<td>66 ± 18</td>
<td>3.6 ± 1</td>
<td>(10)</td>
<td></td>
</tr>
</tbody>
</table>

* () Indicates the number of mice per group.

The results show decreased glycerol oxidation after endotoxin.

Since an increased oxidation of glucose could result in an apparent decrease in incorporation of 14C into blood glucose by its loss as expired 14CO2, the in vivo oxidation of 1-[14C]glucose and 6-[14C]glucose was measured in mice after endotoxin. The results presented in Fig. 2 show that endotoxin caused decreased oxidation of both 1-[14C]glucose or 6-[14C]glucose. Oxidation of the 6-[14C]glucose was depressed more than that of 1-[14C]glucose.

Endotoxin LD50's were determined in fasted and fed BCG infected mice to determine if the fasting state, which enhances gluconeogenesis via endogenous steroids, influenced survival after endotoxin challenge. Fasted mice would have a stimulated gluconeogenic pathway and little stored carbohydrate while fed mice would have less active gluconeogenesis and much stored carbohydrate. The results presented in Table III show no difference in the responses of fasted and fed mice.

The effect of treatment of mice pre- and postchallenge with pharmacologic doses of

![Graph showing cumulative CPM 14CO2](image)

Fig. 1. Glycerol oxidation in vivo in BCG infected mice before and after endotoxin challenge. The endotoxin treated mice were given one µg endotoxin iv one hour prior to the injection of [14C]glycerol. Each point represents the mean cumulative counts per minute of expired 14CO2 from five individual mice. Vertical bars indicate ± SD.
Fig. 2. Glucose oxidation in vivo in BCG infected mice before and after endotoxin challenge. The endotoxin treated mice were given one μg endotoxin iv 1 hr prior to the injection of $[^14]C$glucose. Each point represents the mean cumulative counts per minute of expired $^{14}CO_2$ from five individual mice. The vertical bars indicate ± SD.

TABLE III. ENDOXOTIN LD$_{50}$S IN FED AND FASTED BCG INFECTED MICE.

<table>
<thead>
<tr>
<th>Dose Endotoxin (μg)</th>
<th>Fed</th>
<th>Mean time to death (hours)</th>
<th>Fasted</th>
<th>Mean time to death (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dead/total</td>
<td></td>
<td>dead/total</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>5/5</td>
<td>5.5</td>
<td>4/5</td>
<td>5.6</td>
</tr>
<tr>
<td>0.8</td>
<td>5/5</td>
<td>4.8</td>
<td>4/5</td>
<td>4.9</td>
</tr>
<tr>
<td>0.2</td>
<td>4/5</td>
<td>5.3</td>
<td>4/5</td>
<td>7.0</td>
</tr>
<tr>
<td>0.05</td>
<td>1/5</td>
<td>—</td>
<td>1/5</td>
<td>—</td>
</tr>
</tbody>
</table>

LD$_{50}$* 0.126 μg 0.163 μg

* LD$_{50}$s were obtained by the method of Reed and Muench (15).

Endotoxin was studied to evaluate protection against endotoxin in BCG mice. The results presented in Fig. 3 show blood glucose concentrations and mortality after 1.0 μg endotoxin when 3 mg hydrocortisone (Solu Cortef, Upjohn) was administered either before or after endotoxin. Cortisone reduced mortality significantly only in the group given cortisone prior to endotoxin. However, the rate at which blood glucose fell was diminished quickly i.e. within 2 hr, in all groups receiving steroids. In a similar experiment, the mice were challenged with less endotoxin (0.1 μg). The results were similar except that mortality was also reduced in the group given cortisone 30 min after endotoxin. These experiments show that cortisone given before or after endotoxin challenge rapidly lessens the rate at which blood glucose falls and, depending on the timing, prolongs survival or prevents death.

Fatty acid oxidation is important in providing energy and reducing equivalents to drive the gluconeogenic pathway. Therefore, palmitate oxidation was measured in BCG infected mice and in similar mice between 1 and 2 hr after endotoxin challenge. The results shown in Fig. 4 show that the in vivo oxidation of palmitate was reduced about 50% in the endotoxin poisoned mice. This apparent reduction in palmitate oxidation, however may be due to an in vivo pool size difference. Table IV, showing the serum free fatty acid levels in BCG infected mice before and after endotoxin, indicates that endotoxin caused a 77% increase in circulating free fatty acids. The effective specific activity of the injected isotope would therefore be decreased in mice given endotoxin, and this could account for decreased $^{14}CO_2$ evolution even though the rate of fatty acid oxidation is
4. Palmitate oxidation in vivo in BCG infected before and after endotoxin challenge. The endotoxin mice were given one μg endotoxin iv one hour to the injection of 1-[^14]C]palmitate. Each point is the mean cumulative counts per minute of 1[^14]CO₂ from five individual mice. The vertical dicate ± SD.

While the other hand, a similar nation for the reduction in glucose oxida- 1 is untenable since the concentration of glucose is less in the endotoxin poi- l BCG infected mice than in control not given endotoxin.

Discussion. The data in this paper show endotoxin causes a general derangement of gluconeogenic pathway in BCG-mice. Poisoned animals were unable to make glucose efficiently from glycogen or fructose. Se efficiencies from pyruvate was also impaired (2). Se substrates were impaired (2). these substrates cause the gluconeogenic way at different levels, a single lesion is evy to be responsible for the abnormal an addition, the data also show that the rent decreased incorporation of the sub- s into glucose could not be caused by erated catabolism. The rates of oxidation through glucose and glyceraldehyde were diminished. rticosteroids in pharmacological doses d BCG-mice from the lethal effect of oxin when preadministered. Even when as long as 30 min after endotoxin, ids exerted a rapid sparing effect on l glucose. The rapidity with which thi ng effect occurred i.e. within 2 hr, raises estion as to whether the effect was by corticoid induced production of gluco-

neogenic enzymes. Increased enzyme production in response to glucocorticoids is a relatively slow process. The rise in enzyme is slow and usually preceded by a lag of 2–3 hr (16, 17). It seems more likely in this setting that the steroid was preventing some of the toxic effects of endotoxin and thereby lessening hypoglycemia or, alternatively, was activating gluconeogenic enzymes. This argument is also supported by the observation that protection against endotoxin requires pharmacological doses of corticosteroids while only physiological doses are sufficient for enzyme induction.

The study of fasted and fed mice given endotoxin also raises questions about the failure of enzyme induction by corticosteroids as a cause of hypoglycemia in BCG mice. Fasted animals have an active gluconeogenic pathway with elevated levels of gluconeogenic enzymes (7), while fed animals have high stores of carbohydrate but low gluconeogenic activity. When challenged with endotoxin fed animals rapidly deplete their glycogen stores and then have to depend on their low gluco- neogenic activity. One might think that the fasted animal with high gluconeogenic activity might have the advantage in survival. However, in spite of this increase in gluco- neogenesis, the outcome is the same. Stimulation of gluconeogenesis by endogenous physiological amounts of glucocorticoid, therefore, offers no protection.

The data also suggest that abnormal substrates oxidation may also be partially responsible for endotoxin induced hypoglycemia. The oxidation of fatty acids is required for the production of energy and reducing equivalents to drive the gluconeogenic pathway. Palmitate oxidation was diminished in BCG-mice given endotoxin. However, because of the increase in free fatty acids in the blood of

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Free Fatty Acids (μeq/ml serum) ±SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG infected control mice</td>
<td>0.97 ± 0.3 (14)</td>
</tr>
<tr>
<td>BCG infected mice 2 hr after</td>
<td>1.72 ± 0.3 (15)</td>
</tr>
<tr>
<td>endotoxin</td>
<td></td>
</tr>
</tbody>
</table>

* () Indicates the number of mice.
BCG-mice after endotoxin a correction has to be made for fatty acid pool size. Fatty acids increased about 77%. Palmitate oxidation decreased by about the same amount. The conclusion is that there was no real change in fatty acid oxidation. However, during normal homeostasis a profound fall in blood glucose should result in an increase in fatty acid oxidation. The failure of fatty acid oxidation to increase suggests that loss of homeostatic regulation after endotoxin includes lipid as well as carbohydrate metabolism.

Summary. The cause of hypoglycemia induced by endotoxin in BCG infected mice was investigated. The major abnormality, known to be defective gluconeogenesis, was studied to determine whether a specific point in the gluconeogenic pathway is involved or whether the derangement is more general. The inability of endotoxin poisoned mice to synthesize glucose from glycerol and fructose in addition to pyruvate indicated that the entire pathway was in disarray. The in vivo oxidation of glucose, glycerol and palmitate to CO₂ was reduced, indicating that enhanced aerobic oxidation was not responsible for the hypoglycemia. This decrease in substrate oxidation also suggests that impaired gluconeogenesis may be due to decreased energy available to maintain the gluconeogenic pathway. Pharmacologic doses of glucocorticoids were protective in endotoxin poisoned BCG infected mice. The rate of development of hypoglycemia was rapidly lessened, and mortality reduced. The data suggest that steroids confer protection by preventing or interfering with some of the toxic effects of endotoxin or perhaps by activating gluconeogenic enzymes. It is unlikely that glucocorticoid mediated enzyme induction plays an anti-endotoxin role in this model.

Granulocyte Mobility Induced by Chemotactic Factor in the Agarose Plate (40287)

TO TONO-OKA, MASAYUKI NAKAYAMA, AND SHUZO MATSUMOTO
Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan

Keller et al. proposed a definition related to the locomotion of leucocytes (1). In their proposal, cells to chemotactic (and/or chemokinetic) factor are classified into two types, namely, chemokinesis and chemotaxis. Although the definition of these two reactions is clear, it is not easy to rate these reactions separately in some kinds of methods, some diluted chemokinesis and chemotaxis, but it is not certain as yet whether all the reactions can be recognized individually. In this study, we analyzed chemokinesis from chemotaxis in the agarose plate and methods. Leucocyte preparation: Adult whole blood was mixed with 7 vol of 2% methyl cellulose (akarai Chemicals, Japan) and was settled at room temperature for 30 min. Leucocytes in the supernatant were separated by centrifugation at 250g for 10 min and the cells were washed in ice-cold solution. The mononuclear cells were separated from the leucocyte preparation by centrifugation of the method of Ficoll-Hypaque (Winthrop) solution 1% Ficoll + 10 parts 33% Hypaque 250g for 45 min at 1000g. The mononuclear cell layer from the top and the Ficoll-Hypaque solution was aspirated and discarded, and the cells were resuspended in 0.2 ml of solution. Contaminating erythrocytes were disrupted by hypotonic shock. The suspensions in Hanks solution, the resuspended in Medium 199 containing 10% heat inactivated fetal calf serum into 35 mm × 35 mm Falcon plastic dishes. When chemokinesis, namely, the enhancement of random mobility by chemotactic factor was assayed, the chemotactic factor was added uniformly to agarose. After the agarose gelled, 3 mm × 3 mm wells were made by a stainless steel punch in the agarose plate, and 10 μl of cell suspensions and chemotactic factor were placed as shown in Fig. 1. After various periods of incubation in a 5% CO2 incubator at 37°C, the distance the cells moved was measured under an inverted microscope with an ocular grid. Four measurements were averaged from the margin of the well to the line of migration in four quadrants of each well. All experiments were carried out in duplicate or triplicate.

Preparation of cells for morphological examination: After incubation, the cells were fixed with agarose in place by flooding the plates with 4 ml of 10% formalin for 48 hours. After fixation, the agarose was gently removed, and the cells were stained by Giemsa solution.

Results. Random mobility and chemokinesis in the agarose plate. The random mobility and chemokinesis of normal adult granulocytes assayed by the agarose plate method are shown in Table 1. Granulocytes stimulated by 10% E. coli-derived chemotactic factor added uniformly in agarose showed a 2.6 ±
0.3 ($M \pm SE$) fold enhanced mobility compared to nonstimulated granulocytes. Microscopic appearance of the preparations stained by Giemsa solution is shown in Figs. 2 and 3. Cells moving under the influence of chemotactic factor tend to be more irregular in outline than those moving without the influence of factor, and formation of blebs or pseudopodium-like structures can be observed. There is no regular orientation of cell axis.

Then we assayed the two types of granulocyte mobility as a function of time (Fig. 4). Cells under the influence of chemotactic factor moved rapidly up to 3 h, after which time no marked increase in distance was observed. On the other hand, in the absence of the bacterial factor movement of granulocytes increased linearly. However, even after 19 hours these cells had not moved as far as those stimulated by chemotactic factor.

Relationship between the concentrations of chemotactic factor and the degree of chemokinesis. As shown in Fig. 5, granulocyte mobility increased linearly in proportion to the concentration of chemotactic factor. More than 2.5% of chemotactic factor stimulation of migration diminished further with more than 10% of chemotactic factor, granulocyte mobility tended to decrease, although a significantly enhanced mobility could be observed when it is measured against random mobility.

Granulocyte mobility under a concentration gradient of chemotactic factor. First examined the influence of a negative concentration gradient. In order to form a concentration gradient of chemotactic factor in the area surrounding the well, granulocyte suspension in medium containing chemotactic factor was placed in an agar plate which did not contain chemotactic factor as shown in Table I, granulocyte mobility under a negative concentration gradient of chemotactic factor increased significantly compared to mobility without factor.

Next we examined the influence of negative concentration gradient toward

| TABLE I. GRANULOCYTE MOBILITY UNDER CONCENTRATION GRADIENT OF CHEMOTACTIC STIMULANT |
|--|------------------|
| Gradient | Distance |
| No factor (random mobility) | 22.9 ± 6 |
| Negative gradient | 33.0 ± 7 |
| Uniform gradient (10% chemokinesis) | 54.5 ± 5 |
| Positive gradient (chemokinesis) | 69.4 ± 1 |

*Expressed as × 40 mm.
Fig. 3. Morphologies of random motility (A) and chemokinesis (B). Chemokinesis was measured under 10% chemotactic factor. Cells were stained by Giemsa solution. Cells mobilizing under the influence of chemotactic factor tend to be more irregular in outline than cells mobilizing without the influence of factor. × 400.
well in which cell suspensions were placed. Cells exposed to a chemotactic gradient appear to extend further than those under any of the uniform concentrations tested (Table I and Fig. 5). This fact suggests that chemotaxis is also occurring in this condition.

Effect of preincubation with chemotactic factor on granulocyte mobility. Table II shows the effect of preincubation of granulocytes with Medium-199 containing 0, 2.5, or 10% of chemotactic factor at 37° for 1 hr, followed by washing with Hanks solution, and resuspension in Medium-199 containing heat inactivated 10% of fetal calf serum. The cells were then placed into the wells in the agarose plate with or without chemotactic factor. Preincubation with chemotactic factor of three concentrations had no influence on chemokinesis observed in agarose containing 5% of chemotactic factor. Furthermore granulocytes preincubated with 10% of chemotactic factor did not show enhanced mobility, namely chemokinesis, when the granulocytes were placed into the wells in agarose not containing chemotactic factor.

Discussion. Random mobility and chemokinesis could be observed separately by the agarose plate method. Granulocytes under a uniform concentration of *E. coli*-derived chemotactic factor moved at a significantly higher rate than in the absence of factor. Morphologically differences were also apparent. Cells showing chemokinesis tend to be irregular in outline, whereas those showing random mobility tend to be rounded.

Nelson et al. and Cutler reported that the distance the cells moved toward the outer well in which chemotactic factor was placed, was determined by chemotaxis of granulocytes (6–8). But from the results obtained in our experiments, we conclude that this distance may be based partially on chemokinesis.

The time course of cell mobility triggered by chemokinesis is analogous to that in response to chemotaxis as reported by Nelson et al. and Cutler (6, 7). Thus the distance of cells showing chemokinesis as well as those showing chemotaxis increases with the passage of time. In our experiments, there was a dose response relationship between chemo-

![Graph](image)

Fig. 5. Relationship between the concentrations of chemotactic factor and the degree of chemokinesis. Leucocyte mobility increased linearly in proportion to the concentrations of chemotactic factor under less than 2.5% of the factor.

<table>
<thead>
<tr>
<th>TABLE II. EFFECT OF PREINCUBATION WITH CHEMOTACTIC FACTOR ON GRANULOCYTE CHEMOKINESIS.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of chemotactic factor with which cells were preincubated</td>
</tr>
<tr>
<td>Mobility in agarose containing 5% factor (M ± SD)</td>
</tr>
<tr>
<td>n = 5</td>
</tr>
<tr>
<td>Mobility in agarose containing no factor (M ± SD)</td>
</tr>
<tr>
<td>n = 9</td>
</tr>
</tbody>
</table>

*Expressed as × 40 mm.
kinesis and the concentration of chemotactic factor, and the degree of chemokinesis was determined by the final concentration of chemotactic factor with which granulocytes came in contact. Thus cells coming in contact with higher concentration of chemotactic factor move more rapidly at random, and can increase their chances of coming in contact with chemotactic factor of higher concentration, because of the enhanced mobility. If this does not occur, namely when they move away from the chemotactic factor, the cells remain in the same location and may regain random movement regardless of whether they have been stimulated or not. Thus the number of granulocytes in the area of lower concentration of chemotactic factor decreases, whereas the number in an area of higher concentration increases. This hypothesis may be supported by another finding in the present experiments. Some enhancement of mobility under a negative concentration gradient of chemotactic factor, which can not be explained by the concept of chemotaxis, suggests that chemokinesis occurs also under a chemotactic gradient. As far as E. coli-derived chemotactic factor is concerned, besides a real chemotactic response (1–4, 9, 10), a chemokinetic response may also account for the effect of chemotactic gradient on trapping of cells at the site of inflammation.

The phenomenon of "deactivation" which was shown by Ward and co-workers' study concerning chemotaxis (11), could not be observed in chemokinesis induced by E. coli-derived chemotactic factor. It is uncertain whether "deactivation" can be observed also in chemokinesis induced by other chemotactic factor such as complement-derived factors. However, if such a phenomenon occurs in chemokinesis induced by some chemotactic (or chemokinetic) factor, the trapping of cells in an area where high concentration of chemotactic factor is present may be performed more effectively.

We believe that chemokinesis in addition to chemotaxis plays an important role in the defense mechanisms in vivo. Further investigation is required to better understand the basic mechanisms involved in the chemotactic (or chemokinetic) response of granulocytes.

The authors gratefully acknowledge the helpful advice of Dr. Paul G. Quie.

Summary. Human granulocyte mobility under various conditions of chemotactic stimulus was studied using the agarose plate method. Enhanced mobility was observed when granulocytes were incubated in the agarose plate containing chemotactic factor generated from E. coli. A dose response type relationship was observed between the degree of enhanced mobility and the concentrations of chemotactic factor in a range of less than 10%. The rate of mobility was rapid up to 3 hr, after which time it was very slow. Preincubation of granulocytes with chemotactic factor of various concentrations did not have any influence on granulocyte mobility assayed after preincubation. The degree of mobility tends to be determined by the final concentration of chemotactic factor coming in contact with granulocytes. Thus granulocytes under a negative concentration gradient also showed an enhanced mobility. On the basis of these findings, we propose the hypothesis that the accumulation of granulocytes at the site of inflammation can be in part explained by chemokinesis, i.e. enhanced random mobility.

Hypophysectomy Alters the Diurnal Food Intake Patterns in Rats (40288)

LARRY L. BELLINGER AND VERNE E. MENDEL

Department of Physiology, Baylor College of Dentistry, Dallas, Texas 75246 and Department of Animal Science, University of California, Davis, California 95616

Several hypothalamic nuclei have been shown to influence rhythmic physiological processes. Destruction of the suprachiasmatic (1), dorsomedial hypothalamic (DMN) (2) and the ventromedial hypothalamic nuclei (VMN) (3) alter the normal diurnal food intake pattern of rats. Ablation of these nuclei also disrupts the natural corticosterone rhythm of rats (4) (5). Recently several papers (4, 6–9) have concerned themselves with the possible relationship of pituitary hormone rhythms and feeding and drinking patterns.

It has been known for some time that hypophysectomy decreases food consumption of rats. More recently Stephan and Zucker (10) reported that rats did not display a normal diurnal food intake following hypophysectomy combined with ovariectomy. They noted that the nocturnal rhythms in eating and drinking were greatly attenuated following hypophysectomy–ovariectomy. However, since they (10) measured the animals’ food intake only at the start and end of the light–dark cycle their data do not reveal the effect of hypophysectomy on meal patterns.

The present study investigated the individual meal patterns of hypophysectomized rats in order to determine frequency, duration and distribution of the meals.

Materials and methods. Male hypophysectomized and nonoperated Sprague-Dawley rats were purchased from Simonsen Laboratories Inc., Gilroy, CA. The rats were housed individually under a light:dark (L:D) ratio of 12:12 with lights on at 0600 hr. During the experiment the rats were given a purified diet consisting of: 15% vitamin-free casein, 0.3% L-methionine, 1.0% vitamin premix, 5% salt mixture, 49.05% corn starch, 24.55% sucrose, 5% corn oil and 0.1% of a choline chloride solution. This diet was selected because a powered diet had previously given more reproducible results than a chow-type diet when measured by the automatic food intake recorder. The feeder was designed so food could be readily obtained from a fiber glass cup designed to prevent spillage. An event marker recorded each time 10 g of food was removed from the cup (Rogers and Leung (11) for additional information).

To prevent disturbance of the rats, the room was restricted to 1730–1800. The animals were allowed a 7 to 11 period to adjust to the room, purified and food intake monitoring apparatus to recording food intake patterns. At the end of this period, which was approximate days after the animals were hypophysectomized, food intake patterns were recorded continuously for 3 days.

Any period of food intake in which there was not more than a 20-min time lapse between recordings was defined as a meal. Thus, the number of daily meals could be determined. For statistical analysis the meal was considered hypophysectomized: they did not show weight gains (weight gain at 108 ± 1.9 g and at end of study ± 2.7 g) and after histological examination showed no pituitary remnants in the turcica. This yielded a population of hypophysectomized and seven control rats.

The data were analyzed using Student’s, Mann-Whitney U test and Chi-Sc

Results. The controls ate 97.6 ± 1.0% of the hypophysectomized (hypox) rats ate 9.5% of their food during the dark phase. When the number of meals consumed per 24 hr by the group was compared no significant differences were found (controls 7.9 ± 0.6; hypox 7.4 ± 0.8). However, the light:dark distribution of the meals was significantly different (Light phase: controls 0.7 ± 0.2 vs hypox 0.2, P < 0.001; Dark phase: controls 0.5 vs hypox 5.5 ± 0.7, P < 0.05). The average daily intake of the controls was higher that of the hypophysectomized rats (1
0.9 g vs 6.7 ± 1.0 g, \(P < 0.001 \)). The differences in food consumption between the two groups was probably associated with the fact that the controls continued to grow during the adjustment period while growth was arrested in the hypophysectomized animals. The data revealed that both groups ate approximately the same number of meals each day. Thus, the hypophysectomized rats appeared to reduce their daily food intake through a reduction in average meal duration (controls 15.1 ± 1.1 min vs hypox 4.5 ± 1.0 min, \(P < 0.001 \)) and meal size (controls 2.7 ± 0.4 g/meal vs hypox 1.1 ± 0.2 g/meal, \(P < 0.01 \)).

Inspection of the daily feeding patterns (Fig. 1) reveals a pronounced diurnal food intake rhythm in the control animals and an altered pattern in the hypophysectomized animals. While hypophysectomy has statistically altered the animals normal diurnal eating rhythm several of the rats (Fig. 1, rats #1, 2, 5 and 7) still appear to be strongly influenced by the photoperiod. The remaining three hypophysectomized rats showed a much greater altered eating rhythm. The nature of the difference waits to be resolved. A further indication that hypophysectomy has altered the rats normal feeding rhythm is shown in the day to day variation in the percentage of food consumed during the light and dark phases. The day to day variation were computed on each group of animals and then summed as to the period of feeding and analyzed. Control rats showed very little day to day variation in the percentage of food they consumed during the dark and light phase while the hypophysectomized rats showed a great deal of variation (Dark phase: controls, \(\chi^2 = 3.53, P > 0.99 \) hypox, \(\chi^2 = 100.55, P < 0.001 \)).

Discussion. Stephan and Zucker (10) showed that a combination of hypophysectomy and ovariectomy altered the normal diurnal food intake pattern of rats. The present study revealed that hypophysectomy alone can modify the normal diurnal feeding pattern of rats. Hypophysectomy arrests growth and depresses the animals daily food consumption (12). The data presented here reveal that, while the 24-hr meal frequency of the hy-
pophysectomized rats was similar to non-operated controls, the light–dark distribution of meals was significantly altered by hypophysectomy. Furthermore, total daily food intake was reduced by hypophysectomy because meal duration and size were greatly reduced in the hypophysectomized rats. Thus, hypophysectomized rats appear to decrease their food intake through a reduction in meal size and not meal frequency.

It has been proposed (12) that because hypophysectomy decreases daily food consumption, pituitary hormones might be directly involved in the regulation of feeding behavior. This was challenged (13) on the grounds that hypophysectomy causes a drop in basal metabolic rate and the decrease in food consumption is responding to that decreased basal metabolic need. However, the lower basal metabolism cannot readily account for the fact that the hypophysectomized rats of Stephan and Zucker's study (10) or of the present one, displayed an altered diurnal feeding pattern. One possible explanation is that hypophysectomy removed one or more of the pituitary hormones which help determine the food intake rhythm. In support of the pituitary playing a role in the maintenance of certain consummatory rhythms is the finding that the posterior pituitary hormone, antidiuretic hormone has been shown to be important in maintaining the light–dark distribution of drinking in rats (9).

Rats eat the majority of their food at night, commencing shortly after the start of the dark phase. Increases in several pituitary hormones (6–8, 14) appear to coincide with the onset of normal feeding in rats (10, 15). Corticosterone (14, 15) and prolactin (6, 7) peak prior to onset of the normal feeding period and if rats are fed for only 2 hr per day, the natural rhythms of these hormones are modified (6, 16, 17). Within a short time both hormones show peaks prior to the start of the new feeding period (6, 16, 17) with a reduced peak remaining at the end of the light period. Both the natural corticosterone and prolactin rhythms persist in fasted rats (7). Interestingly, when rats are refed, even after periods of fasting up to 36 hr (18, 19), they consistently consume more when presented with food during the dark phase than when refed during the light phase. Also noteworthy, is the finding that lesions of the DM VMN disrupt the natural diurnal feeding pattern of mature and weanling rats (2, 3) also altering the normal diurnal corticosterone rhythm (4). In the present study, hypophysectomy, which would necessarily prolactin and alter corticosterone seemingly modifies the natural food patterns of the animals. However, a study of ours (Bellinger et al., unpublished observations) indicates that adrenal does not alter the diurnal feeding rhythm. This indicates that the cortico-rhythm is not the cause but only incident the rats feeding rhythm. Thus some pituitary factor(s) may be responsible for the maintenance of the diurnal rhythm.

Since on the average the food consumed by the hypophysectomized rats was still consumed by the photoperiod, it appears that pituitary hormone(s) or some other pituitary factor(s) can only be partially responsible for the maintenance of the normal diurnal rhythm. Finally, it must be considered that hypophysectomy does alter the animal's metabolism and this might possibly modify the food intake pattern of the animal.

Summary. Hypophysectomy alters the normal diurnal feeding patterns of rats and the average the hypophysectomized rats consume the greatest percentage of their food during the dark phase. Compared to control hypophysectomized rats eat a similiar number of meals each day, however, the amount of food consumed and the duration of meals are reduced. The pituitary gland may be one of the factors involved in sustaining the natural diurnal feeding rhythm.

The authors wish to thank Drs. Roger and L. Friend, and to S. Turley for typing the manuscript.

5. Moore, R., and Eichler, V., Brain Res. 42, 21
6. Bellinger, L., Moberg, G., and Mendel, V.

Protein-Calorie Malnutrition Impairs the Anti-Viral Function of Macrophages

LLOYD C. OLSON, DOUGLAS R. SISK, AND EUGENE IZSAK

Department of Microbiology, Indiana University School of Medicine, Indianapolis, Indiana 46202

Human malnutrition is accompanied by decreased resistance to at least certain infectious diseases (1). This enhanced susceptibility may be mediated by such factors as altered complement metabolism (2), deficient cellular immune responses (3, 4) and decreased production of secretory immunoglobulins (5). Little information is available as to whether macrophage antimicrobial mechanisms are also affected by malnutrition. As an important member of primary host defenses and as an effector cell for many of the cellular immune processes, the macrophage plays a critical role in infectious diseases (6). Consequently any degree of impairment of the efficiency with which this cell performs these roles might be expected to result in considerable reduction in host resistance.

Douglas and Schopfer (7) reported that monocyte phagocytic indices are not altered by severe protein-calorie malnutrition. Passwell et al. (8), however, noted that phagocytic capacities of macrophages do seem to be impaired in mice which were protein-deprived. Nevertheless, neither of these reports described the total microbialidal capability of the macrophage. Keusch et al. have recently reported (9) that macrophages from mice with kwashiorkor kill Staphylococcus aureus, E. coli and salmonella normally in vitro. These authors infer that in vivo however, it appears likely that macrophage contributions to host defenses are impaired.

We have recently described a model in mice which demonstrates that age-specific resistance to ip infection with Wesselsbron virus (WBV) is macrophage-mediated (10). Resistance by mice is essentially complete by age 2–3 weeks, and represents the acquired ability of peritoneal macrophages to phagocytose and to destroy infectious virus. The present report represents studies on the resistance of protein-calorie malnourished mice to WBV infection and whether macrophage antiviral function is concomitantly affected.

Materials and Methods. Mice. Random-bred 3-week old white mice were individually caged and allowed free access to water and food. Experimental mice were placed on protein-depletion diet USP XV composed of 84% white dextrin, 9% corn oil, 4% salt mixture, 2% agar, 1% cod liver oil and vitamin supplement (ICN Nutritional Biochemicals). Control mice were fed a normal protein diet containing 27% casein. Under these conditions normal mice showed a mean increase in body weight of 5.3% after 5 days while protein-depleted mice lost a mean of 12.9% body wt during the same period. Unless otherwise noted resistance to infection was determined in mice that had been fed protein-depletion diet for 5 days and continued on this diet during the observation period.

Virus. The source and preparation of WBV was as previously published (10). Infectivity was assayed by inoculating 1-day old mice intracerebrally (i.c.); serial tenfold dilutions were made and each dilution was inoculated into one litter (9–14 mice). End-points were determined by summarizing mortality 14 days later and calculated by the method of Reed and Muench (11).

Results. Of 21 normal mice inoculated ip with WBV (10⁶ LD₅₀ as assayed in suckling mice), none developed signs of illness nor died. In contrast, each of 11 protein-depleted mice developed symptoms of encephalitis; three of these mice were sacrificed on day 5 and brain tissue was assayed for WBV while the other 8 mice succumbed within 7 days of inoculation. WBV, 10⁶.₃ LD₅₀ per 0.1 g tissue was recovered from each of the brains tested. One of 12 protein-depleted mice observed as uninoculated controls died after 5 days but no virus could be recovered from its brain.

To study how rapidly susceptibility to WBV developed, a series of mice were inocu-
ip with WBV at various times before or switching them to the protein-depletion diet. The details and results of this experiment are shown in Table I. Mice that were inoculated with WBV 3 days or longer before initiating protein depletion showed increased resistance to virus. However, susceptibility to ip infection with WBV rapidly decreased in relation to protein depletion such that even animals inoculated one day previously showed decreased resistance to infection. Signs of encephalitis appeared 5–7 days after inoculation in all mice succumbing to infection.

These data implied that some event occurred relatively early in the initial stage of infection that was sensitive to protein depletion. To support this idea it was necessary to determine how soon after ip inoculation could be detected in the central nervous system. Groups of mice on normal diet or 3 days on depletion diet were inoculated with 10^6 LD_{so} of WBV as before, and brains from two animals of each group were sampled daily thereafter (Table II). In normal mice very small amounts of WBV were recovered 1–3 days postinoculation, while samples collected on days 4–7 contained no detectable virus. Simultaneously collected samples of blood obtained by section of the axillary vessels contained similar concentrations of virus and presumably represented the source of virus present in the brain samples. In contrast, much greater concentrations of WBV could be detected in blood from protein-depleted mice. Brain samples also had concentrations of virus of similar magnitude on days 3 and 4, although the presence of viremia made the origin of this virus uncertain. By day 5, however, the titer of virus in the brain significantly exceeded that in the blood and by day 6 the animals had developed encephalitis.

Unstimulated peritoneal macrophages were collected from normal and from PCM mice and the susceptibility of WBV to inactivation by these cells was studied by the methods previously described. Briefly, cells were collected by washing the peritoneal cavity with phosphate-buffered saline (PBS, pH 7.2). The cell suspension was inoculated into glass bottles and allowed to attach for 2 hr at 37°C. Nonadherent cells were removed by repeated vigorous washing with PBS. The adherent cells were resuspended by scraping and cultured in medium 199 at a concentration of 10^6 cells per ml. WBV was added at a multiplicity of infection of one and allowed to adsorb 1 hr at 37°C. The cultures were then washed 3 times and fresh medium 199 was added.

<table>
<thead>
<tr>
<th>WBV inoculated on day^a</th>
<th>−5</th>
<th>−3</th>
<th>−1</th>
<th>+1</th>
<th>+3</th>
<th>+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>o. mice inoculated</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>o. mice surviving</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Ice were switched from normal to protein-depletion diet on day 0. WBV, 10^6 LD_{so} (suckling mouse assay) was added intraperitoneally on days indicated before (minus days) or after (plus days) switching diets. Mortality for each group of mice was summarized 14 days after inoculation with WBV.

| WBV Titer in Blood and Brain Tissue After Intraperitoneal Inoculation of Normal and PCM Mice.
<table>
<thead>
<tr>
<th>Days postinoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>blood^g</td>
</tr>
<tr>
<td>brain^g</td>
</tr>
<tr>
<td>f.</td>
</tr>
<tr>
<td>blood^g</td>
</tr>
<tr>
<td>brain^g</td>
</tr>
</tbody>
</table>

^a LD_{so} per 0.05 ml serum. ^b LD_{so} per 0.1 g tissue.
added at time 0. At intervals some cultures were rapidly frozen and thawed 3 times, debris was removed by centrifugation and the supernatant virus content was assayed. The experiments were run in triplicate and assay results were pooled by summing mortality of the individual titrations. In no instance did the end-points of individual titrations disagree by as much as one \(\log_{10} \) dilution. The results of these experiments are illustrated in Fig. 1. Whereas infectious WBV had completely disappeared by 24 hr in macrophages obtained from normal animals there was an obvious difference in the ability of macrophages from PCM mice to inactivate WBV. This suggests that the extraperitoneal dissemination that occurred to a much greater extent in PCM mice (Table II) resulted from the decreased capacity of local defense mechanisms to inactivate and contain the infectious inoculum. Presumably, macrophages were a major contributor in the population of cells studied.

Discussion. The effects of malnutrition on host resistance to virus infections may be variable. Measles infections are a classic example of the increased susceptibility to severe and often fatal effects of disease occurring in the malnourished host (12).

Experimentally, malnourished mice have been shown to have decreased resistance to coxsackie B3 virus (13) but apparently increased resistance to pseudorabies virus (14). Host resistance to different viruses represents a complex interaction of many mechanisms, each affected to varying degrees by malnutrition. Thus, contrasting results with individual viruses with distinctive pathogenetic schemes is not surprising. The model employed here attempts to isolate the effect of the macrophage.

Although mice normally develop age-specific resistance to WBV the target organ (central nervous system) remains susceptible to infection and disease (10). Thus, the data presented here on the loss of resistance to peripheral (ip) infection in protein-calorie malnourished mice implies that local resistance is impaired, and that moreover the events mediating resistance are rapidly sensitive to the deleterious effects of this malnutrition. In normally nourished mice only limited amounts of virus gain access to the circulation after ip inoculation, and this is apparently below the threshold required to initiate infection in the central nervous system. Local restriction of the virus inoculum was not effective with protein-calorie malnutrition; large amounts of virus appeared in the circulation and encephalitis ensued.

The direct interaction of WBV and macrophages cultured *in vitro* suggested that a primary effect of protein-calorie malnutrition was on the ability of macrophages to restrict WBV infection. Significant levels of infectious virus persisted throughout the time period studied and in fact WBV may have replicated in the macrophages from malnourished mice. This must at least in part account for the susceptibility of these mice to WBV infection. In this regard they would be similar to newborn mice which are susceptible to infection for similar reasons (10). These results suggest that impaired macrophage function is an additional feature of protein-calorie malnutrition that contributes to the susceptibility of such individuals to certain virus diseases. Since the mechanism by which macrophages exert antiviral effects is not understood the cellular basis of the defect is obscure.

Summary. Mice which are normally resistant to infection with Wesselsbron (WBV)
is became rapidly susceptible to disease to this agent after being placed on protein-depletion diet. After ip inoculation large amounts of virus appeared in the circulation owed by fatal encephalitis. In normally mice only small amounts of virus could detected in blood and no disease devolved. This suggested that local defense mechanisms which normally restrict the extent of infection was sensitive to the early effects of protein-calorie malnutrition. That this was at least in part to impaired antiviral action of macrophage under these conditions was confirmed by in vitro macrophage lies. Over the course of 24 hr infectious V disappeared after inoculation into culs of normal macrophages whereas infectivity persisted at high titers in macrophages in protein-depleted mice.

his work was supported by a grant from the Rocker Foundation.

The Effect of Heparin on Growth of Mammalian Cells in Vitro¹ (40290)

T. K. YANG and H. M. JENKIN
The Hormel Institute, University of Minnesota, Austin, Minnesota 55912

Heparin has been used primarily as a therapeutic anticoagulant agent (1), and clinically used to treat inflammatory and allergic diseases (2). It has also been shown to accelerate recovery of burn patients and promote wound healing in humans and animals (3–5). The mechanism and process of burn and wound healing from these observations is still not well elucidated. It is, therefore, of interest to investigate whether heparin can stimulate proliferation of human skin diploid cells in vitro which might be related to the mode of action of the healing process.

The effect of heparin and other acid mucopolysaccharides on the growth of various cell types, mainly malignant cells, has been studied by a number of investigators. The results obtained often have been controversial. Some investigators find inhibitory effects on cell growth (6–8), some stimulatory (8–10), and some report morphological changes (11). Therefore, this study was carried out in an attempt to provide more information about the nature of the effect of heparin on the growth of cultured mammalian cells.

Materials and methods. Chemicals. Amino acids, vitamins and newborn calf serum were purchased either from International Scientific Industries, Inc., Cary, IL, or Grand Island Biological Co., Grand Island, NY; prednisolone-21-sodium-succinate (PSS) and N'-2-hydroxyethylpiperazine-N"-2-ethane-sulfonic acid (HEPES) from Sigma Chemical Co., St. Louis, MO; S-210 medium from Grand Island Biological Co.; Waymouth 752/1 dry powder medium from Schwarz/Mann Inc., Orangeburg, NY; fatty acid-free bovine serum albumin (FAF-BSA) from Miles Laboratories, Inc., Elkhart, IN; oleic acid from Nu-Chek Prep, Inc., Elysian, MN; various forms of heparin were kindly supplied by Riker Co., Division of 3M Co., St. Paul, MN; Calbiochem, La Jolla, CA, Upjohn Co., Kalamazoo, MI; and highly purified heparin was a gift from Dr. J. A. Cifonelli, University of Chicago, Chicago, IL.

Cell cultures. The sources of the cells and the methods used for cultivation were the same as described previously. Monkey kidney (MK-2) cells were cultivated as monolayers in Eagle’s minimum essential medium (MEM) supplemented with 5% newborn calf serum (MEM₅) (12). Novikoff hepatoma cells were grown in shaker culture in S-210 medium (13). Human prepuce cells were grown as monolayers in Eagle’s MEM medium (14) supplemented with 10% newborn calf serum (MEM₉) and baby hamster kidney cells (BHK-21) were grown in shaker culture using a modified Waymouth 752/1 medium (15).

Growth of cells in the presence of heparin. Prepuce cells were grown in Eagle’s MEM supplemented with 4% newborn calf serum (MEM₄) or MEM₉ in the presence of a wide range of heparin. Hanks’ balanced salt solution (BSS) was used as a base (16). The cells were used at an initial density of 2.0–3.0 × 10⁵ cells/flask in a volume of 4 ml and were placed in 25 cm² cell culture flasks (Corning Glass Works, Corning, NY). The cells were incubated at 37° for 6–10 days and were enumerated at varying intervals of time after trypsinization with the aid of a Coulter counter.

Thirty ml of BHK-21 cells were suspended in modified Waymouth 752/1 medium (15) containing 2.5% newborn calf serum and different amounts of heparin. The initial cell population contained 3.5 × 10⁵ cells/ml and were incubated at 37° in a New Brunswick gyratory shaker. At 0, 24, 48, 72 and 96 hr the cells were enumerated with a Coulter counter.

An initial population of 3.0 × 10⁶ MK-2 cells in 4 ml of modified Waymouth 752/1 medium (15) was added to 25 cm² flasks. In order to establish monolayers of cells, the medium was supplemented with 1% newborn

¹ This work was supported in part by the Office of Naval Research, Contract Nos. N00014-75-C-0903, NR202-071, and by The Hormel Foundation.
HEPARIN EFFECTS ON CELL GROWTH

After 24-hr incubation at 37°, the was discarded and the cells rinsed.
Fresh modified Waymouth medium without the serum supplement containing amount of heparin were added. The cells were incubated at 37° for 4 days. Cell numbers were determined

Hepatoma cells were grown in dulbecco's medium in the presence of different amounts of heparin. A start of 2 x 10^6 cells/ml was incubated for 4 days. Cell numbers were determined

Effect of heparin and PSS on the BHK-21 and prepuce cells. Varying concentrations of PSS and heparin were added in combinations to the growth medium to BHK-21 cells in shake cultures in monolayers. The cell numbers were determined at varying intervals. Procedures were the same as described above for testing the effect of heparin.

minimum of two independent experiments performed for all studies. Each was carried out in triplicate, and counts were made on each sample. Results were analyzed for significant differences using a student's t test.

The effect of Riker's hog mucosal on the growth of prepuce cells cultured in MEM is shown in Table I. There were immediate differences observed in cell control and heparin-treated samples for the first 3 days after incubation. The cells cultivated in the medium of 5 and 10 μg/ml of heparin had an increase of 30% and 23%, respectively, in cell number over that of the control cells. There was a decrease in the number of cells grown in medium containing 15 and 20 μg/ml of heparin, whereas the cells treated with 80 μg/ml of heparin had a 21% decrease in cell population when compared to control cells. The population of cells treated with 0, 5, 10, and 20 μg/ml of heparin began to decline after day 5, whereas cells treated with 15 and 80 μg/ml of heparin continued to increase in cell number.

When prepuce cells were cultivated in MEM after initially incubating the cells in MEM for 24 hr, no differences in the growth between heparin-treated and untreated cells were observed until 8 days after incubation (Table II). On day 8, cells treated with 5 μg/ml of heparin showed a 90% increase in cell numbers over that of the untreated cells. Cells treated with higher concentrations of heparin which were less stimulatory than the cells treated with 5 μg/ml of heparin showed an increase of about 35% in population. On day 10, the cells treated with 5, 10, and 15 μg/ml of heparin all showed about a 30% increase in cell number over the untreated cells. Cells treated with 80 μg/ml of heparin had about the same growth rate as that of the untreated cells.

Various heparins with different anticoagulant activity obtained from Upjohn Co. and Wilson Labs and further purified by J. A. Cifonelli showed similar stimulatory effects on the growth of prepuce cells (Table III). Each of the three heparins at a concentration of 5 μg/ml increased the number of cells about 30-50% from day 5 to 8 after incubation.

Heparins from different sources at a concentration of 5 μg/ml showed similar stimulatory effect on the growth of prepuce cells (Table IV), except there was slightly higher cell population when the cells were grown in

<table>
<thead>
<tr>
<th>Heparin (μg/ml)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33 ± 0.03</td>
<td>1.27 ± 0.03</td>
<td>1.30 ± 0.00</td>
<td>1.27 ± 0.07</td>
<td>1.17 ± 0.03</td>
<td>1.30 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>2.97 ± 0.09</td>
<td>3.40 ± 0.21</td>
<td>3.20 ± 0.10</td>
<td>2.60 ± 0.17</td>
<td>2.70 ± 0.27</td>
<td>2.63 ± 0.18</td>
<td></td>
</tr>
<tr>
<td>4.70 ± 0.10</td>
<td>6.10 ± 0.35*</td>
<td>5.77 ± 0.22b</td>
<td>5.03 ± 0.07</td>
<td>5.30 ± 0.20</td>
<td>3.73 ± 0.70</td>
<td></td>
</tr>
<tr>
<td>4.20 ± 0.29</td>
<td>5.67 ± 0.35*</td>
<td>5.30 ± 0.47</td>
<td>6.20 ± 0.31b</td>
<td>4.53 ± 0.29</td>
<td>4.83 ± 0.46</td>
<td></td>
</tr>
</tbody>
</table>

*cell number × 10^4/flask (25 cm²) ± SEM from three flasks each counted in triplicate. Results are different from control (P < 0.05). These data are typical results from a minimum of three experiments.
HEPARIN EFFECTS ON CELL GROWTH

TABLE II. Effect of Riker's Hog Mucosal Heparin on Growth of Human Prepuce Cells in Eagle's Minimum Essential Medium Containing 4% Newborn Calf Serum.

<table>
<thead>
<tr>
<th>Heparin (µg/ml)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.50 ± 0.07a</td>
<td>1.93 ± 0.09</td>
<td>1.67 ± 0.07</td>
<td>1.93 ± 0.15</td>
<td>1.93 ± 0.07</td>
<td>2.23 ± 0.07</td>
</tr>
<tr>
<td>2</td>
<td>2.00 ± 0.06</td>
<td>2.90 ± 0.10</td>
<td>2.73 ± 0.07</td>
<td>2.73 ± 0.22</td>
<td>2.53 ± 0.07</td>
<td>2.37 ± 0.03</td>
</tr>
<tr>
<td>4</td>
<td>2.77 ± 0.03</td>
<td>3.17 ± 0.35</td>
<td>3.17 ± 0.19</td>
<td>3.03 ± 0.18</td>
<td>3.37 ± 0.34</td>
<td>2.60 ± 0.06</td>
</tr>
<tr>
<td>6</td>
<td>2.83 ± 0.03</td>
<td>3.40 ± 0.32a</td>
<td>3.60 ± 0.36</td>
<td>4.10 ± 0.72</td>
<td>3.83 ± 0.52</td>
<td>3.27 ± 0.43</td>
</tr>
<tr>
<td>8</td>
<td>4.87 ± 0.09</td>
<td>6.43 ± 0.23a</td>
<td>6.40 ± 0.46a</td>
<td>6.30 ± 0.15a</td>
<td>5.77 ± 0.09a</td>
<td>4.83 ± 0.19</td>
</tr>
</tbody>
</table>

a Average cell number x 10^7/flask (25 cm²) ± SEM from three flasks each counted in triplicate.

b Significantly different from control (P < 0.01).

Significantly different from control (P < 0.05). These data are typical of results from three independent experiments.

TABLE III. Effect of Heparins (5 µg/ml) with Different Specific Activities on Growth of Human Prepuce Cells in Eagle's Minimum Essential Medium Containing 4% Newborn Calf Serum.

<table>
<thead>
<tr>
<th>Heparins</th>
<th>Day</th>
<th>Control</th>
<th>A^a</th>
<th>B^b</th>
<th>C^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.37 ± 0.09d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.07 ± 0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3.17 ± 0.09</td>
<td>3.27 ± 0.20</td>
<td>3.17 ± 0.13</td>
<td>3.47 ± 0.29</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4.03 ± 0.12</td>
<td>4.57 ± 0.23</td>
<td>4.33 ± 0.19</td>
<td>4.27 ± 0.22</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5.20 ± 0.15</td>
<td>6.00 ± 0.40</td>
<td>5.37 ± 0.02</td>
<td>5.63 ± 0.30</td>
</tr>
</tbody>
</table>

a A: Beef lung heparin from Upjohn Co. further purified by gel filtration on Sephadex G-75 by J. A. Cifonelli (specific activity of 144 µUnits/mg).

b B: Beef lung heparin from Wilson Labs further purified by J. A. Cifonelli (specific activity of 180 µUnits/mg).

c C: Beef lung heparin from Wilson Labs (specific activity of 110 µUnits/mg).

d Average cell number x 10^7/flask (25 cm²) ± SEM from three flasks each counted in triplicate.

Significantly different from control (P < 0.05). These data are typical of results from three independent experiments.

TABLE IV. Effect of Various Heparins (5 µg/ml) on Growth of Human Prepuce Cells in Eagle's Minimum Essential Medium Containing 10% Newborn Calf Serum.

<table>
<thead>
<tr>
<th>Heparins</th>
<th>Day</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.17 ± 0.03b</td>
<td>1.17 ± 0.03</td>
<td>1.27 ± 0.03</td>
<td>1.10 ± 0.06</td>
<td>1.23 ± 0.03</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.90 ± 0.06</td>
<td>2.30 ± 0.10</td>
<td>2.23 ± 0.09</td>
<td>2.57 ± 0.20</td>
<td>2.90 ± 0.10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2.67 ± 0.13</td>
<td>3.13 ± 0.24</td>
<td>3.27 ± 0.35</td>
<td>3.00 ± 0.06</td>
<td>3.77 ± 0.22</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3.17 ± 0.18</td>
<td>3.73 ± 0.19</td>
<td>3.13 ± 0.39</td>
<td>4.23 ± 0.23</td>
<td>4.10 ± 0.25</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3.23 ± 0.09</td>
<td>4.10 ± 0.17</td>
<td>4.07 ± 0.03</td>
<td>4.03 ± 0.28</td>
<td>4.40 ± 0.06d</td>
</tr>
</tbody>
</table>

a A: Control, B: Riker's hog mucosal heparin, C: Riker's beef lung heparin, D: Riker's crude hog mucosal heparin.

E: Calbiochem's hog mucosal heparin.

Average cell number x 10^7/flask ± SEM from three flasks each counted in triplicate.

Significantly different from control (P < 0.05).

Significantly different from control (P < 0.01). These data are typical of results from three independent experiments.

the medium containing heparin from porcine intestinal mucosa from Calbiochem.

Heparin showed little or no effect on the growth of MK-2, BHK-21 and Novikoff rat hepatoma cells, when the cells were cultivated in the medium containing several concentrations of newborn calf serum in the presence of a wide range of concentrations of different heparins.

PSS at concentrations of 0.5 µg/ml and 2 µg/ml inhibited the growth of BHK-21 (50%) and prepuce (25%) cells, respectively (Figs. 1 and 2). In an attempt to reverse this inhibitory effect of PSS on cell growth, hog
HEPARIN EFFECTS ON CELL GROWTH

Combined effect of prednisolone-21-sodium-PSS and heparin on growth of BHK-21 cells

Our data showed that heparin appears to promote the growth of prepuce cells but did not stimulate growth of BHK-21, MK-2 or Novikoff rat hepatoma cells. Takeuchi (10) noted that acid mucopolysaccharides have some promoting activity on tumor growth. Ozzello et al. (19) reported the growth promoting activity of acid mucopolysaccharides on a strain of human mammary carcinoma cells. They ascribed this action to the negative electric charge and the viscosity of acid mucopolysaccharides.

The controversy about the action of heparin on the cell growth is presumably due in part to different dosages of heparin and the cell types used. Heparin in high concentration can be inhibitory to the growth of cells cultivated in vitro. If the amount of heparin is maintained at a dose that just inhibits coagulation (2 μg/ml), it seems to be relatively noncytotoxic (11), and perhaps even stimulatory to cell growth. Zakrezewski (20) claimed that the Jensen sarcoma in tissue culture was inhibited by heparin, but empha-

heparin was added into the culture.

It was found that cells grown in the containing both PSS and heparin at the same cell numbers as those in containing no PSS (Figs. 1 and 2), reversal of heparin on the inhibitory PSS.

Previous results about the effect in and other acid mucopolysaccharide-cell growth have been equivocal. 17) first claimed inhibition of mitosis art fibroblasts and concentrations of varying from 20–500 μg/ml. Cos- reported cytotoxic action of heparin 300 μg/ml using Syrian hamster sar-

Lippman (8) demonstrated that at 50 μg/ml inhibited growth of L" cells. King et al. (18) found that at 1–1000 μg/ml showed little effect ivision of mouse "L" cells grown in on cultures.

Our data showed that heparin appears to promote the growth of prepuce cells but did not stimulate growth of BHK-21, MK-2 or Novikoff rat hepatoma cells. Takeuchi (10) noted that acid mucopolysaccharides have some promoting activity on tumor growth. Ozzello et al. (19) reported the growth promoting activity of acid mucopolysaccharides on a strain of human mammary carcinoma cells. They ascribed this action to the negative electric charge and the viscosity of acid mucopolysaccharides.

The controversy about the action of heparin on the cell growth is presumably due in part to different dosages of heparin and the cell types used. Heparin in high concentration can be inhibitory to the growth of cells cultivated in vitro. If the amount of heparin is maintained at a dose that just inhibits coagulation (2 μg/ml), it seems to be relatively noncytotoxic (11), and perhaps even stimulatory to cell growth. Zakrezewski (20) claimed that the Jensen sarcoma in tissue culture was inhibited by heparin, but empha-

heparin was added into the culture.

It was found that cells grown in the containing both PSS and heparin at the same cell numbers as those in containing no PSS (Figs. 1 and 2), reversal of heparin on the inhibitory PSS.

Previous results about the effect in and other acid mucopolysaccharide-cell growth have been equivocal. 17) first claimed inhibition of mitosis art fibroblasts and concentrations of varying from 20–500 μg/ml. Cos- reported cytotoxic action of heparin 300 μg/ml using Syrian hamster sar-

Lippman (8) demonstrated that at 50 μg/ml inhibited growth of L" cells. King et al. (18) found that at 1–1000 μg/ml showed little effect ivision of mouse "L" cells grown in on cultures.

Fig. 2. Combined effect of prednisolone-21-sodium-
succinate (PSS) and heparin on growth of prepuce cells cultivated in Eagle's minimum essential medium supple-
mented with 10% newborn calf serum (MEM10). Prepuce cells at an initial density of 2.3 × 10^6 cells/flask in 4 ml of MEM10 medium were placed in 25 cm² cell culture flasks. PSS alone or a combination of PSS and heparin was added to the medium. The cells were incubated at 37° for 7 days and were enumerated with a Coulter counter at varying intervals of time after trypsinitization. O — O, 0 μg/ml PSS, heparin; O — O, 2 μg/ml PSS; A — A, 2 μg/ml PSS + 5 μg/ml heparin; A — A, 2 μg/ml PSS + 20 μg/ml heparin. Vertical bars represent standard error of the mean.
sized that this drug was much less effective on normal embryonic tissue.

Medium supplemented with low amounts of serum (4%) was used in one set of experiments to hopefully show a growth stimulatory effect when supplemented with heparin. Growth of prepuce cells might then be magnified when cells were subliminally starved (21). From the results shown in Table II, about 90% increase of cells was observed compared to the control in the presence of 5 µg heparin/ml at day 8. Medium containing 2% serum was also tested. No stimulatory effect of heparin was noted when prepuce cells were grown in this medium. Takeuchi hypothesized (10) that acid mucopolysaccharides did not serve as a nutritional component for cell growth but protects the cell surface and promotes the exchange of various metabolites. Our observation indirectly further supports this hypothesis.

Cell populations from monolayer cultures were found to drop in the first 24-hr incubation. This probably is attributed to cell lysis during the trypsinization process. Therefore, the baseline data for all experiments was best interpreted after 24 hr cultivation.

It has been reported that heparin in animal experiments could interact with steroid hormones(2). Our data demonstrated that heparin reversed the inhibitory effect of FSS on the growth of prepuce and BHK-21 cells cultured in vitro. This test system could be used to indirectly show heparin effects on cell growth when little or no activity was noted by heparin directly. This observation confirms the hypothesis of Dougherty and Dolonitz (2).

A question had been raised whether trace metal contaminants or other unknown contaminants of heparin might be responsible for its activity in aiding burn repair. When crude, commercial grade and highly purified heparins from hog mucosa and/or beef lung sources were tested for promoting cell growth, no differences were found in the activity, which seemed to negate the role of heparin contaminants in the cell culture detection systems used.

Since heparin and heparin-like components are normal constituents of the blood and cells of higher animals, it is not surprising to find that heparin at a physiological level is harmless and even stimulatory to the growth in vitro.

Summary. The effect of heparin on growth of four cell types cultivated in vitro has been investigated. The results suggested that heparin appears to have some growth-promoting effects on prepuce cells, which showed little effect on the growth of Nor hepatoma, monkey kidney and baby hamster kidney cells. Heparin reversed the inhibitory effect of prednisolone-21-sodium-succinate on the growth of prepuce and baby hamster kidney cells.

The authors thank Gregg Jorgenson and Chris for their excellent technical assistance. The data and statements contained herein are the private property of the authors and are not to be construed as reflecting the views of the Navy Department or the Service at large.

HEPARIN EFFECTS ON CELL GROWTH

Immune Interferon Activates Cells More Slowly Than Does Virus-Induced Interferon (40291)

F. DIANZANI, L. SALTER, W. R. FLEISCHMANN, JR., AND M. ZUCCA

Department of Microbiology, University of Texas Medical Branch, Galveston, Texas 77550

Three antigenically different types of interferon have been found: (a) a 27000-30000 MW protein produced by somatic cells (fibroblast interferon) stimulated by viruses, (b) an interferon produced by leukocytes (leukocyte interferon) also stimulated by viruses (VIF), and (c) immune interferon (IIF), produced by lymphocytes following activation by mitogens or by specific antigenic stimulation (1–3). While the biochemical and biological properties of VIF have been extensively explored and many aspects of its mechanisms of production and action have been clarified, the properties of IIIF, especially the mechanisms of activation of the cells, are as yet poorly understood.

Several differences in function between IIF and VIF have been noted. It has been reported that: preparations of IIF exert higher antitumor and immunoregulatory activity as compared with VIF (4, 5), VIF immunosuppressive action but not mitogen induced IIIF action is blocked by mercaptoethanol (6), and IIIF showed, at least in one system, a decreased ability to inhibit virus yield relative to VIF (7). It seems then reasonable that, since the different types of IF have different mechanisms of induction and show differences of biologic activity, they are likely to manifest important differences in molecular and cellular reactivity (8–10). Since information on this subject could lead to a better understanding of the mechanism of action (antiviral, antitumor, immunoregulatory) of the different types of IF, we have undertaken a comparative study on cellular activation by VIF and IIIF.

In previous studies (11, 12) we showed that a very brief reaction (minutes) between VIF and cells at 37°C rapidly results in cellular activation which, after removal of IF, is followed 30 min later by the transcription translation of mRNA for the antiviral protein responsible for the cellular antiviral state. Present study is a comparison of these kinds of cellular activation using IIF and VIF.

Materials and methods. Human leuko interferon (10^6 units/mg protein), induce Sendai virus, was obtained from the Anti-Substances Program, NIAID, NIH, and produced by methods previously described (13). Mouse fibroblast interferon was obtained from the mouse C243 cell line infected with Newcastle Disease Virus as previously described (10^5 units/mg protein; 14). Human interferon (10^5 units/mg protein) was obtained from normal lymphocyte cultures stimulated for 4 days with staphylococcal enterotoxin A (SEA). Mouse immune interferon (10^2 units/mg protein) was obtained from mouse splenic cell cultures stimulated with SEA (15). Virus-type interferons were shown to be resistant to 5 days exposure of pH 2 and completely neutralized by specific antibody. Immune interferons were inst at pH 2 and not significantly neutralized by antibody to virus-type interferon (15). Interferon and interferon-induced antiviral activity were measured by the inhibition of yield of Sindbis virus (human interferon GD7 virus (mouse interferon) hemagglutination in a single cycle yield assay (16) employing cultures of human diploid foreskin C HF 19, or mouse L cells, strain CCL-1. Interferon titers are expressed as human or mouse reference units. Temperature control at 37°C for short periods of time was effected in a waterbath and longer incubations were performed in a 37°C incubator containing 4% CO₂ as previously described (11).

Results. Development of antiviral resistance in cells treated with virus-induced or immune interferon. The results of a representative experiment carried out with human leuko and immune IFs are shown in Fig. 1. 1
types of IF were applied at a concentration of 100 reference units per ml as previously described (11). At preestablished times the interferon was removed and the cultures were washed 4 times and challenged with virus (multiplicity of infection, 10). After 1 hr for viral adsorption the cultures were washed 3 times and incubated for 18 hr before titration of viral yield. A control titration of the level of IF activity was included in every experiment. It may be seen that the cell cultures treated with VIF developed substantial resistance after a 5-min treatment and that the degree of resistance to Sindbis virus replication continued to rise thereafter so that 1 hour later it was greater than the measurable level. However, IIF did not induce detectable resistance over 2 hr, and marginal resistance was produced only after 4 hr. The expected degree of antiviral activity was induced after 24 hr treatment.

Similar results were obtained for mouse L cells treated with 300 reference units of either virus induced or immune mouse IF and challenged with GD-7 (Fig. 2). Additionally the same type of kinetics was observed for two more virus-cell systems: vesicular stomatitis virus (human cells, multiplicity of infection, 10) and mengovirus (L cells, multiplicity of infection, 0.1).

Since IIF preparations had a much lower specific activity as compared with VIF preparations, the possibility that some contaminant present in IIF could affect the rate of cellular activation was examined. Specifically cell cultures were treated either with 100 units of VIF, 100 units of IIF or 100 units of VIF plus 100 units of IIF. The cultures were then challenged after 15 min, and 4 hr to determine whether protection in the cultures treated with both types of IF developed according to the kinetics of development of VIF or IIF. The results (Table I) showed that the rapid kinetics of development of the antiviral state induced by VIF was not slowed by the presence of IIF. The same results were obtained either when the two types of interferon were mixed before addition to the cells or when either type was added immediately before the other.

Binding of interferon to cells at 37. It has been shown that cells treated with VIF bind interferon molecules very rapidly (17–21). However data on cellular binding of IIF are not yet available. Since the lack of rapid cellular activation by IIF, as compared with VIF, could be due to different kinetics of cellular binding, experiments were designed to establish the extent of binding of two types of IF under the conditions of rapid activation.

TABLE I. INDUCTION OF THE ANTIVRAL STATE BY VIRUS-INDUCED INTERFERON, IMMUNE INTERFERON, OR A COMBINATION OF BOTH.

<table>
<thead>
<tr>
<th>Species of interferon</th>
<th>Type of interferon</th>
<th>Inhibition of virus yield* after treatment for 15 min</th>
<th>4 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>VIF</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>IIF</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>VIF + IIF</td>
<td>1.9</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>VIF</td>
<td>4</td>
<td>>7</td>
</tr>
<tr>
<td></td>
<td>IIF</td>
<td><1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>VIF + IIF</td>
<td>4</td>
<td>>7</td>
</tr>
</tbody>
</table>

* Log, inhibition of Sindbis virus PFU yield (human interferons) or log, inhibition of GD-7 virus HA yield (mouse interferons).
Specifically, 0.5 ml of medium containing 1000 reference units per ml of either virus-induced or immune mouse IF were applied to duplicate tube cultures of L cells maintained at 37°. After different periods of time, one group of cultures was washed 6 times with Earle's balanced solution, refed with 0.5 ml of Eagle's medium, and frozen-thawed 3 times to release cell-associated IF. The fluids were then assayed for IF. The results of a representative experiment are shown in Table II.

It may be seen that binding of both VIF and IIF was essentially maximal after 5 minutes incubation at 37° and that the amount of bound IF remained unchanged thereafter. There was no significant difference between the amount of VIF and IIF bound at each time. The IF associated with the cells was approximately 0.6–1.2% of the total IF applied to the cultures. This finding substantially agrees with previous observations on cellular binding of VIF (16–21) and shows that binding of IIF occurs at a similar rate and to a similar degree.

Discussion. It has been previously shown that the development of the antiviral state in cells treated with VIF is triggered immediately by a very brief interaction between IF and cells and continues when the IF is removed from contact with the cells by washing and antibody inactivation (22). This finding has been confirmed for VIF by the data presented in this paper. However IIF, assayed under identical experimental conditions, failed to immediately activate cells after brief contact. Thus in both the human and mouse systems, detectable antiviral resistance was induced by IIF only after several hours of incubation at 37°. The different kinetics of cellular activation by the two types of IF may be due to: (a) Difference of availability of cellular receptors, (b) the presence in the IIF preparation, and not in the VIF preparations, of substances capable of retarding expression of interferon activity under the present experimental conditions, and (c) a different mechanism of activation of the antiviral state.

Studies of cellular binding of the two types of IF did not show any significant difference between their binding activity, suggesting that differences of association by the two IFs with the cell may not play an important role in establishing the different kinetics of activation. However, it should be borne in mind that this relatively durable binding which is usually measured (17–21) may not reflect transient cell-activating event by which induces rapid resistance (22). Specifics has been shown previously that firm binding to the cell surface is not required for the induction of the antiviral state by VIF, the present finding of different kinetic activation despite equal kinetics of binding further supports that conclusion.

The hypothesis that a component of IIF preparation could interfere with the action of the VIF molecule seems less likely since the presence of the slow acting VIF preparation did not inhibit the rapid action by VIF. However this experiment did not eliminate the possibility of the presence of a substance which only inhibits the action of IIF. Further studies with purified preparations of IIF could test this possibility.

The hypothesis that VIF and IIF maintain the antiviral state through different mechanisms appears likely and deserves further study. If the same biological activity can be evoked through different activation esses, the finding may provide a useful modeling for studying several critical activities, such as cellular regulation of expression, regulation of gene products and cell membrane receptor functions. Additionally, the different kinetics of activation of the antiviral state by the two types of IF provide a simple and rapid method to differentiate them.

Summary. The kinetics of activation of the antiviral state by virus induced interferon and by mitogen-induced immune interferon have been studied comparatively. It has been found that both human and murine virus induced interferons are able to activate the antiviral state after a brief (minutes) contact with the cells. In contrast, several hours

<table>
<thead>
<tr>
<th>Type of Interferon</th>
<th>Units of interferon associated with cells after (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Virus-induced</td>
<td>6</td>
</tr>
<tr>
<td>Immune</td>
<td>8</td>
</tr>
</tbody>
</table>
required for both human and mouse immune interferons to induce a comparable level of antiviral resistance. Experiments measuring the binding of the two interferons to cells showed that there was no significant difference in the rate and degree of binding, suggesting that a different total association of interferon with cells could not account for the lower kinetics of activation by immune interferon. Additionally, the possibility that some contaminants present in the immune interferon preparation could nonspecifically interfere with the rapid induction phenomenon is not supported by the finding that the rapid kinetics of cell activation by virus-induced interferon was not modified by the presence of immune interferon. The interesting possibility which remains is that the two interferons may activate cells by different mechanisms.

The authors are greatly indebted to Dr. G. Georgiades and Mr. M. Langford for the generous gifts of immune interferon and to Dr. S. Baron for helpful suggestions and criticism.

Received April 24, 1978. P.S.E.B.M. 1978, Vol. 159
Competition Binding Assay Using o-Methyl-[3H]-Demethyl-γ-Amanitin for Study of RNA Polymerase B (40292)

GEORGE M. GARRITY AND ARNOLD BROWN

Department of Microbiology, Graduate School of Public Health and Department of Medicine, U.S.V.A. Hospital and University of Pittsburgh, Pittsburgh, Pennsylvania 15240

The understanding of RNA synthesis and processing, and the enzymes and control mechanisms involved is of central importance in biology. The simplest and most reliable criterion for classification of eukaryotic RNA polymerases is their sensitivity to the fungal toxin α-amanitin. α-Amanitin and other naturally occurring amatoxins, as well as their synthetic derivatives, are of particular interest as molecular probes in the study of transcription. They bind very tightly to the polymerase molecule at a site separate from that which binds to the template DNA and product RNA (1, 2). This interaction does not affect the stability of the transcription complex formed between the enzyme and template nor does it interfere with the binding of precursor nucleotide triphosphates (1, 2).

A radioactive derivative of α-amanitin was synthesized by Wieland and Fahrmeir for use in their structural studies of the molecule (3). The method of synthesis as reported used large amounts of the parent compound and employed various destructive analytic techniques to study placement of functional groups in non-radioactive intermediate compounds and in the labeled end product. To permit the synthesis of a radioactive derivative of α-amanitin from a small amount of commercially available starting material their procedure was modified, and several new methods for analyzing the unlabeled intermediate compounds and the end product were introduced. This should enable more biologists to avail themselves of this powerful tool.

To demonstrate radiochemical purity and ensure reactivity of the labeled end product, a competition assay was developed. The assay demonstrates that the labeled derivative, o-methyl-[3H]-demethyl-γ-amanitin, binds to the same site as α-amanitin when reacted with either purified or crude preparations of RNA-polymerase B. Since this technique establishes that the labeled and unlabeled compounds are essentially interchangeable, it allows the study of amatoxin binding over wider ranges of ligand concentration than heretofore possible when radioactive material was used alone.

Methods and materials. To synthesize the first intermediate, o-methyl-α-amanitin, 5 mg of α-amanitin were dissolved in 4 ml of anhydrous methyl alcohol. This was added to 3 ml of an etheric solution of diazomethane generated from N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in the outer vessel of an MNNG diazomethane generator. The vessel was stoppered immediately and the reaction mixture was kept at room temperature for 2 hr. The solvents were then evaporated in vacuo, the remaining residue was suspended in a small volume of methanol/H₂O (1:1) and chromatographed on a column of Sephadex LH-20 (1.8 × 100 cm) with methanol/H₂O (1:1) (3). Column effluents were monitored at 310 nm with an Isco UA-5 uv monitor. Fractions with uv absorbing material were collected, solvents evaporated in vacuo, and the remaining residues redissolved in 1 mg H₂O. Concentration of the products was determined spectrophotometrically (1, 3, 4).

The second non-radioactive intermediate, o-methyl-β-amanin, was synthesized via periodate oxidation of o-methyl-α-amanitin (3). This was accomplished by the addition of 0.48 mg sodium periodate dissolved in 1 ml water to 2.08 mg of o-methyl-α-amanitin dissolved in 1.5 ml H₂O. The mixture was stirred for 5 min at room temperature followed by reduction of the excess periodate by the dropwise addition of 1.1 ml of 0.09 N sodium bisulfite. This mixture was chromatographed on a column of Sephadex LH-20 (1.8 × 100 cm) using H₂O as the solvent.

Synthesis of o-methyl-[3H]-demethyl-γ-amanitin was accomplished by reduction of
hyl-aldoamanitin with sodium boro-
hydride (3). One and two tenths mg of
m boro-[3H]-hydride (209 mCi/mg) was
l to 0.94 mg \textit{o}-methyl-aldoamanitin dis-
l in 1.5 ml of \textit{H}_{2}O. The reaction mixture
continuously stirred at 0° for 90 min at
100 ml the mixture was acidified by the
ion of 1 ml of 0.1 \textit{N} \textit{HCl}. After an
oral 15 minutes the mixture was neu-
tralized with 0.1 \textit{N} \textit{NaOH}. The reaction mix-
ture was chromatographed on a Sephadex
G-50 column using methanol/\textit{H}_{2}O (1:1) as
bed above. Fractions found to have
the proper uv-spectrum (4) and containing
activity were rechromatographed on a
in of Sephadex G-50 (0.9 × 15 cm)
\textit{H}_{2}O as the solvent. Peak fractions were
isolated, uv- absorbance and counting rates
determined and the specific activity of
\textit{hyl-[3H]}-demethyl-\textit{y}-amanitin was cal-
ded. The specific activity was verified by
ion of the labeled derivative with pu-

wheat germ RNA polymerase in a
\textit{ng} assay described below.

\textit{p} layer chromatography of \textit{a}-amanitin derivi-
\textit{atives}. In order to identify various
on products and assess their purity, ali-
of peak fractions were concentrated
en studied by thin layer chromatogra-
\textit{Silica Gel-OF} plates. Two solvent
ns were employed, selected for their
\textit{i} to separate the intermediate com-
\textit{p}ts. Chromatograms were visualized by
ng with Erlich’s solution or transclin-
\textit{dehyde/HC}I (3, 5). \textit{a}-Amanitin was
as a reference standard against which
igration of the intermediates was com-

radioactive products were located by
ng 0.5 cm squares from moist plates
\textit{ring} chromatography. The resultant ma-
was then digested overnight in Nuclear
\textit{go Solubilizer (NCS)} at 45° and
ned in nonaqueous, toluene based scin-

\textit{a}-red spectrophotometry of \textit{a}-amanitin
\textit{on}-radioactive derivatives. As an addi-
proof of the proper placement of func-
groups in the amanitin molecule infra-
\textit{ectra were obtained for \textit{a}-amanitin, \textit{o}-
\textit{hl}-\textit{a}-amanitin and \textit{o}-methyl-aldoaman-
imal amounts of each compound (ca.
g) were dissolved in \textit{H}_{2}O and lyophi-
KBr pellets were prepared for each
sample using a Wilk’s mini press. The pellets
were scanned from 4000 to 600 cm-1 on a
Beckman Acculab 4 Infra-red Spectropho-
tometer. The reference beam was attenuated to
permit adjustment of the baseline. Chromo-
atographically pure \textit{a}-amanitin was used as a
reference compound.

\textit{Amatoxin competition binding assay}. The
method used to demonstrate the binding of
\textit{[3H]}-amanitin was based on the procedure of
Cochet-Meilhac \textit{et al.} (1, 2). Purified wheat
\textit{germ RNA polymerase} or the enzyme present
in crude homogenates of baby mouse kidneys
was used as a substrate for binding the radio-
active ligand. Crude homogenates were pre-
pared by grinding whole kidneys of baby
mice (8-10d) in a Potter-Elvehjem tissue
\textit{grinder} in homogenizing buffer (50 mM \textit{Tris}
\textit{HCl} p\textit{H} 7.4; 0.1 mM \textit{EDTA}; 0.1 mM di-
thiothreitol and glycerol 30 \textit{v/v}). Aliquots of
100 \textit{\mu}l of the crude homogenates or 100 \textit{\mu}l of
the purified enzyme in binding buffer (1.63
\textit{× 10-6} \textit{M}) were incubated in an assay
\textit{reaction} containing 500 \textit{\mu}l binding buffer (80 mM
\textit{Tris HCl} p\textit{H} 7.9; 0.1 mM \textit{EDTA}; 0.1 mM
dithiothreitol; 150 mM (\textit{NH}_{4})_{2}\textit{SO}_{4}; 0.2
\textit{mg/ml bovine serum albumin}; 0.4 mg/ml
rabbit gamma globulin and 30\% (\textit{v/v})
glycerol), 10 \textit{\mu}l \textit{[3H]}-\textit{y}-amanitin (9.13 \textit{× 10-6}
\textit{moles ca. 2.0 Ci/mn mole}) and 10 \textit{\mu}l of unla-
abeled \textit{a}-amanitin in varying concentrations.
Controls for \textit{[3H]}-\textit{y}-amanitin binding con-
tained 10 \textit{\mu}l binding buffer in place of
\textit{a}-amanitin. Samples were incubated at 4\textdegree for
18 hr. After 18 hr 1 \textit{vol} of (\textit{NH}_{4})_{2}\textit{SO}_{4} solution,
saturated at 4°, was added to the reaction
mixture and samples were kept at 4° for an
additional hour. Free and unbound amanitin
were then separated by centrifugation at
39,000g for 20 min. The supernatant was
discarded and the pellet was redissolved in 1
\textit{ml of binding buffer}; an equal volume of
saturated (\textit{NH}_{4})_{2}\textit{SO}_{4} was again added and
the samples were incubated at 4° for 30 min,
at which time they were recentrifuged as
described above. This suspension-reprecipita-
tion step was repeated two additional times.
Finally the pellet was dissolved in 200 \textit{\mu}l of
\textit{H}_{2}O, digested overnight in NCS at 45° and
counted in non-aqueous toluene based scin-
tillant. Counting efficiency was approxi-
ately 85\% of that obtained for unquenched
samples. Values obtained with the highest
concentration of α-amanitin were found to correspond to the background samples containing no RNA polymerase when the purified enzyme was used. When the assay was done using the crude homogenate as a source of RNA polymerase the values obtained at the highest concentrations of α-amanitin were assumed to represent nonspecific binding of the labeled derivative. This value did not exceed 6% of the total label bound and was used to correct experimental values obtained with crude homogenates.

\(^{3}H \) Amanitin saturation assay. To verify the specific activity of the \(^{3}H \)-γ-amanitin as determined by the ratio of radioactivity/absorbance at 310 nm an experiment was done to ascertain the amount of purified wheat germ RNA polymerase required to saturate a fixed amount of the radioactive ligand. Each sample contained \(^{3}H \)-γ-amanitin \((1.47 \times 10^{-9} \text{ M}) \) and variable concentrations of RNA polymerase from 2.63 \(\times \) \(10^{-9} \text{ M} \) to 5.26 \(\times \) \(10^{-8} \text{ M} \). Concentration of \(^{3}H \)-γ-amanitin at saturation was based on the 50% end point. Conditions for the assay are identical to those described above for \(^{3}H \)-γ-amanitin binding controls.

Materials. The materials used for these experiments were obtained from the following suppliers: N-methyl-N'-nitro-N-nitrosoguanidine, p-dimethyl-aminobenzaldehyde and MNNG diazomethane generator, Aldrich Chemical Co., Milwaukee, WI; α-amanitin, Boehringer-Mannheim Biochemicals Indianapolis, IN; Nuclear Chicago Solubilizer (NCS) and sodium boro-\(^{3}H \)-hydride, Amersharm-Searle Co., Arlington Heights, IL; transcinnamaldehyde, Eastman Organic Chemical Rochester, NY; wheat germ RNA polymerase, Miles Laboratories, Elkhart, IN; Sephadex LH-20 and G-50, Pharmacia Fine Chemicals, Piscataway, NJ; Silica Gel OF TLC plates, New England Nuclear, Boston, MA; rabbit IgG and ultra pure ammonium sulfate Schwartz Mann, Orangeburg, NY; sodium periodate and sodium metabisulfate, Sigma Chemical Co., St. Louis, MO.

Results. Synthesis of a radioactive derivative of α-amanitin. Chromatography of the methylation product of α-amanitin on Sephadex LH-20 resulted in two peaks absorbing at 310 nm (Fig. 1). Thin layer chromatography of the material in fraction 13 in butanol/acetone/H\(_2\)O (30/3/5) yielded a band co-migrating with the α-amanitin \(R_f 0.34 \). With methanol/H\(_2\)O (4:1) a vent separate resolution was observed (\(R_f \) 0.86 vs. 0.7). Infra-red spectrophotometry showed differences in the methyl and the parent compound. Migrating methyl derivative (an ary phenolic hydroxy group moiety) was expected to exhibit the regions of 1300–1180 cm\(^{-1}\) or more. The comparison spectra with the methyl derivative (Fig. 2) demonstrate changes between 1450 and 1125-1025 cm\(^{-1}\).

The results of Sephadex LH-20 raphy of the periodate oxidatio of methyl-α-amanitin are presented. Only the major peak was four typical uv-spectrum for an amate layer chromatography using tone/H\(_2\)O and stained with hyde/HCl showed that the reactant migrates slower than the α-amanitin (\(R_f \) 0.30) and stains reddish than violet. Infra-red spectral showed changes at 2800 cm\(^{-1}\) as consistent with the introduction of the phatic aldehyde group into the molecule (Fig. 2c).

Following reduction of α-amanitin with sodium boro-\(^{3}H \) reaction products were separated with Sephardex LH-20. Three peaks absorb were eluted (Fig. 4). The major peak did not possess a
A comparison of the infra-red spectra of α-amanitin (2a), o-methyl-α-amanitin (2b) and o-methyl-aldo- (2c). Samples were prepared as KBr pellets and scanned at slow speed using the normal slit program of a Acculab 4 Infra-red Spectrophotometer. The reference beam was attenuated to obtain a suitable base line.

The spectrum of an amatoxin and while the peak in the center peak did resemble an amatoxin by uv spectrophotometry the rela-nt of incorporated radioactivity was w. Only the material in the trailing d both an amatoxin uv spectrum and signif-icant amount of incorporated label. Major peak of radioactivity was unasso- rith any amatoxin containing fraction s assumed to be unreacted. Fractions 40 were pooled, concentrated in vacuo -chromatographed on a column of ex G-50 to ensure complete removal unreacted radioactivity. The column is presented in Fig. 5. The major of radioactivity coincided with the uv-absorbance in fraction 11. Very staminating radioactivity was present. of the material eluted from Sepha-0 was verified by thin layer chroma-tography in butanol/acetone/H₂O. The mig-ration of the radioactive derivative was com-pared to the marker, α-amanitin, which was detected by staining with Erlich’s reagent. The results of the thin layer chromatography are presented in Fig. 6. The radioactive de- rivative migrates as a single band (Rf = 0.40) ahead of the marker (Rf = 0.34). Neither infra-red spectrophotometry nor destructive analytic techniques were employed to verify the chemical structure of the end product because of the small amount recovered. The end product is assumed to be o-methyl-[³H]- demethyl-γ-amanitin since only the aldehyde formed in the previous step would be available for borohydrate reduction.

Saturation of wheat germ RNA polymerase with [³H]-γ-amanitin. The specific activity of [³H]-γ-amanitin was determined by two independent methods. Based on the uv absorption and counting rates of several small samples, the material in fraction 11 (Fig. 5) was
AMATOXIN COMPETITION BINDING ASSAY

was calculated to be 1.47×10^{-6} M and the specific activity 1.88 Ci/m mole. Saturation data are presented in Fig. 7.

Amatoxin competition assay. A competition assay was designed to test the hypothesis that $[^3H] \gamma$-amanitin bound to the same site as α-amanitin and with approximately the same affinity. The concentration of the radioactive derivative was constant at 1.47×10^{-6} M (approximately 12,000 cpm) and the concentration of the competing, unlabeled α-amanitin was varied from 8.27×10^{-11} to 2.62×10^{-6} M. The assays were carried out at four to five times the concentration of $[^3H] \gamma$-amanitin required to saturate the amount of RNA polymerase present. Controls for non-

estimated to contain 7.25×10^{-3} μmoles/ml α-methyl-$[^3H]$-demethyl-γ-amanitin with a specific activity of 2.50 Ci/m mole. Fraction 12 was found to contain 7.23×10^{-3} μmoles/ml and have a specific activity of 2.16 Ci/m mole. Specific activity estimates based on the saturation of $[^3H] \gamma$-amanitin with wheat germ RNA polymerase agreed well with those obtained by instrumental methods. The fifty percent maximum binding of RNA polymerase was found to occur at 7.35×10^{-9} M. Assuming that the reaction was at equilibrium, had a very small K_D (approximately 10^{-11} M, see ref. 1, 2) and that the purified enzyme contained a single binding site, the concentration of $[^3H] \gamma$-amanitin

Fig. 3. Products of sodium periodate oxidation of α-methyl-aldoamanitin were chromatographed on a column of Sephadex LH-20 (1.8 x 100 cm) using H$_2$O as the solvent. Fractions contained approximately 6.25 ml. Column monitoring and fraction collection were accomplished as described in Fig. 1.

Fig. 4. The reaction products of sodium boro-$[^3H]$-hydride reduction of α-methyl-aldoamanitin were chromatographed on a column of Sephadex LH-20 (1.8 x 100 cm) using methanol/H$_2$O (1:1) as the solvent. Flow rate, column monitoring and fraction size are described in Figure 1. 50 μL aliquots of each fraction were used to approximate the total radioactivity. (---) absorbance 310 nm; (Δ--Δ) $[^3H]$ cpm.

Fig. 5. α-methyl-$[^3H]$-demethyl-γ-amanitin contained in fraction 39 (Fig. 4) was chromatographed on a column of Sephadex G-50 (0.9 x 15 cm) using H$_2$O as the solvent. Each fraction contains 0.75 ml; flow rate 0.38 ml/min. Five microliter aliquots of each fraction were assayed for radioactivity (---) absorbance 310 nm; (Δ--Δ) $[^3H]$ cpm.

Fig. 6. Thin layer chromatography of α-methyl-$[^3H]$-demethyl-γ-amanitin. A 5 μL aliquot of the peak fraction eluted from Sephadex G-50 was chromatographed in butanol/acetone/H$_2$O (30:3:5). Migration of α-amanitin indicated by arrow. Each point represents a migration of 0.5 cm.
AMATOXIN COMPETITION BINDING ASSAY

7. Saturation of wheat germ RNA polymerase
with methyl-[\(^{3}H\)]-demethyl-\(\gamma\)-amanitin. o-methyl-
[\(^{3}H\)]-demethyl-\(\gamma\)-amanitin (1.47 \times 10^{-6} M) was incu-
bor for 18 hr in the presence of increasing concen-
tration of wheat germ RNA polymerase (2.63 \times 10^{-9} M - 1 \times 10^{-6} M). Assay mixture was the same as used for the competition assay except unlabeled o-
amanitin was omitted.

ic binding did not contain the enzyme bound less than 0.8% of the total input. Results of competition assays for both o-
and 3-methyl-[\(^{3}H\)]-demethyl-\(\gamma\)-amanitin in Fig. 8. The percent bound [\(^{3}H\)]-
unitin was determined by calculating the ratio of counts bound for each concen-
tration of \(\alpha\)-amanitin to the counts bound in samples containing no unlabeled competing
unitin. The ideal curve is based on the ass in specific activity of the total ama-
concentration at saturation, assuming a single binding species is present and oth compounds compete equally for the
site. The experimental results for enzyme preparations closely appro-
xed the ideal curve.

cussion. Previous studies have demon-
strated that o-methyl-[\(^{3}H\)]-demethyl-\(\gamma\)-amanitin is a powerful tool in studying the eukar-
nucleoplasmic RNA polymerase (1, 2).

However, the unavailability of this com-
pound or of large enough amounts of \(\alpha\)-
aminitin to synthesize this derivative by the
usely reported method has restricted the
preparation of this technique.

The procedures presented in this paper are the synthesis of small amounts of
\(\alpha\)-amanitin from readily available quan-
ity of starting materials by the introduction of
nondestructive analytic techniques to
ensure proper placement of functional groups in nonradioactive intermediates. Use of
shorter columns of Sephadex LH-20 did not affect the desired resolution and the intro-
duction of a short column of Sephadex G-50
ensures complete removal of any unreacted
radioactivity in the end product. This is ver-
ified by thin layer chromatography of the
radioactive product and further substantiated by the saturation curve of [\(^{3}H\)]-\(\gamma\)-amanitin
with purified wheat germ RNA polymerase
B which less than 3% of the total input
remained unbound. The competition assay
conclusively demonstrates that the final prod-
uct binds to RNA polymerase in essentially
the same manner as the unreacted parent
compound and at the same site.

Although the competition assay was de-
signed as a test for reactivity and radio-
chemical purity of the final product, the usefulness of this assay exceeds this purpose. Currently,
studies of amanitin resistant RNA polymer-
ase B have relied on the inhibition of enzyme activity by various concentrations of ama-
toxin to characterize wild type or mutant
enzymes (6, 7). This technique cannot be applied to crude cell homogenates as the
normally resistant RNA polymerases A and
C as well as RNase would complicate the
kinetic analysis.

Fig. 8. Competition binding assay. The ideal curve (O-O) represents the percent of the total amanitin present as o-methyl-[\(^{3}H\)]-demethyl-\(\gamma\)-amanitin. The assay was carried out in the presence of a constant amount of o-methyl-[\(^{3}H\)]-demethyl-\(\gamma\)-amanitin (1.47 \times 10^{-6} M) previously determined to be in excess required to saturate either the purified wheat germ RNA polymerase (2.63 \times 10^{-9} M) or the enzyme present in 0.0189 g of mouse kidney homogenate. Percent saturation was calculated from the total radioactivity bound in samples containing no unlabeled o-amanitin; wheat germ RNA polymerase (\(\Delta\) - \(\Delta\)); crude mouse kidney homogenate (O – O).
The amanitin competition assay could provide a new method for studying the interaction of amanitin with resistant RNA polymerase B enzymes. The assay is essentially free from interference by other RNA polymerases and is unaffected by RNase, therefore, crude homogenates as well as purified enzyme preparations can be studied. In addition, the assay provides a means of direct measurement of dose-response over a wide range of concentration and could provide additional insight into possible mechanisms of amanitin resistance.

Summary. An improved method permitting the synthesis of a radioactive derivative of α-amanitin from a small amount of the commercially available parent compound has been developed. The labeled derivative was used in an amatoxin competition binding assay designed to detect eukaryotic RNA polymerase B in either purified form or in crude homogenates. Both compounds are shown to compete for the same binding site and with approximately the same affinity. The competition assay proves to be both sensitive and highly selective for RNA polymerase B and provides a new, direct method for studying the enzyme–amanitin interaction on a much broader range of concentration previously reported.

We greatly appreciate the assistance of Ms. Abdou in preparation of illustrations, Ms. Donna for secretarial assistance, and Drs. John A strong, Patricia A. Craven and Mary Edmonds for critically reviewing the manuscript. This work was supported through the Medical Research Service of the Veterans Administration.

metabolites of Leishmania donovani Promastigotes. I. Isolation and Initial Characterization (40293)

LLOYD H. SEMPREVIVO

Bent of Zoology and Bureau of Biological Research, Rutgers University, Piscataway, New Jersey 08854

The on and characterization of parasitic n exometabolites is of importance of the possible roles these may play ost-parasite relationship. Since the of intracellular parasites do become d-contaminated with host cell sub-solution, purification, and character of these parasite products becomes

Leishmania provides an ideal system where ence of exometabolites produced by stive intracellular protozoan parasite : host may readily be studied. Leish-organisms have two morphological amastigote, an obligative intracel n infecting vertebrates, and the pro e, which exists extracellularly in the cior and will grow readily in culture. ms have been reported to produce ase exometabolites which demon-togenic identity (1, 2).

ts to date dealing with substances imulate in the media in which proes are metabolizing (metabolized) have involved either undefined media containing blood proteins (1, t solutions (4, 5). In order to deter-nastigote substances were present olized Šenekji's medium after proe growth, Clinton et al. (3) utilized electrophoretic procedures, reaczed medium against antiserum rabits to the homologous promas-One band formed between the anti-a substance from the metabolized

medium. No reaction was observed when nonmetabolized medium was tested. Schnur et al. (1) utilized metabolized Feinberg and Whittington's medium and reacted this with rabbit antipromastigote hyperimmune serum and demonstrated multiple bands (termed EF) by diffusion in gels. Since Schnur et al. obtained their metabolized medium from cultures of promastigotes in log phase, they con-cluded that the EF substances were exometabolites and not products of lysis. In addition, the molecular weight of the EF substances was within the range of 25,000 and 70,000, but they were not immunogenic when injected into rabbits. Decker and Honigberg (6), however, reported successful induction of antibodies in mice to the exometabolite. Re-sults utilizing less defined media suggest that promastigotes of Leishmania produce exometabolites, but there is no agreement as to their number and immunogenicity (1, 3, 6). The lack of agreement in the data may be attributed to the different media used to culture the promastigotes.

Media used in in vitro culture should be defined and protein free to facilitate recovery of exometabolites more closely resembling the native form released from the parasite. Greenblatt and Glaser (4) used Locke's so-lution with glucose at 37° to maintain pro-mastigotes and found a variety of molecules including various amino acids, hypoxanthine, guanosine, uracil, and ribose in the medium. They did not detect any large molecules and concluded that the low molecular weight sub-stances found in the metabolized medium resulted from leakage and not gross lysis. On the other hand, Decker and Janovy (5) in a similar study detected not only small mole-cules but also proteins and RNA. Thus, while salt solutions may be ideal for recovery of leakage products from promastigotes, they may not adequately support complete metabolism of the organisms. Measurable quanti-ties of larger molecular weight excretion-
secretion metabolic products may not accumulate. On the other hand, the higher molecular weight products detected could be the result of lysis.

More recently Slutzky and Greenblatt (7) isolated a substance by degradative isolation techniques (boiling and 33% trichloroacetic acid solution) from proteid _L. tropica_ metabolized medium. The substance isolated was initially associated with medium protein, was immunologically active and carbohydrate rich. The isolated entity did not pass through a 30,000 mol wt exclusion membrane. Little or no protein was reported to be associated with the isolated entity.

The object of this study was to isolate and characterize the metabolic by-products of _L. donovani_ promastigotes in their native form. To accomplish this log phase promastigotes of _L. donovani_ were maintained in protein free tissue culture medium to minimize the interference of lytic by-products. The metabolized medium was then fractionated and examined spectrophotometrically and serologically.

Materials and methods. Amastigotes utilized to initiate promastigote cultures were obtained from the spleens of hamsters infected with the 3S strain of _L. donovani_ (8). Spleens were homogenized in sterile phosphate-buffered (pH 7.0) physiological saline and amastigotes isolated by differential centrifugation (9). All cultures were initiated at a density of 5 × 10⁶ organisms per ml and subcultures were made when the density of a culture reached 2 × 10⁷ promastigotes per ml. Promastigotes utilized to generate metabolized culture medium were never less than 4 nor more than 15 subcultures removed from the initial amastigote-seeded culture. All cultures were incubated with an atmosphere of 5% CO₂ in air at 25 ± 0.1°.

The culture medium utilized to grow promastigotes (growth medium) consisted of 9 parts Medium 199 with Hanks' salts (Gibco) and 1 part whole defibrinated rabbit blood (Pel Freeze). The blood was centrifuged (4 hr at 2000g) before inclusion into the medium to separate serum from cells. Serum was inactivated at 56° for 30 min and stored at −20° until used. Cells were washed in excess Hanks' balanced salt solution (Gibco) 5 times and lysed in a volume of double distilled water equal to 10× the packed cell vol. Cell ghosts were removed by centrifugation (24 hr at 200g) and the supernatant utilized in the medium. To prepare 1 liter of growth medium, 100 ml of Medium 100 (10×) added slowly to 500 ml of lysate and a sufficient amount of double distilled water added to bring the volume to 950 ml. The pH maintained at 7.2 by addition of NaHCO₃ needed. Serum (50 ml) was then added to the medium sterilized by filtration through 0.22 μMiliapore filter.

Medium used to maintain promastigotes (maintenance medium) consisted of Medium 199 with Hanks' salts (Gibco) and 25 Hepes buffer (Sigma). The pH was adjusted to 7.2 with 1 N HCl or NaOH. The maintenance medium was sterilized as described above.

Promastigotes were allowed to metabolize growth and maintenance media. Growth medium cultures were initiated at a density of 5 × 10⁴ organisms per ml. When promastigote density reached 8 × 10⁶ p/c (mid log phase), the cultures were centrifuged (20 min at 2000g) separating promastigotes from the medium. Organisms were washed twice in excess Hanks' balanced salt solution and resuspended in maintenance medium. A density of 10⁷ promastigotes per ml. Cultures in maintenance medium were incubated 8 hr at 25° with a 5% CO₂ in air atmosphere. Promastigotes were removed by centrifugation (1 hr at 2000g) and the metabolic medium was filtered through a 0.22 μMiliapore filter, concentrated 10× by lyophilization and stored at −20°.

Two ml aliquots of 10× concentrated metabolized maintenance medium were injected on a column (1.6 × 80 cm) of fine grade Sephadex G25 (Pharmacia). Volume was 54 ml, bed volume was 16 ml and flow rate was 7 ml per hr. The elution was used a 5% acetic acid solution in distilled water. The column was characterized using α-melanocyte stimulating hormone (wt 1910; Bradykinin, mol wt 1204; and g- pentapeptide, mol wt 768, all purchased from Calbiochem. Elution values were 94, 120, and 145 ml respectively. Each standard supplied to the column as a 1 ml vol containg 50 μg peptide. Elution volume was determined from the maximum of the el...
Leishmania donovani

EXOMETABOLITES, I.

Ilution values for the standards against the log of their molecular approximate a straight line.

ml fractions were collected from the and analyzed on a Beckman DB 24 spectrophotometer. Absorption were obtained between 190 and 350 mount of peptide present in a fraction nated photometrically by the method er and Miller (10). Fractions were ed to dryness and redissolved in sol-

15 M NaF in glass double distilled The blank contained solvent only. nce was measured at 193 nm and a l curve generated using bovine serum a-melanocyte stimulating hormone, pentapeptide and Bradykinin (Calbi-

The standard curve developed here stinguishable from that presented by and Miller with 11 µg/ml protein an absorbance value of 0.7. Direct onality between concentration and nce was applicable for all standards absorbance of 0.7. Since all fractions a protein amount was estimated had nce values greater than 0.7, aliquots ons were diluted with solvent until an nce value of 0.7 was attained. The of protein in a fraction was calculated plying the dilution factor x 11 µg/ml. amount of sugar present in fractions es by the procedure of Dubois 1). A standard curve for d-galactose erated which was indistinguishable at presented by Dubois et al. The value for triplicate samples contain- g of d-galactose was 0.11 absorbance 490 nm.

fic chemical tests for tryptophan and were performed on selected fractions procedure of Fischl (12) and the of Udenfriend and Cooper (13) as d by Massin and Lindenberg (14) re- ly. Controls were composed of 50 solutions of tryptophan, tyrosine and

L. donovani promastigote immune se- i raised in rabbits by injecting a ho- se composed of freeze-thawed pro- es in saline and FCA (1:1). Each re-ceived a total volume of 1 ml, con-

21 mg N (determined by Kjeldahl

procedure [Campbell et al., 15]) delivered in 0.1 ml aliquots at one time to 8 sc sites on the back and 2 im sites in the hind legs. The animals were bled 30 days after immunization. Serum was recovered by centrifugation (1 hr at 2000g) and stored at −20°C.

Test antigens were prepared by mixing (6:1) metabolized maintenance medium (free of serum) with nonmetabolized growth me-

dium (containing serum) and concentrating tenfold by lyophilization. Control antigens were nonmetabolized growth medium and nonmetabolized maintenance medium prepared in the same manner.

The microsomes in each sample were ex-

changed by diafiltration (16) and standard-
ized using a 500 mol wt cutoff ultrafiltration membrane (UM 05) with a Model 12 stirred cell (Amicon). Five sample volumes of barbital buffer (17) were exchanged with a predicted 99+% complete exchange of micro-

solute (16).

Gel diffusion plates were prepared by pouring 10 ml melted agar solution (1% Difco Bacto Agar in barbital buffer [17] with 0.1% sodium azide) into a 9 cm-diameter petri dish. Wells (5 mm O.D.) were cut in the agar 7.5 mm apart (center to center). After the wells were filled with either antiseraum or antigen solution, the plates were incubated 48 hr in a humid atmosphere at 25°C. Precipitin lines appeared within 1 to 2 days but were allowed to develop for a total of 4 to 7 days. Gels were washed free of nonreacting protein with barbital buffer (17) for 48 hr (4 changes of buffer) and stained wet with a saturated so-

lution of picric acid in 1% acetic acid.

Results. When promastigote metabolized and nonmetabolized growth media were tested against rabbit antipromastigote immu-

mune serum by gel diffusion, the metabolized medium reacted forming multiple precipitate bands. This confirmed earlier reports that exometabolites were present in the metabo-

lized growth medium and would react with specific antiserum (1, 3). When promastigote metabolized maintenance medium was tested against the same antiserum, no reaction oc-

urred. This suggested that the presence of serum protein was necessary for the exometabolite to react with antibody.

To determine whether serum protein was indeed essential for formation of specific pre-
precipitates, metabolized and nonmetabolized maintenance media were mixed with nonmetabolized growth medium, the microsolute environment standardized, and reacted with immune serum. The mixture containing metabolized maintenance medium yielded multiple precipitate bands identical to the ones observed when metabolized growth medium was used as the reacting antigen (Fig. 1). No reaction occurred with the nonmetabolized medium.

When metabolized maintenance medium was fractionated, spectrophotometric analysis at 274 nm revealed two major fractions (A and B) (Fig. 2) with elution values of 101 and 122 ml respectively. Ultraviolet absorption spectra of these major fractions from 190 to 350 nm are shown in Fig. 3. None of the fractions from nonmetabolized maintenance medium demonstrated either of the major peaks shown in Fig. 2.

When all fractions collected after column chromatography of either metabolized maintenance medium or nonmetabolized maintenance medium were mixed with nonmetabolized growth medium and tested against antipromastigote immune serum, only Fraction B reacted to form precipitate bands (Fig. 1). These precipitate bands demonstrated reactions of identity with those formed against antipromastigote immune serum using promastigote metabolized growth medium as the reacting antigen. When Fraction A (10 absorbance units) was mixed with the antiserum prior to reaction with Fraction B, no evidence of neutralization was observed.

Fraction A and B samples with absorption values of 3.1 (at 293 nm) were estimated to contain approximately 48 µg peptide and 10 µg sugar per ml. Fractions from the column which eluted both immediately before and after Fractions A and B were determined not to contain sugar.

Discussion. The results suggest that at least two low molecular weight substances are recoverable from promastigote metabolized protein free medium during the log phase growth of the organisms. No high molecular weight substances were detected as might have been anticipated if the recovered substances were the result of promastigote lysis. Microscopic examination of log phase cultures revealed no lysed organisms suggesting that recovered substances are indeed exometabolites and not products of autolysis. Spec-

![Fig. 1. Gel diffusion plate depicting reactions of promastigote metabolized growth medium (well A), concentrated promastigote metabolized maintenance medium mixed with nonmetabolized growth medium (well B), concentrated promastigote metabolized maintenance medium (well C) and concentrated nonmetabolized maintenance medium mixed with nonmetabolized growth medium (well D) against rabbit antipromastigote immune serum (well E).](image-url)

![Fig. 2. Sephadex G25 gel filtration profile of metabolized maintenance medium at 274 nm.](image-url)

![Fig. 3. Ultraviolet absorption spectra of gel filtration Fraction A (-----) and Fraction B (----), pH 7.2.](image-url)
Leishmania donovani

Exometabolites, I.

109

uta shown in Fig. 3 suggest the presence of double bonds (10) with tyrosine present in on A and tryptophan in Fraction B. The presence of these amino acid residues was confirmed by colorimetric procedures. Detection of sugar in Fractions A and B suggests that the substances may be glycolipids. Since the molecules appear to be of molecular weight and the ratio of protein to carbohydrate is approximately 5:1, the carbohydrate-ester bond of these molecules is likely composed of only units.

molecular weights of the substances in bands A and B appear to be in the range 1-1900 in that their elution values were between those of gastrin pentapeptide (mol wt 768) and a-melanocyte stimulating hormone (mol wt 111) (see Andrews). It is premature at this time to assign a precise molecular weight. The estimated molecular weight of recovered substances is 25 to 30,000 daltons. Peptides of this size are expected to act as simple haptenes.

Generally low molecular weight substances tend to induce an immune response unless condensed to a larger carrier molecule (21). The interaction of low molecular weight material with proteins in a way that conjugates in with multivalency with respect to the amine moiety (20). The exometabolites appear to act as monovalent haptenic groups. Data suggest that the simple substance in Fraction B attaches to sites on the mureptide making the conjugated mol multivalent with respect to the site and results in the formation of precipitates when reacted against promastigote immune serum. This retatron is supported by the fact that the indole formed with the promastigote measured growth medium are identical to observed when the substance in Fraction A is mixed with protein. The substance fraction A did not form precipitates when reacted against antipromastigote immune serum. This may have occurred because no relevant entities formed or because there was insufficient antibody present specific for it.

Exometabolite produced by L. tropica has been reported to be a carbohydrate-rich substance that does not pass through a 30,000 mol wt exclusion membrane (7); however, it has been demonstrated to be adsorbed initially to medium proteins. While it is not impossible that L. donovani and L. tropica produce physically distinct exometabolites, the major differences reported may result from the method of isolation. The L. donovani exometabolite reported here was isolated by gentle procedures under mild conditions while Slutzky and Greenblatt utilized more harsh procedures.

Fraction B exometabolite is released by both amastigotes and promastigotes as evidenced by the fact that reactions of identity occur when promastigote metabolized growth medium and amastigote infected spleen homogenate supernatant react with antipromastigote immune serum (2). Leishmania donovani promastigote metabolized growth medium has been used as a vaccine and induced specific protection against amastigote challenge (22). If the protective substance in metabolized medium is a conjugated antigen, then Fraction B exometabolite may be the antigenic determinant responsible for the protection. Work is proceeding to determine if Fraction B, after conjugation to a protein carrier, will act as an immunogen and induce specific protection.

Summary. Two exometabolites have been demonstrated to accumulate in protein-free culture medium in which log phase promastigotes of L. donovani are metabolizing. These molecules demonstrate gel filtration characteristics suggesting a molecular weight in the range of 800–1900. The ultraviolet absorption spectra of the exometabolites suggest the presence of peptide bonds with tyrosine present in one and tryptophan in the other. Sugar was demonstrated to be associated with both Fractions A and B, suggesting that exometabolites are glycopeptides. The exometabolite in Fraction B did not react with specific antibody to form precipitates unless it was in combination with serum protein. The data strongly suggest that the exometabolite conjugates with protein forming a multivalent entity.

m of Acyclic and Cyclic N-Nitrosamines by Cultured Human Colon

MAN AUTRUP, CURTIS C. HARRIS, AND BENJAMIN F. TRUMP

Studies Section, Experimental Pathology Branch, Carcinogenesis Program, National Cancer Institute, Maryland 20014 and Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland 21201

Some compounds are a major class of carcinogens which are candidates to various cancers (1). N-Nitrosamines detected in ambient air over certain areas (2), in tobacco smoke (3), rinks (4, 5). Furthermore, they can be formed in vivo by the reaction of nitrite with amines under acid conditions, in the stomach (6). They may also be produced from bacteria e.g. E. coli in situ. Other amines require metabolic activation or do not enter the human body. The mutagenic and carcinogenic activity of N-nitrosamines was demonstrated to be due to the presence of the reactive amines to the carcinogenic action amine.

Animal systems to study carcinogenicity in human epithelium are being studied (11, 12). We have previously cultured human colon cells in vitro from several chemical carcinogens. Aromatic hydrocarbons, N-nitrosamines, and polycyclic aromatic hydrocarbons were also found to be carcinogenic to the colon (13). We now report on the metabolism of the various aliphatic N-nitrosamines in the human colonic mucosa.

Materials and Methods. Non-tumorous human colonic tissue was collected at the time of surgery or immediately after autopsy (14) of 11 patients; 7 with and 4 without cancer of the colon. The tissues were washed in sterile containers on ice at 16-15 minutes within 15 minutes from the patient and kept at 4°C until cultured. The specimens were cut into squares (0.5 x 0.5 cm) and cultured at 37°C in culture, one of the following medium.

- [14C]labeled N-nitrosamines (New England Nuclear, Boston, MA) were added to the culture media to give a concentration of 100 μM: [14C]dimethylamine (35 mCi/mg); prepared on NCI contract N01-CP-55677 and purified by the method of den Engelse et al. (15); N-[14C]-1-ethylindoleylamine (14.5 mCi/mg); N-[14C]-2,6-nitrosopiperidine (18.8 mCi/mg); N-[14C]-2,5-nitrosopyrrolidine (16.2 mCi/mg); N-[14C]-3,4-nitrosopyrrolidine (5 mCi/mg). N,N'-[14C(U)]-dinitrosopiperazine (16.5 mCi/mg); N-[pyrrolidine-14C]-2-nitrosonornicotine (4.10 mCi/mg).

Five explants per experimental variable in three sterile 60 mm plastic Petri dishes (Falcon Plastics, Oxnard, CA) were placed on a rack in a closed container (Nalgene plastic jar, 500 ml) which was modified with two ports for replacing air with 95% O2-5% CO2. The containers were placed on a rocker platform and rocked approximately 10 cycles per minute for 24 hr. In order to remove 14C-CO2 formed by the metabolism of the N-nitrosamine the containers were flushed with N2 for 5 min and the CO2 absorbed in two tubes each containing 8 ml 0.2 M Ba(OH)2. After removal of the explants, 1 ml 3M phosphoric acid (pH 3) was added to each culture dish to release CO2 dissolved in the media. After 4 hr at 37°C, the containers were then flushed with N2 for another 5 min.

The tissue culture medium was transferred to a reaction flask (Kontes Glassware, Vineland, NJ) the sidearm of which contained a small vial with 0.5 ml 4N KOH, and oxidized by HgCl2 (100 mg/ml) at 90°C for 1 hr (15). The KOH solution was added to the Ba(OH)2 solution. The precipitate was collected on Whatman GF/C filters and washed with absolute ethanol until the count in the washing solution was negligible. Medium without explants of colon served as control. The precipitate and filter were suspended in

1 in part by Grant No. N01 CP 43237 from the National Cancer Institute.
3 ml water and 10 ml Aquasol liquid scintillation cocktail (New England Nuclear, Boston, MA) and counted.

The mucosa was scraped from the explan, and DNA and protein isolated by the phenol extraction procedure. DNA was purified on a CsCl-gradient and the binding level measured as previously described (17). Binding to protein was also assayed (13). One explan from each variable was fixed in 3% glutaraldehyde buffered with 0.1 M s-collidine (pH 7.4) and prepared for light microscopy (18).

DNA, isolated from a total of 54 explanats (pooled from three cases), was hydrolysed with 0.1 M HCl at 70° for 1 hr and bases were isolated by high-pressure liquid chromatography (Column: Durrum DC 1-A; 15 × 0.21 cm; Durrum Chemicals, Sunnyvale, CA: Solvent: 0.1 M ammonium formate, pH 4.5; Flow rate: 0.6 ml/min). Markers for N-7 and O-6 methylguanine were added to the hydrolyzed DNA; the elution was monitored at 254 mM and 0.4 ml fractions were collected. The radioactivity was measured by liquid scintillation methods. The material eluting in the void volume (90% of the radioactivity) was treated with conc. perchloric acid at 100° for 1 hr and methanol removed by vacuum-distillation and the radioactivity was determined.

Results. Formation of 14C-CO2 after incubation of N-nitrosamines with human colon indicates that cultured human colonic mucosa is able to metabolize both acyclic N-nitrosamines (Table I), such as dimethylnitrosamine (DMN) and diethylnitrosamine (DEN), and cyclic N-nitrosamines (Table II). Variation in the ability to metabolize cyclic N-nitrosamine was observed among individuals. Under these test conditions only N-nitrosopryrrolidine (NPY) was metabolized by all cases studied, N,N'-dinitrosopiperazine (DNP) by five cases and N-nitrosopiperidine only by one case. No 14C-CO2 was formed from N-nitrosornicotine possibly due to the chemical structure (the C-14 labeled atom

<table>
<thead>
<tr>
<th>TABLE I. Metabolism of N,N-Dialkynitrosamines by Cultured Human Colon.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Dimethylnitrosamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNA</td>
<td>Protein</td>
<td>CO2-formation</td>
</tr>
<tr>
<td>62</td>
<td>570</td>
<td>106</td>
<td>6920</td>
</tr>
<tr>
<td>66</td>
<td>36</td>
<td>59</td>
<td>1381</td>
</tr>
<tr>
<td>83</td>
<td>12</td>
<td>29</td>
<td>566</td>
</tr>
<tr>
<td>87</td>
<td>23</td>
<td>49</td>
<td>823</td>
</tr>
<tr>
<td>92</td>
<td>50</td>
<td>178</td>
<td>1040</td>
</tr>
<tr>
<td>99</td>
<td>29</td>
<td>133</td>
<td>849</td>
</tr>
</tbody>
</table>

* Colonic explants were cultured in chemically defined media for 24 hrs and the [14C]labelled N-nitrosamines were added at a concentration of 100 μM to groups of five explants for 24 hrs.
* pmoles nitrosamine bound per mg of either DNA or protein, single determination.
* pmoles 14C-CO2 formed per mg DNA.
* N.D. = not detectable.

TABLE II. Metabolism of Cyclic N-Nitrosamines by Cultured Human Colon.												
Case	N-nitrosopyrrolidine			N-nitrosornicotine			N-nitrosopiperazine					
	DNA	Protein	CO2-formation	DNA	Protein	CO2-formation	DNA	Protein	CO2-formation			
62	55	56	2410	N.D.	15	N.D.	N.D.	23	188	N.D.	185	9531
66	21	49	4276	N.D.	17	N.D.	N.D.	N.D.	N.D.	N.D.	216	N.D.
83	13	125	1190	N.D.	15	586						
87	103	51	478	22	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	169	520
92	22	80	479	N.D.	7	N.D.	N.D.	21	N.D.	N.D.	206	1344
99	12	147	1056	N.D.	40	N.D.	N.D.	40	N.D.	N.D.	227	591

* Colonic explants were cultured in chemically defined media for 24 hr and the [14C]labelled N-nitrosamines were added at a concentration of 100 pmol to groups of five explants for 24 hr.
* pmol per 100 μM of either DNA or protein, single determination.
* pmol 14C-CO2 formed per mg DNA.
* Incubated.
* N.D. = not detectable.
ly one C-H bond)—but nonlabeled ald have been formed from other car-omms in the pyridine ring. Only und NPy consistently formed alkylat-eties which reacted with cellular DNA cases. DMN, DEN, NPy, and DNP to protein; when compared to the other samines high binding levels of DNP lar protein were observed. The bind- a in Table II is given as either dpm l μg DNA or dpm per 100 μg protein xact chemical structure of the adducts between the N-nitrosamines and the molecules are unknown at the present. ive correlation (r = 1.00) was found n alkylation of DNA by DMN and mation, while NPy did not show any tion (r = 0.24, p > 0.1). No correlation n DMN and NPy binding to protein 3-formation was found (r = 0.14, p and r = 0.41, p > 0.1, respectively), alkylated DNA in both N-7 and O-6 γ of guanine (Table III). However, the radioactivity was associated with il in the initial peak. Treatment of this il with conc. perchloric acid released OH (40% of radioactivity). The mor- y of the explants, as monitored by high on light microscopy, showed good ation in all the reported cases.

III. Methylation of Human Colonic DNA by [14C]DMN.

<table>
<thead>
<tr>
<th>Base</th>
<th>dpm*</th>
</tr>
</thead>
<tbody>
<tr>
<td>O'-MeGua</td>
<td>20 (2)</td>
</tr>
<tr>
<td>N'-MeGua</td>
<td>38 (13)</td>
</tr>
<tr>
<td>Guanine</td>
<td>57 (4)</td>
</tr>
<tr>
<td>Initial peak</td>
<td>1175 (84)</td>
</tr>
</tbody>
</table>

*Figures in parentheses, percentage of the total of dpm added to the column.

target tissue via the blood circulation (22); (b) the intestinal lumen by deconjugation of metabolites by the microflora (23, 24); and (c) the intestinal mucosa by various enzymes e.g. the mixed-function oxidases (24). We have previously shown that both human and rat colonic mucosa in culture can activate pro-carinogens into metabolites that bind to DNA; explants of human colon can metabolize DMN, 1,2-dimethylhydrazine and benzo[a]pyrene (BP) (13, 25). This observation suggests the importance of the third pathway described above.

A 50-fold inter-individual variation was found in the binding of DMN to human colon DNA, lower than the 100-fold variation observed in the binding levels of BP to DNA in cultured human colon (26) and the 75-fold variation in the binding levels of BP to DNA in cultured human bronchus (27). Several factors for this variation were considered. The *intra*-individual variation due to the meth- odology was minimal, i.e., coefficient of variation 0.1 (13). The viability of the tissue as monitored by high-resolution microscopy was good in all the reported cases; however, changes in cellular physiology could, in part, account for some of the observed differences. There is a positive correlation between the level of radioactivity associated with DNA and CO₂-formation. Alkylation took place at both the O-6 and N-7 position giving a ratio of 0.5. However, this radioactivity only ac- counted for a small part of the total radioac- tivity. Treatment of the material in the initial peak with strong acid, released about 40% of the radioactivity in form of methanol, indic- ating that the major alkylation site could either be the phosphate groups or the oxygenes in thymidine and/or cytosine. This finding however requires further investigation. Incorporation of 14C from 14C-CO₂ in the purine ring of the nucleic acids by de novo synthesis could also account for some of the radioactivity associated with DNA (13). Human liver slices (28) and human bronchus (29, 30) are also able to metabolize DMN into CO₂ and alkylating species which reacted with DNA. DMN has been shown mainly to alkylate the O-6 and N-7 positions of guanine in DNA (31); the ratio of methylation of O-6 to N-7 being nearly 1.1 in cultured human bronchus (30), while a lower ratio was found in animal experiments (32).
The ability of the colon to metabolize the different N-nitrosamines varies among individuals. While colon from all investigated cases could metabolize DMN, only two cases could metabolize DEN into metabolites which reacted with DNA. Since the 14C-atom is located at the two-position of the ethyl group the alkylating moiety can be deduced as being an ethyl group. NPy was also metabolized by colon from all the cases. Binding of both 3H- and $[^{14}]$C-NPy suggests that an adduct(s) is formed between a metabolite of NPy and DNA. Opening of the ring in NPy indicates by CO$_2$-formation suggests that several possibilities for alkylating species exist. Lack of correlation between alkylating DNA by NPy and CO$_2$-formation could also implicate a more complex pattern of metabolism. It has been suggested that two of the reaction-products between NPy and nucleic acids are 7-(2-carboxy)ethylguanine and/or 7-methylguanine (33). However, a recent observation indicates that the alkylating species could be 3-formyl-1-propanedioxy-hydroxide (34). The molecular structure of the DNA adduct in human colon is under investigation. Formation of ^{14}C-CO$_2$ in vivo by rats injected with either 2,5-$[^{14}]$C-NPy or 3,4-$[^{14}]$C-NPy shows that ring oxidation occurs at both two and three positions (33). DNP had a high binding level to protein, while binding to DNA was only observed in one case. This observation of a high level of protein binding is similar to our results from cultured human bronchus (16).

N-nitrosamines may reach the colonic mucosal epithelial cells by several routes, where they could be metabolically activated. DMN has been detected in the blood of people ingesting both spinach and bacon; spinach is recognized as a rich source of nitrate/nitrite (35). N-nitrosamines have also been detected in the feces of human subjects, whose diet did not contain any detectable N-nitrosamines indicating that the compounds were formed in situ (36).

The etiology of human colonic cancer is a complex problem. No exogenous chemical compounds have been so far proven to cause this carcinoma in the human. Our observations, that human colonic mucosa can activate several types of procarcinogens (e.g. BP, 7,12-dimethylbenz[a]anthracene, 1,2-dimethyldrazine and aliphatic N-nitrosamines) into forms that bind to DNA, suggests that the colon should be added to the list of organs which are likely to be susceptible to the carcinogenic action of these compounds.

Summary. Cultured human colon mucosa was found to metabolize both acyclic and cyclic N-nitrosamines as measured by 14C-CO$_2$ formation and reaction of the activated moieties with cellular macromolecules. Dimethylnitrosamine and N-nitrosopyrrolidine were metabolized by explants from all patients studied. A positive correlation between binding of dimethylnitrosamine to DNA and CO$_2$-formation was observed. DMN alkylated DNA in both O-6 and N-7 position of guanine. However, most of the radioactivity was associated with an acid labile compound. High binding levels of N,N'-dinitrospiperazine to protein without concomitant binding to DNA were detected. Inter-individual variation in both binding level to DNA and ability to metabolize the different N-nitrosamines was observed.

We would like to thank Drs. U. Saffioti, G. Stoner, and T. Bowden for valuable comments. Ms. R. Schwartz for technical assistance, and Mrs. M. Bellman for secretarial assistance.

12. Harris, C. C., Austrup, H., Stoner, G. D., and Trump,
METABOLISM OF NITROSAMINE

Effects of Thyroxine, Epinephrine and Cold Exposure on Lipolysis in Genetically Obese (ob/ob) Mice\(^1\) (40295)

SHIRLEY W. THENEN AND ROSEMARY H. CARR

Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115

Mayer and Barnett (1) observed that genetically obese (ob/ob) mice were unable to withstand exposure to a cold environment and that the administration of thyroid hormone before cold exposure slightly prolonged their survival. More recent studies provided evidence that ob/ob mice were hypothyroid (2, 3) and that thyroid hormone administration corrected the observed hypothermia during cold exposure (4). Experimentally produced hypothyroidism in rats prevents normal epinephrine-stimulated lipolysis (5), and in vitro studies using adipose tissue from ob/ob mice have demonstrated a similar reduction in epinephrine-stimulated free fatty acid (FFA) release (6–8). These observations support the hypothesis that hypothyroidism in ob/ob mice results in defective lipolysis, thus limiting FFA as a substrate for thermogenesis during cold exposure. However, in vivo studies in ob/ob mice at ambient temperature failed to show defective lipolysis either in response to catecholamines (9) or during fasting (10).

In order to examine this apparent discrepancy between the in vivo and in vitro data in the literature and to study the metabolic effects of cold stress in ob/ob mice more precisely, an experiment was designed to investigate the hormonal influences on lipolysis and the relevant parameters of carbohydrate metabolism during cold exposure in these animals. Specifically, this study measured the effects of pharmacological doses of thyroxine (T\(_4\)) on both in vivo and in vitro FFA release in cold-exposed ob/ob mice in comparison to the effects in non-obese mice. In addition, the effect of T\(_4\) treatment on epinephrine-stimulated FFA release from adipocytes was assessed.

1 Research support was provided by USPHS National Institutes of Health Grant Nos. AM-02911 and AM-00106 and the Fund for Research and Teaching, Department of Nutrition, Harvard School of Public Health.
LIPOLYSIS IN OBESE MICE

obese and nonobese mice.

The intracellular concentrations of FFA in isolated adipocytes are also shown in Table I. Adipocytes from obese mice treated with T₄ had a significantly higher concentration of FFA than those from untreated obese mice. In contrast, fat cells from nonobese mice had similar FFA concentrations regardless of treatment, and these were not significantly different from the mean value for untreated obese mice. This elevated zero time FFA concentration only in T₄-treated obese mice suggests an increased in vivo lipolytic response to T₄ in these animals.

Figure 1 illustrates the results of the meas-

FIG. 1. Effect of T₄ treatment in vivo on production of FFA by hydrolysis in fat cells isolated from epidy-
mal adipose tissue of cold-exposed mice and incubated with (+) and without (−) 1.1 × 10⁻⁵ M epinephrine (EPI). Number of animals are indicated on each column, bars represent SEM, and P values compare differences between paired column means.

TABLE I. Effect of Thyroxine Treatment on Obese and Nonobese Mice Exposed to the Cold (4°C) for 90 Min.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Plasma glucose (mg/100 ml)</th>
<th>Plasma insulin (µU/ml)</th>
<th>Plasma FFA (µeq/liter)</th>
<th>Adipocyte FFA (µeq/µg DNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obese</td>
<td>Saline</td>
<td>379 ± 54 (6)</td>
<td>24 ± 5 (6)</td>
<td>722 ± 142 (6)</td>
<td>0.25 ± 0.08 (6)</td>
</tr>
<tr>
<td></td>
<td>Thyroxine</td>
<td>375 ± 64 (6)</td>
<td>23 ± 3 (6)</td>
<td>855 ± 208 (6)</td>
<td>1.33 ± 0.43 (6)</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Non-obese</td>
<td>Saline</td>
<td>256 ± 58 (6)</td>
<td>17 ± 1 (6)</td>
<td>697 ± 75 (4)</td>
<td>0.37 ± 0.09 (3)</td>
</tr>
<tr>
<td></td>
<td>Thyroxine</td>
<td>237 ± 11 (7)</td>
<td>18 ± 1 (7)</td>
<td>716 ± 65 (5)</td>
<td>0.41 ± 0.05 (7)</td>
</tr>
</tbody>
</table>

*Values are mean ± SE. Number of mice sampled in parentheses.
urements of in vitro lipolysis after cold exposure for 90 min. Lipolysis in isolated adipocytes is presented as μeq FFA released per μg DNA per hr of incubation in order to express the results in terms related to cell number rather than cell mass. The data from the untreated control mice show that adipocytes from cold-exposed obese mice had reduced lipolytic activity in comparison to those from nonobese mice. The addition of epinephrine to the incubation medium of fat cells from both obese and nonobese control mice increased FFA release, but the values were not significantly different from those under non-stimulated conditions. The epinephrine-stimulated release of FFA from the fat cells of untreated obese mice remained significantly (P < 0.05) lower than the release from fat cells of untreated nonobese mice.

T₄ treatment of obese mice before cold exposure had a striking effect on in vitro lipolysis in contrast to the small but not significant effect in nonobese mice (Fig. 1). Adipocytes from T₄-treated obese mice released significantly more FFA both in the presence (P < 0.05) and in the absence (P < 0.01) of epinephrine in comparison to adipocytes from corresponding untreated obese mice. The response to epinephrine of adipocytes from T₄-treated obese mice was more than three times greater than that of fat cells from untreated control obese mice. However, adipocytes from nonobese mice showed no increase in FFA release when treated with T₄ prior to cold exposure, although there was a significant (P < 0.05) rise in FFA release in response to epinephrine in T₄-treated nonobese mice.

Discussion. From the data presented it is apparent that the failure of ob/ob mice to survive during cold exposure was not attributable to insufficient circulating FFA since plasma values in obese mice were comparable to those in nonobese mice after cold exposure for 90 min at 4°C. Other studies in this laboratory (20) showed that a more prolonged cold exposure (up to 4 hr) also resulted in similar plasma FFA values in obese and nonobese mice. The plasma FFA values obtained in the present experiment were similar to those found by Abraham et al. (9) for obese and nonobese mice after norepinephrine administration and after a 24-hr fast. Their study and our study during cold stress show normal in vivo lipolysis for ob/ob mice. Thyroid hormone treatment, which is known to alleviate the hypothermia in ob/ob mice, also did not significantly alter FFA values in vivo.

The in vitro results indicated an inhibition of basal and epinephrine-stimulated lipolysis in adipocytes from ob/ob mice after stress, a condition in which lipolysis should be maximally stimulated. This was similar to the inhibition of FFA release from adipose tissue of ob/ob mice found at ambient temperature by other investigators (6-8), compared to Marshall and Engel (6) did not report inhibition under basal conditions (with epinephrine). In addition, Herberg et al. (17) reported increased release of FFA from didymal adipose tissue under both basal and epinephrine-stimulated conditions. However, these latter investigators pre-incubated adipose tissue in Krebs-Ringer bicarbonate buffer with albumin and glucose (no insulin) before measuring lipolysis. It is possible that the insulin was “washed out” by this preincubation and no longer exerted its known inhibitory effect on lipolysis (22). Otto et al. (18) found elevated lipolysis as measured by glycerol release from adipose tissue of ob/ob mice under basal conditions, but reduced sensitivity to epinephrine and thyroid hormone administration. Although FFA release and parallel glycerol release during lipolysis may not occur under these conditions, findings from ours, in which adipose tissue in contrast to adipocytes were incubated in the presence of glucose.

The coexistence of our in vivo results indicating similar plasma FFA after cold exposure in both T₄-treated and untreated obese and nonobese mice and the in vitro results showing variable FFA release from fat cells is possible for several reasons. First, white cells from untreated obese mice released FFA on a cell number basis, the increased number of fat cells in these obese mice could be sufficient to maintain plasma values at similar concentrations to those in normal mice. Also, in vitro conditions are not analogous to those in vivo. For example, it is possible that a more rapid turnover of circulating FFA or an inhibition of FFA release into blood occurs in vivo. FFA determin
iso made on homogenates of fat cells
substantiation medium and, therefore, rep-20
and fatty acid release from triacylglycer-
it not necessarily release from fat cells.
an et al. (24) have shown that under circum-
stances intracellular FFA concen-
trations increased without increasing FFA
from the cell. Since the intracellular con-
centration in the T_4-treated obese
t was significantly higher than in any
sample, as determined from the zero
mles, it is possible that all of the FFA
during lipolysis in vivo were not re-
nto the circulation.

Significant increase in FFA release
p in stores in adipocytes in response to
hrine in both nonobese and obese mice
with T_4 is in agreement with observ-
is in other rodents in which T_4 poten-
t the action of epinephrine (25) and in the
lipolytic response of adipocytes in
as affected by the in vivo thyroid status
animal (5, 26). However, the accen-
epinephrine-stimulated lipolysis in
mice treated with T_4 as compared to
$-$effect in nonobese mice suggests an
ed sensitivity to epinephrine in obese
ce the hypothyroid status is corrected.
ough this study did not directly test
thesis that decreased thermogenesis
mice during cold exposure was a
FFA availability, the end
of reduced lipolysis by adipocytes
was reversed by T_4 treatment supports
thesis. Although circulating FFA
trations were not significantly affected
etment, it is possible that T_4 poten-
the rate of FFA release from adipose
in vivo as well. A similarly increased
FA uptake and oxidation could allow
ased thermogenesis, while maintai-
FFA concentrations constant.

Mary. Treatment of ob/ob mice with
or prior to cold exposure did not alter
concentrations of glucose, insulin and
uring cold exposure although ob/ob
ained hyperglycemic and hyperin-
when compared to nonobese mice.
ontent of and FFA release from iso-
dipocytes were significantly elevated
ated obese mice after cold stress as
ed to untreated obese mice. T_4 treat-
also produced a marked increase in

epinephrine-stimulated FFA release from fat
cells of obese mice in vivo.

These results indicate that correction of the
hypoioded status of ob/ob mice with phar-
nacological doses of T_4 improved the in vitro
lipolytic response of fat cells, but did not alter
the circulating concentrations of important
energy sources for thermogenesis in vivo.

The technical assistance of Ms. Teresa Pasquine
is gratefully acknowledged.

1. Mayer, J., and Barnett, R. J., Yale J. Biol. Med. 26,
38 (1953).
2. Joosten, H. F. P., and van der Kroon, P. H. W.,
3. Otto, W., Taylor, T. G., and York, D. A., J. Endo-
ocrinol. 71, 143 (1976).
210, 1053 (1966).
(1960).
201, 19 (1961).
8. Steinmetz, J., Lowry, L., and Yen, T. T. T., Dia-
10. Marliss, E. B., Coudert, G., Balant, L., Wolllheim,
C. B., and Stauffacher, W., in "Lipid Metabolism,
Obesity and Diabetes: Impact Upon Atherosclero-
sis," Horm. Metab. Res. Supplement Series, No. 4,
11. Thenen, S. W., and Mayer, J., J. Nutr. 107, 320
13. Fales, F. W., in "Standard Methods of Clinical
14. Herbert, V., Lau, K., Gottlieb, C. W., and Bleicher,
15. Itaya, K., and Uii, M., J. Lipid Res. 6, 16 (1965).
18. Bligh, E. G., and Dyer, W. J., Can. J. Biochem. 37,
911 (1959).
19. Mendenhall, W. M., "Introduction to Probability
and Statistics, 3rd Ed.," Wadsworth Publishing Co.,
Belmont, CA (1971).
21. Herberg, L., Gries, F. A., and Hesse-Wortman, C.,
Diabetologia 6, 300 (1970).
25. Swanson, H. E., Endocrinology 60, 205 (1957).

orphine-Induced Inhibition of Episodic LH Release in Ovariectomized Rats with Complete Hypothalamic Deafferentation

GARY W. ARENDASH AND ROBERT V. GALLO

University of California, San Francisco School of Medicine, Department of Physiology, San Francisco, California 94143

aboratory recently reported that apo-
, a drug that stimulates dopamine
, caused a transient (50–60 min) but
hibition of the episodic pattern of
ase normally observed in ovariecto-
tts (1, 2). This effect is mediated by
 of dopamine receptors since pi-
and d-butaclamol, agents which block
ceptors, prevent the inhibitory effect
The present study was designed to
 if this inhibition is mediated by an
activation of dopamine receptors
hypothalamic-pituitary unit (3, 4),
 of it in some other region of the
th a significant dopaminergic input
the neostriatum (3). Therefore, the
 of apomorphine on episodic LH
were determined in ovariectomized
viously subjected to complete hypo-
deafferentation in order to isolate
al basal hypothalamus (MBH)-pitui-
from the rest of the brain.
als and methods. Adult female
-Dawley rats (Simonsen Laborato-
ry, CA) weighing 260–280 g were
ed on a lighting schedule of 14 hr
hr darkness (light on 0500–1900 hr)
lab chow and water ad libitum. Daily
mears were taken and only those rats
two or more consecutive 4-day es-
cles were used for experimentation.
tentation of the MBH was per-
with a small double-edged Halasze-
 (5) of bayonet shape (dimensions:
2.0 mm, radius 1.6 mm). Under so-
tobarbital anesthesia (35 mg/kg
animal’s head was placed in a stern-
strument with the ear bars 2.4 mm
e level of the tooth bar. After drilling
a hole in the skull, the knife was lowered
through the superior sagittal sinus to the base
of the skull 8.3 mm anterior to the interaural
line. The knife was first rotated to the right
90°, and then 180° to the left (to maximize
the probability for completeness of the ante-
rior section of the cut). The blade was next
stereotaxically moved 3 mm posteriorly, and
then rotated 180° to the right. It was then
moved anteriorly 3.3 mm (to assure complete-
ness). Finally, the blade was rotated 90° to-
ward the starting position, and removed from
the brain at the point of entry. Following
deafferentation, vaginal smears were taken
for 3 to 6 weeks after which time only those
rats having shown either constant vaginal
estrous or diestrous smear patterns for three
weeks or more were ovariectomized.
Six weeks following ovariectomy a poly-
eylene cannula was inserted into the exter-
nal jugular vein and used for collecting blood
samples the following day. An additional
cannula was placed subcutaneously in the
animal’s back for later drug administration.
The next day, after an iv injection of 200
units heparin, unanesthetized, unrestrained
animals were bled continuously through a
piece of flexible tubing, one end of which was
connected to the animal’s cannula and the
other end through a peristaltic pump to a
microliter syringe kept on ice for the collect-
ion of blood samples. Fifty or 100 μl whole
blood were collected every 5 or 10 min, re-
spectively, and added directly to assay tubes
 kep in an ice bath) containing 400 or 450
μl of phosphate buffered saline with 0.1%
gelatin. After collecting blood samples for a
1½- to 2 hr-control period, animals were in-
jected with apomorphine hydrochloride (a
selective stimulator of dopamine receptors (6,
7), Merck Chem., Rahway, NJ, 1.5 mg/kg in
saline) through the indwelling sc cannula.
Bleeding was then continued for an addi-
tional 1 to 1½-hr period. Whole blood sam-

1037-9727/78/1591-0121$0.50/0
Copyright © 1978 by the Society for Experimental Biology and Medicine.
All rights reserved.
amples were analyzed for LH by a slight modification (8) of the ovine-ovine rat LH double antibody radioimmunoassay of Niswender et al. (9). LH values (ng/ml whole blood) are expressed in terms of the NIAMDD Rat LH-RP-1 preparation which has a biological potency equivalent to 0.03 × NIH-LH-S1.

Following experimentation, rats were perfused with 10% formalin plus 1% calcium chloride. The extent of hypothalamic deafferentation was determined both by visual examination of the cut at the base of the brain as well as by close histological examination after sectioning brains at 50 μm in the transverse plane and staining with Nissls stain using basic fuchsin.

Results. Forty-five of 53 animals (85%) showed persistently leucocytic (constant estrous) vaginal smear patterns for at least 3 weeks following hypothalamic surgery. The remaining eight rats (15%) exhibited persistent vaginal cornification (constant estrous) during this same period of time. No hypothalamic necrosis was observed in the great majority of animals subjected to deafferentation and later used for experimentation. The necrosis that was seen in a few rats involved only the extreme rostral or caudal sections of the deafferented tissue and never involved the arcuate nucleus–median eminence region. The pituitary glands of all experimental animals were not damaged by the knife. Additionally, no apparent histological differences with regard to the extent of deafferentation were discernible between constant estrous and constant diestrous animals (see Fig. 1). The deafferented tissue included all of the arcuate nucleus and median eminence, much of the ventromedial nucleus, and variable amounts of the dorsomedial nucleus. The posterior part of the suprachiasmatic nucleus was included within one side of the hypothalamic island in 2 of 8 constant estrous and 3 of 12 constant diestrous rats.

Twelve of the 45 rats displaying a persistently leucocytic smear pattern following hypothalamic deafferentation were randomly selected for bleeding 6 weeks after ovariec
tomy. In all 12 animals pulsatile LH release was absent and LH levels were very low (<28 to <110 ng/ml). The rat in constant diestrous, depicted in Fig. 1, had <28 ng LH/ml whole blood during a 3 hr bleeding period. Of the eight completely deafferented, constant estrous animals bled 6 weeks after ovarie
tomy, five exhibited pulsatile LH release during a 1½- to 2 hr-control period of bleeding (Fig. 2), though at somewhat reduced levels when compared with pulsatile LH release normally seen in ovariec
tomized rats. In the remaining three rats, problems occurred during the bleeding procedure in one, while the other two animals displayed either nonepisodic, low blood LH levels or only one LH pulse in the control period.

Apomorphine caused a stereotyped gnawing behavior pattern in ovariec
tomized rats with complete hypothalamic deafferentation, much as it does in intact or ovariec
tomized animals not subjected to hypothalamic sur
gery (1, 2, 6). This agent was administered to eight rats with complete hypothalamic deaffere
tentation which previously had shown constant vaginal estrous smear patterns before ovariec
tomy. In the five rats having well defined episodic LH release patterns during the control period, apomorphine caused an inhibi
tion (four rats) or reduction (one rat) of pulsatile LH secretion lasting at least 40–90 min. Three examples are given in Fig. 2. The extent of the cut in the middle animal repre
sented in Fig. 2 is shown in the top of Fig. 1. The response to apomorphine could not be determined in the remaining 3 rats because of the reasons cited above.

Discussion. This study demonstrates that apomorphine, a specific dopamine receptor stimulating agent (6, 7), can exert an inhibitory effect on episodic LH release in ovariec
tomized rats previously subjected to complete hypothalamic deafferentation. We have previously observed this inhibition in ovariec
tomized animals not subjected to complete hypothalamic deafferentation (1, 2) and have shown that the sc injection of saline (1) or distilled water (2) into ovariec
tomized rats had no effect on episodic LH release. Fur
thermore, the sc injection of apomorphine into animals with hypothalamic deafferentation was accomplished through the use of an indwelling sc cannula connected to a sufficient length of flexible tubing to extend out of the animal’s cage. Thus, the animals were unaware of any injection procedure. It appears from these and our previous data that the inhibition of episodic LH release caused
by apomorphine is a result of activation of dopamine receptors within the medial basal hypothalamus (MBH) and/or pituitary gland, and not outside this region.

The postsynaptic dopamine receptors responsible for inhibition of episodic LH release are probably associated with neurons innervated either by dopaminergic neurons originating in the arcuate nucleus or within the substantia nigra, and both these areas send axonal projections to the median eminence (10–13). In this regard, the median eminence contains high concentrations of LHRH (14, 15), apparently within the terminals of LHRH neurons. It is possible that activation of dopamine receptors on these LHRH neurons may result in an inhibition of LHRH release. A hypothalamic site of action for apomorphine is suggested by the evidence that portal vein infusion of dopamine had no effect of LH release (16), while the in vitro pituitary secretion of LH was inhibited by dopamine only when the median eminence was included in the incubation (17). Alternatively, a pituitary site of action cannot be ruled out since dopamine receptors are present there (4).

It should be emphasized that the inhibition of episodic LH release by apomorphine could only be tested in those few hypothalamic-deafferented animals showing a constant vaginal estrous smear pattern, since only in these rats was episodic LH release present after ovariectomy. The vast majority of deafferented rats (85%) exhibited a constant vaginal diestrous smear pattern and in this type animal LH levels were very low and nonpulsatile after ovariectomy. Blake and Sawyer (18)
indicated that 5 of 11 animals subjected to complete deafferentation of the MBH had constant vaginal estrous smear patterns and episodic LH release after ovariectomy. These authors suggested on the basis of these animals that pulsatile LH secretion may possibly be inherent to the MBH-pituitary unit. In only a small percentage of the rats in the present report was the deafferented hypothalamic tissue capable of maintaining episodic LH secretion. In agreement with Blake and Sawyer (18), complete MBH deafferentation also had produced constant vaginal cornification in these rats. Inclusion of the suprachiasmatic nucleus within the deafferented region has been suggested to account for the persistence of LH secretion and this constant vaginal estrous smear pattern (19). In the present study the suprachiasmatic nucleus was anterior to, or destroyed by the knife cut in the large majority of rats in both groups. Moreover, even when a portion of this nucleus was included within the deafferented hypothalamic tissue in a few constant diestrus rats, very low, nonepisodic blood LH levels still resulted. Thus, the reason why some rats should continue to show episodic LH release while others do not, when the extent of hypothalamic deafferentation similar in both groups, is not present. The absence of pulsatile lH following MBH deafferentation due to severing the axons of LHRH whose cell bodies lie outside the MBH interrupting fibers stimulating LH thesis and/or release. Complete deaFerentation results in a large decrease in content in the rat MBH (20, 21). more, norepinephrine has been sug- play an excitatory role in the regu- LH secretion (1, 22–25) and the α norepinephrine in the MBH is to- pleted by deafferentation (26). Nervous input to the MBH seems required in the great majority of rats to episodic LH secretion. Moreover, d receptors within the MBH-pituitary seem responsible for mediating the effect of apomorphine on pulsatile lH.

Summary. Complete neural deaFerentation of the MBH in 53 rats resulted in constant vaginal diestrous smear pattern for 85% of the rats, and in this type of rat low blood LH levels and absence of LH release followed ovariectomy. Maintaining 15% had a constant vagina smear pattern, and most demonstrated satile LH secretion following ovar-ectomy. Thus, afferent input to the MBH seems required in most rats to sustain episodic secretion. Administration of apomorphine dopamine receptor stimulator, to which were in constant estrus before surgery, resulted in inhibition of pulsatile secretion, suggesting that this apomorphine induced inhibition is a result of activating dopamine receptors within, rather than outside, the MBH-pituitary unit.

We would like to thank Brad Garibaldi, Bo Veronica Liekova and Cindy Voytek for their help in these studies, and Annette Lowe and Linda D. preparation of the figures and typing the r. Thanks also to Dr. G. Niswender for anti-ovin 15, Dr. H. Papkoff for highly purified ovine G3222B for iodination. Dr. J. Garcia for goat against rabbit gammaglobulin, and Dr. A. F. F. for the NIAAIDD for the rat LH used as a refer-

a, S. V., and Gallo, R. V., Endocrinology 100, 777.
1. Z., Reisine, T. D., and Yamamura, H. I.,
3 (1977).
1. B., and L. Pupp, Endocrinology 77, 553.
1. N. E., Rubenson, A., Fuxe, K., and Hokfelt,
Pharmacol. 19, 627 (1967).
1. B., Gallo, R. V., and Williams, J. A.,
Endocrinology 96, 1210 (1975).
1. G., Midgley, A. R., Jr., Monroe, S.
128, 807 (1968).
1. K., Acta Physiol. Scand. 64 (Suppl.) 24737.
1. M., Moore, R. Y., Nobel, A., and Stenevi,
1. M., Brownstein, M., Saavedra, J. M., and
J. S., Palkovits, M., and Brownstein, M. J.,
1. M., Arimura, A., Brownstein, M., Schally,
and Saavedra, J. M., Endocrinology 95, 554
15. Wheaton, J. E., Krulich, L., and McCann, S. M.,
Endocrinology 97, 30 (1975).
16. Kamberi, I. A., Mical, R. S., and Porter, J. C.,
17. Miyachi, Y., Mecklenburg, R. S., and Lipsett, M. B.,
Endocrinology 93, 492 (1973).
19. Hayashi, S., Mennin, S. P., and Gorski, R. A., Neu-
roendocrinology 14, 321 (1975).
C., Endocrinology 97, 1597 (1975).
ovits, M., and Kizer, J. S., Endocrinology 98, 662
(1976).
H., Endocrinology 41, 395 (1947).
23. Ojeda, S. R., and McCann, S. M., Neuroendocrinol-
ogy 12, 295 (1973).
24. Kalra, S. P., and McCann, S. M., Neuroendocrinol-
25. Krieg, R. J., and Sawyer, C. H., Endocrinology 99,
411 (1976).
26. Weiner, R. I., Shryne, J. E., Gorski, R. A., and

The Effect of Leukocyte Hydrolysis on Bacteria. XI. Lysis by Leukocyte Extracellular Myeloperoxidase of a Staphylococcus aureus Mutant Which is Deficient in \(^3\) Acid, and the Inhibition of Bacteriolysis by Lipoteichoic Acid\(^1\) (40297)

M. N. SELA, I. OFEK, M. LAHAV, AND I. GINSBURG

Department of Medical Microbiology, School of Medicine, and the Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine, founded by the Alpha Omega Fraternity, Jerusalem, Israel

In previous publications, we have shown that \textit{Staph. aureus}, which had been harvested from the logarithmic phase of growth, was readily lysed by human leukocyte extracts (ENZ) and by myeloperoxidase (MPO). On the other hand, bacteria obtained from the stationary phase of growth were highly resistant to degradation by these agents (1–8). It was further demonstrated that the lysis of the bacteria by the leukocyte factors was probably caused by the activation of autolytic systems and not by the direct effect of lysosomal hydrolases on the bacterial walls (8). It was suggested that one of the reasons for the resistance to degradation of the stationary phase bacteria was not due to the lack of autolytic enzymes in the old cells, but to the much thicker cell walls of such cells (7, 8).

It is well established that Gram positive bacteria possess teichoic acid (TA) as an integral part of the cell wall and a membrane-associated lipoteichoic acid (LTA) (9). Since TA was claimed to deter the interaction of lysozyme with the peptidoglycan, thus conferring resistance to bacteriolysis (10), and since LTA has been implicated in the inhibition of autolytic enzymes in bacteria (11, 12), it was of interest to test the effect of TA and LTA on bacteriolysis induced by leukocyte factors. The data presented show that a mutant of \textit{Staph. aureus}, which completely lacks ribitol TA but nevertheless possesses membrane-associated LTA, is much more susceptible to lysis by ENZ and by MPO than the parent strain. It will also be shown that while LTA strongly inhibited the lysis of \textit{Staph. aureus} by ENZ and by MPO, TA was not inhibitory.

\textit{Materials and methods. Microorganisms} The following \textit{Staph. aureus} strains were employed: The parent strain SH (Str\(^r\)) mutants 52A5 and 52A2. The mutant lacks ribitol teichoic acid in the cell wall, and any other cell fraction or in the medium. The lack of ribitol teichoic acid on the cell wall is caused presumably by sorbitol in the membrane or in some unknown required in the polymerization or activation step of the teichoic acid to mucin. The strain 52A2 lacks N-acetylglucosaminyl cell wall ribitol teichoic acid. All the strains are also known to be deficient in the teichoic acid (for details see reference 13). They were kindly supplied by Dr. D. N. from the Department of Biophysics, Weizmann Institute, Rehovoth, Israel.

In addition we have employed \textit{Staph. aureus} strain Cowan I which is known to produce protein A. The bacterial strains were isolated either in Brain Heart Infusion broth (Difco Laboratories, Detroit, MI) or in BHI which contained 0.5 \(\mu\)Ci/ml labeled \(\[^{14}\text{C}\]d-glucose, specifically 150–250 mCi/mmol (New England Boston, MA) as described (2). All trials were harvested either from aarithmetic phase of growth (after 3 hours bacterial, OD = 280 Klett units at 540 Klett Summer colorimeter) or from the phase of growth (after 18 hr of incubation, OD = 620 Klett units at 540 nm), washed several times in saline, and suspended in distilled water.

Lipoteichoic acid (LTA). Lipoteic acid (LTA) was isolated from \textit{Strep. mutans} (ATCC 1895/74), group A streptococci (C203S) and from \textit{Staph. aureus} (52A2 and cowan I) by phenol (Ma Inc., St. Louis, MO) or by lysozyme

\(^1\)This study was supported by Research Grants obtained from The Carol and Ella Reisfeld Fund; The Chief Scientist, the Ministry of Health; and by the Max Bogen Research Fund obtained through the Friends of the Hebrew University in the United States of America.
tical Co., St. Louis, MO) (14). The bacterial extracts were dialyzed with six changes of water and were then lyophilized; preparation did not contain any traces of salt. Teichoic acid (TA) was isolated from Staph. aureus SH by TCA (BDH, England) according to a method described by ueno and Slade (16).

Acetylation of LTA was performed as described by Knox and Wicken (9).

opolysaccharide (LPS). LPS from E. coli 38 was purchased from Difco Labora-
tation. The LPS was dissolved in water to the desired concentration.

duction of anti-LTA serum. Antibodies at LTA were prepared by immunizing rabbits with Streptococci, according to a procedure similar to the described procedure (14).

ermination of LTA activity. LTA was monitored quantitatively by its ability to cause agglutination in the presence of a standard anti-LTA serum as described (16).

Table 1 illustrates the design of the experiment.

<table>
<thead>
<tr>
<th>Presence or absence of</th>
<th>% release of radioactivity from</th>
<th>logarithmic phase bacteria</th>
<th>stationary phase bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Buffer</td>
<td>ENZ</td>
</tr>
<tr>
<td>Protein A TA LTA²</td>
<td></td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>-</td>
<td>±</td>
<td>28</td>
<td>78</td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>25</td>
<td>92</td>
</tr>
</tbody>
</table>

A biologically active fraction of the LTA was isolated by Phenol/chloroform extraction. The LTA was then dialyzed against water and lyophilized. The dialyzed LTA was dissolved in water to a concentration of 1 mg/ml.

Table 1 also shows that strain 52A5 looses a somewhat higher percentage of radioactivity when incubated in buffer alone.
(spontaneous lysis) as compared with the other strains. Since all the bacterial strains employed were found to possess LTA (Table I), it is postulated that TA, but not the membrane-associated LTA, may play an important role in the protection of old bacteria against lysis by leukocyte factors.

The inhibition by LTA of the lysis of staphylococci. LTA was recently shown to be a potent inhibitor of autolytic enzymes in Strep. faecalis (11) and Diplococcus pneumoniae (12). Since we have recently postulated (8) that the lysis of Staph. aureus by leukocyte extracts and by membrane-damaging agents like MPO and Phospholipase A₂, was due to the activation of autolytic enzymes, it was of interest to examine the possibility that LTA will also inhibit bacteriolysis induced by leukocyte factors and by MPO. Table II shows that when LTA (derived either from staphylococci or from streptococci) was added to staphylococci (SH and 52AS) in the presence of an inducer of lysis like ENZ or MPO, a strong inhibition of lysis occurred. It is also seen that H₂O₂ did not modify either the lytic effect of MPO or the inhibitory effect of LTA on bacteriolysis induced by MPO. The Table also shows that neither decapylated LTA nor TA nor LPS had any inhibitory property. It is also shown that none of the inhibitors employed lysed the bacteria. In other experiments (not shown) we found that the lysis of staphylococci by ENZ could not be inhibited by cytolytic fractions or cell walls derived from group A streptococci, when used at similar concentrations.

Discussion. The data on the higher susceptibility to lysis of the TA-deficient mutant by leukocyte factors and by MPO and the inhibition of bacteriolysis by LTA, further contribute to the understanding of the possible role which may be played by TA and LTA in the biology of the staphylococci.

Since TA was claimed to deter the interaction of lysozyme with the peptidoglycan (10) it may be postulated that the lack of this wall component from the mutant 52A5 rendered the cell more susceptible to bacteriolysis. Since however, the lysis of Staph. aureus by leukocyte enzymes was found not to be lysozyme-dependent (3, 5) and since the TA-less mutant was not more susceptible to lysis by lysozyme than the parent strain (Table II),

<table>
<thead>
<tr>
<th>Reaction mixture</th>
<th>Strain SH</th>
<th>Strain 52AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer alone</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Lysozyme 100 µg</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Leukocyte extracts 100 µg</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>MPO 100 µg</td>
<td>82</td>
<td>75</td>
</tr>
<tr>
<td>LTA 250 µg</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>H₂O₂ 0.3 µg</td>
<td>19</td>
<td>ND</td>
</tr>
<tr>
<td>Leukocyte extracts + H₂O₂ 0.3 µg</td>
<td>79</td>
<td>ND</td>
</tr>
<tr>
<td>Leukocyte extracts + LTA 150 µg</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Leukocyte extracts + LTA 250 µg</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Leukocyte extracts + LTA 500 µg</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Leukocyte extracts + LTA 500 µg + H₂O₂ 0.3 µg</td>
<td>14</td>
<td>ND</td>
</tr>
<tr>
<td>Leukocyte extracts + Decapylated LTA 150 µg</td>
<td>76</td>
<td>75</td>
</tr>
<tr>
<td>Leukocyte extracts + Decapylated LTA 250 µg</td>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>Leukocyte extracts + TA 250 µg</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>Leukocyte extracts + LPS 500 µg</td>
<td>78</td>
<td>72</td>
</tr>
<tr>
<td>MPO + H₂O₂ 0.3 µg</td>
<td>72</td>
<td>ND</td>
</tr>
<tr>
<td>MPO + LTA 250 µg</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>MPO + LTA 500 µg</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>MPO + LTA 500 µg + H₂O₂ 0.3 µg</td>
<td>15</td>
<td>ND</td>
</tr>
</tbody>
</table>

* The reaction mixtures were added to the label bacteria (logarithmic phase) in 0.1 M acetate buffer pH 5.0.

* Lysis was determined as the percentage of the solubilized radioactivity as described in Materials and methods. The data are the average of five experiments.

* All LTA preparations (see Materials and method behaved similarly.

* ND—Not done.

one should seek other explanations for the higher susceptibility of the mutant to lysis by leukocyte factors.

It may be postulated that since old staphylococci (shown to be resistant to degradation) (Table I), possess much thicker cell wall (17) and since TA forms the bulk of the staphylococcus cell wall, it is possible that the lack of TA from the mutant renders the "thinner" cell wall of these microorganisms more susceptible to degradation by the autolyt enzymes, which are activated by the leukocyte factors (8). Thus TA may be essential f
ilization of the cell wall not only ysozyme but also against the autoly-

has been shown to be a potent inhib-
utolytic enzymes in a variety of bac-
cies (11, 12). The findings that ex-
LTA can inhibit the lysis, by ENZ O (Table II) of staphylococci which endogenous LTA (Table I) is intri-
o explain this phenomenon one may e that since leukocyte extracts, lys-
nd histone were shown to remove the
LTA from bacterial cells (14), the the staphylococcus cells by leukocyte may involve, first the removal of en-
is LTA from the bacterial cells by the te factors, then the release from inhib-
f the autolytic enzymes, and finally itation of the activity of the autolytic

down in Table II lysis of staphylococci organisms known to produce H2O2)
cluded by MPO. These results are but, since neither KCN nor NaN3, are hemeprotein inhibitors, could in-
termediate by MPO (unpublished ob-
s). It thus points to the possibility O (a cationic substance) like other ne-damaging agents, (e.g. LCP, his-
ospholipase A2, polymyxin B, coli-
may interact with the protoplast pe and through perturbation, acti-
membrane-associated autolytic sys-
rough the removal of LTA (14). This o explain teleologically why PMN large amounts of MPO.
act that H2O2 did not modify the effect of LTA, on the lysis of staph-
by MPO (Table II), further supportion that MPO in this system acts
protein.
reasons for the use of acid buffers in erolysis system are based on our findings (5, 18) that optimal killing s of staphylococci by leukocyte e-
ited histone took place at pH 5.0, only a slight effect was obtained at

Summary. A Staph. aureus mutant (52A5) which is deficient in wall teichoic acid (TA) was found to be highly susceptible to lysis by leukocyte extracts (ENZ) and by myeloperox-
dase (MPO) when harvested from the station-
ary phase of growth, On the other hand, a staphylococccus mutant, which is deficient in N-acetyl glucosamine in its TA (52A2), the parent strain SH and a protein A rich strain Cowen I, could be lysed by the leukocyte factors only when harvested from the loga-
rithmic phase of growth.

The lysis of all the bacterial strains by ENZ or by MPO was strongly inhibited by lipotei-
hoic acid (LTA) derived either from staph-
ylococci or from streptococci. On the other hand, deacetylated LTA, TA, LPS, cytoplasmic or cell wall components derived from strep-
tococci had no inhibitory effect on bacteriol-
ysis. It is concluded that TA may be import-
ant in the protection of old bacterial cells against degradation by leukocyte factors, and that LTA may be involved in the control of autolytic enzymes in staphylococci. The role of MPO in bacteriolysis is also discussed.

18. Klebanoff, S. J., in "Phagocytic Cells in Host Reistance" (J. A. Bellanti and D. H. Dayton, eds.) p. 4

Polybrominated Biphenyls in Chicken Eggs vs. Hatchability

DONALD POLIN AND R. K. RINGER
Michigan State University, East Lansing, Michigan 48824

Fall of 1973, polybrominated biphenyls (PBB) were accidentally introduced into poultry and livestock within Michigan. Millions of chickens and thousands of hens were destroyed to lessen the contamination of PBB into the food-chain (1). Fries (1) had reported that eggs from hens fed PBB averaged 21.5 ppm of hexabromobiphenyl (6-BB) plus heptabromobiphenyl (7-BB), and that 7 weeks after withdrawal of the PBB diet eggs contained 2.2 ppm of these compounds. Fat from these hens contained 69.5 and 62.4 ppm of these compounds at the respective times of 9 weeks on PBB and 7 weeks after their withdrawal. Calculations (4) revealed a relation of PBB in eggs to be 1.3× the level in the diet (3). This steady state effect was observed to occur as early as 10 days (4, 5). In data obtained from feeding PBB to hens (4), the dose-response curve of PBB in eggs to be 1.3× the level in the diet (3), similar to the 1.5 value calculated by Cecil et al. (3), the mortality as a percent of fertile eggs was 6.2% and 3.9% for diets containing either 20 ppm PBB or no PBB, respectively (7). Ringer and Polin (8) showed that hatchability declined and chicks from inoculated eggs were less viable when hens were fed 15 ppm PBB in the diet, but not 15 ppm (8) or 30 ppm (4). Quail hatched normally when PBB was fed at 150 ppm, but failed to hatch when 100 ppm (6). The details of the materials and methods used in the experiment, as well as the procedure for the analysis of PBB in eggs were reported (5). Briefly, the hens were fed FF-1 in the diet at 0.2, 1, 5, 25, 125, 625 or 3125 ppm for 5 weeks, then fed feed without FF-1 for 8 weeks to obtain data on withdrawal effects. Eggs require about 9–10 days to be completely formed, 8–9 of which are for yolk formation. Thus, sampling of eggs started on day 9 of the experiment, and was on every 7th day thereafter until the 37th day after withdrawal (Table I). The experiment started June 17, 1974. Starting on June 18th, eggs were saved. So that the time for egg sampling coincided with the middle of a 7-day collection period, the first setting of eggs in the incubator were those collected in the first 5 days on the experiment. All subsequent settings were from 7-day collections. The midpoint of the 1st collection period was day 9 on and represented equally days 6 through 8 for the accumulation phase and days 10 through 12 of the steady-state phase. Thus, the hatch value for a week’s collection would represent the hatch value for the midpoint of

PBB toxicity.

Materials and methods. Adult female White Leghorn chickens 10 months in production (about 60 weeks of age) were assigned at random into one of 7 treatments, or to a control group. Twenty-four hens were in each group. PBB, as Firemaster FF-1 was used in this experiment. This compound differs from that of Firemaster BP-6 used in other studies (2, 3, 6, 7) in that FF-1 has anti-caking substances added and had been milled to obtain a free-flowing compound. In other words, Firemaster BP-6 was an intermediate product. Firemaster FF-1 was the final product sold commercially, the one used in this study, and the chemical involved in the contamination of Michigan's livestock and poultry. It is reported (4) to contain 62.8% 6-BB and 13.8% 7-BB, as compared to 79.2% 6-BB and 14.3% 7-BB for the Firemaster BP-6 (2).

The details of the materials and methods used in the experiment, as well as the procedure for the analysis of PBB in eggs were reported (5). Briefly, the hens were fed FF-1 in the diet at 0.2, 1, 5, 25, 125, 625 or 3125 ppm for 5 weeks, then fed feed without FF-1 for 8 weeks to obtain data on withdrawal effects. Eggs require about 9–10 days to be completely formed, 8–9 of which are for yolk formation. Thus, sampling of eggs started on day 9 of the experiment, and was on every 7th day thereafter until the 37th day after withdrawal (Table I). The experiment started June 17, 1974. Starting on June 18th, eggs were saved. So that the time for egg sampling coincided with the middle of a 7-day collection period, the first setting of eggs in the incubator were those collected in the first 5 days on the experiment. All subsequent settings were from 7-day collections. The midpoint of the 1st collection period was day 9 on and represented equally days 6 through 8 for the accumulation phase and days 10 through 12 of the steady-state phase. Thus, the hatch value for a week's collection would represent the hatch value for the midpoint of

1 Article No. 8433. Michigan Agricultural Experiment Station.
that week; in this case, day 9 on. The eggs from the mid-point of the week were opened, pooled, and analysed for 6-BB by the Michigan Department of Agriculture, as previously described (5). Hens were artificially inseminated once a week with semen collected from males housed in a separate room and fed diet without FF-1.

6-BB was assayed by gas liquid chromatography using one or both procedures employing a 3H-foil electronic detector at a temperature of 220° in the column and detector, and 250° in the injector, or a 60Ni-detector at temperatures of 270° in the column, 310° in the detector and 300° in the injector port. The important aspect for this experiment was that FF-1 was assessed from chromatograms by reading the peak height of the 6-BB peak using Firemaster BP-6 (Lot-#5143) as a standard. Subsequent comparison of this standard with those used by the Food and Drug Administration (FDA) showed comparable patterns. The standard BP-6 was obtained from Michigan Chemical Company, the former manufacturer of FF-1. Linear and curvilinear regression and analysis of variance were applied to the data (9), after converting percentage values to arcsin $\sqrt{\%}$ (9).

Results and discussion. Table I contains the weekly hatchability data (number hatch per number fertile) and the 6-BB levels of eggs representative of the day and week that the eggs were collected. Not included in Table I were the hatchability data for the first 5 days on the experiment for which no egg samples were obtained. These hatch values were 95.3, 80.0, 83.1, 88.1, 88.5, 90.0, 69.7 and 61.5% for the eggs from FF-1 levels of 0, 0.2, 1, 5, 25, 125, 625 and 3125 ppm in the diet, respectively. When these values were considered with those of Table I for the first 5 weeks that FF-1 was fed, hatchability of control eggs averaged 89.9 (±4.1)% mean (± SD), and 91.2 (±3.1)% for the entire 13 weeks of the

Table I. Relationship Between Hatch and Hexabromobiphenyl (6-BB) in Eggs

<table>
<thead>
<tr>
<th>Day</th>
<th>Egg Sample</th>
<th>6-BB in Egg ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date</td>
<td>Hatch</td>
<td>Hatch</td>
<td>Hatch</td>
<td>Hatch</td>
<td>Hatch</td>
<td>Hatch</td>
<td>Hatch</td>
</tr>
<tr>
<td>6/27</td>
<td>9 on</td>
<td>0.14 (90) 92</td>
<td>1.8 (84) 95</td>
<td>7.7 (104) 93</td>
<td>25 (101) 91</td>
<td>232 (60) 28</td>
<td>- (83) 0</td>
<td>-</td>
</tr>
<tr>
<td>7/4</td>
<td>16 on</td>
<td>0.26 (91) 95</td>
<td>1.4 (97) 92</td>
<td>11.0 (105) 97</td>
<td>85 (90) 87</td>
<td>504 (60) 5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7/11</td>
<td>23 on</td>
<td>0.34 (96) 88</td>
<td>1.3 (101) 94</td>
<td>3.4 (85) 89</td>
<td>46 (76) 96</td>
<td>178 (57) 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7/18</td>
<td>30 on</td>
<td>0.43 (99) 96</td>
<td>1.5 (98) 89</td>
<td>5.6 (93) 95</td>
<td>33 (94) 85</td>
<td>195 (63) 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7/25</td>
<td>2 off</td>
<td>0.54 (62) 94</td>
<td>1.7 (93) 93</td>
<td>9.5 (86) 94</td>
<td>30 (82) 94</td>
<td>220 (50) 18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8/1</td>
<td>9 off</td>
<td>0.58 (83) 92</td>
<td>0.8 (81) 91</td>
<td>1.9 (81) 94</td>
<td>11.3 (76) 92</td>
<td>58 (66) 74</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8/8</td>
<td>16 off</td>
<td>0.12 (74) 92</td>
<td>0.33 (75) 93</td>
<td>1.3 (61) 90</td>
<td>10.9 (61) 92</td>
<td>30 (58) 86</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>8/15</td>
<td>23 off</td>
<td>0.10 (75) 93</td>
<td>0.25 (67) 84</td>
<td>0.83 (71) 94</td>
<td>6.8 (60) 87</td>
<td>54 (67) 85</td>
<td>78</td>
<td>65 (14) 43</td>
</tr>
<tr>
<td>8/22</td>
<td>30 off</td>
<td>0.05 (64) 91</td>
<td>0.13 (60) 88</td>
<td>0.69 (52) 92</td>
<td>6.0 (57) 90</td>
<td>21 (55) 91</td>
<td>71 (18) 33</td>
<td>40 (17) 35</td>
</tr>
<tr>
<td>8/29</td>
<td>37 off</td>
<td>0.07 (56) 95</td>
<td>0.13 (56) 96</td>
<td>0.84 (55) 91</td>
<td>5.3 (41) 83</td>
<td>19 (55) 78</td>
<td>73 (19) 12</td>
<td>48 (14) 21</td>
</tr>
<tr>
<td>9/5</td>
<td>44 off</td>
<td>- (53) 93</td>
<td>- (56) 100</td>
<td>- (40) 98</td>
<td>- (38) 92</td>
<td>- (40) 93</td>
<td>- (30) 57</td>
<td>- (8) 63</td>
</tr>
<tr>
<td>9/12</td>
<td>51 off</td>
<td>- (55) 94</td>
<td>- (59) 95</td>
<td>- (40) 91</td>
<td>- (41) 83</td>
<td>- (49) 88</td>
<td>- (43) 19</td>
<td>- (6) 67</td>
</tr>
</tbody>
</table>

() = Number fertile; Hatch = (Number hatch/Number fertile) x 100
A = FF-1 withdrawn 7 days sooner, therefore add 7 days to "Day for Egg Sample"
experiment. Hatchability during 5 weeks of feeding FF-1 at 0.2, 1, 5 and 25 ppm were 90.6, 88.5, 92.8, and 89.9%, respectively; none of these values were significantly different, $P \leq .05$, from the control value. On the other hand, poor hatches were obtained when 125 ppm FF-1 was fed, but not until the hatch representing day 9 on (actually days 6–12) was obtained. Within the first 5 days of feeding FF-1 at 625 and 3125 ppm, hatchability was significantly $(P \leq .05)$ below normal. None of the eight fertile eggs hatched that were obtained from the hens fed 625 ppm PBB and representing day 9 on; and no eggs were laid by those hens fed 3125 ppm FF-1. A subsequent experiment revealed (4, 5) that during the steady-state phase of days 9 to 35 for feeding FF-1, the minimum effective level for FF-1 in the diet to produce a significant effect on hatchability was between 30 and 45 ppm.

6-BB was detected in whole egg samples, based on the dose-response curve for steady state values (5), at 0.3, 1.5, 7.4, 43.4, and 215 ppm for the treatment levels of 0.2, 1, 5, 25 and 125 ppm FF-1 in the diet, respectively. The latter level produced a high mortality in chick embryos (Table I) during the last few days of hatch. Edema of the abdominal and cervical regions was the prevalent pathological sign observed in embryos and newly hatched chicks from FF-1 treatment (Fig. 1a and 1b). The clinical signs resemble those of embryos from polychlorinated biphenyl treatment (7). The edema was the only side effect to be observed that was increased in incidence above abnormalities detected in control embryos.

Estimated $t^{1/2}$ values were obtained from the 6-BB data in Table I and found to be 10 and 21 days for depletion time from prior treatment with FF-1 at 0.2–1.0 ppm, and

![Fig. 1. Edematous condition of embryo (1b) and chick (1a) from feeding polybrominated biphenyl. Firemaster FF-1, to hens at dietary levels higher than 42 ppm. Note the accumulation of fluid typically seen in abdominal and head region of embryos and cervical area of chicks.](image-url)
TABLE II.

<table>
<thead>
<tr>
<th>Level of FF-1 withdrawn (ppm)</th>
<th>Depletion curve</th>
<th>(t/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 ppm</td>
<td>(Y = -0.0204-0.0317X)</td>
<td>9.57</td>
</tr>
<tr>
<td>1.0 ppm</td>
<td>(Y = -0.0647-0.0286X)</td>
<td>10.53</td>
</tr>
<tr>
<td>5.0 ppm</td>
<td>(Y = 0.3287-0.0137X)</td>
<td>22.03</td>
</tr>
<tr>
<td>25.0 ppm</td>
<td>(Y = 1.1870-0.0131X)</td>
<td>23.00</td>
</tr>
<tr>
<td>125.0 ppm</td>
<td>(Y = 1.8818-0.0158X)</td>
<td>19.10</td>
</tr>
</tbody>
</table>

a Dose-response lines based on depletion curves for 6-BB from chicken eggs after removal of diets with FF-1. The relationship is \(Y = a + bx \), where \(x \) = days of withdrawal starting at day 9 off, and \(Y = \log \text{ppm 6-BB in whole egg} \).

5–125 ppm, respectively (Table II). Thus, higher levels of FF-1 treatment required a longer time for depletion based on 37 days of measurements during withdrawal. Furthermore, factorial analysis of these depletion data revealed a significant linear and quartic, but not cubic, effect. This suggests that the slopes of the depletion curves are flattening to some extent and that with depletion beyond 37 days the \(t/2 \) values will be greater.

As previously pointed out (5), the relationship between FF-1 in the diet and 6-BB levels in eggs during the steady-state phase, was expressed by the equation \(Y = 0.1763-1.012X \), where \(X = \log \text{ppm of FF-1 in the diet, } Y = \log \text{ppm 6-BB in whole egg. This is in good agreement with the data by other investigators (3, 6). The response of hatchability to FF-1 in the diet (3), during the steady-state phase, was estimated to be } Y = 297.14-140.74X, \) where \(X = \log \text{ppm FF-1, and } Y = \arcsin \sqrt{\% \text{ hatchability}} \).

The algebraic summation of these two regressions derived to relate log ppm 6-BB in egg, as \(X \), to \(\arcsin \sqrt{\% \text{ hatch}} \), as \(Y \), is given in Figure 2, line “a”, along with a plot of the values from Table I for treatments with FF-1 at 25, 125 and 625 ppm. The regression lines under comparison are: (a) the line based on the derived steady-state values, (b) the line based on the depletion phase (“off” data), (c) the line based on the steady-state phase (“on” data), (d) the line representing both the steady-state and depletion phase of the data from Table I, and (e) a regression line based on egg residues between 30 and 85 ppm of 6-BB.

The lines for “b”, “c”, and “d” above were calculated on the basis of \(Y = a + bx + cx^2 \). From these regressions, a linear regression can be calculated to represent the a linear portion of these curvilinear lineing the data into response lines for each “c”, or “d” revealed slopes and intercepts very unlike the derived equation, “whose linear slopes were very similar legend). The line calculated for “e” and a non-significant, \(P > 0.05 \), slope, indicated the lack of correlation (r = between hatchability and 6-BB levels 85 ppm in eggs. Considering all of these comparison derived regression, the conclusion reached that the derived equation relating hatchability to egg residues is not very interesting, the range of 6-BB levels from 0 to 85 ppm supposedly covered a range of hatchability from no effect down to \(r = 64\% \), based on the derived equation.

Fries et al. (10) reported that 7-BB dissipated more rapidly in chicken eggs than 6-BB withdrawal of diets with BP-6. Also noted that the concentrations of these components in fat of hens being fed 20 ppm 4 times that of diet for 6-BB and 12, 1 that of diet for 7-BB. Thus, there is ev

FIG. 2. Relationship between hexabromophenol (6-BB) in whole egg and the hatchability of eggs, during and after the feeding of diets with 25, 125, 3125 ppm Firemaster FF-1, a polybrominated 6-BB. Where \(X = \log \text{ppm 6-BB and } Y = \text{hatchability in } \% \); the response lines are: (a) A derived equation \(Y = 321.66-139.07X \); (b) a response line for data depletion phase where \(Y = 240 + 95.8X-8.41X^2 \); linear portion is described by \(Y = 160.9-68.4X \), response line for data from the steady-state phase \(Y = 96.8 + 10.7X-18.8X^2 \) whose linear portion is described by \(Y = 173.4-65.8X \); (d) summation of “b” and “c” where \(Y = 56.8 + 37.6X-23.3X^2 \); linear portion is \(Y = 167.2-67.3X \), and; (e) a line for egg samples with 6-BB between 30-
where \(Y = 127.6-43.6X \).
for differential metabolism of the isomers that comprise BP-6, and thus FF-1. The supposition to consider is that not all isomers of these PBBs gave equivalent toxicity and that this would account for our inability to find a close correlation between 6-BB and embryo toxicity over that wide range of 6-BB levels in eggs, and the incompatibility between derived and actual curves of 6-BB in eggs vs. hatchability. On this basis, these hatch and residue data indicated that analysis for FF-1 based on the analysis of only the 6-BB peak was not a definitive approach toward assessing toxicity of BP-6 or FF-1.

Other isomers, and their metabolites will have to be considered in the overall relationship of ingested PBBs to the residues in tissues and their toxicity of the compounds.

Summary. A relationship between polychlorinated biphenyl, Firemaster FF-1 (FF-1), in the diet, and eggs, as monitored by hexabromobiphenyl (6-BB), and embryo toxicity, as measured by hatchability, were examined. The minimum dietary level of FF-1 for an effect on hatchability was estimated at 42 ppm, which produced an egg residue estimated at 65.9 ppm 6-BB. Generally, as FF-1 in the diet increased, egg residues increased and hatchability decreased. Regression equations were established for these relationships. After withdrawal of FF-1 in the diet, hatchability returned to normal when FF-1 treatments had been <625 ppm. Over a range of 30–85 ppm 6-BB in eggs there was poor correlation to an effect on hatchability. These latter data were discussed in terms that the 6-BB peak may not be a definitive approach to assess FF-1 toxicity.

The authors express their appreciation for assistance in this project to Mr. Sulo Hulkonen, Mr. Edward Kowaleski, Mr. Dennis Dodson, and Ms. Melinda Neff.

Intraerythrocyte pH and Physiochemical Homogeneity

JAMES WARTH* AND JANE F. DESFORGES

Blood Research Laboratory, New England Medical Center Hospital and the Department of Medicine, Tufts U School of Medicine, 171 Harrison Avenue, Boston, Massachusetts 02111

Intraerythrocytic pH is a major determinant of glycolytic metabolism, membrane function, and oxygen dissociation. We have investigated the possibility that in a physiochemical sense these functions are controlled by separate pH environments within the red cell.

Caldwell (1), Adler et al. (2), and Waddell and Bates (3), have demonstrated that the results of the determination of intracellular pH (pH_i) by the distribution of a weak base differs from that determined by the distribution of a weak acid in a heterogeneous system. Using a weak acid, the pH_i closer to the highest pH of the various intracellular compartments is recorded, while a weak base reflects a value closer to the lowest pH of the compartments. If the pH_i as determined by a weak acid and a weak base are identical, then the cell interior is likely to be homogeneous (1). Using rat diaphragm muscle Adler (4) showed that the pH_i measured by the weak acid 5,5-dimethylazolidine-2,4-dione (DMO) was significantly higher than the pH_I measured by the weak base, nicotine. Physiochemical inhomogeneity, therefore, was demonstrated, as one might expect on morphological grounds. Using the same weak acid and weak base, we have investigated the pH_i of the human erythrocyte.

Methods. Venous blood was mixed with 14.3 μg of hemarin per ml, centrifuged, and the buffy coat removed. The erythrocytes were resuspended in their own plasma.

Radioactive DMO, 5,5-dimethylazolidine-2,4-dione-[2-14C] (New England Nuclear, Boston, MA), specific activity 11 mCi/mmmole, was added to give a final concentration of 0.00066 mg/ml of blood. Active nicotine, nicotine-methyl-[14C] linckrodt Corp., St. Louis, MO, specific activity 2.41 mCi/mmmole, was added to one aliquot of blood to give a final concentration of 0.011 mg/ml. Both tubes were incubated at 37°C for 20 min, then determined experimentally as adequate both DMO and nicotine to reach equili. The pH, pH, of each aliquot was measured to the nearest 0.01 unit using a Corning 165 pH blood gas analyzer (Corning Scientific Instruments, Medfield, MA). Ti quotus were centrifuged, the plasma re and a microhematocrit corrected for to plasma [1.31% (5)] determined on the packs. One ml of packed cells or one plasma containing either nicotine-1

DMO-14C was added to 5 ml of deion water. Each sample was prepared in duplicate. One ml of each mixture was added into 2.0 ml of 10% trichloracetic acid (TCA), centrifuged, and 1 ml of the supernatant counted in a Packard Tri-Carb Scintillation Counter Model 3320. Counts were converted to disintegrative minute by use of a quench curve.

Binding studies. To investigate the p binding of DMO to human plasma, the mel-Dryer technique (6) was utilized. 1 ml of normal heparinized (14.3 μg/ml) plasma were incubated with 0.01 ml of [14C] at 37°C for 30 min and an aliquot on to a G-25 Sephadex column with a void volume after balancing the column. DMO-[14C] in heparinized (15 μg/ml) plas that was buffered saline. Aliquots of each were counted and the optical density determined at 280 nm.

Binding studies of nicotine to 1 plasma and erythrocytes were also conc. Ten ml of heparinized venous blood incubated with 0.3 mg of nicotine-[14C] to ml of 0.9% sodium chloride while anot
ml were allowed to incubate with the same amount of radioactive nicotine plus 0.85 mg of cold nicotine contained in 50 μl of 0.9% sodium chloride. Three determinations were made from each tube of the ratio of intracellular to extracellular dpm per g of water.

Calculations. The external dpm for both DMO and nicotine determinations were converted to dpm/g of plasma water using 0.94 as the fraction of solvent water in plasma (7).

The internal dpm for both DMO and nicotine determinations were converted to dpm/g of erythrocyte water after correction for the trapped plasma in the erythrocyte pack, utilizing 0.59 as the fraction of solvent water in the erythrocyte (8–11).

The dpm/g of plasma water and cell water are then entered into the appropriate formula (12).

\[\text{pH}_i = \frac{pK'_a + \log \left[\frac{(\text{DMO})_i \times 10^{pH_i - pK'_a} + 1}{(\text{DMO})_r} \right]}{(\text{nicotine})_i \times 10^{pK'_a - pH_i} + 1} \]

The pK' of DMO is 6.13 (12).

\[\text{pH}_i = \frac{pK'_a - \log \left[(\text{nicotine})_i \times 10^{pK'_a - pH_i} + 1 \right]}{(\text{nicotine})_r} \]

The pK' of nicotine was chosen as 7.85, the value used by Effros and Chinard (13).

The pH used was the average of the two measured values, which never differed by more than 0.01 of a pH unit. There was no significant difference between the pH values measured in the tube containing DMO versus the tube containing nicotine.

Results. The DMO and plasma binding study showed no rise or subsequent fall in dpm occurring in association with the collection of the plasma protein peak. Thus, there was no evidence of binding of DMO to human plasma.

The studies done to evaluate the possibility of nicotine binding to human plasma or erythrocytes showed that the ratio of internal to external dpm per g of water was identical at the two widely different concentrations of nicotine. This is strong evidence against binding or active transport of nicotine as well as evidence against the permeability of the erythrocyte membrane to the nicotine ion (14).

Table I shows the results of the pHi determinations using both DMO and nicotine. Four determinations using each indicator were carried out for each normal sample. The range of the four values falls within 0.16 of a pH unit. There is no significant difference by analysis of the 5 pairs of DMO and nicotine results.

Discussion. Caldwell (1) stated that if the values for pHi, obtained from multiple different indicator methods are in agreement it is probable that the cell interior is "reasonably uniform". Waddell and Bates (3), using a current operational definition of pH, stated that in an inhomogenous system, pHi calculated from the distribution of a weak acid yields a pH value closer to the higher value, and that pHi calculated from the distribution of a weak base yields a result closer to the lower pH value in that inhomogenous system.

Accurate determinations of pHi, using such indicators depend upon the absence of binding, the absence of active transport, and the impermeability of the cell membrane to the ionic species of the weak acid or weak base used. Waddell and Butler (15) demonstrated that DMO is not significantly bound to bovine serum albumin. Calvey (16) showed that DMO is not bound to, or actively transported by, rabbit erythrocytes. Bromberg et al. (17) showed that human erythrocytes do not bind DMO. We have demonstrated that DMO is not bound to human plasma and that nicotine meets the three criteria for accurate indicator compounds set forth above.

We have chosen 0.59 gm H2O/100 ml of

<table>
<thead>
<tr>
<th>Sample</th>
<th>pHi</th>
<th>DMO</th>
<th>Nicotine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.325</td>
<td>7.06</td>
<td>6.99</td>
</tr>
<tr>
<td>B</td>
<td>7.360</td>
<td>7.12</td>
<td>7.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.07-7.17</td>
<td>7.01-7.08</td>
</tr>
<tr>
<td>C</td>
<td>7.335</td>
<td>7.15</td>
<td>7.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.08-7.20</td>
<td>7.07-7.12</td>
</tr>
<tr>
<td>D</td>
<td>7.355</td>
<td>7.09</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.06-7.12</td>
<td>7.09-7.14</td>
</tr>
<tr>
<td>E</td>
<td>7.325</td>
<td>7.09</td>
<td>7.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.07-7.12</td>
<td>6.99-7.14</td>
</tr>
</tbody>
</table>

No significant difference

* Calculations based on paired data analysis on five pairs.
cells as the fraction of solvent water in the erythrocyte. This value is amply supported (10-13). However, values up to 0.72 gm H2O/100 ml of cells (9) can be defended. Use of the latter value would assume no bound water and would produce a DMO value 0.1 of a pH unit lower and a nicotine value 0.1 of a pH unit higher than the average values we calculated. Such a result would be at variance with the theoretical considerations presented by Waddell and Bates (3).

In performing the above experiments we used erythrocytes of various ages. Assuming that each cell is homogeneous but that they vary somewhat in intracellular pH as a function of age, the pHi, determined by DMO should be equal to the pH, measured by nicotine.

There are only two results possible if a weak acid and a weak base are used to determine the pH. Either the weak acid gives a higher pH, reading than the weak base, in which case the system is heterogeneous, or the readings are equal, in which case the system is homogeneous. Our experiments utilized erythrocytes from four normal donors and the same indicator compounds, DMO and nicotine, that were used to demonstrate physicochemical heterogeneity of skeletal muscle cells (4). Our results show no significant difference between the pH, value obtained by DMO and that obtained by nicotine. It is possible that in a heterogeneous system pH, values determined by these compounds could, fortuitously, turn out identical, as has been suggested by Carter (18) in his report of equal pH, values determined by DMO and nicotine in barnacle muscle, an apparently heterogeneous system. We have no proof that this has not occurred here but it would seem unlikely given the difference between the erythrocyte and barnacle muscle fiber microscopically. Further, Bone et al. (19) using a single donor showed no significant difference between the hydrogen-ion concentration in erythrocytes as determined by the weak acid DMO and the weak base ammonia.

We conclude that the internal pH of the normal human erythrocyte is uniform throughout the cell and that this cell is physicochemically homogeneous. This information supports the concept that in the human erythrocyte hydrogen–ion dependent processes such as glycolytic metabolism, mer function and oxygen dissociation are related by a single value for each cell.

Summary. In order to determine the biochemical homogeneity of the human cell, intraerythrocyte pH was simultaneously measured using the weak acid 5,5-dir oxazolidine-2,4-dione (DMO) and the base nicotine. If a cell is homogeneous measurements will yield the same result; if heterogeneous, the DMO reading will be closer to the highest pH in the cell, while the nicotine will read closer to the lowest pH. The results show no significant difference between the intracellular pH determined by either of these methods (ave DMO = 7.10, by nicotine = 7.06 at a age external pH of 7.33). We conclude the human erythrocyte is physicochemically homogeneous.

Stimulation of Erythropoietin Secretion by Single Amino Acids (40300)

ANASIOUS ANAGNOSTOU, STANLEY G. SCHADE, AND WALTER FRIED

Stimulants of Pathology and Medicine, Abraham Lincoln School of Medicine and Medical Service, Veterans Administration West Side Hospital, Chicago, Illinois 60612, and Department of Medicine, Michael Reese Hospital, Chicago, Illinois 60616

in deprivation in rats results in a decrease in the amount of erythropoietin (Ep) secreted in response to hypoxic stimulation. This effect is rapidly reversed if the protein-deprived animals are fed a single protein consisting of albumin or hemoglobin or to or shortly after the onset of the stimulus (2). The study detailed provides evidence that the protein deprivation of rats erythropoietin secretion can be reversed by individual amino acids.

Materials and Methods. Female Sprague-rats weighing 100-200 g were used. All diets in pellet form containing less than 5% protein ("protein-free"), but nutritionally complete, were purchased from Ralston Purina-Ralston Co., Missouri. Solutions of amino acids in 3 cc of distilled water were then stored in vacuums at a blunt-ended #18 needle per os into the rat stomach. To dissolve amino acids, the pH of the solution was changed at times from moderately acid (pH 3.0) to strongly alkaline (pH 9.0). In each individual experiment, the rats were given control rats that of the test amino acid solutions. The difference in the pH of the various solution was determined to be not affect asma Ep levels.

Erythropoietin production was stimulated by administering a hypobaria chamber, exposing them to 0.5 atmosphere for 1 hr. Immediately afterwards, rats were sacrificed by cardiac puncture (3) and the obtained from each experimental group (4-5 rats) was pooled and assayed for Ep levels in posthypoxic hemic mice by the method of Gordon and Traub (3) (6-8 assay mice each receiving 0.5 ml of pooled plasma). It should be noted that minor variations in the spring chamber result in some inconstant chamber pressure from experiment to experiment. Therefore, a control group of rats fed water adjusted to the pH of the amino acid preparations were always included in each experimental trial. The statistical significance of the differences was determined by the Student's t test.

Results. Effect of single L-amino acids (Table I). Rats fed a protein-free diet for 6 days were fed 100 mg of an L-amino acid and were immediately afterwards exposed to hypoxia. Table I shows the mean plasma Ep levels of rats fed various amino acid solutions. The data indicate that L-methionine, L-cystine, and L-leucine produced the most intense and consistent stimulation of Ep production (P < 0.001). L-Tyrosine and L-asparagine produced a small but still significant (P < 0.05) increase in plasma Ep levels whereas the rest of the amino acids had no significant effect (P > 0.05).

Effect of various doses of L-amino acids (Tables II and III). Protein-deprived rats fed from 25 to 100 mg L-methionine or L-cystine prior to hypoxia had significantly higher plasma Ep levels compared to the control group. Increasing the amount fed to 800 mg did not produce a further increase in Ep production and may have been inhibitory. When histidine or glycine was fed in doses of 10 to 400 mg per rat, no increase in the posthypoxic plasma Ep levels was detected.

Discussion. Decreased Ep production occurs in the presence of protein deficiency (1). This decrease has been related by some to the depression of basal metabolism associated with starvation (4). We have recently demonstrated that a single feeding of protein (hemoglobin or albumin) to protein deprived rats produces an immediate enhancement of Ep production which is dose related and which does not correlate with changes in the oxygen consumption of the animals (2). We concluded that the production of erythropoietin depends not only on oxygen supply vs
TABLE I. EFFECT OF FEEDING A SINGLE L-AMINO ACID ON POSTHYPOXIC PLASMA Ep LEVELS OF PROTEIN DEPRIVED RATS.

<table>
<thead>
<tr>
<th>Amino acid fed</th>
<th>Control (H2O) group</th>
<th>AA group</th>
<th>% 59Fe uptake into RBC's of assay mice (mean ± 1 SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine (3)</td>
<td>2.83 ± 0.65</td>
<td></td>
<td>3.94 ± 1.00</td>
</tr>
<tr>
<td>Arginine (3)</td>
<td>2.83 ± 0.66</td>
<td></td>
<td>4.04 ± 1.27</td>
</tr>
<tr>
<td>Valine (3)</td>
<td>4.75 ± 1.10</td>
<td></td>
<td>5.97 ± 1.70</td>
</tr>
<tr>
<td>Serine (4)</td>
<td>4.32 ± 0.79</td>
<td></td>
<td>3.00 ± 0.98</td>
</tr>
<tr>
<td>Methionine (7)</td>
<td>3.08 ± 0.33</td>
<td></td>
<td>11.00 ± 1.19*</td>
</tr>
<tr>
<td>Cystine (4)</td>
<td>2.79 ± 0.73</td>
<td></td>
<td>10.10 ± 0.60*</td>
</tr>
<tr>
<td>Tyrosine (3)</td>
<td>1.96 ± 0.16</td>
<td></td>
<td>4.74 ± 0.98*</td>
</tr>
<tr>
<td>Tryptophane (2)</td>
<td>2.55 ± 0.87</td>
<td></td>
<td>1.61 ± 0.18</td>
</tr>
<tr>
<td>Phenylalanine (2)</td>
<td>2.86 ± 0.56</td>
<td></td>
<td>2.41 ± 0.28</td>
</tr>
<tr>
<td>Leucine (5)</td>
<td>2.06 ± 0.12</td>
<td></td>
<td>4.52 ± 0.44*</td>
</tr>
<tr>
<td>Isoleucine (2)</td>
<td>2.27 ± 0.03</td>
<td></td>
<td>4.29 ± 1.11</td>
</tr>
<tr>
<td>Histidine (4)</td>
<td>3.16 ± 0.55</td>
<td></td>
<td>3.34 ± 0.32</td>
</tr>
<tr>
<td>Asparagine (4)</td>
<td>2.18 ± 0.07</td>
<td></td>
<td>4.84 ± 0.51*</td>
</tr>
<tr>
<td>Glycine (6)</td>
<td>3.98 ± 1.01</td>
<td></td>
<td>5.95 ± 1.58</td>
</tr>
<tr>
<td>Lysine (4)</td>
<td>3.76 ± 1.12</td>
<td></td>
<td>4.29 ± 1.38</td>
</tr>
<tr>
<td>Glutamic acid (4)</td>
<td>3.56 ± 1.25</td>
<td></td>
<td>6.99 ± 2.10</td>
</tr>
<tr>
<td>Aspartic acid (4)</td>
<td>3.56 ± 1.25</td>
<td></td>
<td>5.62 ± 1.53</td>
</tr>
<tr>
<td>Threonine (4)</td>
<td>4.12 ± 1.00</td>
<td></td>
<td>6.90 ± 1.99</td>
</tr>
<tr>
<td>Proline (5)</td>
<td>4.93 ± 1.17</td>
<td></td>
<td>8.77 ± 2.92</td>
</tr>
<tr>
<td>Cysteine (6)</td>
<td>3.50 ± 0.69</td>
<td></td>
<td>5.34 ± 0.99</td>
</tr>
</tbody>
</table>

Numbers in parentheses signify the number of experimental trials conducted.

* P < 0.001.

TABLE II. EFFECT OF FEEDING VARIOUS DOSES OF L-METHIONINE AND L-CYSTINE ON POSTHYPOXIC PLASMA Ep LEVELS OF PROTEIN DEPRIVED RATS.

<table>
<thead>
<tr>
<th>Amount fed</th>
<th>L-Methionine</th>
<th>L-Cystine</th>
<th>% 59Fe Incorporation into RBC's of assay mice (mean ± 1 SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>2.09 ± 0.25</td>
<td>2.74 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>25 mg</td>
<td>8.55 ± 4.61</td>
<td>4.20 ± 1.41</td>
<td></td>
</tr>
<tr>
<td>50 mg</td>
<td>8.41 ± 3.39</td>
<td>7.00 ± 2.05</td>
<td></td>
</tr>
<tr>
<td>75 mg</td>
<td>10.02 ± 3.90</td>
<td>4.91 ± 1.07</td>
<td></td>
</tr>
<tr>
<td>100 mg</td>
<td>10.43 ± 1.96</td>
<td>5.79 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>3.68 ± 0.74</td>
<td>1.50 ± 0.21</td>
<td></td>
</tr>
<tr>
<td>100 mg</td>
<td>12.67 ± 1.05</td>
<td>9.19 ± 0.94</td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td>12.15 ± 1.09</td>
<td>6.56 ± 1.41</td>
<td></td>
</tr>
<tr>
<td>800 mg</td>
<td>5.70 ± 0.27</td>
<td>5.41 ± 0.32</td>
<td></td>
</tr>
</tbody>
</table>

TABLE III. EFFECT OF FEEDING VARIOUS DOSES OF L-HISTIDINE OR L-GLYCINE ON POSTHYPOXIC PLASMA Ep LEVELS OF PROTEIN DEPRIVED RATS.

<table>
<thead>
<tr>
<th>Amount fed</th>
<th>L-Histidine</th>
<th>L-Glycine</th>
<th>% 59Fe Incorporation into RBC's of assay mice (mean ± 1 SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>4.11 ± 0.47</td>
<td>3.18 ± 0.27</td>
<td></td>
</tr>
<tr>
<td>10 mg</td>
<td>4.00 ± 0.60</td>
<td>3.66 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>50 mg</td>
<td>2.51 ± 0.58</td>
<td>4.63 ± 0.56</td>
<td></td>
</tr>
<tr>
<td>100 mg</td>
<td>4.24 ± 0.50</td>
<td>4.51 ± 0.75</td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td>3.32 ± 0.40</td>
<td>2.18 ± 0.21</td>
<td></td>
</tr>
</tbody>
</table>

plasma Ep levels of the protein deprived rats. Other amino acids had minimal or no effect.

There is a parallel to this finding in the studies which show a great variation in the ability of single amino acids to stimulate secretion of insulin or growth hormone (6, 7).

Some amino acids which had no effect at the 100 mg dose level were tested at smaller doses to determine whether their dose response curves were maximal at the lower levels. The results were negative. The data also suggest that higher doses of cystine and methionine may be inhibitory. We have no explanation for this possibility, although large doses of amino acids may suppress the transport of other amino acids across cell boundaries (8).

Summary. Protein deficiency in rats results in decreased ability to produce erythropoietin after hypoxic stimulation. This defect can be reversed by a single protein feeding at the time of exposure to hypoxia. The present experiments show that feeding of methionine, leucine or cystine also corrected the defect in erythropoietin production. These amino acids may serve to signal the adequacy of protein reserves and permit the synthesis of erythropoietin. Other single amino acids had minimal or no effect.

Study has been supported by University of Illinois BRSG 7612, Veterans Administration Research Funds, funds from the American Cancer Society, Illinois Division, Leukemia Research Foundation and the Hematology Research Foundation. The authors wish to thank Mrs. Jan Rone for her technical assistance.

Ornithine Decarboxylase Activity in Cells Acutely and Chronically Transformed by Murine Sarcoma Virus (40301)

LARY J. KILTON and ADI F. GAZDAR

NCI-VA Medical Oncology Unit, National Cancer Institute, Bethesda, Maryland 20014 and Veterans Administration Hospital, Washington, DC 20422

Polyamine biosynthesis is one of the earliest events occurring during cellular proliferation (1). Ornithine decarboxylase (ODC), which catalyzes the formation of putrescine from ornithine, is the rate limiting enzyme in polyamine biosynthesis (2). Resting cells have low, stable ODC levels which increase rapidly upon the onset of growth (3, 4). We have demonstrated that increased ODC activity follows infection of cultured mouse Balb/3T3 (B/3T3) cells with murine sarcoma virus (MSV) (5). The increase in ODC activity is independent of the population doubling time and commences immediately prior to morphological transformation. Elevation of ODC levels also precedes morphological transformation by Rous sarcoma virus (6).

Transforming stocks of MSV consist of mixtures of defective transforming virus and non-transforming murine leukemia virus (MuLV) (7). The MuLV is usually present in great excess, and dual infection of mouse cells with both viruses is required for MSV replication. Cells infected with the transforming virus alone undergo transformation, and retain the sarcoma genome, but do not release infectious virus. Two such classes of transformed cells have been described: (a) Non-producer (np) which do not release virus particles (8), and (b) sarcoma virus positive, leukemia virus negative (S+L−) cells which release noninfectious virus particles and have MuLV gs antigen (8). Superinfection of both of these transformed cell classes with MuLV results in release of infectious transforming and nontransforming viruses. However, superinfected S+L− cells undergo further morphological alteration (thus providing a focus assay for MuLV). Superinfection of np cells does not result in morphological alteration.

In this communication we describe experiments studying the relationship between elevated ODC activity, virus induced morphological transformation, virus production, and rates of cellular division. We compare producer, np and S+L− derivatives of a single murine cell clone.

Materials and methods. Cell lines. B/3T3, clone A31, is a contact inhibited, ‘flat’ non-virus releasing cell (9). It becomes transformed after MSV infection, but productive infection with MuLV does not induce morphological change. D245E6 is a S+L− B/3T3 clone selected for its relative ‘flatness’. After MuLV superinfection, its morphology becomes more transformed (10). KA31 is a Kirsten MSV transformed np clone of B/3T3 (11). MuLV superinfection of KA31 results in release of transforming and nontransforming viruses without morphological change. B/3T3 and KA31 cells were obtained from Dr. Stuart Aaronson and D245E6 cells from Dr. Robert Bassin. Cells were maintained in 75 mm flasks in 5% CO2 atmosphere at 37°C. Fluids were changed at 24 or 48 hr intervals. Cells were grown in Eagle's essential medium (D245E6) or Dulbecco's modification of it (B/3T3 and KA31). Medium was supplemented with 10% heat inactivated (56°C, 30 min) fetal bovine serum, penicillin (100 units/ml) and streptomycin (100 μg/ml).

Viruses and virus assays. Gz-MSV, a mixture of transforming and nontransforming viruses, was recovered from the supernatant fluids of acutely infected B/3T3 cells, and had a titer of 2 x 10⁶ focus forming units/ml (12). Rauscher leukemia virus, a strain of MuLV, was obtained by concentrating the supernatant fluids of chronically infected BALB/c JLSV-9 cells, and had a titer of 1 x 10⁸ plaque forming units/ml. Infectious center assays were modifications of the commonly used methods for assays of MSV and MuLV (8, 13). Fifty or 100 mitomycin C
d (25 μg, 1 hr) test cells were added onto tly seeded indicator cells. For MSV as-the indicator cells were B/3T3, and foci
tactile MSV transformed cells were enu-
ed 5 days later. For MuLV assays, - Al-2 cells (14) were used as indicator
and plaques (consisting of supertrans-
d cells that had lysed or floated away)
ated 5 days later. Colony forming ef-
cy (CFE) in semi-solid medium was
amed by suspending 1 × 10⁶ viable cells
% agarose over a 0.9% agarose base.
, 8 and 15 days, another layer of se was placed over the cell containing
Colonies were counted 18 days after

Methods. ODC activity was assayed
easuring enzyme released CO₂ as de-
ed previously (5). Replicate plates were
 twice with saline and frozen (−20°)
ssayed. Cells were gently scraped into
 freeze-thawed three times, and centri-
g (4500g for 10 min). Supernatant fluids
 ml) were incubated with 50 μl [¹⁴C]-
tine in plastic tubes equipped with a
 stopper supporting a polyethylene
 well. After incubation (37°, 45 min),
hydroxide of hyamine was added to well. After a further incubation of 15
0.2 ml of perchloric acid was added to
each well. Tubes were agitated for 15 min to
release bound CO₂, the center wells were
ved, and their radioactivities deter-
ed. Protein was determined by the Lowry
method (12). Cells were counted with a he-
ocytometer, and viability determined by try-
blue exclusion.

Results. Properties of the cell lines used are
presented in Table I. Uninfected B/3T3 cells
were epithelioid and contact inhibited, did
not release virus, and failed to grow in soft
agarose. Productive infection with MuLV did
not alter its morphology. Within 48 hr of
MSV infection, B/3T3 cells became round or
spindle shaped, were highly refractile and
adhered poorly to the substrate. Morpholog-
tical transformation was accompanied by
release of transforming and nontransforming
viruses, and the ability to grow in soft agarose
at low efficiency. Uninfected D245E6 cells
were large polygonal cells with slight overlapping
of their edges, which grew in soft agarose
but did not release infectious virus. On super-
infection with MuLV, D245E6 cells under-
went further morphological transformation,
and closely resembled MSV infected B/3T3 cells. The superinfected cells released
both MSV and MuLV, but their ability to
grow in soft agarose decreased. Uninfected
KA31 cells were small and highly refractile,

TABLE 1. CHARACTERISTICS OF CONTROL AND VIRUS-INFECTED CELLS.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Transformed morphology</th>
<th>% Infectious Centers</th>
<th>% CFE in soft agarose</th>
<th>Maximum ODC activity (pmoles/10⁶ cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>0</td>
<td><0.1</td>
<td><0.1</td>
<td>49</td>
</tr>
<tr>
<td>T3 + MuLV</td>
<td>0</td>
<td>78</td>
<td><0.1</td>
<td>63</td>
</tr>
<tr>
<td>T3 + MSV</td>
<td>++ +</td>
<td>100</td>
<td>54</td>
<td>995</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td><0.1</td>
<td><0.1</td>
<td>16</td>
</tr>
<tr>
<td>5 + MuLV</td>
<td>+++</td>
<td>6</td>
<td>9</td>
<td>0.3</td>
</tr>
<tr>
<td>sfer 0</td>
<td>+++</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>5 + MuLV</td>
<td>+++</td>
<td></td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>sfer 4</td>
<td>+++</td>
<td></td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>+ MuLV</td>
<td>+++</td>
<td><0.1</td>
<td><0.1</td>
<td>15</td>
</tr>
<tr>
<td>sfer 0</td>
<td>+++</td>
<td>94</td>
<td>83</td>
<td>7</td>
</tr>
<tr>
<td>+ MuLV</td>
<td>+++</td>
<td>45</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>sfer 4</td>
<td></td>
<td></td>
<td>3</td>
<td>165</td>
</tr>
</tbody>
</table>

informed morphology arbitrarily graded as follows: O contact inhibited, nonrefractile cells similar to parent
+ nonrefractile cells with some cellular overlapping; ++ refractile cells with formation of dense cellular
and +++ highly refractile cells with scant cytoplasm and poor anchorage dependency, the cells tended to
to the supernatant fluid prior to reaching confluence.
ent foci 5 days after plating control or infected cells on A1-2 (MuLV assays) or B/3T3 monolayers (MSV
ximum ODC activity is the highest measured level of enzyme activity, usually occurring four days after n.
with short spindly processes. They grew in soft agarose before and after superinfection with MuLV, but released MuLV and MSV only after superinfection.

Growth characteristics of the cells employed are shown in Fig. 1. The growth rates of uninfected B/3T3 and D245E6, and MuLV infected B/3T3 were similar, while uninfected and infected KA31 cells grew more rapidly and reached a higher cell density at day 7. As noted previously (5) MSV transformed B/3T3 cells grew slower than uninfected cells, although the differences were not marked in the present experiment, when tissue culture grown virus stocks were substituted for animal tumor harvests. MuLV superinfection of D245E6 cells resulted in a considerable increase in the population doubling time, but had no effect on the growth of KA31 cells. Trypan blue exclusion studies revealed less than 2% nonviable cells in control and virus infected cell lines at all observation points.

ODC levels of cell lines were measured 1, 3, 4, 5 and 7 days after seeding. The highest levels measured (usually occurring 4 days after seeding) are shown in Table I, and the entire curves are presented in Fig. 2. Relatively low ODC levels occurred after seeding and at confluence. Comparable data were obtained when ODC activity was expressed as a function of cell number or of cellular protein. Control B/3T3 and D245E6, and MuLV infected B/3T3 had relatively low 'maximum' levels (i.e. the highest levels measured). MSV infection of B/3T3 and MuLV infection of D245E6 cells resulted in 20- and sevenfold increases respectively in maximum ODC activities. Uninfected KA31 cells had a higher baseline ODC activity than the other cell lines, but superinfection resulted in a twofold increase only.

The temporal relationships between elevation of ODC activity, morphological transformation and virus production were also studied. After four passages MSV transformed B/3T3 and MuLV superinfected D245E6 and KA31 cells had not further altered morphologically, or in their ability to release transforming and non transforming viruses, or grow in soft agarose (Table I). However, ODC levels of MSV infected B/3T3 cells fell rapidly after transfer (Fig. 2), while the drop in ODC levels of superinfected D245E6 cells was smaller and took longer. ODC levels of superinfected KA31 cells fell only slightly, but the baseline levels were high and the initial rise on superinfection was modest.

Individual clones of B/3T3 and MSV transformed B/3T3 cells were selected after isolation in liquid or semi-solid media. Characterization of the 13 clones selected and their ODC data are presented in Table II and Fig. 3. Uninfected B/3T3 clones (numbers 1-5) had a flat morphology, did not release viruses, failed to grow in soft agarose, and had low maximum ODC levels. MSV transformed clones 6-12 had higher ODC levels, which appeared related to the degree of morphological transformation. Although isolated from MSV infected cells, clone 13 released only MuLV, had a flat morphology, did not grow in soft agarose, and had low ODC activity. Presumably this clone arose from a cell infected with the nontransforming component of MSV only. With one exception, all clones had maximum ODC activities 4 days after

Fig. 1. Growth curves of uninfected and virus-infected cell lines. Cells were infected in suspension with MuLV at a multiplicity (MOI) of 3:1 or MSV (MOI 10:1) at 37°C for 1 hr prior to seeding.
Fig. 2. ODC activity of control and transformed Balb/3T3 cells. In the upper panel, cells were infected immediately prior to seeding and harvested on days 1, 3, 4, 5, and 7. ODC activities in bar graphs (lower panel) represent the maximum levels measured during weekly cell passages.

TABLE II. CHARACTERISTICS OF CONTROL, TRANSFORMED AND VIRUS-INFECTED BALB/3T3 CLONES.

<table>
<thead>
<tr>
<th>Clone #</th>
<th>Transformed morphology</th>
<th>% Infectious centers</th>
<th>% CFE in Soft agarose</th>
<th>Maximum ODC activity (pmol/10^6 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td><0.1</td>
<td><0.1</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td><0.1</td>
<td><0.1</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td><0.1</td>
<td><0.1</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td><0.1</td>
<td><0.1</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td><0.1</td>
<td><0.1</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>90</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>100</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>+++</td>
<td>100</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>+++</td>
<td>100</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>+++</td>
<td>100</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>+++</td>
<td>100</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>+++</td>
<td>100</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>100</td>
<td><0.1</td>
<td>45</td>
</tr>
</tbody>
</table>

* Uninfected B/3T3 clones (#1–5) were isolated from liquid medium. MSV transformed clones were obtained on liquid (#7–12) or semi-solid media (#6 and 13). Clones were transferred 18 days after seeding, and analyzed 3 days later. See also legend of Table 1.

The exceptional clone divided slower than the others and was still in exponential growth phase at day 7.

Discussion. While previous studies have indicated that virus induced transformation results in increased intracellular ODC levels, the relationship is complex. Our present experiments further define the association by
ODC ACTIVITY AND MSV TRANSFORMATION

Fig. 3. ODC Activity of control and MSV infected Balb/3T3 Clones. The data of the control clones with the highest and lowest ODC values are displayed. The remaining three control clones had intermediate values lying within the shaded areas. One clone isolated from the MSV infected culture (O- - - O) was nontransformed and only released MuLV. The ODC values of one MSV transformed clone fell within the shaded area and is not represented.

studying several parameters, including morphology, growth rate, virus production and time. ODC levels of transformed and nontransformed cells alter with cell growth, the highest levels occurring during logarithmic growth. Elevation of ODC levels (during cell growth) accompanies cellular morphological change to a transformed or more transformed phenotype. Following infection, B/3T3 manifests considerable changes in both morphology and ODC activity. D245E6 more modest alterations, and KA31 essentially none. The elevated ODC levels accompanying transformation cannot be explained by increases in cell growth rates; doubling times (B/3T3 and D245E6) are lengthened or unaltered (KA31) after virus infection. ODC elevation is also not related to release of transforming or nontransforming viruses. The cloning experiments indicate that the relatively few transformed clones so obtained have higher ODC levels (during cell growth) than nontransformed clones. While transformed clones have a wide range of ODC activities, acute virus transformation is consistently accompanied by a very high elevation. With cell passage, ODC levels of acutely transformed cells return towards baseline levels, perhaps because most acutely transformed cells fail to divide.

Our findings that elevated ODC levels accompany acute virus induced morphologic transformation may be explained by the recent report of Isom (16). She found that the infection of fibroblasts by potentially oncogenic human cytomegalovirus (CMV) rapidly induced a multiplicity dependent increase in ODC activity. Isom's experiments indicated that CMV infection overrides end product repression of ODC by putrescine. Thus the oncogenic potential of a virus may be related to its ability to interfere with normal regulatory functions of key cellular metabolic enzymes.

Summary. Ornithine decarboxylase (ODC) activity increases when cells are acutely transformed with murine sarcoma virus (MSV). Three contact inhibited or MSV transformed clones of Balb/3T3 were transformed or supertransformed by MSV or its accompanying non-transforming 'helper' virus (MuLV), and the relationships between ODC activity, morphology, virus production and growth rate were examined. Clones isolated from these lines were also studied. All of the virus infected lines released both MSV and MuLV ODC activities could not be correlated with differences in growth rates. The only consistent relationship was between elevated ODC activity and acute morphological transformation, suggesting that polyamine metabolism plays a crucial role in the transformation process. With time, the elevated ODC activities returned towards baseline levels. Thus ODC activity does not appear to be a useful marker for chronic infection or transformation by type C viruses.

The authors thank John Minna, Harold Stull, Herber Oie, Edward Russell, Patricia Hefel, and Theresa Gregorio for suggestions and assistance.

5. Gaskar, A. F., Stull, H. B., Kilham, L. J., and Bach...

Suppressed Dietary Inducibility of Glucose 6-Phosphate Dehydrogenase and cAMP in Acute Hepatic Injury¹ (40302)

KAZUHISA TAKETA, AKIHIRU WATANABE, MASATOSHIUEDA AND MICHIO KOBAYASHI

The First Department of Internal Medicine, Okayama University Medical School, Okayama 700, Jap

Glucose 6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) is a key enzyme of the pentose phosphate pathway and induced by dietary glucose and amino acids, but not by either alone (1–3). Thus, the dehydrogenase level in rat liver is under a dual dietary control, i.e. transcriptional and posttranscriptional regulations; a glucose-dependent step of the induction being sensitive to actinomycin D (3) and blocked by increasing cyclic 3',5'-adenosine monophosphate (cyclic AMP) level (4). An entirely different type of G6PD induction could be brought about by intoxication of rat with carbon tetrachloride and other hepatotoxins (5–7). Although the synthesis de novo of the enzyme protein is involved in the hepatotoxic-induced increase in G6PD activity, it does not require newly synthesized RNA (5) and is insensitive to manipulations to raise hepatic cyclic AMP level (8). We found in our preliminary experiments with acute thioacetamide intoxication of rat that the dietary induction of G6PD was markedly depressed in the injured liver (9).

A further study of this observation, reported in the present communication, revealed that the reduced dietary inducibility of G6PD in the acute hepatic injury could be explained at least by a dietary unresponsive increase in cyclic AMP level in the injured liver. Thioacetamide was chosen in this study to produce an acute liver damage with elevated G6PD activity, because the intoxication with thioacetamide, unlike carbon tetrachloride, caused no reduction in dietary intake.

Materials and methods. Male Sprague-Dawley rats, weighing 130–150 g, were deprived of food for 24 hr before intraperitoneal injection of 20 mg thioacetamide (Merck Co., Darmstadt, Germany; dissolved in saline) per 100 g body weight. The animals were fasted for 24 hr and divided into the following three groups: GC, reared on a glucose (7:3 in weight) mixture; G, placed on a glucose diet; and S, starved for an additional 24 hr. Control rats received equivalent amounts of saline in place of the thioacetamide and treated identically with regard to the dietary change.

The animals, each group consisting of 6 rats, were killed at indicated time intervals after overdose (10), which gives rise to the appearance of cyclic AMP and cyclic 3',5'-guanosine monophosphate (cyclic GMP) values both to those obtained by a freezing method (11). A small portion of the liver was removed, weighed (10) and extracted by fixing with trichloroacetic acid (12). After removal of TCA with ether, the aqueous extract was evaporated under nitrogen and reconstituted in water to give an original volume. The cyclic nucleotide concentrations were determined, after prior dilution and succinylation, by dioxime immunoassay method using cyclic AMP and cyclic GMP kits (Shoyu Co., Chiba, Japan) (13).

The activities of G6PD, low-Km glucose 6-phosphate dehydrogenase (EC 2.7.1.1) and glucokinase (EC 2.7.1.2) in liver supernatants and of aminotransferase (GPT, EC 2.6.1.2) and the contents of glycogen in liver were determined as described previously (7, 14). The enzyme activities and cytidine concentrations in liver were expressed on the basis of unit supernatant protein, because the liver weight increased significantly by refed groups of rat due to an enhanced glycogen deposition (Table I). All the values are given as means and standard errors for each group. Histological examinations were made on liver specimens by hematoxylin–eosin staining.

Results. Alterations of G6PD activ

¹This work was supported by a Grant-In-Aid for Scientific Research (B) from the Ministry of Education, Science and Culture.
cleotide contents in liver following nd thioacetamide treatments are il- in Fig. 1 and those of other param- hepatic injury and dietary effect are ed in Table I. The specific activity in control animals increased mark- a refeeding with glucose and casein, with glucose alone. In thioacetamide- ets, G6PD activity increased signifi- 24 and 48 hr of the hepatotoxic in even if the animals were starved ination and necrosis of hepatocytes histologically. These data are t with our previous findings (1–3, 5). e starved and thioacetamide-treated placed on a glucose-casein diet, only further increase in G6PD activity uced by the refeeding (GC vs. G or trast with the steep rise found in theats. There was no difference in the diet consumed between the injured rol groups. The results apparently indicated that the dietary induction of G6PD was impaired in the injured liver despite the fact that the enzyme activity was increased by hepatic injury itself. That the extent of hepatic injury per se was not affected by the different dietary treatments was evident from the similar increases in low-Km hexokinase activity in the three different dietary groups of injured rats (Table I). The hepatic level of this enzyme increases by liver injury (6, 9, 14) and is unresponsive to dietary change as the data for control groups given in the same table reveal. There were no significant differ- ences either in serum GPT activity, a sensitive marker of liver injury, among the three in- jured groups (Table I). The activity of glu- cokinase, another dietary inducible enzyme (1, 15), was reduced by thioacetamide intox- ication and the induction of this enzyme by glucose or glucose–casein refeeding was also diminished in the injured livers as may be seen in the table.

The values of cyclic AMP obtained with livers of well-fed rats (0-day value in Fig. 1) fell in the range of reported values (10–12, 16). The hepatic cyclic AMP level increased significantly in 3 days of starvation in both thioacetamide-injured and control groups, although the extent of the increase was slightly larger in the injured group than in the control. An important result of this experiment is that the rise in hepatic cyclic AMP content on prolonged fasting of injured rats could not be suppressed by refeeding glucose-containing diets in contrast with the rise in the control animals. The hepatic levels of cyclic GMP in control groups agreed well with the reported values (11, 12) and changed little by dietary alteration. In thioacetamide-treated rats, however, the cyclic GMP content increased significantly upon prolonged starvation. The increase was much less, although above the control levels, in the refeeding groups of intoxicated rats. A possibility of overestimating cyclic GMP level in the presence of high concentrations of cyclic AMP was neglected by obtaining constant values with different dilutions of liver extract in radioimmunoas- say.

In thioacetamide-treated rats, the amount of glycogen deposited in the liver after re- feeding was significantly less than in untreated rats, even though dietary intakes were
similar in both groups of rat and almost no ingested dietary mass remained in the gastrointestinal tracts at the time of sacrifice.

Discussion. G6PD is a unique enzyme in a sense that a single molecular species is involved in a wide variety of inductive responses; such as those to dietary, hepatotoxic and neoplastic changes (17). Thus, the induction mechanism of this enzyme appears to be different depending on the type of inductive stimuli. The dietary induction of G6PD requires de novo RNA synthesis at a low cyclic AMP level (3, 5), whereas carbon tetrachloride-induced increase of G6PD synthesis obligates neither of them (7). The latter mechanism would also apply to the increased hepatic G6PD level in thioacetamide-injured rat (17). Accordingly, the impairment of dietary induction of G6PD in injured liver is possibly at the level of transcription. The block at this step could be accounted for at least by the high hepatic level of cyclic AMP observed in the thioacetamide-injured rats refed on glucose and casein. The increased level of cyclic AMP appears to be also responsible for the reduced accumulation of hepatic glycogen in the injured refed rats. Incidentally, the low hepatic cyclic AMP level alone is not sufficient to induce this enzyme, since in control rats a sole glucose diet lowered the cyclic AMP level without inductive effect.

Whether the dietary unresponsive increase in cyclic AMP level by thioacetamide treatment is due to a sustained hyperglucagonemia or an altered adenylate cyclase-phosphodiesterase system is to be solved in future studies. Although an increased portal level of glucagon is reported in acute ethionine intoxication of rat, glucose infusion has been shown to decrease the hepatic cyclic AMP content (16). Prostaglandin may well be an attractive candidate for such a stimulant as to the dietary insensitive elevation of cyclic AMP in injured liver.

A reduced dietary response of G6PD in regenerating liver following partial hepatectomy (18) could be similarly explained by elevated cyclic AMP levels in the remnant liver (10). Since, however, the thioacetamide-induced hepatic degeneration and necrosis is also followed by a rise in DNA synthesis (7), some conditions associated with cell division may serve as another common underlying mechanism for the suppression of dietary induction of G6PD. The small increases in hepatic cyclic GMP content found in the late stage of thioacetamide injury might be more or less related to the regenerative process of the injured liver (7, 19), although a direct effect of the carcinogen can not be excluded (20).

It is of some interest to note that another dietary inducible and cyclic AMP-sensitive
ne, glucokinase (1, 15), was also shown: less responsive to glucose-containing in the injured liver. Since G6PD and hexokinase could be induced by injury itself (5, 6, 9, 14), the decrease in kinase activity may also represent a specific metabolic response of hepatocyte to the y rather than a mere destructive process neral protein synthesis. Thus, in hepatic y, the induction of more differentiated enzymes is suppressed and that of prim- or fundamental enzymes is enhanced, ting in an undifferentiated enzyme pat-6, 14). A similar loss of dietary response 5PD and other carbohydrate-metaboliz- enzymes in preneoplastic livers has been instrasted by Poirier and others (21). An x inducibility of some enzymes of o acid metabolism in chronic adminis- an of carbon tetrachloride and a noncar- genic azo dye is also reported from their atory (22). Although thioacetamide is a tocarcinogen, its acute intoxication, as oyed in the present experiment, could be preted better as a hepatic injury, which little significance as precancerous le. Elucidation of the mechanisms of al- enzyme induction in acute hepatic in would provide a clue for the understand- of undifferentiated gene expression in opioidic livers and in turn hepatomas. mmary. The dietary induction of liver was found to be markedly impaired in acute hepatic injury of rat caused by cetamide intoxication. The level of :AMP in the injured liver was increased could not be reduced by glucose-contain- ients. The results indicated that the sup- ed dietary inducibility of G6PD in he- injury is accounted for at least by the unresponsive increase in cyclic AMP in the injured liver.

Blood Volume Changes during the First Week after Birth in the Beagle and Pig (40303)

STEPHANIE I. DEAVERS, RUSSELL A. HUGGINS, AND HWAI-PING SHENG

Department of Physiology, Baylor College of Medicine, Houston, Texas 77030

Birth marks the end of the parasitic and aquatic life of the fetus and the beginning of numerous physiological adjustments which adapt the newborn to a new and different environment. Among the adjustments which occur in different species at birth are those involving the circulatory system, and within this system are the changes in red cell and plasma volumes and venous hematocrit. However, data available for the newborn human over the first few days following birth present no clear pattern of change in the plasma volume, red cell volume, blood volume, or hematocrit. A portion of the variability in these data may be the result of early or late clamping of the umbilical cord (1, 2). But even if analysis of the data is restricted to those investigations where the cord is clamped early, the results are contradictory. Plasma volume, for example, is reported to remain constant over the first 24 hr following birth (3), to increase significantly within 3–5 hr (4, 5), to decrease in the first 2½ hr (6), or to increase over the period of 4–24 hr after birth (1). Changes reported for red cell volume, blood volume, and hematocrit are equally varied, although in most of these investigations blood volume and red cell volume are calculated from the measured plasma volume and hematocrit.

There are relatively few studies examining the changes in blood volume immediately after birth for species other than the human. In the pig, McCance and Widdowson (7) report a 30% increase in plasma volume 24 hr following birth, while Ramirez et al. (8) report a small but significant increase in blood volume during the first 12-hr period following birth. In the rat there is a small reduction in plasma volume between days 4 and 14 (9), but, contrary to the results of these authors, in the same species Garcia (10) reports a rise in plasma volume from birth to 15 days of age, and Constable, no significant change (11).

In the present article, data are presented for both the pig and the beagle for the period between birth and day 7 following birth, and the changes in plasma, red cell, and blood volumes and hematocrits are examined.

Materials and methods. The beagles used in this investigation were from the colony maintained at the Wynne Unit of The Texas Department of Correction in Huntsville. A description of the physical facility and the routine procedures used for breeding, immunization, and diet was published previously (12). A pig colony for research purposes was established while one of us (R.H.) was serving as acting chairman of the Department of Physiology at Mahidol University in Bangkok, Thailand, and was maintained at Kaset Sart University by the courtesy of university officials and The Rockefeller Foundation. Details of the management of this colony also have been published (13). Standard procedures, modified for small animals, were used to measure red cell volume with 51Cr (14) and plasma volume either with 131I-albumin or the dye T-1824. There was no statistically significant difference between the plasma volumes measured with 131I-albumin or T-1824 (12, 15). Hematocrits were measured by the micro method; no correction was made for trapped plasma. Beagle pups up to 3 hr after birth were not sedated, while those older than 4 hr were given 0.5–1 mg of morphine sulfate, injected subcutaneously. The pigs were anesthetized with 5–10 mg/kg of pentobarbital sodium, administered intravenously. Different animals, and usually from the same litter, were used for the collection of data for each of the time periods after birth.

Results. The data for the beagles are presented in Table I. For day 0 (day of birth) data were available from 10 min to 18 hr following birth, and because there was evidence of significant changes within this time, the data were divided into three 6-hr periods. The average age of the pups was 2.5 hr for
CIRCULATORY ADJUSTMENTS IN NEWBORN

TABLE 1. RED CELL AND PLASMA VOLUME CHANGES IN NEWBORN BEAGLES.

<table>
<thead>
<tr>
<th>After</th>
<th>Body weight kg</th>
<th>Red cell volume ml/kg</th>
<th>Plasma volume ml/kg</th>
<th>Blood volume ml/kg</th>
<th>Venous hematocrit %</th>
<th>Circulatory hematocrita %</th>
<th>BVR cellsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🊨</td>
<td>0.190 ± 0.02a</td>
<td>49.2 ± 2.6</td>
<td>46.4 ± 1.5</td>
<td>95.6 ± 4.9</td>
<td>56.0 ± 1.9</td>
<td>51.0 ± 1.9</td>
<td>0.906 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
<td>(4)</td>
<td>(4)</td>
<td>(5)</td>
<td>(11)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
</tr>
<tr>
<td></td>
<td>0.844 ± 0.005</td>
<td>38.7 ± 2.3</td>
<td>45.3 ± 0.3</td>
<td>84.0 ± 2.6</td>
<td>52.3 ± 2.6</td>
<td>45.9 ± 1.3</td>
<td>0.881 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.266 ± 0.01</td>
<td>40.5 ± 1.0</td>
<td>53.3 ± 1.3</td>
<td>93.6 ± 2.0</td>
<td>47.5 ± 1.5</td>
<td>43.2 ± 0.4</td>
<td>0.912 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
</tr>
<tr>
<td></td>
<td>0.275 ± 0.01</td>
<td>45.4 ± 1.9</td>
<td>48.2 ± 1.1</td>
<td>91.3 ± 2.5</td>
<td>53.5 ± 1.4</td>
<td>47.1 ± 1.2</td>
<td>0.899 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>(20)</td>
<td>(20)</td>
<td>(13)</td>
<td>(13)</td>
<td>(13)</td>
<td>(13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
</tr>
<tr>
<td></td>
<td>0.251 ± 0.01</td>
<td>56.7 ± 4.5</td>
<td>62.2 ± 3.1</td>
<td>118.9 ± 2.5</td>
<td>52.1 ± 2.7</td>
<td>47.3 ± 2.9</td>
<td>0.892 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
</tr>
<tr>
<td></td>
<td>0.273 ± 0.006</td>
<td>46.2 ± 4.0</td>
<td>59.1 ± 2.2</td>
<td>105.3 ± 4.6</td>
<td>46.4 ± 2.6</td>
<td>43.3 ± 2.3</td>
<td>0.933 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
</tr>
<tr>
<td></td>
<td>0.436 ± 0.21</td>
<td>35.6 ± 2.2</td>
<td>62.2 ± 2.6</td>
<td>97.8 ± 3.1</td>
<td>38.8 ± 1.5</td>
<td>36.4 ± 2.2</td>
<td>0.930 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(8)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
<td>🆕</td>
</tr>
</tbody>
</table>

cell volume/(red cell volume + plasma volume).
ulatory hematocrit/venous hematocrit.
age time.
n ± SE.
ber of animals.
ue for difference from previous value.

st 6-hr period, 8.5 hr for the second
and 16.5 hr for the last 6-hr period.
mean red cell volume for beagles 2.5
was 49.2 ± 2.6 ml/kg. In pups 8.5 hr
r red cell volume was significantly less
.05), and did not change again during
st 6-hr period. The plasma volume of
.5 hr old was 46.4 ± 1.5 ml/kg, with
enge during the next 6 hr; however, it
gicantly higher (P < 0.001) in pups
r old. Blood volume was 95.6 ± 4.9
n pups 2.5 hr after birth and decreased
s 8.5 hr old due to the decrease in red
lume. The blood volume, as the result
g significant increase in plasma volume
n 8.5 and 16.5 hr, was only slightly
n 16.5 hr than at birth. The venous
crit decreased during the successive 6-
ods, resulting in a significantly (P <
ower hematocrit in pups 16.5 hr old or
ose at 2.5 hr. The trend for the
ory hematocrit was the same as that
enous hematocrit; consequently, the
tulatory to venous hematocrit was
ally unaltered.
cell and plasma volumes were signifi-
higher for the day-1 than for the day-
0 pups, using the pooled data for the 20
agles on day 0. This increase in plasma and
ed cell volumes resulted in a significant in-
crease in blood volume (P < 0.001) for the
ay-1 pups. On day 2 there was a significant
crease in red cell volume and blood volume
(P < 0.05), but only a slight reduction in
asma volume. On day 7 there was a further
gicant decrease (P < 0.001) in red cell
ume, while the decrease in blood volume
was not significant due to an increase, al-
though not significant, in plasma volume.
*

Changes in venous and circulatory hematocrits reflected those of cell and plasma volumes throughout the period of study. Since the increases in red cell and plasma volumes between day 0 and day 1 were of the same magnitude (20–23%), neither circulatory nor venous hematocrit changed significantly, and the ratios of the two hematocrits (BVR_{cells}) remained the same. From day 1 to day 2 both venous and circulatory hematocrits decreased, but not significantly; however, between days 2 and 7 there was a further significant decrease in venous hematocrit accompanied by a similar change in circulatory hematocrit. The BVR_{cells} remained relatively
constant over the first 7 days after birth (0.899 ± 0.01 on day 0 and 0.93 ± 0.01 on day 7), indicating that there was no shift in the distribution of red cells and plasma in the circulation during the 7-day period.

For the pig (Table II), the exact times at which red cell and plasma volumes were measured on day 0 were not known; therefore, only the mean value was calculated. The principal changes observed in the pig were an increase in plasma volume (P < 0.05) between days 1 and 2 and a decrease in red cell volume between days 0 and 2 and days 2 and 7, with the decrease on day 7 significant when compared with day 0 (P < 0.05). Blood volume decreased progressively, and on day 7 it was significantly less than that measured on day 0 (P < 0.05). Venous hematocrit decreased between days 0 and 1 (P < 0.05), with no further significant change on day 2 or day 7. The values for BVR_cells were 0.85 on day 0 and 0.79 on day 7.

Discussion. During the first few days after birth there are changes in both the red cell and plasma volumes in the beagle and the pig, but the pattern of the changes is different for the two species. What the red cell and plasma volume changes are in the human over the first few days after birth is uncertain at present because of the diversity of the data. However, data by Usher et al. (1) suggest that in the human neonate, as in the pig and beagle, there is over the first few days following birth an increase in plasma volume and a decrease in red cell volume and venous hematocrit, although there are differences in the time relationship at which the changes occur.

In the beagle the increase in plasma volume, which may occur as early as 12 hr following birth, is accompanied by an increase in plasma protein concentration. The increase in total protein concentration is due to an increase in the globulin fractions, while the albumin concentration remains stable, so that the albumin-globulin ratio decreased significantly (15). Thus the expansion of plasma volume can be explained by a shift of fluid into the circulation due to an increase in plasma protein. This shift of fluid among body compartments is substantiated further by the finding in the beagle that between days 0 and 1 there is a significant increase in the volume of extracellular fluid, at the expense of intracellular fluid, while total body water remains constant (16).

An increase in plasma volume similar to that in the beagle occurs in the pig, although the increase is between days 1 and 2. According to McCance and Widdowson (7), who first observed an increase in plasma volume within hours following birth of the pig the increase is the result of absorption of colostrum through the gut with a marked increase in the globulin portion of total plasma protein concentration. This mechanism is suggested also as an explanation of the plasma volume expansion in the beagle.

In the immediate neonatal period, red cell volume in the beagle, but not in the pig, is

TABLE II. RED CELL AND PLASMA VOLUME CHANGES IN NEWBORN PIGS.

<table>
<thead>
<tr>
<th>Time after birth</th>
<th>Body weight kg</th>
<th>Red cell volume ml/kg</th>
<th>Plasma volume ml/kg</th>
<th>Blood volume ml/kg</th>
<th>Venous hematocrit %</th>
<th>Circulatory hematocrit %</th>
<th>BVR cells %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>1.7 ± 0.05</td>
<td>24.8 ± 2.1</td>
<td>63.2 ± 2.1</td>
<td>88.0 ± 3.2</td>
<td>33.1 ± 1.3</td>
<td>28.1 ± 1.4</td>
<td>0.85 ± 0.04</td>
</tr>
<tr>
<td>(16)</td>
<td>(12)</td>
<td>(11)</td>
<td>(9)</td>
<td></td>
<td>(16)</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>1.6 ± 0.05</td>
<td>—</td>
<td>58.0 ± 2.5</td>
<td>—</td>
<td>27.1 ± 2.7</td>
<td>23.0 ± 1.2</td>
<td>0.86 ± 0.03</td>
</tr>
<tr>
<td>(14)</td>
<td>(12)</td>
<td>(14)</td>
<td></td>
<td></td>
<td>(14)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>1.5 ± 0.14</td>
<td>20.2 ± 1.4</td>
<td>66.7 ± 3.3</td>
<td>86.9 ± 3.4</td>
<td>26.6 ± 1.3</td>
<td>23.0 ± 1.2</td>
<td>0.86 ± 0.03</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(6)</td>
<td>(5)</td>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>2.4 ± 0.11</td>
<td>19.7 ± 1.0</td>
<td>64.4 ± 1.5</td>
<td>82.7 ± 1.6</td>
<td>29.9 ± 0.8</td>
<td>23.8 ± 1.9</td>
<td>0.79 ± 0.04</td>
</tr>
<tr>
<td>(23)</td>
<td>(15)</td>
<td>(20)</td>
<td>(12)</td>
<td></td>
<td>(23)</td>
<td>(15)</td>
<td></td>
</tr>
</tbody>
</table>

* Red cell volume/(red cell volume + plasma volume).
* Circulatory hematocrit/venous hematocrit.
* Mean ± SE.
* Number of animals.
* P value for difference from previous value.
le than the plasma volume, and, in volume, the changes are difficult. At 2.5 hr after birth the red is 49.2 ± 2.6 ml/kg in the beagle, significantly over the next 6–18 hr, rising the next 24 hr, then de-
seen 48 and 72 hr. The venous effects the changes in red cell and plasma reads fairly consistently. For ex-
day 0 to day 1 there is a signifi-
icantly both red cell and plasma d as the percentage increase for same, there is no change in the atocrit. On day 2 there is a sig-
19% in red cell volume and a signifi-
in plasma volume, and these accompanied by an 11% fall in atocrit. Inasmuch as the venous s affected by shifts in both red
sma volumes, it cannot be used mate changes in either red cell or
me. Shifts in the circulatory he-
whole body hematocrit) follow
venous hematocrit, so that the
on the hematocrits remains approx-
same. Therefore, for the beagle
ay period after birth, it is possible either red cell or plasma volume
y use of this ratio (BVRcell) and
hematocrit, estimate the other
ble accuracy.
d volume for newborn mongrel
r, 135 ml/kg (17), than the 95.6
ured for the beagle. This differ-
data for the newborn dog results
on two factors. The first factor is
l. (17) measured plasma volume
ed red cell volume from the ve-
rit. The latter represents the hematocrit and therefore overes-
red cell and blood volumes. The or may be even more important in the estimation of blood vol-
ral species including the dog, the ce of both 131I-tagged albumin dye from the circulation is more
newborn than in the adult (15).
ly, with either of these tags, when volume is calculated from a single was done in the newborn mon-
ter the time of sampling after the tag on day 0, the greater will
in the plasma volume measure-
ment. For instance, in pups on day 0 a sample taken 15 min after injection of the tag may overestimate plasma volume by 15%, result-
ing also in an overestimation of red cell and blood volumes.

The fluctuations in red cell volume in the beagle during the first week after birth pose several questions; one of them is the possible sites from which the red cells can be sequestered or released. The volume of red cells shifting into and out of the circulation is relatively large: between 2.5 and 8.5 hr after birth the circulating red cell volume decreases by 22%, while between 18 and 48 hr after birth red cell volume increases by 28%. Changes in red cell volume of a similar magni-
itude for the human over the first 5-hr pe-
period after birth are reported by Sisson and Whalen (18). The difference between their results (17) and those reported for other newborn humans (6) may be explainable on the basis of the time of cord clamping during birth. This explanation, however, does not appear to be applicable to the changes seen in the beagle. Sisson and Whalen (18) also postulated, as an explanation for the changes in red cell volume in the newborn human, “an initial temporary sequestration of blood in the viscera and caudal end of the body,” and the blood was later “introduced into the general circulation as vascular and pulmonary patterns were stabilized.”

The spleen and bone marrow are suggested also as blood reservoirs capable of significantly increasing blood volume in the human during the first 24 hr after birth (19). In the adult dog both the spleen and the liver are known to be active red cell reservoirs (20), but whether this is true also in the newborn pup can be inferred only from indirect data. The unit red cell volume (ml/100 g) of all organs in the beagle decreases between days 0 and 1 (21, 22). The combined red cell volume of the heart, lungs, kidneys, spleen, stomach, skeletal muscle, intestines, and skin is 28% of the total red cell volume on day 0, but decreases to 16% on day 1. The decrease in the volume of red cells in these tissues coincides with an increase in the circulating red cell volume on day 1. These data, while providing no information on the mechanisms concerned in the relatively rapid fluctuations in red cell volume of the newborn beagle, do
provide tentative support to the idea that there may be reservoirs of red cells in the circulation of the newborn and that red cells move in and out of these reservoirs under the control of unknown stimuli.

Summary. During the first week of postnatal life, there were significant changes in red cell volume, plasma volume, and venous and circulatory hematocrits in both the beagle and the pig. In beagle pups the mean red cell volume decreased between 2.5 and 8.5 hr after birth, then increased at 16.5 hr, with a further increase on day 1. Between days 2 and 7, red cell volume decreased. There was evidence of a release of red cells into the circulation from red cell reservoirs. In the newborn pig, red cell volume decreased between days 0 and 2, but was not significantly different on day 7 from day 2. In the beagle the mean plasma volume did not change during the first 12 hr following birth; it increased between 12 and 24 hr after birth and remained unchanged through day 7. In the pig, plasma volume decreased between day 0 and day 1, increased on day 2, and was not significantly different on day 7 from day 2. The increase in plasma volume was the result of an increase in plasma protein, which caused a redistribution of fluid among the various fluid compartments. In the beagle, blood volume decreased between 2.5 hr and 8.5 hr, increased at 16.5 hr with a further increase on day 1, then decreased on day 2, with no further change on day 7. The blood volume in the pig decreased progressively between day 0 and day 7. The changes in venous and circulatory hematocrits for both the beagle and pig reflected those of red cell and plasma volumes throughout the first week of life. The BVRcells did not change significantly, indicating that there was no shift in the distribution of red cells and plasma in the circulation over this 7-day period.

ime of Exposure to Estradiol and LHRH Effect LH Release From Bovine Pituitary Cells?1 (40304)

VASANTHA PADMANABHAN AND E. M. CONVEY2

mal Reproduction Laboratory, Department of Dairy Science, Michigan State University, East Lansing, Michigan 48824

nizing hormone releasing hormone
) induced increase in serum LH is coincident with periods of increased
secretion in cows (1), ewes (2),
(3, 4) and female rats (5, 6). Exoge-
oregions also increase magnitude of LH
by LHRH in cows (7), ewes (8),
(9) and female rats (10). However,
to demonstrate direct effects of es-
on LH secretion in vitro have yielded
results, i.e. estradiol increased (11,
reased (13-15) or did not change (16,
tity of LHRH induced LH release in

periments reported, we investigated
of estradiol and LHRH on LH secre-
bovine pituitary cells in primary cul-
traries were dose and time of expo-
cells to E2 and LHRH alone or in
ation.

imals. Medium for culture was Dul-
minimal essential medium2 supple-
with essential and non-essential
ids and buffered as in reference 12.
olutions of synthetic LHRH3, pre-
0.1% knox gelatin:0.05 M phosphate
aline, were added to cultures in 10
 Estradiol-17β (E2)3 in 10% ethanol,
ed in volumes such that final concen-
of ethanol in medium was 0.1%.

tures. Bovine pituitary cell cultures
pared (12). Briefly, bovine anterior
ies were sliced (≈1 MM), diced (≈1
ld resulting pieces washed thrice with

shed with approval of the Michigan Agricultu-
Station as journal article no. 8508. This
was supported in part by NIH Grant No. HD-

hom all correspondence should be sent.
co's medium from Difco Labs, Detroit, MI;
sury of Dr. R. Rippel, Abbott, N. Chicago,
diol 17β and collagenase (type I-150 µ/mg)
a, Chicago, Ill.; Viokase from GIBCO, Grand
New York.

medium. Pituitary cells were dispersed from
these pieces by stirring in 0.3% collagenase3
for 45 min then 0.25% Viokase3 for 15 min.
Washed cells were suspended (≈5 × 106
cells/ml) in medium containing 10% bovine
serum3 and 1 ml of suspension transferred to
each well of multiwell culture plates. Pituitary
cells were in culture for 5 days with medium
changed at 24-hr intervals beginning at 48 hr.
on day 5 cells were washed 4 times with
serum free medium and treatments begun.
Medium did not contain serum during treat-
ent.

Experimental design. Experiment 1. The ob-
jective was to determine effects of varying
time of exposure and concentration of LHRH
on quantity of LH released. Treatments were
arranged as a five × six factorial experiment
with concentration of LHRH (0, 0.1, 1.0, 10
and 100 ng/ml) and time (.75, 1.5, 3, 6, 12
and 24 hr) as main effects. There were six
replicates per treatment combination (n = 180).

Experiment 2. The objective was to deter-
mine effects of varying time of exposure and
concentration of estradiol on quantity of LH
released. Treatments were arranged as a three
× four factorial experiment with concentra-
tion of estradiol (0, 5 and 50 ng/ml) and time
(3, 6, 12 and 24 hr) as main effects. There
were 12 replicates per treatment combination
(n = 144).

Experiment 3. The objective was to exam-
ine the interaction of estradiol and LHRH on
LH release over time. Treatments were
arranged as a four × two × five factorial ex-
periment with concentrations of estradiol (0,
0.5, 5.0, and 50 ng/ml) and LHRH (0 and
100 ng/ml) and time of exposure to estradiol
and LHRH (1.5, 3, 6, 12, and 24 hr) as main
effects. There were four replicates per treat-
ment combination (n = 160).

Within each experiment, treatments were
begun concurrently and medium collected

0037-9727/78/1591-0157$01.00/0
Copyright © 1978 by the Society for Experimental Biology and Medicine
All rights reserved.
and frozen after the prescribed interval of treatment. Medium was assayed for LH by methods described in 18.

Statistical analysis of data. In instances where data, hormone concentrations or time were not normally distributed, statistical analysis were performed after logarithmic transformation of values. Data from each experiment were analyzed by analysis of variance appropriate to factorial experiments (19). Significant differences due to main effects were determined by Dunnett's t-test (20). Additionally, data were subjected to polynomial regression analysis (19) to evaluate change in LH release over time or concentration of hormones tested.

Results. Experiment 1. Effects of varying time of exposure and concentration of LHRH on LH concentration in medium are in Fig. 1. In the absence of LHRH, LH accumulated in medium during 24 hr and this increase was curvilinear ($P < 0.001$) i.e. rate of accumulation increased with time. Within time periods, increase in LH release by LHRH over the range 0.1 to 100 ng/ml, was linear ($P < 0.001$) when exposure was for 0.75, 1.5, 3, 6, or 24 hr but curvilinear ($P < 0.001$) when for 12 hr. Dose-response slopes generated from data normalized by logarithmic transformation were not different among times i.e. with the exception of 12 hr, LH release induced by 100 ng LHRH/ml was twice that of comparable control values. However, the actual increase in amount of LH release (ng/ml) over controls, induced by each concentration of LHRH, increased with increasing time of exposure.

Experiment 2. Effects of varying time of exposure and concentration of estradiol on quantity of LH in medium are in Table I. Estradiol did not affect concentration of LH in medium when present for 2 hr but increased ($P < 0.001$) LH relative to controls when present for 6, 12 or 24 hr. Both concentrations of estradiol tested increased LH accumulation in medium and magnitude of increase was dependent on the dose of E$_2$ i.e. 50 ng E$_2$ released more LH than 5 ng ($P < 0.01$).

Experiment 3. Effects of varying time of exposure and concentration of estradiol on LHRH induced LH release are in Fig. 2. Within each combination of LHRH and estradiol, accumulation of LH in medium was curvilinear ($P < 0.001$) and greater ($P < 0.001$) for cultures incubated with LHRH than for comparable controls. Estradiol, present for 1.5 or 3 hr, did not affect LH concentration in medium of cultures incubated with or without LHRH. However, when estradiol was present 6, 12 or 24 hr LH accumulation in medium was increased ($P < 0.001$) relative to controls. This was true for cultures incubated with or without LHRH. In addition, magnitude of LH release, within these time periods, was linearly ($P < 0.001$) related to concentration of estradiol used. A comparison of cultures incubated with and without LHRH, within time, revealed that slopes of estradiol dose-response were not different ($P > 0.10$).

Discussion. Results confirm our previous

![Graph](https://via.placeholder.com/150)

Fig. 1. LH concentration in medium following incubation of bovine pituitary cells with 0, 0.1, 1, 10 or 100 ml LHRH/ml media for .75, 1.5, 3, 6, 12 or 24 hr. Values are means ± SE.
tion that LHRH causes LH release into pituitary cells in culture and that the release is linearly related to the concentration of LHRH over the range 0.1 to 100 ng/ml (12). This result was demonstrated by exposing LHRH to LH release was as short as 24 hr. Additionally, the conclusion that ability of LHRH to induce LH release appears to be consistent over time. This suggests that the increased in LH release relative to the control cultures and those given time may be desirable.

Recently, results confirm our previous observation that estradiol when present for 24 hr at basal and LHRH induced LH release from bovine pituitary cells (12). These results provide evidence that estradiol is present for more than 3 hr before the effect on LH release is demonstrated. Our failure to demonstrate an effect at 0.75 or 3 hr agrees with results obtained using rat pituitary cells in culture and suggests that the lag period may represent time required for estradiol to exert biological effect. Inhibitors of protein synthesis block the stimulatory effect of low estradiol on LH release (17). Failure to show an effect of estradiol during the first treatment may reflect time required for estradiol synthesis. Alternatively, this lag an artifact of the culture system.

1. Effect of Estradiol-17β and Time of Exposure to Estradiol on Medium Luteinizing Hormone Levels.

<table>
<thead>
<tr>
<th>Estradiol-17β (ng/ml)</th>
<th>0</th>
<th>5</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6 ± 0.7*</td>
<td>9.2 ± 0.6*</td>
<td>9.2 ± 0.5*</td>
<td>9.0</td>
</tr>
<tr>
<td>4.3 ± 0.9*</td>
<td>21.3 ± 0.8*</td>
<td>23.5 ± 0.9*</td>
<td>16.4</td>
</tr>
<tr>
<td>2.5 ± 3.7*</td>
<td>32.3 ± 3.6*</td>
<td>41.7 ± 2.8*</td>
<td>32.2</td>
</tr>
<tr>
<td>4.4 ± 2.4*</td>
<td>80.7 ± 2.7*</td>
<td>100.8 ± 4*</td>
<td>82.0</td>
</tr>
</tbody>
</table>

<ref time periods with different superscripts are significantly different at P < 0.05. Values are *E (n = 12).>

Considering that rate of accumulation of LH in medium accelerated during the 24 hr experimental period, failure to detect an effect of LH release at 45 min and 3 hr may be because LH release at this time is very low and gonadotrophs not receptive to this stimulus. An argument against the latter view is that LHRH was equally efficacious in causing LH release at all times tested. Our results also demonstrate that once estradiol affects LH release, this effect remains quantitatively similar at least to 24 hr in cultures incubated with and without LHRH. LH release by rat pituitary cells was increased by 500 ng/ml estradiol for 6 or 24 hr (15) or 0.27 ng/ml for 40 hr (11).

Results of experiments designed to investigate in vivo effects of estradiol on LHRH induced LH release revealed a biphasic effect i.e. estradiol first decreased, then increased magnitude of LH release induced increase in serum (21–23). In these in vitro experiments, estradiol did not inhibit basal or LHRH induced LH release suggesting the initial inhibitory effect in vivo is not mediated via a direct effect on the pituitary.

Summary. Time course of 17-β estradiol and luteinizing hormone-releasing hormone effect on LH release was studied using bovine pituitary cells on day 5 of culture. LHRH at concentrations of .1, 1, 10 and 100 ng/ml
increased LH in medium linearly with increasing log concentration of LHRH when present for .75, 1.5, 3, 6 and 24 hr and the percent increase over controls was same at each time period. In addition, estradiol (present for 6, 12 or 24 hr) at .5, 5, and 50 ng/ml also increased LH release linearly both in the presence or absence of LHRH. We conclude that the stimulatory effect of LHRH on LH release by bovine pituitary is consistent over 24 hr and the stimulatory effect of E$_2$ on both basal and LHRH induced LH release may be mediated at least in part directly on the pituitary.

The authors acknowledge Dr. R. R. Neitzel and L. T. Chapin for valuable assistance with computer programming and P. Harkins and C. Wallace for technical help.

of Administration of a LH-RH Inhibitory Analogue on Stages of the Rat Estrous Cycle¹,² (403055)

A. VILCHEZ-MARTINEZ, E. PEDROZA, D. H. COY, A. ARIMURA, AND A. V. SCHALLY

of Medicine, Tulane University School of Medicine, and Endocrine and Polypeptide Laboratory, Veterans Administration Hospital, New Orleans, 70146

been demonstrated that synthetic analogues of LH-RH can block surges of gonadotropins in in hamsters (1) and rats (2, 3). The administration of 750 µg of >Leu³-LH-RH four times on proestrus in hamsters, produced an 80% on of the LH surge and a 30% block- ulation (1). In rats, 6 mg of >Phe³, >Phe³-LH-RH, injected in several doses on 1000 of proestrus, brought about a bition of ovulation (2) whereas a se of 1.5 mg of >Phe³, Phe³, >Phe³-LH-RH at noon on proestrus strongly GH and FSH surges and suppressed by 85% (3). Recently, Beattie et al. ted that >Phe³, >Ala⁶-LH-RH asly inhibited ovulation when it was on days other than estrus in rats.

vivo assays, such as inhibition of induced LH release in immature , and blockade of ovulation in normal >Phe³, Phe³, >Phe³-LH-RH is ent and longer acting than >Phe³, >Phe³-LH-RH (3, 5), which in turn is more an >Phe³, >Ala⁶-LH-RH (5). We efore investigated the effects of >Phe³, >Phe³-LH-RH on ovulation in 1 injected at different stages of the cycle or daily during estrus (E), dies- and diestrus 2 (D2).

als and methods. Adult female rats River CD strain), weighing 200–250 maintained under conditions of con- ding (14 hr light and 10 hr dark- temperature (22°C). Following a one

week period of adjustment to the animal house, their estrous cycles were determined by inspection of daily vaginal smears. Only those animals presenting at least two suc- cursive, regular 4-day cycles were used.

In the first experiment, the animals were injected s.c. with a single 1.5 mg dose of [d-Phe³, Phe³, >Phe³]-LH-RH in 0.5 ml of ve- hicle or with vehicle alone (20% propylene glycol/saline solution) at noon of either E, D1, D2 or proestrus. Another group was in- jected at 9 AM on proestrus. On the following estrus, the animals were sacrificed and ovula- tion was checked by counting the number of ova under a dissecting microscope. The number of rats which ovulated compared to the total number of rats was considered an index of the antiovulatory activity of the analogue.

In a second experiment, rats were injected s.c. with a 1.5 mg dose of [d-Phe³, Phe³, >Phe³]-LH-RH twice a day (9 AM and 4 PM; total dose: 3 mg/day) during E, D1 and D2. No injection was given on proestrus. Control rats were injected with 0.5 ml of vehicle alone. On the following E, ovulation of both control and experimental animals was checked as described above. At 4 PM on each day of treatment, a blood sample from the jugular vein of control and experimental animals was collected within 20–30 sec under light ether anesthesia. The blood was centrifuged and sera separated and stored at −20°C until assayed for LH and steroids. Some ovaries from control and [d-Phe³, Phe³, >Phe³]-LH-RH treated rats were removed at the time ovula- tion was being determined. The ovaries were fixed in Bouin’s solution and then stained with hematoxylin-eosin (Bay Histology Service, San Rafael, CA). Vaginal smears were also examined daily during the period of treatment. Serum LH was determined by the double antibody radioimmunoassay method

161
of Niswender et al. (6) as described elsewhere (7, 8). NIH-LH-S; was used as the standard preparation.

Estradiol and progesterone were measured in duplicate by the method of Abraham et al. (9) with slight modifications. About 1000 dpm of 2.4,6,7-3H-parabromophenone (SA 91, 3 Ci/mM) and of 1.2,6,7-3H progesterone (SA 103 Ci/mM) were added to one ml of plasma to estimate the recovery of the steroids. Each sample was extracted twice with anesthetic ether (Mallinkrodt). The ether extract was evaporated and the steroids were then resuspended in 1 ml of isoctane and were chromographed on celite micro-columns. Progesterone was eluted with isoctane and estradiol with isoctane: ethyl acetate (3:2). The estradiol fraction was diluted in 0.5 ml of 0.1 M phosphate buffer (pH 7.8) containing 0.14 M NaCl, 0.01 M EDTA, 0.015 M sodium azide, and 0.1% gelatin. After an aliquot was taken to estimate steroid recovery, 0.2 ml of the solution was incubated with 2.4,6,7-3H-parabromophenone (0.1 ml/40,000 dpm) and with estradiol antiserum (0.1 ml at 1/7,000). The antiserum (S-310) was obtained from Abraham’s laboratory. The estradiol recovery was 80%. The sensitivity of the assay was 2.5 pg/tube with an interassay coefficient of variation 8.5%.

The progesterone fraction was diluted with 1 ml of phosphate buffer; an aliquot was taken to estimate recovery and another (50 µl) was incubated with 1.2,6,7-3H progesterone (0.1 ml/40,000 dpm) and with progesterone antiserum (0.1 ml at 1/7,000). The antisemum 3-oxime-BSA cross reacted with the following steroids: Testosterone and 20α-OL-progesterone less than 1%, and 17β-OL-progesterone and deoxycorticosterone 2%. The recovery was 86%, the interassay coefficient of variation was 10%, and the sensitivity was 25 pg/tube. The free and bound hormones were separated using 0.2 ml of dextran-coated charcoal.

Duncan’s new multiple range test (10) was used to analyze the significance of the differences in LH serum levels among the groups. The results from the ovulatory test were expressed as binomial data using one for ovulation and 0 for no ovulation; they were subjected first to analysis of variance (11, 12) and then compared by Duncan’s new multiple range test (10) as described previously (5-8). The LH-RH analogue was prepared in our laboratory by the solid phase method (5). Its purity was confirmed by TLC and amino acid analysis.

Results. Table I shows the effect on ovulation of a single dose of [d-Phe², Phe³, d-Phe⁵]-LH-RH injected at different days of the estrous cycle. It can be seen that when the analogue was injected at noon of proestrus, a 100% blockade of ovulation was observed. The degree of ovulation blockade decreased to 33% and 17% when the analogue was

| TABLE 1. Blockade of Ovulation in the Rat by [d-Phe², Phe³, d-Phe⁵]-LH-RH (Analogue) Administered at Different Stages of the Estrous Cycle. |
| --- | --- | --- | --- |
| Group | # of rats ovulated/total # of rats | % of blockade of ovulation | Mean ± SE of ova in ovulating rats |
| A. Proestrus (noon) | | | |
| 1. Vehicle | 4/4 | 0 | 12.2 ± 0.5 |
| 2. Analogue | 0/6* | 100 | — |
| B. Proestrus (9 AM) | | | |
| 3. Vehicle | 4/4 | 0 | 13.0 ± 0.6 |
| 4. Analogue | 4/6† | 33.3 | 10.7 ± 0.9 |
| C. Diestrus 2 (noon) | | | |
| 5. Vehicle | 4/4 | 0 | 12.7 ± 0.2 |
| 6. Analogue | 5/6† | 16.7 | 9.8 ± 1.1 |
| D. Diestrus 1 (noon) | | | |
| 7. Vehicle | 4/4 | 0 | 12.0 ± 0.4 |
| 8. Analogue | 6/6 | 0 | 11.6 ± 0.2 |
| E. Estrus (noon) | | | |
| 9. Vehicle | 4/4 | 0 | 11.0 ± 0.4 |
| 10. Analogue | 6/6 | 0 | 10.2 ± 0.6 |

* Dose of analogue: 1.5 mg/rat at the time shown in parenthesis. Duncan’s new multiple range test: * Significantly different from the respective control value. † Significantly different from the value of Group 2.
Inhibitory LH-RH Analogue and Estrous Cycle

Effect of daily injections for three days (1, and D2) of [D-Phe², Phe³, d-Phe⁶]-H is presented in Table II. Two out of five rats treated with the analogue ovul-
(86% blockade of ovulation), one of
fully (12 ova) and the other partially (4
On the other hand, only one of the
d rats failed to ovulate (Table II).

In Fig. 1 shows the effect of daily injections
[|Phe², Phe³, d-Phe⁶]-LH-RH on the LH
levels. In the analogue-treated rats,
LH was significantly lower (P < 0.01)
the control group, when they were com-
on the evening of proestrus. This dem-
tes that the injection of [D-Phe², Phe³,
⁶]-LH-RH during E, D1 and D2 in-
d the LH surge that was seen in the
d animals on the afternoon and evening
estrus.

In Fig. 2 shows the effects of [D-Phe², Phe³,
⁶]-LH-RH on serum levels of steroids.
estradiol in the treated rats was not
, progesterone was higher on D1 and
and on the afternoon of proestrus in those
Moreover, the animals treated with the
ue showed a normal vaginal smear
during the period of observation.

Ovaries of the anovulatory animals
[D-Phe², Phe³, d-Phe⁶]-LH-RH
d a histological pattern similar to ovu-
treated animals; normal follicular
ent including antral follicles were
it, although corpora lutea hemorrhagica
sent in the latter animals.

Discussion. Beattie et al. (4) reported that
⁶]-LH-RH significantly
induced ovulation when it was injected on

e different days of the estrous cycle in 4-day
cycling rats. Ovulation was inhibited by
97%, 87% and 79% after proestrus, D2 and
D1 injection of the analogue, respectively.
Using a more potent analogue, [D-Phe³, Phe⁶,
⁶]-LH-RH (5), we were able to inhibit
inducing ovulation considerably when this analogue
was injected either on the morning or at noon
of proestrus. Only a 17% inhibition of ovulation
was observed when [D-Phe², Phe³, d-Phe⁶]-LH-RH was injected at noon on D2 and
no inhibition of ovulation was seen when it was
jected on the previous E. Apparently,
the length of the action of [D-Phe², Phe³, d-Phe⁶]-LH-RH is not sufficient to block ovula-
te when it is injected before D1. Further-
more, the injection of 1.5 mg twice a day at
9 AM and 4 PM (total dose of 3 mg/rat/day)
on E, D1 and D2, brought about almost complete suppression of the LH surge on the next day (Proestrus) and an 86% blockade of ovulation on the following estrus morning, without altering the normal vaginal smear pattern. This might be due to unaltered serum levels of estradiol after the treatment (Fig. 2). Discrepancies between our results and those obtained by Beattie et al. (4) might be due to the different schedule of treatment and doses used.

It is interesting to point out the changes in serum progesterone levels observed in the animals treated with the analogue on E, D1 and D2 throughout the experiment. They were higher on D1 and lower on proestrus when they were compared with those of the control rats. Because the peak of serum LH levels in the rats of our colony occurs between 3 and 4 PM, the low proestrus afternoon levels of progesterone could be due to a blockade of LH release produced by direct effects of the analogue on the pituitary and hypothalamus. The lack of LH release could have impaired the subsequent ovulation and luteinization. On the other hand, high progesterone levels during D1 might have contributed to the blockade of the LH surge and ovulation. It has been demonstrated that administration of progesterone or synthetic analogues early in the cycle depresses proestrus serum LH and FSH and delays ovulation (13–17).

In conclusion, using antagonist analogues of LH-RH it is possible to block ovulation without affecting the rat estrous cycle. Thus, the possibility exists to develop an even more potent analogue which can be used in humans without altering plasma estrogen levels.

Summary. [d-Phe², Phe⁶, d-Phe⁴]-LH-RH, a potent antagonist of LH-RH, was injected during the different stages of the estrous cycle in rats at a dose of 1.5 mg/rat. When it was administered at noon or proestrus, a 100% blockade was observed. This decreased to 33% and 17% when the analogue was injected at 9 AM on proestrus and diestrus 2, respectively. No blockade of ovulation was observed after the injection of the analogue on diestrus 1 or on the previous estrus. The partial administration of the analogue daily on E, D1 and D2, brought about complete suppression of LH surge on proestrus and an 86% blockade of ovulation without altering the cyclic vaginal smear pattern. In this case, serum levels of e were not modified but progesterone were significantly lower on proestrus higher on diestrus 1 in the analogue group as compared to control rats. Higher level of progesterone in diestrus might account in part for the inhibitory LH-surge and blockade of ovulation inhibitory analogues of LH-RH.

We thank Mrs. J. Gauthier and Mrs. J. Dr. N. Dr. Ward and NIAMDD-Rat-Pituitary Hormon gram for the gifts of materials used in radioimm says.

11. Hsu, T., and Feldt, L. S., Amer. J. Dis. 6, 51.

ANNUAL REPORT

Annual Report of the Secretary–Assistant Treasurer and Managing Editor for the Year Ending December 31, 1977

Finance. The following is an abbreviated financial report prepared by Leo Kaden, C.P.A., of Padell, Kaden, Sell and Co.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance of cash in banks at January 1, 1977</td>
<td>$29,153</td>
</tr>
<tr>
<td>Receipts:</td>
<td></td>
</tr>
<tr>
<td>From "Proceedings":</td>
<td></td>
</tr>
<tr>
<td>Subscriptions</td>
<td>$155,973</td>
</tr>
<tr>
<td>Advertising</td>
<td>7,298</td>
</tr>
<tr>
<td>Publication charges</td>
<td>37,778</td>
</tr>
<tr>
<td>Friends</td>
<td>46,383</td>
</tr>
<tr>
<td>Royalty</td>
<td>8</td>
</tr>
<tr>
<td>Other receivables</td>
<td>161</td>
</tr>
<tr>
<td>Total from “Proceedings”</td>
<td>252,901</td>
</tr>
<tr>
<td>Dues</td>
<td>58,518</td>
</tr>
<tr>
<td>Manuscript</td>
<td>7,562</td>
</tr>
<tr>
<td>Excess of investments sold over investments purchased</td>
<td>352</td>
</tr>
<tr>
<td>Dividends interest and income</td>
<td>17,721</td>
</tr>
<tr>
<td>Sundry receivables</td>
<td>2,286</td>
</tr>
<tr>
<td>Monies received from Internal Revenue Service</td>
<td>5,000</td>
</tr>
<tr>
<td>Due from Michigan Section</td>
<td>632</td>
</tr>
<tr>
<td>Contributions</td>
<td>54</td>
</tr>
<tr>
<td>Refunds of Honorarium</td>
<td>362</td>
</tr>
<tr>
<td>Total receipts for period</td>
<td>345,388</td>
</tr>
<tr>
<td>Total funds available</td>
<td>374,541</td>
</tr>
</tbody>
</table>

Disbursements:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>From "Proceedings":</td>
<td></td>
</tr>
<tr>
<td>Academic Press</td>
<td>249,078</td>
</tr>
<tr>
<td>Printing</td>
<td>2,042</td>
</tr>
<tr>
<td>Total for “Proceedings”</td>
<td>251,120</td>
</tr>
<tr>
<td>Office supplies, postage, and telephone</td>
<td>10,386</td>
</tr>
<tr>
<td>Subscriptions, refunds, and Honorarium</td>
<td>2,650</td>
</tr>
<tr>
<td>Meetings and travel</td>
<td>3,862</td>
</tr>
<tr>
<td>Pension</td>
<td>4,519</td>
</tr>
<tr>
<td>Salaries and payroll taxes</td>
<td>41,048</td>
</tr>
<tr>
<td>Professional fees</td>
<td>1,250</td>
</tr>
<tr>
<td>Bank charges and miscellaneous expenses</td>
<td>150</td>
</tr>
<tr>
<td>National Society for Medical Research</td>
<td>1,500</td>
</tr>
<tr>
<td>Total disbursements for the period</td>
<td>316,484</td>
</tr>
</tbody>
</table>

Balance of cash in bank at December 31, 1977

$58,056

The following were elected members of the Council for a period of 4 years: Drs. A. H. Briggs, H. F. DeLuca, J. P. Gilmore, M. W. Orsini, E. E. Selkurt, and D. B. Zilversmit.

Tellers. Drs. M. Blank and R. Emmers.

Miss Felice M. O'Grady has been in charge of the duties of the Society's National Office.
Guest Editors

1977

* 📣 to Reviewers

The Managing Editor and the members of the Editorial Board thank the following scientists for their assistance with the reviewing of manuscripts submitted for publication in the *Proceedings of The Society for Experimental Biology and Medicine* during the year 1977. Their service to the Society and the biomedical and scientific community is appreciated and commended.

<table>
<thead>
<tr>
<th>Ermans</th>
<th>M. Bissell</th>
<th>O. A. Carretero</th>
<th>J. P. Davis</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. E. Bito</td>
<td>K. J. Catt</td>
<td>G. F. Dibona</td>
<td>G. F. Dibona</td>
</tr>
<tr>
<td>H. S. Black</td>
<td>W. F. Chambers</td>
<td>V. DeFendi</td>
<td>V. DeFendi</td>
</tr>
<tr>
<td>W. E. Black</td>
<td>R. M. Chanock</td>
<td>F. Deinhardt</td>
<td>F. Deinhardt</td>
</tr>
<tr>
<td>C. A. Blake</td>
<td>C. P. Channing</td>
<td>P. Del Soldato</td>
<td>P. Del Soldato</td>
</tr>
<tr>
<td>R. L. Blakley</td>
<td>E. A. Chaperon</td>
<td>H. F. DeLuca</td>
<td>H. F. DeLuca</td>
</tr>
<tr>
<td>G. Blobel</td>
<td>P. W. Choppin</td>
<td>P. DeWeer</td>
<td>P. DeWeer</td>
</tr>
<tr>
<td>E. I. Bloomquist</td>
<td>E. I. Ciaccio</td>
<td>G. T.</td>
<td>G. T.</td>
</tr>
<tr>
<td>D. E. Bockman</td>
<td>F. Clark</td>
<td>Diamandopoulos</td>
<td>Diamandopoulos</td>
</tr>
<tr>
<td>P. Bodel</td>
<td>J. H. Clark</td>
<td>G. F. Dibona</td>
<td>G. F. Dibona</td>
</tr>
<tr>
<td>R. J. Bonney</td>
<td>J. W. Clarkson</td>
<td>N. R. DiLuzio</td>
<td>N. R. DiLuzio</td>
</tr>
<tr>
<td>H. B. Bosmann</td>
<td>D. L. Coffin</td>
<td>J. DiSalvo</td>
<td>J. DiSalvo</td>
</tr>
<tr>
<td>W. C. Boyd</td>
<td>P. P. Cohen</td>
<td>H. C. Doku</td>
<td>H. C. Doku</td>
</tr>
<tr>
<td>S. Bradley</td>
<td>R. Cole</td>
<td>E. Domino</td>
<td>E. Domino</td>
</tr>
<tr>
<td>M. G. Brattain</td>
<td>J. E. Coligan</td>
<td>D. M. Donaldson</td>
<td>D. M. Donaldson</td>
</tr>
<tr>
<td>B. M. Breckenridge</td>
<td>H. R. Colten</td>
<td>R. G. Douglas</td>
<td>R. G. Douglas</td>
</tr>
<tr>
<td>R. Bressler</td>
<td>B. Combes</td>
<td>S. D. Douglas</td>
<td>S. D. Douglas</td>
</tr>
<tr>
<td>C. M. Brinkman</td>
<td>J. D. Conner</td>
<td>T. P. Dousa</td>
<td>T. P. Dousa</td>
</tr>
<tr>
<td>D. A. Brodie</td>
<td>M. E. Conrad</td>
<td>J. W. Drysdale</td>
<td>J. W. Drysdale</td>
</tr>
<tr>
<td>M. J. Brody</td>
<td>P. Constantinescu</td>
<td>P. Dukes</td>
<td>P. Dukes</td>
</tr>
<tr>
<td>T. M. Brody</td>
<td>M. A. Conte</td>
<td>K. Eakins</td>
<td>K. Eakins</td>
</tr>
<tr>
<td>M. A. Bronner</td>
<td>J. A. Cook</td>
<td>S. Ebbe</td>
<td>S. Ebbe</td>
</tr>
<tr>
<td>A. M. Brown</td>
<td>K. E. Cooper</td>
<td>R. Edelman</td>
<td>R. Edelman</td>
</tr>
<tr>
<td>R. G. Brown</td>
<td>M. Costlow</td>
<td>T. S. Edgington</td>
<td>T. S. Edgington</td>
</tr>
<tr>
<td>J. S. Buckner</td>
<td>R. Couch</td>
<td>P. Eggens</td>
<td>P. Eggens</td>
</tr>
<tr>
<td>P. Calabresi</td>
<td>J. E. Craighead</td>
<td>R. J. Elin</td>
<td>R. J. Elin</td>
</tr>
<tr>
<td>F. T. Caldwell</td>
<td>G. Cudkowicz</td>
<td>L. Ellenbogen</td>
<td>L. Ellenbogen</td>
</tr>
<tr>
<td>J. B. Campbell</td>
<td>H. M. Cunningham</td>
<td>S. A. Ellin</td>
<td>S. A. Ellin</td>
</tr>
<tr>
<td>D. M. Carlson</td>
<td>M. F. Dallman</td>
<td>W. K. Elwood</td>
<td>W. K. Elwood</td>
</tr>
<tr>
<td>J. R. Carlo</td>
<td>P. R. Dallman</td>
<td>J. W. Ensinck</td>
<td>J. W. Ensinck</td>
</tr>
<tr>
<td>R. A. Carey</td>
<td>J. C. Daniel</td>
<td>A. Epstein</td>
<td>A. Epstein</td>
</tr>
<tr>
<td>C. B. Carpenter</td>
<td>W. H. Dantzler</td>
<td>A. Erslev</td>
<td>A. Erslev</td>
</tr>
<tr>
<td>W. A. Carter</td>
<td>J. D. Davis</td>
<td>J. L. Evans</td>
<td>J. L. Evans</td>
</tr>
</tbody>
</table>

bmiii

0037-9727/78/1591-bmiii$03.00/0
Copyright © 1978 by The Society for Experimental Biology and Medicine.
All rights reserved.
bmiv

GUEST EDITORS

J. H. Exton
A. S. Fauci
R. E. Feeney
J. D. Feinblatt
P. Felig
M. Fernandes
J. P. Filkins
J. Fine
J. Fischberg
D. Fitzgerald
J. P. Flatt
A. Flynn
G. E. Foley
J. S. C. Fong
R. M. Forbes
W. Y. Forbes
E. L. Forker
R. E. Forster
J. G. Forte
H. H. Freedman
D. W. Frederiksen
M. V. Freeman-Narrod
E. Freese
R. Frater
G. H. Fried
P. A. Friedman
L. T. Frobish
J. C. Frolick
H. A. Gaafar
R. Ganguly
G. E. Ganter
J. Gardner
W. F. Geber
M. Gelato
J. E. Gerich
G. C. Gerritsen
R. K. Gershon
I. I. Geschwind
A. M. Geumi
D. J. Giard
T. P. Gibson
R. E. Giles
T. M. Glenn
G. Glick
J. A. Glomset
F. C. Goble
A. Goldin
M. Goldin

A. L. Goldberg
J. Goldman
A. Goldstein
I. J. Goldstein
J. L. Gollan
C. J. Goodner
R. A. Gorski
A. A. Gottlieb
A. M. Gotto
H. L. Greene
G. S. Greenwald
E. Grim
J. B. Grogan
A. C. Groom
M. I. Grossman
C. J. Guber
C. Gurney
F. J. Haddy
H. D. Hafs
S. Hakomori
K. A. Halmi
K. J. Hammerman
B. Hampar
P. C. Hanawalt
R. I. Handin
B. F. Harland
P. E. Hartman
M. R. Haussler
R. J. Havel
J. P. Hayslett
O. M. Hechter
F. W. Heggeness
J. P. Heggars
C. Heidelberger
D. D. Heistad
K. E. Hellstrom
H. G. Hempling
E. Henderson
R. I. Henkin
E. C. Henson
V. Herbert
J. Hill
B. L. Hillcoat
P. Hinkle
L. B. Hinshaw
A. J. W. Hitchman
A. F. Hofmann
W. W. Hofmann
W. Hollander

J. Holcenberg
R. T. Holman
H. Holtzer
W. B. Hood
E. C. Horning
S. L. Hosowitz
C. F. Howard
J. B. Howard
J. Hsu
S.-S. Huang
K. Hubel
G. A. Hudson
M. J. Hughes
L. S. Hurley
Y. Israel
K. J. Isselbacher
H. D. Itskovitz
E. J. Jacobson
W. B. Jakoby
J. D. Jamieson
L. S. Jensen
A. G. Johnson
L. R. Johnson
W. J. Johnson
K. C. Jones
J. G. Joshua
R. A. Jungman
P. J. Kadowitz
M. L. Kakade
G. Kaley
M. A. Kaliner
A. M. Kaplan
E. L. Kaplan
A. Kappas
S. Karpatkin
A. J. Kastin
A. Katz
R. L. Katz
H. M. Katzen
S. Kaufman
F. Kavalier
H. R. Keiser
J. W. Kendall
P. Kezdi
C. V. Kies
D. G. Kilburn
Y. S. Kim
V. E. Kinsey
D. M. Kipnis
M. Klagsbrun
J. I. Kitay
C. R. Kleeman
J. L. Kleiner
L. M. Klevay
J. J. Kocsis
S. S. Koide
P. E. Kolattuk
J. H. Kom
J. H. Komby
H. Koprowski
H. S. Koren
J. H. Korn
J. Kowal
P. A. Kramer
S. Krantz
E. L. Krawitt
G. Kreibich
L. Kremizer
M. E. Kriebel
G. A. Krishna
S. C. Kriss
S. C. Kukreja
I. Kupferman
K. Kurokawa
P. E. Lacy
P. Lalezari
C. E. Lane
J. Laragh
P. C. Laris
P. C. Larson
S. A. Latt
A. M. Lawren
H. S. Lawren
C. Y. Lee
A. M. Lefer
H. A. Lester
J. Levin
G. M. Levine
L. Levine
S. B. Levy
J. G. Levy
L. Levy
T-K. Li
L. M. Lichtens
J. Lieberman
M. W. Liebermann
I. E. Liener
G. E. Lindemann
GUEST EDITORS

J. M. Lipton
J. W. Littlefield
J. Loeb
J. Lostroh
B. Lucchesi
L. N. Lukens
J. D. Lutton
S. E. Lux
D. Macfarlane
B. MacMahon
D. F. Magee
L. E. Mallette
J. Mallon
R. C. Manok
G. M. Maniatis
G. R. Marchand
F. I. Marcus
R. Marcus
H. S. Margolis
H. Markowitz
J. M. Marsh
R. F. Marsh
J. Martin
J. R. Martinez
G. R. Marshall
G. T. Mannerings
D. T. Mason
B. G. Massry
L. C. Maxwell
M. W. McBurney
R. McCuskey
J. D. McGarry
L. M. McKenzie
J. M. McKenzie
J. F. McKelvy
J. M. McLaughlin
I. F. McMurtry
P. McLaughlin
H. Megel
J. H. Menna
K. M. J. Menon
T. C. Merigan
E. Merler
H. J. Mersmann
G. Meschia
R. A. Meyer
W. L. Meyer
J. G. Michael
F. Milgrom
F. N. Miller
G. Miller
J. N. Miller
W. L. Miller
J. A. Mills
D. Mills
T. Mohanakumar
H. W. Moon
A. S. Moore
M. Morad
H. P. Morris
T. Q. Morris
N. E. Morrison
E. E. Morse
H. D. Mosier
M. Moss
W. J. Mueller
A. E. Munson
R. A. Murphy
S. J. Mustafa
R. D. Myers
C. F. Nathan
M. Navia
W. A. Neill
H. N. Nellans
L. Nelson
P. M. Newborne
H. D. Niall
F. H. Nielsen
K. D. Nolph
M. J. Novy
J. A. Oates
C. Oliver
J. A. Olson
B. W. O’Malley
S. Oparil
R. A. Ormsbee
J. E. Osborn
D. Osoba
J. V. Osterman
D. L. Oxender
J. S. Pagano
R. H. Painter
H. C. Palfrey
H. Papkoff
A. B. Pardee
C. W. Parker
J. C. Parker
F. E. Payne
C. M. Pearson
R. A. Pederseh
R. S. Pekarek
J. N. Periera
B. Peterkopfsky
R. G. Petersdorf
E. R. Pfefferkorn
B. B. Pharriss
J. V. Pierce
D. J. Pillon
M. C. Pinsker
J. J. Pisano
M. Poe
R. Pollack
W. G. Pond
D. D. Porter
J. C. Porter
B. Postic
M. D. Poulik
M. C. Powanda
A. E. Powel
A. S. Prasad
K. N. Prasad
D. Pressmann
T. G. P. Pretlow
H. G. Preuss
J. P. Price
O. S. Privett
E. M. Rabellino
G. S. Rachefelsky
J. M. Radley
D. Rabinowitz
J. Rahkin
R. G. Rahwan
N. Raica
W. T. Rainey
L. G. Raisz
J. A. Ramaley
V. D. Ramirez
H. N. Ranney
C. E. Rapela
F. Rapp
P. Rathnam
W. E. Rawls
C. G. Ray
L. Raymond
J. D. Regan
W. S. Rehm
A. I. Reid
R. A. Reisfeld
K. Reissmann
R. Relkin
H. Y. Reynolds
J. S. Rhim
A. Rider
G. D. Riegle
R. Rifkind
T. R. Riggs
J. A. Rillema
J. M. Ritchie
J. M. Rivers
R. Rivlin
R. S. Roberts
W. C. Roberts
D. F. Rochester
B. Roizman
S. Roseman
D. A. Roth
J. A. Roth
A. B. Rothballer
B. Rubin
R. J. Rubin
M. N. Runner
P. S. Russell
R. J. Rutter
J. W. Ryan
J. M. Saavedra
T. M. Saba
J. Sacher
B. Sachs
G. Sachs
O. Z. Sallinger
H. H. Sandstead
G. Sayers
H. Schachter
C. D. Scher
R. J. Schimke
D. Schlessinger
H. G. Schneider
R. S. Schnitzer
B. A. Schottelius
R. W. Schrier
C. J. Schwartz
H. L. Schwartz
M. K. Schwartz
C. E. Schwerdt
P. Seeman
E. E. Seifen
<table>
<thead>
<tr>
<th>GUEST EDITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. B. Senterfit</td>
</tr>
<tr>
<td>R. E. Shade</td>
</tr>
<tr>
<td>S. S. Shapiro</td>
</tr>
<tr>
<td>R. K. Sharma</td>
</tr>
<tr>
<td>L. Shear</td>
</tr>
<tr>
<td>W. T. Shearer</td>
</tr>
<tr>
<td>S. S. Shefer</td>
</tr>
<tr>
<td>R. Sheldon</td>
</tr>
<tr>
<td>C. J. Shellbarger</td>
</tr>
<tr>
<td>G. K. Sherer</td>
</tr>
<tr>
<td>M. E. Shils</td>
</tr>
<tr>
<td>R. S. Sherwin</td>
</tr>
<tr>
<td>D. A. Shriver</td>
</tr>
<tr>
<td>H. Shwachman</td>
</tr>
<tr>
<td>E. J. Simon</td>
</tr>
<tr>
<td>D. P. Simpson</td>
</tr>
<tr>
<td>L. L. Skeggs</td>
</tr>
<tr>
<td>A. Small</td>
</tr>
<tr>
<td>R. Smeby</td>
</tr>
<tr>
<td>B. T. Smith</td>
</tr>
<tr>
<td>C. A. Smith</td>
</tr>
<tr>
<td>F. A. Smith</td>
</tr>
<tr>
<td>L. L. Smith</td>
</tr>
<tr>
<td>C. T. Snowden</td>
</tr>
<tr>
<td>M. S. Soloff</td>
</tr>
<tr>
<td>M. K. Song</td>
</tr>
<tr>
<td>E. H. Sonnenblick</td>
</tr>
<tr>
<td>S. Solomon</td>
</tr>
<tr>
<td>T. L. Sourkes</td>
</tr>
<tr>
<td>N. Sperelakis</td>
</tr>
<tr>
<td>H. G. Spies</td>
</tr>
<tr>
<td>L. M. Sreevny</td>
</tr>
</tbody>
</table>
"... invaluable reading for all biologists."
—NATURE

INTERNATIONAL REVIEW OF CYTOLOGY
edited by G. H. BOURNE and J. F. DANIELLI

FROM REVIEWS OF PUBLISHED VOLUMES:
"... maintains the tradition and set-up of the previous volumes and certainly provides up-to-date data on varied aspects of cytology... a valuable acquisition to any library."
—THE NUCLEUS

"... in keeping with the high standards set by the editors... this series is a significant contribution to a science that impringes on many fields."
—THE QUARTERLY REVIEW OF BIOLOGY

"... contains several excellent reviews with a substantial amount of information on each topic... the volume will prove a valuable addition to your library."
—ASM NEWS

Complete information on each volume in the series is available on request.

Take advantage of the convenience of our Continuation Order Plan:
Your CONTINUATION ORDER authorizes us to ship and bill each volume automatically, immediately upon publication. This order will remain in effect until cancelled. Please specify volume number with which your order is to begin. Please direct all inquiries and orders to the Sales Department.
"... this series is invaluable for workers at all levels of cell biology."

—NATURE

METHODS IN CELL BIOLOGY
Edited by DAVID M. PRESCOTT

METHODS IN CELL BIOLOGY (formerly Methods in Cell Physiology) presents detailed descriptions of methods and techniques now in use in the field of cell biology research—techniques which have not been published in full detail elsewhere in the literature. Each volume features state-of-the-art reviews that bring the reader up to date on the most current innovations and refinements of prevailing techniques, as well as discussions of standardized methods that frequently reveal a more efficient means of studying current problems. Descriptions of each technique are so complete that even cell biologists with little or no experience in a particular area can apply the technique to their work.

"The editor, D. M. Prescott, is to be congratulated on the production of a thoroughly useful volume."

—NATURE

"... will be gladly received not only by those working in the field of physiology of the cell but ... will become a useful manual for all cytologists and biologists."

—FOLIA MORPHOLOGICA

"Something new or hard to find is included in nearly every chapter. Altogether the volume makes quite a useful collection and is recommended for advanced graduate students, research scientists, and any library which tries to keep an up-to-date working collection for cell biologists or microbiologists."

—ASM NEWS

Complete information on each volume in the series is available on request.

Take advantage of the convenience of our Continuation Order Plan: Your CONTINUATION ORDER authorizes us to ship and bill each volume automatically, immediately upon publication. This order will remain in effect until cancelled. Please specify volume number with which your order is to begin. Please direct all inquiries and orders to the Sales Department.

AP 7404

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers
111 FIFTH AVENUE, NEW YORK, N.Y. 10003
24-28 OVAL ROAD, LONDON NW1 7DX
Friends of the Society

Our members are requested to note the following list of Friends. We wish to express our thanks to each of them. Their contributions help materially in meeting the very sharp increase in costs of publication.

FRIENDS

Burroughs Wellcome Co., Inc.
Ciba Pharmaceutical Products, Inc.
E. I. du Pont de Nemours & Co.
Hoffmann-LaRoche, Inc.
Eli Lilly and Co.
Mead Johnson & Co.
Merrell-National Laboratories
Chas. Pfizer and Co., Inc.
Ortho Pharmaceutical Corporation
Rogoff Foundation
Damon Runyon Memorial Fund
Sandoz Pharmaceuticals

Schering Corporation
G. D. Searle and Co.
Sharp and Dohme, Division of Merck & Co., Inc.
Smith Kline and French Laboratories
Squibb Inst. for Medical Research
Sterling-Winthrop Research Institute
Syntex USA, Inc.
Wallace Laboratories, Division of Carter Products, Inc.
Warner-Lambert Laboratories
Wyeth Laboratories
NOTICE TO CONTRIBUTORS

General Instructions

Manuscripts should be written in clear, concise and grammatical English, and should conform to the general style of the Journal and the specific instructions listed below. Manuscripts which are not adequately prepared will be returned to the authors, since it is not feasible for the Editors to undertake extensive revision or rewriting of manuscripts submitted. Contributors, particularly those unfamiliar with English usage, are encouraged to seek the help of colleagues in the preparation and review of manuscripts prior to submission. This practice will usually reduce the time required for review and will avoid delays in the publications of the manuscript.

SUBMIT MANUSCRIPTS IN DUPLICATE (ONE ORIGINAL AND ONE COPY). A $10.00 CHECK OR MONEY ORDER (NON-REFUNDABLE) MUST ACCOMPANY THE MS TO COVER HANDLING COSTS FOR ALL MSS RECEIVED.

All manuscripts should be submitted to Dr. M. R. Nocenti, 630 W. 168th Street, New York, N.Y. 10032.

EDITORIAL OFFICE IS CLOSED DURING AUGUST.

Authors submitting manuscripts containing data from experiments involving recombinant DNA molecules must provide a statement for each of the two reviewers which certifies that their experiments complied with the NIH guidelines on physical and biological containment procedures.

1. Only original papers will be considered. Manuscripts are accepted for review with the understanding that the same work has not been and will not be published nor is presently submitted elsewhere, and that all persons listed as authors have given their approval for the submission of the paper; further, that any person cited as a source of personal communications has approved such citation. Written authorization may be required at the Editor’s discretion. Articles and any other material published in the Proceedings of the Society for Experimental Biology and Medicine represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s), the Society, or the Publisher.

Authors submitting a manuscript do so on the understanding that if it is accepted for publication, copyright in the article, including the right to reproduce the article in all forms and media, shall be assigned exclusively to the Society. The Society will not refuse any reasonable request by the author for permission to reproduce any of his or her contributions to the journal. Send requests for permission to reproduce items published in Proceedings of the Society for Experimental Biology and Medicine to: Dr. Mero R. Nocenti, Managing Editor, Society for Experimental Biology and Medicine, 630 W. 168th St., N.Y., N.Y. 10032.

A manuscript rejected by the PSEBM should not be re-submitted. All manuscripts will be given a quality rating by the two reviewing editors; those manuscripts with low priority ratings will not be accepted even though they have been classed as generally acceptable. Split decisions will be decided on the basis of the two priority ratings.

2. a. Manuscripts should be as concise as possible, yet sufficiently detailed to permit critical appraisal.

b. Manuscripts (including tables, legends, and footnotes) should be double or triple spaced.

c. The first page of the manuscript should contain the complete title of the paper, category for the “Table of Contents” (select from list in item 20), names of authors (without degrees), affiliations (including Zip Codes), and a running title consisting of no more than 40 characters (including spaces). The second page of the manuscript should give the name and complete address of the author to whom ALL correspondence should be sent. Please include Zip Code.

d. Units of weights, measures, etc., when used in conjunction with numerals, should be abbreviated and unpunctuated, e.g., 6 R, 3 g, 5 ml, 8% (see No. 20 below).

3. Manuscripts of nonexperimental researches, or those with inadequate controls, are not acceptable.

4. Unnecessary subdivision of a research into several manuscripts is not acceptable.

5. a. Manuscripts devoted to improvement of procedure or of apparatus may be accepted when a new principle is involved or when decidedly superior biological results are obtained. Evidence of such superiority should be given.

b. Confirmatory or negative results will not be accepted unless they are of obvious biological significance.

6. Length of manuscripts should average 3 printed pages, including tables, charts, and references. The maximal length allowed is 7 printed pages. All manuscripts exceeding 17 typed pages (including tables, charts and references) will be returned to authors.

7. Title should be limited to 15 words. Manuscripts should contain an Introduction, Materials and Methods. Results, Discussion and a Summary.

8. Conclusions should be based upon experimental data submitted.

9. Figures. All figures should be cited consecutively by Arabic numerals in the text with figure legends typed on a separate sheet. These should contain sufficient experimental detail to permit the figure to be interpreted without reference to the text. Units should be clearly indicated in the figures themselves. Wherever possible, curves should be combined into a single figure in order to keep the number of illustrations to a minimum.

PLEASE NOTE: All figures and illustrations are to be submitted in such form as to permit photographic reproduction without retouching or redrawing. This includes the lettering, which is reproduced as part of the photoengraving and is not set in type. Line drawings should be carefully drafted with black India ink on white drawing paper or blue drafting cloth, no larger than 8.5 x 11.5 inches overall (21 x 27.5 cm). The lettering should be large enough to allow a reduction of two-thirds off. High quality glossy prints are acceptable.

10. Tables. These should be numbered with Roman numerals and cited consecutively in the text. Each table should be titled and typed double-spaced on a separate sheet. Refer to current issues of the Proceedings for the acceptable style of tables. The title of each table should clearly indicate the nature of the contents, and sufficient experimental detail should be included in footnotes to the entries to permit the reader to interpret the results. Units must be clearly indicated for each of the entries in the table. To save space, repetition of similar experiment

...
Footnotes. Footnotes in the text should be identified by superscripts consisting of Arabic numerals and be typed on separate sheet; footnotes in the tables should be identified with superscript lower-case letters a, etc., and placed at the bottom of the table.

a. References. Only essential citations should be submitted, and they should be arranged numerically at the end of the manuscript. References to the literature should be cited in the text by Arabic numerals in parentheses, set on the text line.

b. Abbreviations of journal titles should follow the style used in Chemical Abstracts (Vol. ACCESS, Key to the Source Literature of the Chemical Sciences, 1969 Edition. Please note the style of capitalization and punctuation for journal articles, books, and edited books in the following examples:

c. "Personal communication," "unpublished," "submitted" and numerous abstracts should be excluded from the reference list. If the manuscript has been accepted for publication, include it in the reference list, giving journal, year, etc. If not accepted do not include it in the reference list.

Trade or popular name or abbreviation of a chemical may be used only when preceded by the chemical or trivial name; thereafter, any of these names or abbreviations may be used. Trade names should begin with a capital letter. Structural formulas of chemicals should be used only when absolutely necessary.

The Proceedings is copyrighted by the Society for Experimental Biology and Medicine.

a. Authors are expected to discourage circulation of reprints for commercial purposes.

b. Reprints are limited to 1300.

Changes in galley proof should be absolutely minimal. Authors will be charged for excessive changes. Sponsor is held responsible for non-member's manuscript. The sponsor should write stating (a) how far he is with the author and his research, (b) whether the author is scientifically reliable, (c) that the manuscript conforms to Notice to Contributors, (d) that he has critically examined the manuscript, (e) wherein the script is a significant contribution to science, and (f) that he assumes financial responsibility involved. The or should be in the same laboratory as the author. Where not of the same or recent past laboratory, he should specify why such letter comes from a member at another laboratory.

The authors are required to pay a part of the cost of publication in the form of a page charge of $20.00 or more.

ify the General Secretary at least one month before change of address.

Biochemistry, Endocrinology, Enzymology, Growth and Development, Hematology, Immunology, physiology, Nutrition, Oncology, Pathological Physiology, Pathology, Pharmacology, Physiology, Radiology, Tissue Culture, Virology.

Abbreviations. Contributors are requested to use the following abbreviations:

- calorie (cal)
- centimeter (cm)
- counts per minute (cpm)
- cubic centimeter (cm³)
- Curie (Ci)
- degree Celsius (Centigrade) (°C)
- degree Fahrenheit (°F)
- diameter (diam)
- gram (g)
- hour (hr)
- inch (in.)
- inside diameter (i.d.)
- intramuscular (im)
- intraperitoneal (ip)
- intravenous (iv)
- kilocalorie (kcal)
- kilogram (kg)
- liter (spell out)
- meter (m)
- micrometer (µm)
- milliliter (ml)

millimeter (mm)
milliosmole (mOsm)
minute (min)
molar (concentration) (m)
molar (concentration) (M)
mole (spell out)
molecular weight (mol wt)
nanogram (ng)
nanometer (nm)
normal (concentration) (N)
osmole (Osm)
ounce (oz)
outside diameter (o.d.)
parts per million (ppm)
percent (％)
percent (％)
picogram (pg)
reversions per minute (rpm)
second (sec)
specific activity (sp act)
square centimeter (cm²)
square meter (m²)
subcutaneous (sc)
volt (V)
volume (vol)
Will the real CF-1 please stand up?

It has. For more than 40 years of critical pharmacological and toxicological research. Plus almost every other area of study for which mice are used.

The Charles River CF-1's were initiated by Carworth. In recent years, they've made you even happier. Because we've made them healthier. Through our COBS® (Caesarean-Originated, Barrier-Sustained) techniques that have become the standard of excellence for all mice, rats, guinea pigs and rabbits. A major reason why we've sold more than 10,000,000 CF-1's alone in the past 4 years.

From major pharmaceutical companies and government agencies to the top university medical centers and private research laboratories, the CF-1's stand up. And stand out. CALL 617-998-3333 for ordering or more information. To tell the truth, our CF-1 is the Ratsford.
INTERESTED IN PEPTIDES? R-plus has few equals when it comes to QUALITY or SELECTION.
HERE ARE A FEW EXAMPLES:

SECRETIN PEPTIDES
- SECRETIN, pentaacetate, synth. (The complete hormone) ■ SECRETIN 21–27

GASTRIN PEPTIDES
- (15-METHIONINE) HUMAN GASTRIN I, synth. (HG–17)**
- HUMAN GASTRIN 2–17, synth.** ■ (15-NORLEUCINE) HUMAN GASTRIN I, synth. (HG–17)

THYROCALCITONIN PEPTIDES
- THYROCALCITONIN 30–32, synth.

GASTRIN-CAERULEIN PEPTIDES

BRAIN PEPTIDES

MISCELLANEOUS
- PHE–ASP–ALA–SER–VAL (C-terminal pentapeptide of RNase)

PLUS ABOUT 1000 OTHERS IN OUR FREE CATALOG III.
**Currently in–synthesis.

AND OUR TALENTS DO NOT STOP HERE. IF YOU ARE WORKING IN THE FIELD OF ENDOCRINOLOGY OR NEED STEROIDS IN YOUR INVESTIGATION SEND FOR OUR NEW 'RESEARCH STEROIDS' CATALOG, NOW IN PRODUCTION. This catalog includes antibodies to steroids as well as steroid antigens and to the best of our knowledge the only firm offering antibodies to selected nucleoproteins.

Catalogs and literature are available free upon request.

Research Plus Laboratories, Inc. Box 571 Denville, N.J. 07834
(201) 823-3592 • (201) 823-3599
Council 1978–79

President, DeWitt Stetten, Jr.
National Institutes of Health

President-Elect, Robert W. Berliner
Yale University

Past President, Dennis W. Watson
University of Minnesota

Treasurer, Gregory W. Siskind
Cornell Medical Center

Secretary and Ass’t Treasurer, Merio R. Nocenti
Columbia University

D. L. Azarnoff '79
Univ. of Kansas

I. J. Fox '81
Univ. of Minnesota

R. J. Peanasky '79
Univ. of South Dakota

A. H. Briggs '81
University of Texas

J. P. Gilmore '81
Univ. of Nebraska

E. E. Selkurt '81
Univ. of Indiana

H. F. DeLuca '81
University of Wisconsin

M. D. Siperstein '79
Univ. of California

P. P. Foa '79
Sinai Hosp. of Detroit

M. Orsini '81
Univ. of Wisconsin

D. B. Zilversmit '81
Cornell Univ.

MEMBERSHIP APPLICATION

"Membership in the Society for Experimental Biology and Medicine is open to all individuals who have independently published original meritorious investigations in experimental biology or experimental medicine and who are actively engaged in experimental research. In general, applicants should be beyond a supervised post-doctoral experience in order to be able to demonstrate the ability to conduct independent investigations.

Application forms may be obtained from the Office of the Secretary, Society for Experimental Biology and Medicine, 630 W. 168th St., N.Y., N.Y. 10032."
Board of Editors

M. R. NOCENTI
Managing Editor
630 W. 168th Street
New York, N. Y. 10032
212 WA-7-6914

QUIST R. R. GALA C. S. LIEBER R. B. ROBERTS
N, Jr. R. C. GALLO C. W. LLOYD R. ROSS
CURA Z. N. GAUT P. D. LOTLIKAR I. ROTHCHILD
'ONG G. L. GEBBER C. C. LUSHBAUGH J. RUDICK
'ACH J. GENEST G. J. MACDONALD W. SAWYER
LNER D. G. GILMOUR D. F. MALAMUD B. B. SAXENA
RACLOUGH E. C. GOTSCHLICH I. MANDL A. J. SBARRA
RON M. GREENWOOD A. J. MARCUS A. V. SCHALLY
C G. G. HARFORD A. MAZUR R. A. SCHEMMEL
G P. C. HARPEL S. M. MCCANN R. SCHMID
IR N. S. HALMI L. C. MCLAFFERT N. J. SCHMIDT
D C. G. HILLEMAN J. MEITES H. A. SCHNEIDER
RNS F. G. HOTFELDEN T. C. MERIGAN, JR. E. E. SELKURT
AND C. G. HARFORD L. C. MCLAFFERT J. H. SHAW
OME P. C. HARPEL J. MEITES N. S. HOLLOWSZAK S. MIRVISH N. SHOCK
KER R. H. HILLEMAN C. R. MORGAN M. M. SIGEL
OKS M. R. HILLENMAN S. I. MORSE G. W. SISKIND
N E. D. JACOBSON P. J. MULROW N. E. SLADEK
GNE H. D. JANOWITZ L. H. MUSCHEL A. A. SPECTOR
RK D. C. JOHNSON D. NATHAN R. S. SPIERS
RE R. C. JOHNSON G. D. NISWENDER J. G. STEVENS
TON T. J. KINDT S. OPARIL A. STRACHER
LEN S. KLAHR P. Y. PATTERSON E. D. THOMAS
PER S. KOLETSKY P. N. PATIL G. J. THORBECKE
RADO C. A. KRAKOWER W. E. PAUL M. L. TAYAN
MER L. C. KREY M. J. PEACH J. L. VAITUKAITIS
LER M. KUSCHNER V. A. PEDRINI C. M. VENEZIALE
LACELLE P. L. LACELLE G. L. PLAIA C. S. VESTLING
AN B. N. LADU S. A. PLOTKIN S. R. WAGLE
H M. E. LAMM D. D. PORTER M. E. WESKLER
GELSTEIN C. A. LANG A. S. RABSON J. M. WELLMAN
IER J. H. LARAGH J. A. RAMALEY R. M. WELSH
KER C. E. LEROY M. M. RAPPORT D. L. WIEGMAN
ANKEL R. LEVERE W. D. REID E. E. WINDHAGER
NKLIN J. V. LEVY J. A. RESKO D. B. ZILVERSMIT
NKLIN J. V. LEVY J. A. RILLEMA M. B. ZUCKER

Editorial and Publications Committee

M. ZUCKER, '82, Chairperson; I. CLARK, '80; M. HILLEMAN, '82;
S. J. MORSE, '78; S. SEIFTER, '82.
The President, President-Elect and Secretary
PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE

Volume 159, Number 2, November 1978

Copyright © 1978 by the Society for Experimental Biology and Medicine
All Rights Reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.

The appearance of the code at the bottom of the first page of an article in this journal indicates the copyright owner's consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (Operations Staff, P.O. Box 765, Schenectady, New York 12301) for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-1978 articles are the same as those shown for current articles.
ARE YOUR CELLS STARVED FOR OUR GROWTH FACTORS?

When growing cells in culture is a problem, our Growth Factors may be the answer. In many cases, they stimulate cell division, modulate growth and function, and influence migration and organization of cells in vitro. Collaborative Research Growth Factors now available from stock include:

- Epidermal Growth Factor (CR-EGF)
- Fibroblast Growth Factor (CR-FGF)
- Multiplication Stimulating Activity (CR-MSA)
- Nerve Growth Factor (CR-NGF)
- Endothelial Cell Growth Supplement (CR-ECGS)
- Human Thrombin (CR-HT)

In addition, we have [125I] labelled derivatives and antisera for EGF, FGF, MSA and NGF.

To find out more about our Growth Factors and what they can mean to your research, call or write for our free technical bulletins. Or for immediate delivery of these products call our Order Department 617-899-1133.

For Research Use Only

Research Products Division
Collaborative Research, Inc.
1365 Main Street, Waltham, Mass. 0215
Tel. (617) 899-1133 TWX 710-324-766
Wahmann Laboratory Animal Cages and Accessories

Istom Crafted for Your Specific Needs

Wahmann has a most complete selection of laboratory animal cages and support items, and every is custom crafted to meet or exceed the rigid standards mandated for today's animal research.

Wahmann is a privately owned company with its operation being one of cage manufacturing service. Our people know caging. They know needs.

Experience of our staff has been combined first class facilities to enable us to provide superior service to our customers. Write now for our new complete catalog. Sixty-eight years of specializing can mean to laboratory animal housing requirements.

Wahmann Manufacturing Company
10 West Aylesbury Road, Timonium, Md. 21042
Telephone: (301) 252-2000

Wahmann Cages
From the Company that is SPECIA for its Customers' Benefit
Members can help considerably by mentioning our PROCEEDINGS when communicating with or ordering supplies from our advertisers.

NOW AVAILABLE FOR

IMMEDIATE DELIVERY

Sprague-Dawley
Osborne / Mendel
Wistar
RATS

Certified Pathogen Free

WITH DEFINED ASSOCIATED FLORA
Caesarean derived · Barrier reared

Superlative is the word that best describes the new CAMM Certified Pathogen Free Rats and you can now get them in Sprague-Dawley, Osborne, Mendel or Wistar strains.

Researchers and scientists from facilities all around the country have been writing to us telling us how pleased they are with these new CAMM rats. They are available now. Ready for shipment today by company trucks or Direct Route Air Express. Please contact us with your requirements. Ask for our price list.

WE SHIP EVERYWHERE
By Company Truck and
Direct Route Air Express

CAMM
RESEARCH LAB ANIMALS
414 Black Oak Ridge Road, Wayne, New Jersey 07470
201/694-0703
Conventional methods of concentrating macromolecules from biological extractions or separations are often a time-consuming problem, especially with dilute solutions. Samples may be contaminated, inactivated, or partially lost. And working with small samples is difficult.

The ISCO Model 1750 Electrophoretic Sample Concentrator offers you a new way to concentrate macromolecules. It’s fast, convenient, inexpensive, non-disruptive, and adaptable to a wide variety of samples.

The Model 1750 will handle 1 to 10 ml samples, normally produces 50-fold concentrations in 90 minutes or less, and allows quick and easy recovery of concentrates. It uses no pumps or gases—samples are concentrated by a combination of electrophoresis and filtration.

The instrument is suitable for concentrating proteins, nucleic acids, certain whole cells and fragments, or any other water soluble macromolecule larger than 3500 MW and having electrophoretic mobility. During concentration, samples may also be separated from non-ionic media such as polyacrylamide gels or sugar solutions obtained from density gradients.

Setup time is minimal and four or more samples can be concentrated simultaneously. Cleaning is simple, too—a quick rinse with deionized water is all that’s necessary.

Learn more about the versatile Model 1750 Electrophoretic Sample Concentrator and other ISCO Instruments. Send for your copy of our catalog today: Instrumentation Specialties Company, P.O. Box 5347, Lincoln, Nebraska 68505. Or dial direct, toll free (800) 228-4250 (continental U.S.A. except Nebraska).
INDEX TO ADVERTISERS

Members and subscribers are requested to cooperate with our advertisers.

Camm Research .. vii
Charles River .. Cover 4
Collaborative Research .. v
ISCO ... viii
Research Plus Lab .. i
Wahmann Manufacturing Co .. vi
TABLE OF CONTENTS

BIOCHEMISTRY

- Effects of Ethanol on the Absorption and Retention of Lead
 J. C. Barton, M. E. Conrad 2
- Differential Centrifugation Studies of Guinea Pig Lung Proteases
 L. G. Ferren, W. T. Stauber, G. Kalnitsky 2
- Synthesis of Rat Liver Mitochondrial Proteins after the Administration of a Nonlethal Dose of Cycloheximide
 J. J. Ch’hi, P. A. Froman, T. M. Devlin 7

ENDOCRINOLOGY

- Effect of Ethanol on Parathyroid Hormone and Calcitonin Secretion in Man
- Regulation of Growth Hormone Release by Intraventricular Administration of 5HT or Quipazine in Unanesthetized Male Rats
 E. Vuayan, L. Krulich, S. M. McCann 2
- Effect of Ethanol and Thyroxine on Hepatic Oxygen Consumption
 S. P. Singh, A. K. Snyder 2
- Effect of a Phosphodiesterase Inhibitor, 3-Isobutyl 1-Methylxanthine, upon the Stimulatory Effect of Human Follicle-Stimulating Hormone and Human Luteinizing Hormone upon Cyclic Adenosine 3’5’-Monophosphate Accumulation by Porcine Granulosa Cells
 A. M. Lindsey, C. P. Channing 1
- Variations of Human Pancreatic Polypeptide in Plasma: Effect of Normal Food Ingestion and Fasting
 M. L. Villanueva, J. A. Hedo, J. Marco 1
- Amylase Receptors in Mouse Liver: Species Differences in Response to Estrogenic Stimulation
 S. Marshall, J. F. Bruni, J. Meites 1
- Effect of Long-Term Administration of Epinephrine and Propranolol on Serum Calcium, Parathyroid Hormone, and Calcitonin in the Rat
- Evidence for Maternal and Fetal Differences in Vitamin D Metabolism
 G. E. Lester, T. K. Gray, R. S. Lorenc 1

ENZYMOLOGY

- Creatine Secretory Isoenzyme of Alkaline Phosphatase
 W. P. Dyck, A. M. Spiekerman, C. R. Ratliff 1

HEMATOLOGY

- Erythrocyte Characteristics of Erythroid Precursor Cells Studied in Flow Analysis
 W. M. Grogan, R. B. Scott, J. M. Collins 2
- Erythropoiesis in Diffusion Chambers in Strontium-89 Marrow-Ablated Mice
 S. S. Adler, F. E. Trobaugh, Jr. 2

IMMUNOLOGY

- Idiotype Response of BALB/c Mice to a Myeloma Protein of BALB/c Origin
 R. Tungkanak, S. Sirisinha 1
- Immune Response of Thymopoietin, Ubiquitin and Synthetic Serum Thyminic Factor to Restore Immunocompetence in T-Cell Deficient Mice
 D. Martinez, A. K. Field, H. Schwam, A. J. Tytell, M. R. Hilleman 1
Table of Contents

Microbiology
- Absence of Cytotoxic Effect of Selected Pathogens on HLA B27 Positive Fibroblasts
 - D. Dilley, P. T. Fan, R. Bluestone 184
- Depressed Splenic T Lymphocyte Numbers and Thymocyte Migratory Patterns in Murine Malaria
 - W. H. Brissette, R. M. Coleman, N. J. Rencricca 317

Nutrition
- Effect of Magnesium Deficiency on Intestinal Calcium Transport in Rats
 - H-F. Chou, R. H. Wasserman, R. Schwartz 171
- Effect of Diet on Adhesion and Invasion of Microflora in the Intestinal Mucosa of Chicks
 - G. G. Untawale, A. Pietraszek, J. McGinnis 276
- Influence of Dietary Fat, Fasting, and Acute Premature Weaning on in Vivo Rates of Fatty Acid Synthesis in Lactating Mice
 - D. R. Romans, K. L. Muir, P-Y. Lin, G. A. Leveille 308

Oncology
- 9-β-D-Arabinofuranosyladenine Inhibition of Chemically Induced Rat Embryo Cell Transformation
 - P. J. Price, P. C. Sreen, C. M. Hassett 253
- 3-Adenylsyllysine Metabolism in Rat Hepatomas
 - J. D. Finekestein, B. J. Harris, M. R. Grossman, H. P. Morris 313

Pharmacology
- Inhibition of Renal Prostaglandin Synthesis and Metabolism by Indomethacin in Rats
 - R. J. Roman, M. L. Kauker, N. A. Terragno, P. Y-K. Wong 165
- Effects of Indomethacin and Tolmetin on Furosemide-Induced Changes in Renin Release
 - B. Noordewier, M. D. Bailie, J. B. Hook 180
- Salbutamol as a Topical Anti-Inflammatory Drug
 - R. J. Seely, E. M. Glenn 223
- The Effects of Ethanol on Cerebral Regional Acetylcholine Concentration and Utilization

Physiology
- Structural Determinants of the Renal Tubular Activity of Vitamin D3 Derivatives: Studies with 1α-Hydroxy, 2α,25-Dihydroxy and 1α,24R,25-Trihydroxy Vitamin D3
 - J. Winaver, J. B. Puschett 204
- Effect of Big and Little Gastrins on Pancreatic and Gastric Secretion
 - J. E. Valenzuela, R. Bugat, M. I. Grossman 237
- Mechanism of Prostaglandin E2 Stimulation of Renin Secretion
 - J. L. Osborn, B. Noordewier, J. B. Hook, M. D. Bailie 249
- The Effect of Prostaglandin E2 and Indomethacin on the Placental Vascular Response to Norepinephrine
 - A. Bersonbrugge, D. Anderson, T. Phernetton, J. H. G. Rankin 281
- Relation of Vitamin D-Dependent Intestinal Calcium-Binding Protein to Calcium Absorption during the Ovulatory Cycle in Japanese Quail
 - R. H. Wasserman, G. F. Combs, Jr. 286
- Glutaminase-γ-Glutamyltransferase: Subcellular Localization and Ammonia Production in Acidosis
 - T.C. Welbourne 294
- Accumulation of Lys in Peyer's Patches and Its Subsequent Appearance in Villi and Mesenteric Lymph Nodes

Virology
- An Inactivated Hepatitis A Virus Vaccine Prepared from Infected Marmoset Liver
 - P. J. Provost, M. R. Hilleman 201
dation of Renal Prostaglandin Synthesis and Metabolism by Indomethacin in Rats (40306)

HARD J. ROMAN,1 MICHAEL L. KAUKER, NORBERTO A. TERRAGNO, AND PATRICK Y-K WONG

Department of Pharmacology, University of Tennessee, Center for the Health Sciences, Memphis, Tennessee 38163

Indomethacin, because of its potency as an inhibitor of prostaglandin biosynthesis in vivo, is widely employed as a pharmacological tool to investigate the renal actions of exogenous prostaglandins. Evidence for inhibition of renal prostaglandin production in vivo is usually established by demonstrating a reduction of prostaglandin release, either in renal venous blood or in urine collections. How- ever, in a large number of studies in which the ability of indomethacin to inhibit renal prostaglandin synthesis has been systematically evaluated, none of the studies has been done surgically prepared for acute experiment. Furthermore, release of prostaglandins by the kidney probably reflects the activity of enzymes that synthesize and metabolize prostaglandins. Assessment of prostaglandin release may not be adequate to con- trol the extent of inhibition of prostaglandin synthesis by indomethacin in vivo. Indomethacin has been reported to inhibit prostaglandin catalyzing enzymes: 15-hydroxyprogstaglandin dehydrogenase (PGDH) and prostaglandin H2-reductase (9-KRD). Indeed, Ter- et al. (2) have recently shown that indomethacin does not inhibit renal prostaglandin E2 synthesis in conscious dogs. In the present study, the effect of indomethacin (2 mg/kg) on renal prostaglandin release, synthesis, and catabolism was investigated in anesthetized rats.

Materials and methods. Male Wistar rats weighing between 200-400 g were anesthe-

1 Reprint Requests to: Department of Pharmacology, University of Tennessee, Center for the Health Sciences, 800 Madison Avenue, Box CR-301, Memphis, see 38163.

ized with ip Inactin, 100 mg/kg of body wt. After tracheostomy, cannulas were placed in the right external jugular vein for infusions and the right carotid artery for recording of blood pressure. The left kidney was exposed and a polyethylene cannula (PE-50) was placed in the left ureter to allow for urine collections (3). The following drugs were used in the present study: indomethacin (Merck, Sharp and Dohme), meclofenamate (Parke Davis & Co.), phenylbutazone (Geigy Co.), RO 20-5720 (Hoffman La Roche, Inc.). The following three types of studies were carried out.

(a) Prostaglandin bioassay. In each experiment, two rats were surgically prepared as described above and, after one hour equilibration, both members of the pair received either indomethacin (2 mg/kg), meclofenamate (2 mg/kg), RO 20-5720 (2 mg/kg), phenylbutazone (50 mg/kg) or 3 mM sodium carbonate vehicle alone. Drugs were infused iv at a rate of 40 µl/min in an approximate total volume of 0.2 ml/100 g body wt. After 30 min, a 5 ml blood sample was collected from the left renal vein over a 1 to 2 min period. Blood samples from the two rats were pooled and injected into ice-cold ethanol. Samples were bioassayed for prostaglandin E2-like activity after an acidic lipid extraction as described previously (4). Since the extracts of blood samples were not chromatographed to separate the various prostaglandins, the reported values represent total prostaglandins and are expressed as the concentration of PGE2-like substance in the original samples without correction for losses (10-15%) that occur during the extraction procedure (4).

(b) Prostaglandin synthesis. In each of these experiments, two rats were prepared as above. After a 1 hr equilibration, urine flow and blood pressure were recorded during two clearance periods of 10 min each. The rats were then infused with either indomethacin...
(2 mg/kg, 4 experiments) or vehicle (3 experiments) as described above. Urine flow and blood pressure were again measured during two experimental clearance periods after a 30-min equilibration. The kidneys from the two rats were removed and the renal papillae were quickly excised and homogenized in ice-cold 0.05 M KH$_2$PO$_4$ buffer, pH 7.4, with a Polytron homogenizer. Aliquots of papillary homogenates equivalent to 50 mg of wet tissue were incubated at 37°C for 30 min in 2 ml of 0.05 M KH$_2$PO$_4$ buffer containing 0.4 μCi of 1-[14C]arachidonic acid and 2 mM reduced glutathione (5). The reaction was stopped by acidification with 1 M citric acid (final pH 3.0). The reaction mixture was extracted 3 times with 6 ml of ethyl acetate. The combined extract was evaporated under nitrogen. The resulting residue was dissolved in 100 μl of chloroform: methanol (1:1, v/v), quantitatively spotted on thin-layer chromatographic plates, and separated by chloroform:methanol:acetic acid:water (90:9:1:0.65, v/v) as the solvent system. Assays were run in duplicate. Prostaglandin production in boiled tissue controls was subtracted to correct for nonenzymatic formation (5).

(c) Prostaglandin metabolism. Eight additional rats were prepared and infused with indomethacin or vehicle as in the prostaglandin synthesis studies. In each experiment, the kidneys were removed after the experimental clearance periods, the renal cortex and outer medulla were excised and homogenized as described. The soluble enzyme fractions containing the PG metabolic enzymes were obtained by high speed centrifugation (105,000g). The fractions thus acquired were used to determine the effect of indomethacin on the activity of 9-KRD and PGDH (both NAD$^+$ and NADP$^+$ dependent) using procedures described previously (6, 7). In brief, PGDH activity was assayed by incubating aliquots of the high speed supernatant at 37°C for 10 min with NAD$^+$ or NADP$^+$ (4 mM), 3H-PGE$_2$ (0.56 μM; 300,000 dpm, NEN, Boston, MA) and 0.05 M KH$_2$PO$_4$ buffer, pH 7.4, in a final volume of 1 ml. The reaction was stopped by acidification with 1 M citric acid to pH 3.0. Authentic PGE$_2$ and 15-keto PGE$_2$ standards were added to the assay mixture and extracted 3 times with 2 ml of ethyl acetate. The extract was dried under a stream of nitrogen. The residue was redissolved 100 μl of chloroform:methanol (1:1, v/v) aliquot of 50 μl of the extract was applied on a thin-layer chromatographic plate, 0.25 mm thick, 20 x 10 cm, silica precoated plastic sheets, Brinkman, N.Y., separated in iso-octane: ethyl acetate: acetic acid:water (25:55:10:50, v/v). PGE$_2$ and 15-keto metabolite were located by exposing the TLC plate to iodine vapor, followed by spraying the plate with 10% phosphoribic acid in ethanol. Areas corresponding to authentic PGE$_2$ and 15-keto PGE$_2$ standards were cut out and suspended in 10 ml 0.4% Omnifluor toluene liquid scintillation fluid and counted in a Nuclear Chicago II liquid scintillation spectrometer. The cpm were converted to dpm using a quench correction curve and external channel ratios. The results are expressed as p moles of 15-keto PG formed per mg of protein.

9-KRD activity was determined by means of a NADPH generating system (7) containing: NADPH, 0.15 mM, glucose 6-phosphate, 3.5 mM; 2 units of glucose-6-phosphate dehydrogenase; 1H-PGE$_2$ and 14C M KH$_2$PO$_4$ buffer (pH 7.4), and the soluble enzyme fraction in a final volume of 1 ml. After 10 min incubation at 37°C, the reaction was stopped by acidification with 1 M citric acid to pH 3.0. Samples were extracted and separated by thin-layer chromatography as described above. Areas corresponding to authentic PGE$_2$ and PGE$_2$ standards were cut out and the radioactivity was determined. Protein concentration was determined by the method of Lowry et al. (8) using serum albumin as standard. All assays were carried out in triplicate and controls were simultaneously using boiled supernatants. Results are presented as the mean ± S.E. significance was determined by Student's t test. P < 0.05 was considered significant.

In order to establish the relations between different in vitro doses of indomethacin inhibition of renal cortical enzyme activity and the effect of increasing concentrations of domethacin (0-50 μg/ml) on three major metabolic enzymes were investigated. Assay procedures were similar to the scribed above, different concentrations of domethacin were added to the incubation
indicated (Fig. 1).

Results. Urine flow and blood pressure were measured in these studies to obtain an indication of the physiologic state of the rats under the experimental conditions. Control urine flows were similar in both vehicle and indomethacin treated rats, averaging 1.70 ± 0.26 and 2.07 ± 0.51 μl/min/100 g b wt respectively. After indomethacin urine flow decreased 41% (P < 0.05), whereas after infusion of an equal volume of vehicle alone it increased 61% (P < 0.05). Mean systemic blood pressure was unchanged after administration of indomethacin (from 116 ± 4 to 113 ± 4 mm Hg, P > 0.1) or vehicle (from 124 ± 4 to 123 ± 3 mm Hg, P > 0.2).

The concentration of prostaglandin E-like substance in renal venous blood of vehicle pretreated rats (Table I) was approximately 17-fold greater than levels measured in arterial blood of two additional pairs of animals (66 ± 6 pg/ml, P < .01), indicating that prostaglandin found in the venous blood of these rat kidneys was of renal origin. Mean renal venous blood prostaglandin levels were significantly lower, by 69% and 90%, respectively, in rats infused with indomethacin or meclofenamate. Similarly, in single experiments 2 other nonsteroidal anti-inflammatory drugs (NSAID), phenylbutazone and RO 20-5702 appeared to reduce renal prostaglandin release (Table I).

The effect of indomethacin pretreatment on prostaglandin synthetase activity of renal papillary homogenates was also studied in vitro. Pretreatment with indomethacin, 2 mg/kg, significantly reduced the synthesis of prostaglandins E2, D2 and F2, from their precursor arachidonic acid (Table II). Renal papillary PGE2 production was inhibited 97% by in vivo indomethacin pretreatment. Addition of indomethacin, 5 μg/ml, to incubations of renal papillary homogenates obtained from vehicle pretreated rats also diminished prostaglandin production. The degree of prostaglandin synthetase inhibition produced by addition of indomethacin in vitro (5 μg/ml) and pretreatment with indomethacin in vivo (2 mg/kg) was similar.

Indomethacin pretreatment also interfered with renal prostaglandin metabolism in the present studies. The effect of indomethacin on the key prostaglandin metabolic enzymes is shown in Table III. Treatment with indomethacin inhibited renal cortical-medullary 9-KRD activity by 61% (P < 0.05). NAD+ dependent PGDH activity was also diminished by 46%, however this decrease was not statistically significant. The enzyme NADP+ dependent PGDH was not affected by indomethacin.

The effect of indomethacin pretreatment

TABLE I. EFFECT OF INDOMETHACIN AND OTHER NSAIDs ON THE CONCENTRATION OF PROSTAGLANDIN E-LIKE SUBSTANCE IN RENAL VENOUS BLOOD OF RATS.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Concentration⁴ (pg/ml)</th>
<th>PGE₂-like equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle (7)</td>
<td>1102 ± 167</td>
<td></td>
</tr>
<tr>
<td>Indomethacin, 2 mg/kg (6)</td>
<td>343 ± 87²</td>
<td></td>
</tr>
<tr>
<td>Meclofenamate, 2 mg/kg (3)</td>
<td>108 ± 17²</td>
<td></td>
</tr>
<tr>
<td>Phenylbutazone, 50 mg/kg (1)</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>RO 20-5702, 2 mg/kg (1)</td>
<td>496</td>
<td></td>
</tr>
</tbody>
</table>

Mean values ± SE are presented.⁴ NSAID = nonsteroidal anti-inflammatory drugs. ⁵ PGE₂-like material was assayed on a cascade of rat stomach strip, rat colon and chick rectum. ² P < 0.005, statistically different from vehicle treated animals. ²² P < 0.001, statistically different from vehicle treated animals. ³ Numbers in parentheses = number of samples assayed. Each sample contained two 5 ml samples of renal venous blood obtained from two rats.
TABLE II. Prostaglandin Biosynthesis by Homogenates of Renal Papillae from Rats Pretreated with Vehicle or Indomethacin.

<table>
<thead>
<tr>
<th></th>
<th>Rate of prostaglandin biosynthesis*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PGE₂</td>
</tr>
<tr>
<td>Vehicle treated (3)⁴</td>
<td>2.65 ± 0.48</td>
</tr>
<tr>
<td>Indomethacin treated (2 mg/kg) (4)</td>
<td>0.08 ± 0.04*</td>
</tr>
<tr>
<td>Indomethacin added in vitro (5 μg/ml) (4)</td>
<td>0.18 ± 0.08*</td>
</tr>
</tbody>
</table>

Mean data ± SE are presented.

⁴ Values expressed as picomoles of prostaglandin formed/min per mg wet wt of tissue.

* p < 0.05, compared to vehicle pretreated.

† p < 0.005, compared to vehicle pretreated.

⁴ Numbers in parentheses = number of experiments.

on the PG metabolic enzymes were also confirmed by the in vitro experiments. Indomethacin at a dose of 5 μg/ml in vitro produced marked inhibition of PG 9-KRD but was less effective on NAD⁺-dependent PGDH. At a dose of 25 μg/ml 9-KRD was inhibited 95% while NAD⁺-dependent PGDH activity was lowered only 15%. However, at this dose range indomethacin produced little or no effect on NADP⁺-dependent PGDH (Fig. 1).

Discussion. In the present investigation, inhibition of renal prostaglandin synthetase after administration of 2 mg/kg indomethacin to anesthetized nondiuretic rats was assessed by two methods. These experiments demonstrated the following: (a) the concentration of a PGE-like substance in the renal venous blood was reduced 69% by indomethacin; (b) indomethacin pretreatment decreased, by greater than 90%, the conversion of radiolabeled arachidonic acid to various prostaglandins (PGE₂, F₂α and D₂) by renal papillary homogenates; (c) NSAID other than indomethacin were also effective in lowering renal venous prostaglandin levels. Indomethacin in vivo reduced, but did not completely abolish, net renal prostaglandin output in anesthetized rats prepared for acute experimentation. Associated with an inhibition of prostaglandin production was a significant decline in urine flow, which is consistent with the proposal that prostaglandins affect tubular handling of water by attenuating the antidiuretic action of ADH (9).

The extent of renal prostaglandin synthetase inhibition by indomethacin, as determined by the decline in renal venous prostaglandin levels (69%), was lower than that estimated by in vitro prostaglandin production by papillary homogenates (97%). The dissimilar degree of inhibition indicated by the two methods may reflect inherent differences in the experimental procedures, homogenization of the renal papillae in the tissue incubation studies, for example, may have allowed indomethacin greater access to the enzyme cyclo-oxygenase thus producing a more complete blockade of prostaglandin synthesis than that which occurred in vivo. On the other hand, the present studies provide evidence suggesting an alternative explanation; i.e., the degree of prostaglandin syn-

TABLE III. Metabolism of Prostaglandin E₉ by the Soluble Enzyme Fraction of Renal Cortex and Outer Medulla from Rats Pretreated with Vehicle or Indomethacin.

<table>
<thead>
<tr>
<th></th>
<th>15-PGDH*</th>
<th>PG-9-KRD*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAD⁺ dependent</td>
<td>NADP⁺ dependent</td>
</tr>
<tr>
<td>Vehicle treated (4)*</td>
<td>2.12 ± 0.66</td>
<td>0.98 ± 0.12</td>
</tr>
<tr>
<td>Indomethacin treated, 2 mg/kg (4)</td>
<td>1.14 ± 0.31*</td>
<td>1.04 ± 0.12*</td>
</tr>
</tbody>
</table>

Mean data ± SE are presented.

Values are expressed as picomoles of PGF₂α or 15-keto PGE₂ formed/min per mg protein.

* 15-PGDH = 15-hydroxyprostaglandin dehydrogenase activity.

* PG-9-KRD = Prostaglandin E₉ 9-ketoreductase activity.

* Not significant p > 0.05.

* p < 0.05 compared to vehicle pretreated.

* Numbers in parentheses = number of experiments.
thesis inhibition after indomethacin may not have been accurately reflected by the decline in renal prostaglandin release because the drug impaired prostaglandin metabolism as well as synthesis. Such a conclusion is supported by our finding that 9-KRD activity of renal cortico-medullary homogenates was reduced by 61% after indomethacin pretreatment. Additionally, although a significant difference was not detected in the present prostaglandin metabolism study, the decline of 46% in mean NAD⁺-dependent PGDH activity after indomethacin is consistent with the view that indomethacin affects both prostaglandin synthesis and metabolism. The finding that indomethacin inhibited the soluble enzyme, 9-KRD, after systemic administration implies that this compound gained access to sites located in the intracellular compartment.

Inhibition of renal cyclo-oxygenase, 9-KRD and PGDH by indomethacin and other NSAID in vitro has been reported previously (10, 11). The concentrations used for half-maximal inhibition of PG synthesis were of the same order of magnitude as the concentration shown to produce half-maximal inhibition of prostaglandin metabolic enzymes. The present observations, however, provide the first evidence that a standard in vivo dose of indomethacin, 2 mg/kg, producing an estimated unbound plasma concentration of 5 μg/ml, interferes with prostaglandin metabolism. The effect on the PG metabolic enzymes was confirmed by the in vitro experiments which indicated that indomethacin indeed affected the major metabolic route of PGs in the kidney. The additional observation, both in vitro and in vivo, that 9-KRD activity was markedly reduced by NSAID especially by indomethacin whereas the enzyme NAD⁺-dependent PGDH was unaffected, suggests that these enzymes may have different active site(s) even though they have been reported to be identical (12).

In conclusion, indomethacin, meclofenamate and other NSAID markedly reduced net renal prostaglandin production in rats surgically prepared for acute experimentation. It appears from the data reported here that indomethacin, after in vivo administration, may have a complex action to impair both synthesis and metabolism of renal prostaglandins. Differential inhibition of the enzymes involved in net prostaglandin production and alterations in the types of prostaglandins formed in various parts of the kidney complicate the interpretation of data obtained during indomethacin treatment. The usefulness of this agent to evaluate the role of prostaglandins in the regulation of renal function may thus be limited. However, due to species differences which exist with respect to prostaglandin degradation, the conclusion of this study may not be extrapolated to other species.

Summary. The effect of indomethacin and other NSAID on renal prostaglandin synthesis and metabolism was studied in non-diuretic rats prepared for acute experimentation. Thirty minutes after the administration of a 2 mg/kg iv dose of indomethacin, the concentration of prostaglandin in renal venous blood as determined by bioassay was reduced 69%. In addition, conversion of radiolabeled arachidonic acid to prostaglandin E₂ in vitro by the renal papillae of indomethacin pretreated rats was inhibited 97%.

Pretreatment with indomethacin also inhibited renal cortical-medullary prostaglandin E₁ 9-ketoreductase activity by 61%. NAD⁺-dependent 15-hydroxy-prostaglandin dehydrogenase activity was diminished 46%; however, this inhibition was not statistically significant. NADP⁺-dependent 15-hydroxy-prostaglandin dehydrogenase activity was unaffected by pretreatment. It is concluded that indomethacin alters net renal prostaglandin production by inhibiting both prostaglandin synthesis and its metabolism.

This work was supported in part by research grants from the USPHS: HL-22075, AM-17711 and HL-1922801 HED; and the American, Tennessee and Memphis Heart Associations. Prostaglandins and their metabolites were gifts of Dr. Udo Axen of the Upjohn Company and R0 20-5702 was kindly supplied by Dr. J. R. Paulrud of Hoffman and La Roche, Inc. We also would like to thank Misses Judy Early and Pat Goldstein, and Mr. Grant Barr for their assistance in these experiments.

Magnesium Deficiency on Intestinal Calcium Transport in Rats

ANG, CHOU, ROBERT H. WASSERMAN, AND RUTH SCHWARTZ
Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853

Ca absorption in rats has been increased (1-4), unaffected (5), and decreased (6) as a result of magnesium depletion. Among possible factors accounting for these results are the degree of magnesium deficiency, the duration of the depleted period, and the diet. In addition, alterations in the form and number of the deficient animals. Another factor is the influence of diet on Ca absorption. Ca absorption was measured by the method of previous investigations. Ca transport in magnesium-depleted rats were carried out by means of in vitro techniques (3-7). To obtain somewhat more applicable to the in vivo data, we used the ligated loop perfusion technique to estimate the Ca transport across the small intestine. Both were carried out in vivo and permit us to Ca fluxes in a defined intact. In situ perfusion has the advantage of allowing estimation of Ca transport state, using serial perfusions animal with solutions of varying positions and methods. Male Sprague-Dawley weighing 120-130 g, were pair-fed which lasted for either 14 or 28 days. The magnesium deficient and control diet were made from a basal diet described in detail elsewhere. Quantities of magnesium sulfate to the basal diet to final concentration of 0.4 ppm Mg²⁺ for the deficient diet and 0.4 ppm Mg²⁺ for the control diet. The

Acknowledgments were supported in part by NIH Grants 2104652 and the Cornell Agricultural Experiment Station, Ithaca, New York.

Presented here were submitted in partial fulfillment of the requirements for the Ph.D. degree.
was discarded. During the subsequent perfusion, carried out for 30 min, the outflow solutions were collected in graduated tubes. Volumes were measured to obtain estimates of water inflow and outflow rates. Ca influx was calculated as follows (10): Ca influx (lumen to blood) = \((^{47}\text{Ca}_o) (W_i) - (^{47}\text{Ca}_o) (W_o)/((\text{SA}_i + \text{SA}_o)/2) \times L \) where: \(^{47}\text{Ca} \) = radiocalcium content of fluids (cpm/ml); \(\text{SA} \) = specific activity of fluid Ca (cpm/mole); \(W \) = rate of water flow (ml/hr); \(L \) = length of duodenal segment (cm); i,o = superscripts referring to inflowing and outflowing solutions respectively.

Previous studies showed that calcium is absorbed by two processes, one process is saturable and the other has the characteristics of diffusion (11). In the present series, the rates of passive and saturable diffusion were calculated as follows. A straight line parallel to the diffusional component of each influx curve was drawn through the origin. At 0.5, 1, 2, 10 and 20 mM Ca concentrations the values for passive diffusion were subtracted from the corresponding values for Ca influx. The differences, representing the portion of influx due to saturable transport, were plotted against luminal Ca concentration.

Ca and Mg content of blood and tibia. The tibiae were dried at 90° for 3–4 days and ashed at 550° for 16–20 hr in a Thermolyne muffle furnace. The ash was dissolved in 3 ml concentrated HCl. Suitable dilutions of tibia ash or of plasma were analysed for Mg and Ca by atomic absorption using a P Elmer atomic absorption spectrophotometer Model 290 B.

Statistical analysis. All analyses were using the paired t test. Levels of significances were based on the differences between the Mg deficient and control rats (13).

Results. Response to magnesium defecation. Weight gains were similar in magnesium deficient and control rats for the initial 11 of Mg depletion. By day 14, however, body weights of the magnesium deficient were significantly below those of the fed controls. By this time plasma Mg concentrations were markedly reduced and mained at this low level throughout the 14 days of depletion (Table I). Plasma Ca showed some variability. Mean values significantly elevated in the rats Mg deř for 14 days in experiment 2, when there were seven animals per group. No statistical significant differences were seen in rats deř for 14 or 28 days in experiment 1 when there were only three rats per group. The magnesium content of the tibiae was significantly reduced and the calcium content slightly significantly increased after 28 days depletion. (Table II).

Intestinal Ca transport. Intestinal Ca port (% \(^{47}\text{Ca} \) transferred from the lumen to the blood) was consistently less in the magnesium deficient rats than in their plasma controls. The difference between the two groups was significant after 2 weeks of deplecion.

TABLE I. BODY WEIGHTS AND CONCENTRATION OF PLASMA Ca AND Mg IN RATS DEPLETED OF MAGNESIUM 14 AND 28 DAYS.

| Days of depletion | Parameter | Experiment 1 | | Experiment 2 | |
|------------------|-----------|--------------|----------------|--------------|
| | | Control | Mg depleted | Control | Mg depleted |
| 14 | Body wt (g) | 198 ± 2.9 (23) | 192 ± 2.5* (23) | 224 ± 4.7 (10) | 211 ± (10) |
| 14 | Plasma Mg (mg%) | 2.54 ± 0.08 (16) | 1.21 ± 0.07* (16) | 2.64 ± 0.14 (6) | 1.48 ± (6) |
| 14 | Plasma Ca (mg%) | 10.9 ± 0.4 (3) | 11.3 ± 0.5 (3)* | 10.5 ± 0.2 (7) | 11.7 ± (7) |
| 28 | Body wt (g) | 251 ± 3.1 (23) | 220 ± 3.0* (23) | — | — |
| 28 | Plasma Mg (mg%) | 2.43 ± 0.07 (20) | 1.04 ± 0.08* (20) | — | — |
| 28 | Plasma Ca (mg%) | 10.4 ± 0.3 (3)* | 10.4 ± 0.3 (3) | — | — |

* Values are means ± SEM; figures in parentheses represent number of rats in each group.

* Significantly different from control values, \(P < 0.001 \), \(P < 0.005 \) and \(P < 0.01 \) respectively.

* Plasma calcium was measured only in three rats which were not used for calcium absorption measurements.
MAGNESIUM DEFICIENCY AND INTESTINAL CALCIUM ABSORPTION

Magnesium depletion and further increased after 4 weeks (Fig. 1). Uptake of radioactivity by the tibiae generally reflected differences in intestinal Ca transport (Fig. 2). Almost complete transfer of the injected dose had occurred in the duodenal loop 60 minutes after the dose had been injected; less than 60% had been transferred from the ileum in 90 min.

Unidirectional calcium fluxes at different levels of luminal Ca concentration obtained by the in situ perfusion method are shown in Fig. 3. Ca influx was consistently less in magnesium depleted rats than in their pair fed controls at all Ca concentrations. How-

TABLE II. COMPOSITION OF THE TIBIA IN RATS MAGNESIUM DEPLETED FOR 28 DAYS AND THEIR PAIR FED CONTROLS.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Magnesium deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet wt. (g)</td>
<td>0.55 ± 0.010</td>
<td>0.60 ± 0.010</td>
</tr>
<tr>
<td>Dry wt. (g)</td>
<td>0.34 ± 0.006</td>
<td>0.34 ± 0.004</td>
</tr>
<tr>
<td>Water (%)</td>
<td>38.49 ± 0.65</td>
<td>42.70 ± 0.58</td>
</tr>
<tr>
<td>Mg (meq/tibia)</td>
<td>0.098 ± 0.002</td>
<td>0.047 ± 0.001</td>
</tr>
<tr>
<td>Mg (meq/g dry wt.)</td>
<td>0.30 ± 0.004</td>
<td>0.14 ± 0.002</td>
</tr>
<tr>
<td>Ca (meq/tibia)</td>
<td>3.394 ± 0.06</td>
<td>3.60 ± 0.054</td>
</tr>
<tr>
<td>Ca (meq/g dry wt.)</td>
<td>10.15 ± 0.13</td>
<td>10.45 ± 0.086</td>
</tr>
<tr>
<td>Mg and Ca (meq/g dry wt.)</td>
<td>10.44 ± 0.13</td>
<td>10.58 ± 0.86</td>
</tr>
</tbody>
</table>

*Values are means ± SEM of 23 rats in each group.
** Significantly different from control values, P < 0.001, P < 0.01 and P < 0.05 levels respectively.

FIG. 2. Effect of Mg deficiency on % ⁴⁷Ca uptake by the whole tibia with time. Each point represents mean ± SEM of Mg deficient rats and pair fed controls. (a) 2 weeks Mg depletion, 3-4 rats/time point. (b) 4 weeks Mg depletion, 6-8 rats/time point. •—• control; ○—○ Mg deficient. Overall ⁴⁷Ca uptake was significantly reduced in Mg deficient rats, P < 0.01 after 2 weeks, P < 0.001 after 4 weeks of depletion.

FIG. 3. Effect of 14 days of Mg depletion on Ca transferred from lumen to blood using the in situ perfusion technique. Each point represents the mean obtained in 4-9 rats (mean values ± SEM and the number of rats for each point are shown in Table III). •—• Pair fed control, total ⁴⁷Ca transferred A—A Mg deficient, total ⁴⁷Ca transferred —— Pair fed control, linear portion —— Mg deficient, linear portion —— Mg deficient and pair fed controls, curvilinear portion with plateau.

However, the mean values for the data points used to construct Fig. 3, shown in Table III, show statistically significant differences only at luminal Ca concentrations of 0.5, 10 and 20 mM. The relationship between Ca influx and luminal Ca concentration was in agreement with the pattern described by Dumont et al. (13), suggesting that Ca absorption in the rat duodenum was comprised of at least two components. The curvilinear portion of the transport-concentration curve, at the lower concentration of calcium, suggests the pres-
TABLE III. MEAN ± SEM OF Ca TRANSFERRED FROM LUMEN TO BLOOD (μMOL/HR CM⁻¹).

<table>
<thead>
<tr>
<th>Ca conc. (μM)</th>
<th>N</th>
<th>Pair fed control</th>
<th>Mg deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>○○</td>
<td>△△</td>
</tr>
<tr>
<td>0.5</td>
<td>9</td>
<td>0.22 ± 0.02</td>
<td>0.11 ± 0.01*</td>
</tr>
<tr>
<td>1.0</td>
<td>8</td>
<td>0.33 ± 0.03</td>
<td>0.27 ± 0.03</td>
</tr>
<tr>
<td>2.0</td>
<td>6</td>
<td>0.42 ± 0.06</td>
<td>0.38 ± 0.05</td>
</tr>
<tr>
<td>10.0</td>
<td>5</td>
<td>1.30 ± 0.22</td>
<td>0.97 ± 0.16*</td>
</tr>
<tr>
<td>20.0</td>
<td>4</td>
<td>2.64 ± 0.20</td>
<td>1.82 ± 0.25*</td>
</tr>
</tbody>
</table>

* Significantly different from control values (P < 0.05).

ence of a saturable, carrier mediated mechanism and the linear portion, at higher calcium concentrations, passive diffusion. With this as reference, magnesium depletion appeared to depress passive diffusion of Ca across the duodenal mucosa with also a significant effect at the lowest calcium concentration, 0.5 mM (Table III).

Discussion. In the present investigation the depression in Ca transport seen in Mg depleted rats appeared to be entirely due to a decrease in passive diffusion. This finding is in conflict with several previous reports which suggested either an increase or no change in intestinal Ca transport of magnesium-deficient rats (1–5). Of the two previous studies that had shown a decrease in Ca transport (6, 7), one (7) showed an increase in active Ca transport after 10 days of Mg depletion and a significant decrease when Mg depletion was prolonged for 19 days. The transport data in the latter investigation were obtained by an in vitro procedure using a modified Ussing apparatus (7). Rats fed adequate magnesium diets showed comparably decreased rates of Ca transport following thyroparathyroidectomy. The authors suggested that both magnesium deficiency and thyroparathyroidectomy depressed Ca transport by alterations in vitamin D metabolism, presumably at the level of regulation of the hydroxylation of 25-OH-D₃ to the 1-hydroxy- or the 24-hydroxy derivatives.

The data reported here do not indicate that Mg depletion of the magnitude or duration applied in this investigation substantially altered vitamin D metabolism. A significant decrease in 1,25-(OH)₂D₃ should have decreased intestinal Ca absorption by both passive diffusion and saturable transport. While variability may have obscured the significance of differences in Ca transport of deficient and control rats at the luminal Ca concentrations of 1 and 2 mM (Fig. 3), the overall decrease in intestinal Ca transport seen in Mg-depleted animals was small. The Mg deficient diet used in this investigation (50 ppm Mg) was chosen to avoid marked differences in body weights of Mg-depleted and pair fed control rats. Walling et al. (7) used a Mg-free diet which probably caused acceleration and enhancement of Mg-depletion and its manifestations, possibly including disturbances in vitamin D metabolism.

Recent findings in this laboratory (14) suggest an explanation for the data reported here which would support the observation of Walling et al. (7) that parathyroidectomy and Mg deficiency had similar effects on intestinal Ca transport. Microscopic examination of parathyroid sections removed from Mg deficient rats at intervals from 2 to 21 days of depletion showed progressive manifestations of hypoactivity (14). The same rats consistently exhibited hypercalcemia comparable to that seen in the present investigation in 14 day Mg depleted rats (Table I). Reduction of parathyroid hormone activity is an appropriate response to hypercalcemia. One of the consequences of parathyroid hypoactivity would be depression in intestinal Ca transport.

In conclusion, the decreased rate of intestinal Ca absorption in Mg deficient rats observed in this investigation appears to be due primarily to reduction in the rate of passive Ca diffusion. Among several consequences of magnesium deficiency likely to depress intestinal Ca transport is hypoactivity of the parathyroid glands. This aspect of magnesium deficiency is now under investigation.

Summary. Calcium transport across the duodenum and ileum was measured by an in vivo ligated loop technique in Mg depleted rats and rats pair fed a magnesium adequate diet. Intestinal Ca transport and tibial ⁴⁰Ca uptake were consistently decreased in magnesium depletion. Analysis of Ca fluxes, carried out by in situ perfusion, showed a significant decrease in passive diffusion, with less consistent effects on the saturable transport component. Both bone and plasma showed markedly decreased Mg concentration. Tibia Ca levels were slightly but significantly increased and plasma levels were either normal...
or slightly, but significantly elevated. The basis for the decrease in Ca transport of Mg depleted rats observed in this investigation is not clear. The data suggest a general alteration in mucosal membrane transport rather than a specific effect on Ca transport per se.

Anti-Ig idiotypic Response of BALB/c Mice to a Myeloma Protein of BALB/c Origin
(40308)

RACHANEEPAS TUNGKANAK and STITAYA SIRISINHA
Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand

It has been demonstrated that a BALB/c myeloma protein with anti-DNP activity (Protein-315) can stimulate anti-idiotypic response in several strains of inbred mice, including the strain from which the plasmacytoma MOPC-315 was originally induced (1, 2). Antibodies produced were found to be specific for the antigen-binding site of Protein-315 (1-3). Tungkanak and Sirisinha (3) also reported that the Fc fragment of Protein-315 was not required for the induction of anti-idiotypic response in BALB/c mice. The anti-idiotypic antibody produced in response to stimulation by the Fab fragment of Protein-315 was indistinguishable from that produced in response to undigested protein (3). The purpose of the present study was to follow the development of an anti-idiotypic antibody response of BALB/c mice to Protein-315, particularly with regard to the ability of these anti-idiotypic antibodies to compete with the hapten for an antigen-binding site on Protein-315. The results showed that the susceptibility of anti-idiotypic antibody to inhibition by excess hapten (DNP-lysine) depends largely on the immunization procedure used, i.e., the anti-idiotypic antibodies produced following a single booster injection showed a marked increase in the ability to compete with DNP-lysine for the antigen-binding site of Protein-315. Evidence available suggests that this change was associated with an increase in the affinity of the anti-idiotypic antibody produced after a booster injection.

Materials and methods. Antigens. Protein-315 and its peptic product (Fv-315) were prepared and purified as described previously (3). Myeloma sera from BALB/c mice sensitized with MOPC-315, MOPC-460, MOPC-173, Adj.PC-22A, J504, and S176 tumors kindly provided by Dr. Herman N. (Massachusetts Institute of Technology, Cambridge, MA).

Immunization schedule. BALB/c mice of both sexes used in this study were originally obtained from Jackson Laboratory, Bar Harbor, Maine. Adult mice were immunized with various antigens distributed at the same two front footpad sites, with four other sites along the back. The priming course of immunization consisted of 3 weekly injections of immunogen in complete Freund's adjuvant, in incomplete Freund's adjuvant, and in potassium phosphate buffered saline (PBS) pH 7.2, respectively. The animals were bled from orbital vena cava one week after the third injection at weekly intervals thereafter. A booster injection of 200 μg of immunogen in PBS was given 1 week after the mice received a full course of primary immunization had been bled 4 times. These animals were bled again during the 4 succeeding weeks. A similar second booster injection was given to some of these mice and the animals were thereafter bled as described. Individual sera from the same group (5-10 mice per group) were pooled and kept frozen for analysis.

Analysis of anti-idiotypic antibody. An idiotypic antibody to Protein-315 was identified by radioimmunoassay using labeled Protein-315 or Fv-315 as antigen. Pooled sera obtained at weekly intervals were analyzed for their antigen-binding capacity and susceptibility to inhibition by excess hapten and cross-reactivity with five other myeloma proteins of BALB/c origin as described by Tungkanak and Sirisinha (3).

Results. The antigen-binding capacity of BALB/c antisera, as determined by their ability to react with 125I-labeled antigen (P176...
315 or Fv-315), could be detected as early as 1 week after completion of the primary course of immunization with Protein-315 (Fig. 1). Neither the antigen-binding capacity nor the sensitivity to inhibition by excess hapten altered much during the 13 weeks of observation period. There was also no demonstrable change in specificity as the hapten inhibition values obtained when either Protein-315 or Fv-315 was used as antigen in the assay system were similar (Fig. 1).

The antigen-binding capacity of these antisera was enhanced following a single booster injection with 200 µg of Protein-315. As shown in Fig. 2, the quantity of labeled antigen precipitated by 10 µl of antisera increased from less than 40% to more than 60% one week after boosting. It is more interesting however to find that the ability of these post-boosting sera to compete with excess hapten for the antigen-binding site of Protein-315 increased markedly, i.e., within one week the hapten inhibition value decreased from more than 80% to less than 10%, regardless of the type of antigen used in the assay system. Although the susceptibility to inhibition by hapten gradually increased during the next few weeks, the inhibition value did not quite return to the pre-boosting level. Similar but less obvious changes were observed following a second booster injection.

Selected samples of the pre-boosting (week 4) and post-boosting (weeks 7, 9 and 12) antisera were diluted with pooled normal BALB/c serum and then retested for their susceptibility to inhibition by excess hapten. The results showed that the hapten inhibition values gradually increased as the antisera were being diluted (Table I). The effect of dilution on the hapten inhibition value was independent of the type of the antigen used in the assay system.

Despite a marked change in sensitivity to inhibition by hapten of the antisera obtained

![Image](image-url)

Fig. 2. Antigen-binding capacity and susceptibility to inhibition by excess hapten (750 nanomoles of DNP-lysine) of BALB/c antisera to Protein-315 from the boosting group. The animals were boosted at weeks 5 and 10 (arrows). See legend to Fig. 1 for other explanations.

TABLE I. EFFECT OF ANTISERUM DILUTION ON HAPten INHIBITION

<table>
<thead>
<tr>
<th>Antiserum</th>
<th>Specimen No. (week)</th>
<th>Undilute</th>
<th>1:5</th>
<th>1:10</th>
<th>1:20</th>
<th>1:40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preboosting</td>
<td>4</td>
<td>77</td>
<td>87</td>
<td>92</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>Postboosting</td>
<td>7</td>
<td>3</td>
<td>53</td>
<td>65</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>36</td>
<td>77</td>
<td>81</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>55</td>
<td>69</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

*Excess hapten (750 nanomoles) was mixed with 0.5 µg of 125I-labeled Protein-315 before 10 µl of antisera (or its dilution) was added. Thereafter the reaction mixture was treated as described in Materials and methods.

* Diluted with pooled normal BALB/c serum.
after boosting, the specificity of these antisera remained unchanged. This was evident from the results of a cross-reactivity study using five other myeloma A sera to inhibit the idiotypic reaction. Like the results obtained with the pre-boosting antisera, the myeloma sera from mice carrying MOPC-460, Adj. PC-22A, and S176 tumors failed to inhibit the anti-idiotypic activity of these postboosting antisera while those from MOPC-292 and J504 mice demonstrated slight inhibition (less than 20%).

Discussion. The present observations confirm and extend the original report of Sirisinha and Eisen (1) that under appropriate conditions anti-idiotypic antibody response to a BALB/c myeloma protein with anti-DNP activity can be induced in BALB/c mice. The anti-idiotypic antibody produced is directed largely, if not exclusively, to the antigen-binding site of Protein-315, as evident from the observations that the antisera were highly sensitive to inhibition by excess hapten and they cross-reached only slightly, if any, with five other myeloma A proteins available for testing.

The interesting feature of the anti-idiotypic response is that a single booster injection not only increased the total antigen-binding capacity of these sera but also markedly decreased their susceptibility to inhibition by excess hapten (Fig. 2). The results obtained following a booster injection are markedly different from those obtained after the primary course of immunization. In the non-boosting group, the antisera obtained at weekly intervals throughout the 13 weeks of observation were equally sensitive to inhibition by hapten and their antigen-binding capacity decreased only slightly during this period (Fig. 1).

The change of the hapten inhibition value obtained after boosting was much larger than can be explained on the basis of a quantitative increase of antibody production by these animals. The reduction of the hapten inhibition value must therefore be attributable to changes in other parameters, e.g., affinity and specificity. Although an increase in affinity of the anti-idiotypic produced after a single booster injection is consistent with the general characteristic of a secondary antibody response (5), the possibility that this could also be associated with a shift in specificity c could not be completely ruled out. Circumstantial evidence, however, supports the possibility of a marked reduction in the sensitivity to ten inhibition of these postboosting sera more likely associated with an increase in affinity of antibody. Firstly, the hapten inhibition value of the postboosting sera decreased when they were diluted prior to testing (Table I). This interpretation is consistent with the explanation of Sher and Cohen (3) who employed the phosphorylcholine in their study. Secondly, both the bi capacity and hapten inhibition were significantly reduced when either Protein-315 or Fv-315 was employed as antigen in the assay system 2), suggesting that the reaction is primarily restricted to the Fv region. Lastly, the use of cross-reactivity of the pre-box and the post-boosting antisera with myeloma A proteins were indistinguishable from one another (unpublished observation) The possibility that the observed decrees in susceptibility to inhibition by hapten laboratory artifact associated with the system employed is unlikely as there was a gradual return of these values toward preboosting level within a few weeks a booster injection. Likewise, the possibility that there was insufficient labeled antigen in the test system to react with the anti produced after boosting is also unlikely because under the condition used for assay of antibody, there was excess antigen in the supernatant fluid. In addition, this evidence, we may add that a booster injection of antigen under identical conditions to other strains of mice (C57BL/6J and B10.BR) failed to cause any reduction of the h. inhibition value (unpublished observation).

It appears from these observations that the insusceptibility to inhibition b e pathogen of the anti-idiotypic protein following a booster injection is more associated with an increase in affinity than a shift in specificity of these antibodies.

Summary. The anti-idiotypic response BALB/c mice to myeloma protein BALB/c origin (purified Protein-315 ft plasmacytoma MOPC-315) was analyzed. Its antigen-binding capacity and susceptibility to inhibition by excess hapten (DNA) was increased. The results showed that the anti
otypic antibody that is sensitive to inhibition by hapten could be detected for at least 3 months after completion of the primary course of immunization. Following a single booster injection, there was an increase of the antigen-binding capacity and the susceptibility of these post-boosting antisera to inhibition by hapten was markedly reduced (from more than 80% to less than 10% under the assay system employed). However, the hapten inhibition value gradually returned toward the preboosting level within a few weeks. The data obtained suggest that the change in the hapten inhibition value after boosting is associated with increased affinity rather than a shift in specificity.

The authors are grateful to Dr. H. N. Eisen for the myeloma sera used in this study and for the valuable suggestions and criticisms during the course of this study. Encouragement from Dr. P. Matangkasombut is also greatly appreciated.

Effects of Indomethacin and Tolmetin on Furosemide-Induced Changes in Renin Release¹ (40309)

BYRON NOORDEWIERS, MICHAEL D. BAILIE, AND JERRY B. HOOK

Departments of Pharmacology, Physiology, and Human Development, Michigan State University, East Lansing, Michigan 48824

The diuretic furosemide increases renin release by the kidney, an effect independent of volume depletion which accompanies diuresis (1). The stimulus for renin release by furosemide appears to be related to both changes in renal arteriolar resistance (2, 3) and a direct tubular effect subsequent to blockade of sodium and chloride reabsorption prior to or at the macula densa (1, 2).

Furosemide-induced renin release is blocked by the prostaglandin synthetase inhibitor, indomethacin, by an undefined mechanism (4). After indomethacin, the ability of furosemide to increase renal blood flow is blunted, while the natriuretic effect is unaffected (4–6).

Calcium has recently been suggested to play a role in renin secretion (7, 8). Although furosemide is acutely calciretic, the significance of this effect with respect to renin release has not been evaluated. The purpose of these experiments was to determine if the blockade of furosemide induced renin release by prostaglandin synthetase inhibitors, indomethacin and tolmetin, was correlated with changes in the calciretic response to furosemide.

Materials and methods. Surgical. Male mongrel dogs, 15–25 kg, were used in all experiments. The animals were anesthetized with sodium pentobarbital (30 mg/kg), intravenously, and a cuffed endotracheal tube was inserted. The dogs were artificially ventilated with a Harvard respirator. Catheters were placed in the left femoral artery and in both femoral veins. Normal saline (0.9% NaCl) was infused into one femoral vein to replace fluid losses from surgery and to hydrate the animal until total urine flow was 0.5–2.0 ml/min. The saline infusion was then reduced to equal urine flow. Insulin was infused into the other femoral vein at a rate calculated to maintain plasma insulin concentration between 30–50 mg/dl. Arterial blood pressure was monitored with a Statham P23AC transducer.

Experimental protocols. I. Effect of indomethacin on renal responses to intravenous furosemide. Glomerular filtration rate estimated by the clearance of inulin (CIN), urinary excretion of Na, K, and Ca and plasma renin concentration (PRC) were measured during two control 10-min clearance periods and during the intravenous infusion of furosemide (2 mg/kg/hr). Following the furosemide clearance periods, each dog received increasing doses of indomethacin (0.01, 0.05, 0.1, 0.5 mg/kg, iv). Furosemide infusion continued during the administration of indomethacin. Twenty minutes after each dose of indomethacin, two clearance periods were obtained. In addition to the dogs treated with indomethacin, three dogs were injected with saline instead of indomethacin in an experimental protocol identical to that described above (4 injections at 40 min intervals). These dogs are referred to as “time” control dogs.

II. Effect of indomethacin or tolmetin pre-treatment on renal response to intrarenal furosemide. After two control clearance periods, furosemide was infused (15 µg/kg/min) into the renal artery of the experimental kidney, and two clearance periods obtained. The infusion of furosemide was stopped and 30 minutes were allowed for urine flow to return toward control. Two additional control periods were then run and tolmetin (5 mg/kg) or indomethacin (2 mg/kg) was administered intravenously. After 20 min, two more clearances were taken and furosemide again infused intrarenally. Two additional clearance periods were obtained during furosemide infusion. Excretion of Na, K, and Ca, as well

¹ This study was supported by USPHS Grant No. AM10913.
² Dr. Noordewier was supported by a fellowship from the Michigan Kidney Foundation.
and PRC were measured during each period. The dose of furosemide in of the tolmethin treated dogs was 5 /min but since the results did not differ the results from the two dogs given 15 /min the data were pooled.

stypical. Urinary and plasma Na and K determined by flame photometry and atomic absorption spectroscopy. Inulin fractions were determined by the xD of Walser et al. (9). Plasma renin fraction was estimated by incubating a with excess homologous renin sub-

The amount of angiotensin I generated was determined by radioimmunoassay. The data were analyzed utilizing anal-

of variance with a randomized block. The 0.05 level of probability was used criterion of significance.

ults. Furosemide infused intravenously /kg/hr) increased the urinary excretion dium and calcium (Table I). Plasma concentration (PRC) was also in-
d. All values remained elevated elevated (Table I). Urinary filtration rate was not affected by furosemide. Increasing doses of indomethacinduced dose related decreases in PRC calcium excretion (Table II). Sodium excretion and GFR were not changed when indomethacin was given during furosemide infusion (Table II). Potassium excretion (not shown) also increased after furosemide and was not affected by indomethacin.

Furosemide, infused into the renal artery, also increased urinary excretion of sodium, potassium and calcium (Figs. 1 and 2). PRC also increased when furosemide was given. Electrolyte excretions and PRC returned toward control when the infusion of furosemide was stopped. Indomethacin (Fig. 1) and tolmethin (Fig. 2) had little effect on electrolyte excretion although each parameter tended to be lower than the previous control. Similarly, PRC tended to decrease after indomethacin or tolmethin. A second infusion of furosemide increased sodium, potassium, and calcium excretion but PRC was not affected by furosemide after administration of indomethacin (Fig. 1) or tolmethin (Fig. 2).

Discussion. Although the role of calcium in renin release is still obscure, there is increasing evidence that movement of this ion within the juxtaglomerular cell may be an important regulatory mechanism. Addition of calcium to kidney slices incubated in calcium free media produces an immediate, large increase in renin release (7). Similarly, the isolated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Saline dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml/min SE</td>
<td>Control 39.9 ± 12.0</td>
</tr>
<tr>
<td>ng Al/ml/hr</td>
<td>14.9 ± 3.2</td>
</tr>
<tr>
<td>μEq/min SE</td>
<td>152 ± 32</td>
</tr>
<tr>
<td>μEq/min SE</td>
<td>0.61 ± 0.07</td>
</tr>
</tbody>
</table>

Furosemide was infused at a rate of 2 mg/kg/hr, iv. Sufficiently different from control (P < .05).
perfused kidney of the cat releases renin in response to calcium only after prior exposure to calcium free perfusate (8). These data indicate that an increase in intracellular free calcium may be involved in renin release.

The present experiments demonstrate that blockade of furosemide-induced renin release by indomethacin or tolmetin does not depend on alterations in net tubular transport of sodium, potassium or calcium. The major stimulus for renin release during furosemide administration appears to be inhibition of sodium (or chloride) flux at the macula densa similar to that observed in the cells of the thick ascending limb of the loop of Henle (1). Since the prostaglandin synthetase inhibitors failed to alter the urinary excretion of sodium in this study or in previous work (4), it is unlikely that the effect of indomethacin or tolmetin on renin release could involve changes in sodium transport at the macula densa.

Similarly, alterations in calcium load to the macula densa do not appear to be important in the action of tolmetin or indomethacin. Although there was a small dose related decrease in calcium excretion after indomethacin, calcium excretion rate was well above control even after the highest dose of indomethacin tested (Table I). In contrast, PRC had decreased dramatically. In addition, pretreatment with neither indomethacin nor tolmetin altered the increase in calcium excretion to intrarenal furosemide, while both drugs blocked any increase in PRC (Figs. 1 and 2). Thus, blockade of furosemide-induced renin release by prostaglandin synthetase inhibitors does not require an alteration in the calciret effect of furosemide. Lester and Rubin also found extracellular calcium
was not a determinant in the release of renin following furosemide (8). Since prostaglandin synthetase inhibitors, such as indomethacin or tolmefin, do not appear to affect sodium or calcium load at the macula densa, their site of action is probably subsequent to the signal perceived by the macula densa. Whether their action involves alterations in the state of intracellular calcium remains to be investigated.

Summary. Prostaglandin synthetase inhibitors, indomethacin and tolmefin, blocked furosemide-induced increase in renin secretion whether the furosemide was given intravenously or into the renal artery. Tolmetin and indomethacin did not affect the natriuretic, kaliuretic or calciretic response to furosemide. Therefore, blockade of furosemide-induced renin release does not appear to require an alteration in sodium or calcium load at the macula densa. Thus, the site of action of prostaglandin synthetase inhibitors on renin release is probably subsequent to the signal perceived by the macula densa.

The authors wish to thank Dr. R. Z. Gussin of McNeil Laboratories, Inc., Fort Washington, Pennsylvania for supplying the tolmefin. The authors also acknowledge the technical assistance of Mrs. Peggy Wagner, Mr. Keith Crosslan, and Mr. Terry Steele.

Absence of Cytotoxic Effect of Selected Pathogens on HLA B27 Positive Fibrol
(40310)

DANYA DILLEY, PENG THIM FAN, AND RODNEY BLUESTONE
Wadsworth Veterans Administration Hospital, Los Angeles, California 90073

There is strong suggestive evidence that at least one of the seronegative spondyloarthropathies, Reiter's disease (RD), follows genital exposure to certain infectious agents including *Chlamydia trachomatis* and *Ureaplasma urealyticum* (1). In addition, postdysenteric RD and similar forms of acute reactive arthritis are known to follow enteric infections with Enterobacteriaceae such as *Salmonella* and *Yersinia* (2). Eventually, some patients with these acute post-infective arthropathies may develop chronic sequelae identical to those seen in ankylosing spondylitis (AS) (1).

It is now firmly established that these same seronegative spondyloarthropathies are strongly associated with the B-locus histocompatibility antigen HLA B27 (3). Thus it appears that exposure to certain specific microbial agents in a genetically susceptible host may be a prerequisite for the development of this spectrum of acute-to-chronic rheumatic disease.

Several possibilities emerge from this concept. Firstly, the B27 antigen present on cell surfaces might facilitate microbial attachment and invasion. Secondly, the cell surface antigen B27 might share antigenic similarities with the microbial agents initiating these diseases. Under this circumstance the body's host defense mechanism may not recognize the agents as foreign and antigenic. Thirdly, the chromosomal locus which codes for HLA B27 is located within the major histocompatibility complex (MHC) region of the sixth autosomal chromosome. There is strong evidence in other species and suggestive evidence in man that immune response genes are also located within the same genetic complex, and that such genes may be linked to the HLA loci (4). Conceivably, immune responsiveness controlled by HLA-linked genes may be responsible for the development and/or propagation of connective tissue inflammation typified as RD and AS.

A first step in elucidating the potential role of MHC gene products in RD and AS explore their influence on cell surface reactivity to implicated pathogens. Using diocytotoxicity assay previously stanc by cell counts and correlated to dye ex cytotoxicity of implicated pathogens man cells was investigated. The experimental results reported here indicate that HLA B27 no such direct role in initiating the lesion of the seronegative spondyloarthropathies.

Material and methods. Target cells. Skin fibroblasts were cultured from 4- depth punch biopsies of normal and tient volunteers with RD or AS who had the absence or presence of B27. It has been demonstrated that fib of B27-positive individuals retain the surface markers for at least 12 weeks (5, 6). Explants ½mm², devoid of ep and subcutaneous fat, were secured in culture flasks (Falcon, Oxnard, CA) face tension of the culture medium, (were established in Eagle's BME salts) (Gibco, Grand Island, NY) mented with penicillin 100 units/ml, mycin sulfate 11 µg/ml, l-glutamine and 15% unheated fetal calf serum (Gibco, Grand Island, NY), and 5% CO₂ at 37°. Medium was changed every 2 weeks, twice weekly thereafter. A first change, all further culture was absence of antibiotics. At 4-5 weeks, t fluent fibroblast monolayers were try (0.25% in Hanks (HBSS; Gibco, Grand Island, NY), pH 8.2, 5° at 37°) and subc in 1:2 splits. After four subcultures, t were assayed for bacterial and myco contamination. Fibroblasts for cytotoxic targets were harvested at late log phase and used only within 5th-20th ations.

Pathogens. The following pathogens obtained from sources indicated, were c by standard methods. At least three
Cytotoxicity in B27 Positive Fibroblasts

The cytotoxicity assay. Fibroblast cultures were trypsinized into fresh culture medium and adjusted to 1.0 x 10^6 cells per ml. 1 μCi/ml Na_2^{51}CrO_4 (ICN, Irvine, CA) was added and the suspension distributed in 1 ml aliquots to sterile flat-bottomed glass tubes (Cal Gass 15-105) which could subsequently be inserted in a well-type Nuclear Chicago γ-counter. Gas phase of each tube was equilibrated with 5% CO₂ in air, and the tubes were capped and incubated at 37°C. At 16 hr the adherent fibroblast monolayers were washed with 1 ml/tube HBSS containing 10% FCS. After 1 more hr the wash was repeated, and the monolayers were covered with 1 ml of fresh culture medium. 0.10 ml of selected log-phase pathogen, adjusted to proper multiplicity of infection (MOI), was added to each tube. Positive controls received 6N HCl; negative controls received medium only. At intervals after the addition of pathogens, supernatants were transferred to separate γ-counter tubes, the remaining monolayers were gently rinsed with 5% FCS in HBSS, and the rinses were pooled with supernatants. Tubes with media and tubes with cells were counted for γ-emission. Fractional 51Cr release (FR) for each cell-medium pair was expressed as

\[\text{CMP (medium)}/\text{CMP (cells)} + \text{CMP (medium)} \]

and specific cytotoxicity of each pathogen as

\[\text{FR (pathogen)} - \text{FR (spontaneous)}/\text{FR (maximum)} \]

Figures 1 and 2 illustrate the course of a prototype assay, used to determine suitable levels of target cell label. In Fig. 1, spontaneous, intermediate, and maximum 51Cr release are achieved in culture medium, 70% distilled water (dH₂O), and 0.1 M sodium dodecyl sulfate (SDS) respectively. Results are expressed as fractional 51Cr release. In Fig. 2, the 51Cr release effected by dH₂O is illustrated as specific cytotoxicity by relating it to a baseline represented by spontaneous release.

Results. Table I shows the mean fractional 51Cr release of three B27-negative and three B27-positive fibroblast strains exposed to each pathogen. In Table II the specific cytotoxicity of each pathogen on these target fibroblast strains has been calculated. Over the range of dilutions used (10⁴, 10⁵, and 10⁻⁴ MOI), paired t tests revealed no significant difference in the cytotoxic effect of any one pathogen on B27-positive compared to B27-negative fibroblasts with the apparent exception of Ureaplasma urealyticum. However, the differential killing for this organism is almost certainly not significant since it only repre-

![Fig. 1. Fractional 51Cr release. Cytotoxic effect of 70% dH₂O on normal human skin fibroblasts. Data points represent mean ± SEM of three determinations.](image-url)

![Fig. 2. Specific cytotoxicity. Results of Fig. 1 adjusted to spontaneous release baseline. Data points represent FR (X) – FR (Spontaneous)/FR (Maximum).](image-url)
Cytotoxicity in B27 Positive Fibroblasts

Table 1. Mean Fractional {superscript}51Cr Release of B27- and B27 Fibroblasts in Presence of Pathogen

<table>
<thead>
<tr>
<th>Viable organism</th>
<th>Cytoxicity read at hours</th>
<th>10<sup>4</sup> MOI</th>
<th>10<sup>5</sup> MOI</th>
<th>10<sup>6</sup> MOI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B27-</td>
<td>B27</td>
<td>B27-</td>
<td>B27-</td>
</tr>
<tr>
<td>Y. enterocolitica type 8</td>
<td>24 626 ± 057 683 ± 074</td>
<td></td>
<td>444 ± 062 578 ± 092</td>
<td>411 ± 072</td>
</tr>
<tr>
<td>S. minnesota 595</td>
<td>48 929 ± 017 876 ± 004</td>
<td></td>
<td>913 ± 013 891 ± 016</td>
<td>912 ± 022</td>
</tr>
<tr>
<td>CMV AD-169</td>
<td>24 177 ± 030 180 ± 059</td>
<td></td>
<td>166 ± 029 119 ± 018</td>
<td>194 ± 026</td>
</tr>
<tr>
<td>HSV-2 #1000</td>
<td>24 162 ± 033 154 ± 036</td>
<td></td>
<td>194 ± 045 110 ± 005</td>
<td>234 ± 060</td>
</tr>
<tr>
<td>U. urealyticum T-960</td>
<td>18 213 ± 063 164 ± 008</td>
<td></td>
<td>219 ± 080 172 ± 009</td>
<td>211 ± 027</td>
</tr>
<tr>
<td>M. hominis #1001</td>
<td>18 245 ± 081 170 ± 004</td>
<td></td>
<td>183 ± 024 187 ± 025</td>
<td>169 ± 019</td>
</tr>
<tr>
<td>C. trachomatis UW-3 (D)</td>
<td>24 245 ± 024 217 ± 013</td>
<td></td>
<td>246 ± 024 244 ± 011</td>
<td>255 ± 029</td>
</tr>
<tr>
<td>C. trachomatis UW-5 (E)</td>
<td>24 242 ± 030 246 ± 027</td>
<td></td>
<td>246 ± 039 214 ± 008</td>
<td>254 ± 036</td>
</tr>
</tbody>
</table>

* Three experiments were performed.

Table 2. Specific Cytotoxicity of Pathogens on B27- and B27 Fibroblasts. Significance

<table>
<thead>
<tr>
<th>Viable organism</th>
<th>Cytoxicity read at hours</th>
<th>Specific cytotoxicity</th>
<th>10<sup>4</sup> MOI</th>
<th>10<sup>5</sup> MOI</th>
<th>10<sup>6</sup> MOI</th>
<th>Paired T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B27-</td>
<td>B27</td>
<td>B27-</td>
<td>B27-</td>
<td>B27-</td>
<td></td>
</tr>
<tr>
<td>Y. enterocolitica type 8</td>
<td>24 089 010 084 011</td>
<td></td>
<td>046 023 046 003</td>
<td>1538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. minnesota 595</td>
<td>48 102 112 090 010</td>
<td></td>
<td>032 018 035 001</td>
<td>-0583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV AD-169</td>
<td>24 012 050 001 024</td>
<td></td>
<td>032 028 018 022</td>
<td>-222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV-2 #1000</td>
<td>24 006 016 032 035</td>
<td></td>
<td>079 017 023 001</td>
<td>2393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. urealyticum T-960</td>
<td>18 037 010 043 018</td>
<td></td>
<td>035 001 1074 001</td>
<td>1074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. hominis #1001</td>
<td>18 069 016 007 033</td>
<td></td>
<td>070 017 003 038</td>
<td>1545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. trachomatis UW-3 (D)</td>
<td>24 020 008 019 011</td>
<td></td>
<td>010 010 003 003</td>
<td>2667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. trachomatis UW-5 (E)</td>
<td>24 023 021 019 011</td>
<td></td>
<td>011 003 1545 003</td>
<td>3667</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B27-positive target cells, but this will appear to be unlikely.

Summary. A sensitive index of in damage has been used to investigate sibility that HLA B27-positive fibrot peculiarly susceptible to those ir agents incriminated in the seronegati dyloarthropathies. No evidence for tial susceptibility related to the pre absence of the B27 antigen could be strated.

We thank Dr. P. I. Terasaki for HLA typi donors. Linda Prince for secretarial assistance Goldberg for preparation of the manuscript.

Effect of Ethanol on Parathyroid Hormone and Calcitonin Secretion in Man (403111)

GERALD A. WILLIAMS, E. NELSON BOWSER, GARY K. HARGIS, SUBHASH C. KUKREJA, JAYENDRA H. SHAH, NILA M. VORA, AND WALTER J. HENDERSON

Section of Endocrinology, Departments of Medicine and Nuclear Medicine, VA West Side Hospital and University of Illinois College of Medicine, Chicago, Illinois 60612

Peng et al. (1, 2) showed that ethanol can induce hypocalcemia in dogs and in intact and parathyroidectomized rats, which could not be prevented by exogenous parathyroid hormone (PTH). Ramp et al. (3) observed ethanol-induced hypocalcemia in chickens. Subsequent studies in the rat from our laboratory (4) showed that ethanol caused a dose related hypocalcemia and an increase in PTH secretion which, however, was not sufficient to correct the hypocalcemia. The present study (a) evaluated the effect of ethanol on PTH and calcitonin (CT) secretion in vivo in normal man, and (b) evaluated the mode of ethanol effect on PTH secretion by studying its effect on bovine parathyroid tissue in vitro.

Materials and methods. Human studies.

Normal male subjects aged 25–50 years, on normal diets and with no evidence of renal, calcium (Ca) metabolic or other endocrine abnormalities underwent the alcohol ingestion test. Informed consent was obtained from each subject to undergo this procedure, which had been approved by the Human Investigation Committee of this institution. The subjects were fasted for 12–15 hr before the procedure and were recumbent during the procedure. A scalp vein needle was placed in an antecubital vein and attached to an infusion set via a 3-way stopcock for the slow administration of normal saline (0.5 ml/min) and withdrawal of serial blood specimens. After a 30 min rest period, blood specimens were obtained for plasma immunoinactive (i) CT and for serum iPTH and Ca at −10 and −5 min for baseline values. The subject then drank ethanol (0.8 g/kg) in the form of 86 proof bourbon whiskey (one fourth of total dose at 0, 20, 40 and 60 min). Additional blood specimens were obtained at ½, 1, 1½, 2, 3, 4 and 4½ hr from the time ethanol ingestion was begun. A control group of five normal male subjects underwent a procedure which was similar except that ingestion of a volume of tap water approximating the volume of ethanol was substituted for the ingestion of ethanol.

A portion of each blood specimen was placed in a chilled heparinized tube, centrifuged in a refrigerated centrifuge and the plasma separated and frozen immediately for subsequent analysis of iCT. The other portion of the blood specimen was placed in a plain tube, allowed to clot for 1 hr, centrifuged, and the serum separated and frozen for subsequent iPTH and Ca determination.

Serum iPTH was determined by a method developed in this laboratory (5) using a guinea pig antitoxovine PTH antiserum, purified bovine PTH (Wilson Laboratories, lot 147865) for tracer, and dilutions of a pool of human parathyroid tissue culture medium for standards. This antiserum detects both the intact molecule and the amino terminal fragment of bovine iPTH, its molar affinity for bovine PTH 1-34 being approximately one half that for the intact PTH 1-84 molecule in the utilized portion of the standard curve. This antiserum has a high affinity for human and monkey iPTH, and detects dilutions of human serum and purified bovine PTH with superimposable displacement curves over a 60-fold dilution span. The normal mean value for human serum iPTH is 6.2 μeq standard human parathyroid tissue culture medium/ml (μeq/ml) with a normal range (mean ± 2 SD) of 3.8–8.6 μeq/ml.

Plasma iCT was determined by a method developed in this laboratory (6, 7) using a goat antihuman synthetic CT antiserum and human synthetic CT (N.V. Organon, batch #SC 30) for standard and tracer. The normal mean value for human adult male plasma

1 Supported by the Medical Research Service of The Veterans Administration.
iCT is 218 pg/ml with a normal range (mean ± 2 SD) of 55–380 pg/ml.

Ethanol was added to serum and plasma specimens to a concentration of 1.6%, allowed to incubate at 4° for 2 hr and then assayed for iPTH and iCT respectively to determine whether ethanol may cause any degradation of these hormones or modification of the displacement of tracer, which would modify the assay-detected concentrations of iPTH or iCT.

Serum Ca concentration was determined by a modification of the method of Hill (8). The normal mean value is 9.2 mg/dl with a normal range of 8.2–10.2 mg/dl.

In vitro studies. Fresh bovine parathyroid tissue slices were incubated for 4 hr in Eagle Minimal Essential Medium with 10% calf serum by the technique previously described from this laboratory (9). The medium was completely aspirated and replaced by fresh medium hourly. During the first 2 hr the medium in all flasks contained 1.25 mM Ca (considered to approximate the ionized Ca concentration of normal plasma). The first hr of incubation was considered an equilibration period and this medium was discarded. The iPTH in the medium removed at the end of the next hr was considered to represent the control or zero-time baseline secretion of the tissue in that flask. The composition of the medium was then modified to contain either a high (3.0 mM) or a low (0.75 mM) Ca concentration or to contain either 0.05% or 0.3% ethanol, and incubation was continued for 2 additional hr. The iPTH concentration of each hourly medium sample was determined by radioimmunoassay as previously described (9), using purified bovine PTH for standard and tracer. The concentration of iPTH in pg/mg wt of parathyroid tissue in the zero-time baseline medium sample of each flask was designated as 100%. The iPTH concentration in the medium harvested at the end of each hr for the next 2 hr was then expressed as a percent of this zero-time baseline value for that flask (9). At least three control flasks containing 1.25 mM Ca during the entire incubation period were included with each group of incubation flasks to evaluate uniformity of secretion with time. The percent of zero-time baseline values obtained on hours 1 and 2 with the control flasks were then adjusted to 100%, and the data of the other flasks corrected to this baseline. Also, aliquots of media without tissue were assayed to determine whether the ethanol had any nonspecific effects on the immunoassay results.

In all studies the mean and SE time period were calculated from the usual percent values for the time period each subject (in vivo studies) or each vitro study. Statistical tests of significant were carried out with Student's t test

Results. Human studies. The mean values (mean ± SE) for the six human subjects were: iPTH – 6.6 ± 0.30 µeq/l human parathyroid tissue culture um/ml, iCT – 269 ± 24.5 pg/ml, Ca – 0.11 mg/dl. The direct addition of ethanol or plasma caused no change in iPTH concentrations from those observed in the serum or plasma without added ethanol. As indicated in Fig. 1, initial normal saline and ingestion of water caused no change in iPTH or Ca. However, as shown in Fig. 2, i of ethanol caused a significant (P) increase in iPTH to 107.2 ± 2.11% of baseline by 30 min, at a time when only half of ethanol had been ingested. The iPTH concentration continued to increase, reaching a value of 138.9 ± 4.44% of baseline (P< 0.01) at 2 hr, with gradual decrease there 106.0 ± 8.10% of baseline at 4 hr.

![Fig. 1](image-url) Effect of iv infusion of normal saline and ingestion of tap water on serial serum iPTH, PTH, and serum Ca concentrations during a 4-hr normal man. Values (mean ± SE) at each time point are expressed as percent of the baseline pre values (designated as 100%). N = 5. Baseline iPTH = 6.4 ± 0.28 µeq/ml, iCT = 240 ± 22 µg/ml, Ca = 9.3 ± 0.12 mg/dl.
iCT concentration increased more slowly, showing a significant \((P < 0.05)\) rise to 115.0 \(\pm 6.07\)\% of baseline at 1\(\frac{1}{2}\) hr, reaching a peak value of 137.8 \(\pm 7.13\)\% of baseline \((P < 0.001)\) at 3 hr and then decreasing to 101.9 \(\pm 1.90\)\% of baseline at 4\(\frac{1}{2}\) hr. Serum Ca did not significantly change at any time tested.

In vitro studies. Aliquots of medium (with or without added ethanol) which had been incubated without parathyroid tissue revealed no modification of the trace B/F ratio, indicating that neither the medium nor ethanol had any nonspecific effects on the immunoassay results. Changes in **in vitro** secretion of iPTH, related to changes in Ca ion concentration or to addition of ethanol, are portrayed in Fig. 3. Hourly iPTH secretion revealed only minimal variation when medium containing 1.25 \(mM\) Ca was used during the entire incubation period: \((\text{iPTH} = 325 \pm 13.8, 311 \pm 22.4 \text{ and } 319 \pm 14.0 \text{ pg/mg wet wt of parathyroid tissue/hr at } 0, 1 \text{ and } 2 \text{ hr respectively})\). Each value was designated at 100\% for that hr. Medium containing low (0.75 \(mM\)) Ca caused a significant \((P < 0.001)\) increase in iPTH release to 142.5 \(\pm 9.41\)\% and 240.2 \(\pm 8.10\)\% of baseline at the first and second hr of incubation respectively. Medium containing high (3.0 \(mM\)) Ca caused a significant \((P < 0.001)\) decrease to 57.3 \(\pm 4.63\)\% and 42.7 \(\pm 4.23\)\% of baseline at the first and second hr of incubation respectively. Addition of two concentrations of ethanol to 1.25 \(mM\) Ca medium caused increases in iPTH secretion. At a concentration of 0.05% ethanol, the increase to 105.1 \(\pm 6.10\)\% of baseline at 1 hr was not significantly different from baseline, but the iPTH increase to 122.1 \(\pm 6.74\)\% at 2 hr was significantly \((P < 0.02)\) increased. The 0.3\% concentration of ethanol caused increases in iPTH secretion to 124.1 \(\pm 6.35\)\% at 1 hr and to 166.3 \(\pm 11.26\)\% of baseline at 2 hr, both being significantly \((P < 0.02 \text{ and } P < 0.001)\) respectively increased from baseline secretion.

Discussion. Our initial studies of the effect of ethanol on Ca metabolism in the rat (4) suggested that decrease in serum Ca was the primary event and the observed increase in serum iPTH was in response to the hypocalcemic effect of ethanol. However, this compensatory increase in iPTH did not prevent or fully correct the hypocalcemia. We proposed (through without supporting data) that ethanol may induce a decrease in bone resorption, leading to hypocalcemia and a relative skeletal resistance to the resorptive action of PTH. However, the studies of Peng et al. (2) suggest that decreased bone resorption does not occur and that there may be a shifting of Ca from extracellular fluid into tissues to explain the hypocalcemia. This ex-
plation is strengthened by the observations of Ramp et al. (3) that adding ethanol to the organ culture medium enhanced mineral accretion by embryonic chick bone.

The present study indicates that, in normal man, ethanol induces an increase in both serum iPTH and iCT without detectable change in plasma Ca. This observation could be explained by ethanol-induced decrease in bone resorption or increase in bone accretion, but without skeletal resistance to PTH. In this situation very minimal hypocalcemia would induce increased PTH secretion, with rapid bone resorption and restoration of serum Ca to normal, so that hypocalcemia was never detectable. However the in vitro observations indicate that a primary change in serum Ca is not the total explanation of the changes in serum iPTH. In this situation ethanol had a direct stimulatory effect on the parathyroid which was dose-related. It is therefore possible that ethanol has both an indirect (via induced hypocalcemia) and a direct effect on PTH secretion. The effect of ethanol on the C cell of the thyroid was not studied in vitro, but is inferred to also be direct, leading to increase in CT secretion. The simultaneous increase in PTH and CT secretion may at least partially explain the lack of changes in serum Ca in the present study.

Other investigators have reported that ethanol can stimulate CT secretion in patients with medullary carcinoma of the thyroid, and have proposed ethanol ingestion as a CT secretagogue (along with calcium infusion and pentagastrin injection) as a diagnostic test for this tumor (10-14). Initially, it could not be demonstrated that ethanol affected CT secretion in normal subjects (13), but a subsequent study, using a more sensitive assay method, demonstrated that some normal subjects do show a CT response to ethanol (14). In the present study using a larger dose, ethanol elicited a CT response in all six normal subjects tested. We are not aware of a previous report of the effect of ethanol on PTH secretion.

The lower media concentration (0.05%) of ethanol in the in vitro study is comparable to the average blood ethanol concentration achieved in social drinking situations, and the 0.3% media concentration of ethanol is comparable to the blood ethanol level achieved by severely intoxicated subjects (15 doses of ethanol (0.8 g/kg) ingested human subjects in the present study resulted only moderately intoxicated. The ethanol, in amounts often ingested by drinkers, increases both PTH and CT secretion, and therefore may modify Ca homeostasis.

Summary. Ingestion of 0.8 g/kg ethanol 1 hr by normal man caused significant increases in both serum PTH and plasma calcium concentrations, with peak values of 1.2 fold baseline at 2 hr for PTH and of 138% for CT. Serum Ca did not change during the period of observation. Incubation of parathyroid slices in 1.25 mM Ca and 0.05% or 0.3% ethanol caused significant increases in PTH secretion to 122 and 166% of baseline respectively. Therefore, in vitro, ethanol can be demonstrated a direct stimulatory effect on PTH secretion, (2) in vivo, ethanol ingestion induces an increase in PTH without detectable hypocalcemia, suggesting: (a) prompt PTH secretion and action to compensate for a hypocalcemic effect of ethanol, so that actual hypocalcemia is not detectable; and/or (b) direct parathyroid stimulation. Though the exact mechanisms are unknown, the data indicate that ethanol, in amounts ingested by social drinkers, increases both PTH and CT secretion, and may modify Ca homeostasis.

The authors are grateful to Bertha Jackson, Kawahara and Patricia Johnson for technical assistance, and to Barbara Lovett for secretarial assistance.

Pancreatic Secretory Isoenzyme of Alkaline Phosphatase (40312)

WALTER P. DYCK, A. M. SPIEKERMAN, AND CHARLES R. RATLIFF

Section of Gastroenterology, Department of Internal Medicine and Section of Biochemistry, Department of Clinical Pathology, Scott and White Clinic, Temple, Texas 76501

Alkaline phosphatase exists in a wide variety of tissues in different molecular forms. Characterization of these isoenzymes is possible on the basis of their resistance to various physical and chemical manipulations. As early as 1944, Nothnann (1) reported that ligation of the pancreatic duct in dogs produced an increase in serum alkaline phosphatase, but there have been few attempts to measure this enzyme in pancreatic juice. Warnes and Bulmer (2) demonstrated the presence of alkaline phosphatase in the duct system, islet cells, and acini of the human pancreas. Warnes et al. (3) extracted alkaline phosphatase from normal human pancreas and pancreatic tumors and showed that these enzymes have distinctive isoenzyme characteristics when compared with the enzymes of the small intestine and of normal serum.

The present study was designed to examine the isoenzyme characteristics of alkaline phosphatase in canine pancreatic secretory fluid. The availability of pure human pancreatic juice from a patient with a traumatic fistula allowed us to conduct similar observations in this fluid.

Methods: Six adult mongrel dogs, weighing 14–18 kg, were previously prepared with gastric and pancreatic fistulas fitted with Thomas cannulas in the stomach and duodenum (4). Animals were not studied until 3–4 weeks after this operation and were deprived of food but not water for approximately 18 hr prior to each study. A continuous iv infusion of 0.15 M sodium chloride was given at a rate of 50 ml/hr. Observations were carried out in conscious animals during continuous intravenous infusion of secretin, 0.5 U/kg per hr. The secretin used in these studies was from a single batch purchased from the Gastrointestinal Hormone Research Unit, Karolinska Institute Chemistry Depart-

1 Reprint requests to: Dr. W. P. Dyck, 2401 South 31st Street, Scott and White Clinic, Temple, Texas 76501.

ment, Stockholm, Sweden. The gastric cannula was kept open during all observations to prevent the entry of acid into the duodenum. The duodenal cannula was opened and a glass cannula was inserted into the pancreatic duct under direct vision. Pancreatic secretion was collected continuously as 10-min specimens.

Pancreatic juice also was collected from a patient who had an established posttraumatic pancreatic fistula that was draining clear, alkaline juice, 400–600 ml/day, with a bicarbonate concentration of 66 meq/liter and an amylase concentration of 120,000 Somogyi U/100 ml. Fluid was collected by direct cannulation of the fistula with a sterile catheter after appropriate skin cleansing to minimize the likelihood of bacterial contamination.

Alkaline phosphatase, expressed in international units, was determined by the method of Roy (5) with thymolphthalein monophosphate as the substrate.

Isoenzyme characterization, based on different susceptibilities of alkaline phosphatase isoenzymes to inhibition by urea and L-phenylalanine (6–8) and heat inactivation (9), was performed in all specimens. The method of Kind and King (10) was used for alkaline phosphatase measurements in these isoenzyme studies.

Isoenzymes present in the human pancreatic fistula fluid were examined by acrylamide gel electrophoresis and compared to the electrophoretic behavior of alkaline phosphatase of known human origin from liver, bone, and intestine. Liver alkaline phosphatase was obtained from the serum of patients with known liver disease and intestinal alkaline phosphatase was purchased from Dade Corporation. Bone alkaline phosphatase was obtained from shavings of bone extracted with butanol to remove insoluble material and break the protein–lipid bond. The alkaline phosphatase obtained from the pancreatic fistula fluid was concentrated ten
Efore electrophoresis. All samples to be
ephoresed were dialyzed for twelve
against two changes of electrophoresis
. Alkaline phosphatase isoenzymes
separated by Raymond's method of con-
massic polyacrylamide gel electrophoresis in
ical cell (11).
ultr. At the low dose of secretin infusion
x in the canine studies, pancreatic sec-
ly volumes varied from 5 to 10 ml/10
The mean (± SEM) alkaline phospha-
centration in specimens from all six
us (87 collections) was 15.4 ± 1.1
ml. Alkaline phosphatase concentration
creatic fistula fluid collected from the
it was 17.8 mU/ml.
ure 1 shows the percentage of alkaline
hatase remaining in pancreatic juice
ach of the six dogs after incubation of
cns with urea or phenylalanine or after
activation. There was relative uniform-
ong the animals in that the isoenzyme
ed relative resistance to phenylalanine
tion, intermediate inhibition by urea,
darked thermal lability.
zyme characteristics of alkaline phos-
se in canine and in human pancreatic
y fluid are compared in Fig. 2. The
alkaline phosphatase activity remain-

![Graph showing the percentage of alkaline phosphatase remaining after incubation with phenylalanine inhibition, urea inhibition, and heat inactivation.](image)

Fig. 2. Mean percent of alkaline phosphatase remaining in canine pancreatic juice and the percentage of enzyme remaining in human pancreatic fistula fluid after incubation with urea or L-phenylalanine or after heat inactivation. Bars at left represent mean ± SEM of all collections from six dogs.

1. Percentage alkaline phosphatase remaining in pancreatic juice after incubation with urea or L-phenylalanine after heat inactivation. Each bar represents the mean ± SEM of all 10-min collections in a single animal continuous intravenous infusion of secretin, 0.5 U/kg per hr. n = number of observations in each mean.
inhibition were 30% and 34%, respectively, and after heat inactivation were 7.5% and 21% respectively.

Figure 3 shows the electrophoretic mobility of the alkaline phosphatase isoenzyme in the human pancreatic fistula fluid compared to mobilities of isoenzymes derived from other human tissue sources. The pancreatic enzyme exhibited a pattern of mobility clearly different from that of any of the isoenzymes of other tissues sources.

Discussion. When Nothmann (1) found that ligation of the pancreatic duct in dogs resulted in a progressive increase in serum alkaline phosphatase activity, he assumed that this increased activity was of pancreatic origin. Subsequent studies (12, 13) have shown a significant increase in alkaline phosphatase concentration in duodenal juice after CCK-pancreozymin stimulation. The demonstration, by histochemical techniques, of this enzyme in various cellular components of the human pancreas (2) and the subsequent identification of distinctive isoenzyme characteristics of pancreatic alkaline phosphatase (3) are consistent with the presence of this enzyme in pancreatic secretory fluid.

Our data are in agreement with the findings of Warnes et al. (3) who showed that pancreatic alkaline phosphatase was much more sensitive to heat inactivation and urea inhibition than was the enzyme from the small intestine, but, in contrast, was largely unaffected by L-phenylalanine.

The question of whether increased serum total alkaline phosphatase values reflect a predominant increase pancreatic isoenzyme remains unan and must await isoenzyme characterization studies in subjects with acute inflam as well as neoplastic disease of the ps Additional techniques, such as acrylan electrophoresis, will doubtless aid in refining our means of identifying the different serum isoenzymes (14).

Summary. Alkaline phosphatase was measured in hormonally stimulated creatic juice from six dogs and in patient fistula fluid from a human subject. Isocardinal characterization studies, based on susceptibility to urea and L-phenyl inhibition and to heat inactivation in similarities between canine and humcreatic secretory alkaline phosphatase pared to intestinal alkaline phosphatase pancreatic isoenzyme was much more sensitive to heat inactivation and urea inhibition but much more resistant to L-phenyl inhibition. The electrophoretic mob the enzyme present in human pancreat was different from that of human bone, or intestinal alkaline phosphatase.

Received January 16, 1978. P.S.E.B.M. 1978, V
e of Thymopoietin, Ubiquitin and Synthetic Serum Thymic Factor to Restore Immunocompetence in T-Cell Deficient Mice (40313)

DOUGLAS MARTINEZ, 1 A. KIRK FIELD, 1 HARVEY SCHWAM, 2 ALFRED A. TYTELL, 1 AND MAURICE R. HILLEMAN 1

of Virus and Cell Biology Research, Merck Institute for Therapeutic Research, West Point, Pennsylvania the 3 Department of Medicinal Chemistry, Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486

le of the thymus in lymphocyte ho-
(1, 2) and in conversion of precurs-
hocytes to thymus-dependent lym-
(T cells) has been the subject of y
investigation during the last 20
sence of the thymus leads to diverse
gic deficiencies that can be re-
thyms grafts or by thymus grafts
in cell-impermeable chambers (3–7),
g that the thymus might induce mat-
T lymphocytes through produc-
tion of factor(s). Candidate thymic fac-
ors were prepared by several investi-
the biological activities of these fac-
ors were assessed mainly by in vitro
of T cell markers (e.g. thy-1 anti-
ymphocyte populations (8–12), with
attention given to whether there
ation of thymus-dependent im-
ctions measurable in vivo.

t study was undertaken to eval-
stances that induce T cell for
their ability to restore thymus-
immunocompetence in thymecto-
mice. The substances tested were
etin and ubiquitin, prepared by Dr.
stein (10, 11), and synthetic serum
ctor, defined by Bach et al. (13).

als and methods. Mice. C58/J mice
ined from the closed colony main-
 the Merck Sharp & Dohme Re-
atories by Buckshire Farms, Per-
or were purchased from The Jack-
ary, Bar Harbor, Maine.

al evaluated. Partially purified thy-
 II (10) and ubiquitin (11) were
aliquoted lyophilized prepara-
 Dr. Gideon Goldstein, Sloan-Ketter-
er Research Center, New York.
 to be tested were dissolved in phos-
ttered saline (PBS) immediately
ne with the substances in 0.1 ml. Synthetic
serum thymic factor (Pyroglu-Ala-Lys-Ser-
Gly-Gly-Ser-Asn), defined by J-F Bach
et al. (13), was synthesized by the peptide
synthesis group (R. G. Strachan, W. J. Pale-
eda, S. J. Bergstrand, R. F. Nutt, R. Hirsch-
mann, F. W. Holly, and D. F. Veber; manu-
script in preparation), of Merck Sharp and
Dohme Research Laboratories, and found
positive for in vitro biological activity by Dr.
Dosages, formulations and frequencies of
reatment employed in these experiments
were based on recommendations made
Dr. G. Goldstein for thymopoietin and ubi-
quitin, and by Dr. J-F Bach for serum thy-

An unrelated pentapeptide, Asp-Ser-Asp-
Pro-Arg (14), and a decapeptide, Val-His-
Leu-Ser-Ala-Glu-Glu-Lys-Glu-Ala (15), that
failed to show in vitro biological activity in
tests performed by Dr. J-F Bach were used
control purpose.

Thymectomy. Mice that were 0–2 days old
were anesthetized by cooling at −20°C (16) for
5–8 min (depending on size), thymectomized
according to the method of Sjodin et al. (17),
and then warmed under an infrared lamp
(35°C) for 30 minutes. Young adult (4- to 6-
week-old) mice were anesthetized by a single
intraperitoneal injection (62.5 mg/kg) of so-
dium pentobarbital (Nembutal, Abbott Lab-
oratories, North Chicago, Illinois), and thy-
meatomized according to the method of Dar-
denne and Bach (18). Sham thymectomized
mice were treated surgically in the same man-
ner except that the thymic lobes were not
removed. At the appropriate time, all thy-
meatomized mice were examined for presence
of thymic remnants with the aid of a dissect-
ing microscope. Mice found to have thymic
 remnants were excluded from the study.
Anti-thymocyte serum treatment. Heat-inactivated rabbit anti-mouse thymocyte and normal rabbit sera were purchased from Microbiological Associates, Bethesda, Maryland. A single 1 ml injection of serum was given intraperitoneally 3–4 days after thymectomy. Certain lots of anti-thymocyte sera were toxic for the mice and were not used.

Preparation and administration of I, cell suspensions. The challenge inoculum was made by mixing equal volumes of viable (2 × 10^9/ml) and irradiated (2 × 10^8/ml) line I, leukemic cell suspensions. Suspensions of viable (C58 mouse-derived) I, cells were prepared in Hanks balanced salt solution as described previously (19). To prepare γ-irradiated I, cells, suspensions of viable cells were exposed to 10,000R in a Model 109 Co60 Irradiator (J. L. Shepherd and Assoc., Glendale, CA) that delivered 62,000R/min. Mice were injected intraperitoneally with 1 ml of the I, cell mixture (10^7 viable plus 10^8 irradiated cells). The mice were observed for 21 days and gross examination of the viscera of all mice that died was made to assure that deaths were due to leukemia.

Mitogenic responses. To test for capability to respond to mitogens, spleen and mesenteric lymph node cell suspensions were prepared in medium RPMI 1640 (Grand Island Biological Co., Grand Island, NY) containing 5% fetal calf serum (Microbiological Associates). Five replicate cell suspensions, each containing 4 × 10^5 cells in 0.2 ml, were prepared for testing the response to concanavalin A (Con A) (Miles Laboratories, Kankakee, IL) and phytohemagglutinin P (PHA) (Difco, Detroit, MI) in final concentration of 0.4 μg/ml and 1:1000 dilution, respectively. After 3 days of incubation (37°, 5% CO₂), 1 μCi of tritiated thymidine (New England Nuclear, Boston, MA) in 0.025 ml was added to each cell preparation, and incubation was continued for an additional 4 hr. The cells were harvested, washed to remove residual free fluids, and dissolved in 10 ml of Scintisol (Isolab, Akron, OH). The counts per minute were determined, and the mean cpm was calculated for the 5 replicate cultures in each group.

Results. Failure of thymopoietin to restore T cell mitogen responses of lymphocytes from neonatally thymectomized C58 mice. Findings in preliminary experiments indicated both spleen and lymph node cells from treated or PBS-treated neonatally thymized C58 mice failed to be stimulated cell mitogens. In fact, incubation with Con A or PHA generally resulted in decreased thymidine incorporation compared to thymocyte cells that were not treated with gen.

To test for ability of thymopoietin store T cell mitogen responses, neon thymectomized C58 mice were treated with thymopoietin for 4 weeks starting week of age. The animals were sacrificed cervical dislocation 1 day following th injection. Spleen and lymph node cells removed from the animals and tested mitogenic responses to Con A and PH shown in Table I, treatment with thymopoietin did not restore normal responsive the spleen and lymph node cells to the mitogens.

Failure of thymopoietin and ubiquitin store resistance to line I, leukemia in thymectomized C58 mice. It was demons in previous studies that normal adult mice develop an immune response (sur when simultaneously vaccinated and lengthed with a mixture of viable and line I, leukemic cells, whereas immun suppressed mice do not (19, 20). This imm response is highly dependent on func maturity of the T-lymphocytes (21). A perment was carried out in which adul mectomized and sham thymectomized trol animals were treated with rabbit thymocyte serum to reduce the populat competent lymphocytes in the periphery animals were then challenged with the preparation described above. As sho Fig. 1, sham thymectomized animals initially highly susceptible to challenge I, cells but their immunologic responsiv was regained within 4 weeks after serum minimization. By contrast, animals tha been thymectomized did not regain the ristance. Similar differences in regene of T cell mitogen responses (22) and bearing lymphocytes (23) were observe tween adult thymectomized and sham mectomized mice given anti-thymocy rum.

An attempt was made to restore th
TABLE I. FAILURE OF THYMOPOIEtin TO RESTORE T CELL MITOGEN RESPONSIVENESS IN NEONATALLY THYMECTOMIZED C58 MICE.

<table>
<thead>
<tr>
<th>In Vivo treatments*</th>
<th>In Vitro mitogen responses*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spleen Cells</td>
</tr>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>cpm (No.</td>
</tr>
<tr>
<td></td>
<td>mice)</td>
</tr>
<tr>
<td>Thymectomy</td>
<td></td>
</tr>
<tr>
<td>unoperated</td>
<td>None</td>
</tr>
<tr>
<td>NTx</td>
<td>TP</td>
</tr>
<tr>
<td>NTx</td>
<td>PBS</td>
</tr>
<tr>
<td>NTx</td>
<td>None</td>
</tr>
</tbody>
</table>

* Neonatally thymectomized (NTx) C58 mice were treated ip with 1 μg thymopoietin (TP) or with PBS 5×/week for 4 weeks (20 treatments) starting at 1 week of age.
* Averages of individual determination obtained from the indicated numbers of mice. Stimulation Index = Mitogen Stimulated cpm/control culture cpm
* Data from two animals.

![Graph](image)

Fig. 1. Effect of adult thymectomy on recovery of the immune response to line Lb leukemic cells following anti-thymocyte serum treatment. Groups of thymectomized (©) and sham thymectomized (O) mice were injected with an admixture of 10⁶ viable Lb cells and 10⁶ γ-irradiated Lb cells at the indicated times after the injection of 1 ml rabbit anti-mouse thymocyte serum. Each point represents 20 mice. Groups of thymectomized mice given normal rabbit serum survived the injection of Lb cells.

munologic responsiveness of anti-thymocyte serum-treated adult thymectomized C58 mice by administration of thymopoietin or ubiquitin. Such mice were injected intraperitoneally with 1 μg thymopoietin or ubiquitin 5 times per week for 5 weeks prior to challenge with Lb cells. Neither thymopoietin nor ubiquitin restored the resistance of serum-treated thy-

mectomized animals to line Lb leukemia (Table II). On the other hand, control serum-treated sham thymectomized mice were resistant to challenge.

Failure of serum thymic factor to restore resistance to line Lb leukemia in adult thymectomized C58 mice. In similar experiments to those described above, anti-thymocyte serum-treated adult thymectomized C58 mice were injected 3 times per week for 8 weeks with synthetic serum thymic factor (0.1 ng) prepared with carboxymethylcellulose as described by M-A Bach (24). T cell immunocompetence was measured in terms of the survival rates of animals challenged with line Lb leukemia. As shown in Table III, resistance to challenge was not restored to serum-treated thymectomized mice by treatment with serum thymic factor. Control animals that had been sham thymectomized and treated with anti-thymocyte serum were resistant to challenge.

In the experiments just described, repeated injections of carboxymethylcellulose, in which the test preparations were suspended, was toxic; causing skin nodules, ulceration and death in roughly half the animals during the 8 week period of treatment. To avoid this, adult thymectomized animals that had been given anti-thymocyte serum were treated 5 times per week for 8 weeks with 1 μg serum thymic factor in PBS and then challenged
TABLE II. LACK OF EFFECT OF THYMOPOIETIN AND UBIQUITIN ON RESISTANCE OF ANTI-THYMOCYTE SERUM-TREATED ADULT THYMECTOMIZED MICE TO CHALLENGE WITH LINE L12 LEUKEMIA.

<table>
<thead>
<tr>
<th>Treatment of mice</th>
<th>Substance Tested</th>
<th>No. of surviving/total (%)</th>
<th>Average time of death in days (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymectomized test animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATx, RAMTS</td>
<td>Thymopoietin</td>
<td>0/16 (0)</td>
<td>10.69 ± 0.60</td>
</tr>
<tr>
<td>ATx, RAMTS</td>
<td>Ubiquitin</td>
<td>1/13 (8)</td>
<td>10.69 ± 0.78</td>
</tr>
<tr>
<td>Thymectomized control animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATx, RAMTS</td>
<td>PBS</td>
<td>0/12 (0)</td>
<td>10.75 ± 1.06</td>
</tr>
<tr>
<td>ATx, RAMTS</td>
<td>None</td>
<td>0/13 (0)</td>
<td>10.92 ± 1.75</td>
</tr>
<tr>
<td>Nonthymectomized control animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STx, RAMTS</td>
<td>PBS</td>
<td>11/12 (92)</td>
<td>*</td>
</tr>
<tr>
<td>Unoperated</td>
<td>PBS</td>
<td>20/20 (100)</td>
<td></td>
</tr>
</tbody>
</table>

* C58 mice were adult thymectomized (ATx) or sham operated (STx) and given rabbit anti-mouse thymocyte serum (RAMTS) 3 days later.
* Treated mice received 1 μg of thymopoietin or ubiquitin ip 5X/week for 5 weeks.
* All mice were challenged with a mixture of 10⁶ viable and 10⁴ irradiated L12 cells.
* One mouse died on day 15.

TABLE III. LACK OF EFFECT OF COMPLEXED SERUM THYMIC FACTOR ON THE RESISTANCE OF ANTI-THYMOCYTE SERUM-TREATED ADULT THYMECTOMIZED MICE TO CHALLENGE WITH LINE L12 LEUKEMIA.

<table>
<thead>
<tr>
<th>Pre-therapy T cell depletion*</th>
<th>Substance tested</th>
<th>No. of mice</th>
<th>Survival following challenge with line L12 leukemia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymectomized test animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATx, RAMTS</td>
<td>Serum thymic factor</td>
<td>15</td>
<td>7 (46)</td>
</tr>
<tr>
<td>ATx, RAMTS</td>
<td>Decapeptide</td>
<td>15</td>
<td>12 (80)</td>
</tr>
<tr>
<td>Thymectomized control animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATx, RAMTS</td>
<td>Buffered saline solution</td>
<td>15</td>
<td>8 (53)</td>
</tr>
<tr>
<td>Sham thymectomized control animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STx, RAMTS</td>
<td>Buffered saline solution</td>
<td>15</td>
<td>9 (60)</td>
</tr>
</tbody>
</table>

* C58 mice were adult thymectomized (ATx) or sham operated (STx) and given rabbit anti-mouse thymocyte serum (RAMTS) four days later.
* All test substances were contained in carboxymethylcellulose (CMC) that was highly toxic, causing deaths in the animals. Treated mice received 0.5 ml sc containing 0.1 ng of serum thymic factor or control decapeptide combined with 27 mg CMC. Treatment was started 6 days following RAMTS treatment and continued three times per week for a total of 20 injections. CMC and total volume of treatment were reduced to 5 mg and 0.1 ml, respectively, after seven injections.

with L12 cells. The findings given in Table IV show that the thymic factor in PBS, as in carboxymethylcellulose, failed to restore immunocompetence to the mice.

Discussion. The main criterion used to classify materials as thymic hormones has been their capacity to induce T cell surface membrane markers on lymphocytes. However, the induction of such cell markers seems not to reflect a maturation event specifically induced by thymic hormone, since many unrelated substances, including nonthymic tissue extracts, ubiquitin, poly A:U, endotoxin, prolactin, glucagon, prostaglandin E and histamine, all have the ability to induce the same cell surface markers (11, 25, 26). Therefore, it is of value to test candidate thymic hormones in more discriminating assays; assays that would measure the effect on immunocompetence. The present studies were carried out to measure the ability, if any, of thymopoietin, ubiquitin, and serum thymic factor to restore immunocompetence in vivo in T lymphocyte deficient C58 mice. Daily admin-
The page contains a table and text discussing the effects of thymopoietin on thymic factor in thymectomized mice. The table is titled "Thymopoietin and Serum Thymic Factor" and includes columns for "Treatment of Mice", "Deaths following treatment with the test substances", and "Survival following challenge with line L1 leukemia". The text elaborates on the use of thymopoietin in neonatally thymectomized C58 mice and its effects on the thymus and lymphoid system.

Table: Thymopoietin and Serum Thymic Factor

<table>
<thead>
<tr>
<th>Treatment of Mice</th>
<th>No. of mice</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start</td>
<td>Final</td>
</tr>
<tr>
<td>Thymectomized test animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>Serum thymic factor</td>
<td>13</td>
</tr>
<tr>
<td>TS</td>
<td>Pentapeptide</td>
<td>13</td>
</tr>
<tr>
<td>Thymectomized control animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>Buffered saline solution</td>
<td>13</td>
</tr>
<tr>
<td>Sham thymectomized control animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>Buffered saline solution</td>
<td>13</td>
</tr>
</tbody>
</table>

The thymopoietin can maintain a normal level of short-lived thy-1-positive lymphocytes in adult thymectomized mice. Yet, the responses of adult C58 mice to T cell mitogens and line L1 leukemia are dependent on a long-lived population of thy-1-positive lymphocytes. Perhaps the evaluation of only one substance at a time would inevitably result in failure to induce immunocompetence.

Abstract. Thymopoietin, ubiquitin, and serum thymic factor, all of which induce T cell markers on lymphocytes, have been evaluated for their capacity to induce thymus-dependent activities *in vivo*. Multiple treatments over a period of weeks failed to restore either resistance to line L1 leukemia or responses to T cell mitogens in T cell-deficient C58 mice. The findings suggest that these substances are ineffective in inducing thymus-dependent immunocompetence that is meaningful in the intact animal.

Excellent technical assistance was provided by P. A. Denison, M. E. Davies, C. DeWitt, and S. Michelson.

200

THYMOPOIEITIN AND SERUM THYMIC FACTOR

Inactivated Hepatitis A Virus Vaccine Prepared from Infected Marmoset Liver (40314)

PHILIP J. PROVOST AND MAURICE R. HILLEMAN

Division of Virus and Cell Biology Research, Merck Institute for Therapeutic Research, West Point, Pennsylvania 19486

olation of the CR326 strain of human A virus in mystax marmosets was from these laboratories (1, 2) in 1973 virus was shown to be inactivated by hydroxylamine (3). It was demonstrated, sub- jectively, that the livers of white-mouse and rufiventer marmosets (S. mystax labiatus, respectively) infected with virus contained large amounts of hepa- ral antigen (3–6). This made possible development of the first practical for hepatitis A virus antigen and anti- the complement fixation and immuno- genicity (IA) methods. The present hower that CR326 strain hepatitis A vaccine, purified from infected marmoset livers and inactivated with formaldehyde, homologous IA antibody and 1 marmoset against hepatitis A virus e.

ials and methods. Marmosets. Wild-rufiventer (S. labiatus) marmosets were used. The animals were conditioned and used as described previously (1).

Isocitric dehydrogenase (ICD) assays were performed, as previously described the marmoset plasmas collected at intervals. Values of 1500 Sigma units or obtained for two or more consec- cutive assay points were considered to be indicative. Assays for hepatitis A antibody marmoset sera were by the IA proce- cibed earlier (5).

A rufiventer marmoset infected intravenously with 25th rufiven- nosis passage CR326 hepatitis A vi- liver was perfused in situ with PBS and re- morm the marmoset at the time that the liver was homogenized with PBS mortar and pestle with alunudum to 0% suspension. The supernate was collected following low speed centrifugation and was diluted further to give a 5% liver extract. The extract was then heated at 60°C for 30 min after which it was further clarified by centrifugation at 2500 rpm for 30 min yielding an amber-colored supernate that was slightly opalescent. Formalin in a final concen- tration of 1:1000 was added to the super- nate, and the mixture was incubated with continuing agitation at 35.5°C for 4 days. The formalin was then partially neutralized with sodium bisulfite to give a final concentration of 10 μg/ml formaldehyde. This was the vaccine, and it was stored at 4°C. The viral particle content per ml was 1.4 × 10^10 as measured by electron microscopy and the hepatitis A antigen titer was 1:8 by IA. The liver from a noninfected rufiventer marmoset was processed in an identical way to produce vaccine for control purpose.

Vaccination. Rufiventer marmosets were employed, and all were initially devoid of human hepatitis A virus antibody. Eight marmosets were each given 1 ml amounts of hepatitis A vaccine subcutaneously at bi-weekly intervals for 14 weeks (eight injections). An additional eight animals were injected subcutaneously at the same time with normal marmoset liver vaccine. Six more animals were each given an intravenous injection of 1 ml of hepatitis A vaccine on a single occasion for testing for absence of live hepatit is A virus in the vaccine.

Marmoset challenge. All marmosets were challenged intravenously 17 weeks after the first vaccine injection, with 1 ml of a 10^{-6} dilution of CR326 hepatitis A virus containing approximately 10^5 fifty percent marmoset infectious doses of virus.

Results. IA antibody responses. Serum antibody titrations were performed on plasma samples collected at weekly intervals during the 17-week immunization regimen and the 9-week period following challenge. Figure 1

0037-9727/78/1592-0201$00.00/0
Copyright © 1978 by the Society for Experimental Biology and Medicine
All rights reserved.
shows that all eight animals displayed IA antibody after the sixth vaccine dose had been given (by 12 weeks), at least three of the animals having responded after the fifth dose. The titers ranged from 1:20 to 1:320. None of the animals given control vaccine developed hepatitis A antibody. One of the six animals in the viral inactivation test group that received a single dose of vaccine intravenously developed antibody by the 12th week after injection. Table I shows that none of the animals in any group developed positive ICD enzyme elevations prior to challenge indicating that the materials given to the animals did not contain live hepatitis A virus.

Protective efficacy. The marmosets in all three groups were challenged intravenously with live CR326 hepatitis A virus during the 17th week after vaccination was initiated, and the findings are shown in Fig. 1 and Table I. All eight of the marmosets that received the normal liver vaccine showed elevations in ICD and all developed IA antibody with titers ranging from 1:640 to 1:2560 or greater. By contrast, none of the animals given hepatitis A vaccine showed ICD elevations and none showed more than twofold increase in antibody titer. Interestingly, only two of the six animals that were given a single dose of vaccine intravenously showed elevations in ICD, and these two animals developed IA antibody. One other animal developed pronounced IA antibody, without an ICD elevation. All of the three remaining animals appeared to be protected even though only one had IA antibody prior to challenge. These findings indicated that the vaccine given subcutaneously in multiple injections was highly effective in preventing experimental hepatitis on challenge in marmosets and that even a single dose of vaccine given intravenously afforded protection to live virus challenge in some animals.

Discussion. The work on which the present findings are based represents the first demonstration that inactivated hepatitis A virus can afford protection against live hepatitis A virus challenge. Vaccine was given in eight divided aqueous doses, and it seems likely that protection might have been afforded following fewer doses, especially if an immunologic adjuvant had been employed. This vaccine might prove equally effective in preventing hepatitis A in man and might, therefore, be of extreme importance in the control of the disease. The limited availability of marmosets and the lack of ability, to date, to achieve practical replication of the virus in

TABLE I. ANTIBODY AND ENZYME DETERMINATIONS IN A CONTROLLED STUDY OF HUMAN HEPATITIS A VACCINE IN MARMOSETS.

<table>
<thead>
<tr>
<th>Marmoset group</th>
<th>Before hepatitis A virus challenge</th>
<th>After hepatitis A virus challenge</th>
<th>Protective efficacy of vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antibody response No. Pos./Total</td>
<td>Enzyme elevation No. Pos./Total</td>
<td>Antibody response No. Pos./Total</td>
</tr>
<tr>
<td>Normal liver vaccine</td>
<td>0/8</td>
<td>0/8</td>
<td>8/8</td>
</tr>
<tr>
<td>Hepatitis A vaccine</td>
<td>8/8</td>
<td>0/8</td>
<td>0/8</td>
</tr>
<tr>
<td>Virus inactivation test</td>
<td>1/6</td>
<td>0/6</td>
<td>3/6</td>
</tr>
</tbody>
</table>
the laboratory precludes any substantial progress toward routine immunization in man at the present time.

Summary. Human hepatitis A virus, partially purified from the liver of a rufiventer marmoset infected with CR326 strain virus, was inactivated with formalin and was shown to be highly potent in stimulating homologous antibody in marmosets when administered subcutaneously at bi-weekly intervals in eight divided doses. The vaccine was shown to prevent hepatitis A in all marmosets when challenged with live hepatitis A virus in a controlled study.

We gratefully acknowledge the technical assistance of Frank Banker, W. P. M. Fisher, Paula Giesa, Marilyn Johnston, and Paul Koser. Electron microscopy was performed by Dr. Bohdan Wolanski.

Structural Determinants of the Renal Tubular Activity of Vitamin D₃ Derivatives: with 1α-Hydroxy, 24R,25-Dihydroxy, and 1α,24R,25-Trihydroxy Vitamin D₃ (1)

J. WINAVER AND J. B. PUSCHETT

Renal-Electrolyte Section, Department of Medicine, Allegheny General Hospital and the University of P School of Medicine, Pittsburgh, Pennsylvania 15212

Previous studies from this and other laboratories have documented an acute affect of vitamin D₃ and its major metabolites on renal tubular electrolyte transport (1, 2). The infusion of the biologically active metabolites of vitamin D₃, 25-hydroxyvitamin D₃ (25-hydroxycholecalciferol, 25-HCC) and 1,25-dihydroxyvitamin D₃ (1,25-dihydroxycholecalciferol, 1,25-DHCC), have been shown to produce an enhancement of phosphate, calcium, and sodium reabsorption both in the dog and rat (1–6). Recently, substantial progress has been made in the identification and biochemical synthesis of other naturally occurring vitamin D metabolites as well as structural analogs. These advances have provided us with the opportunity to study the renal tubular effects of additional metabolites and analogs of the parent compound and to identify the structural requirements of these vitamin D₃ derivatives with regard to their transport actions. The data demonstrate that in order for an antiphosphaturia to occur, the derivative must contain a hydroxyl group in the 1 position. Furthermore, no effect on calcium or sodium transport is evident unless the compound possesses a 25-hydroxyl group which is sterically unhindered.

Methods. Acute clearance studies were performed in female mongrel dogs weighing 16 to 23 kg which had been thyroparathyroidectomized (TPTX) at least 48 hr prior to the experiment. Details of the surgical procedures and clearance technique have been reported elsewhere (1, 3). Completeness of parathyroidectomy was verified by comparing the serum calcium concentration 2 to 4 days postoperatively to those just before the procedure. Animals with at least a 30% reduction in serum calcium were selected for study. Thyroid replacement was accomplished by oral administration of 0.1 to 0.2 mg of synthryroid (Flint) daily. The animals were fasted and thirsted for 16 hr before the study and received 5 U of vasopressin (Pitressin) in oil, Parke, Davis and Company prior to the study. The dogs were anesthetized with 25 mg/kg of sodium thiopental with subsequent intermittent mental doses as required. A cuffed, occlusive tube was inserted into the main brachial vein and the arterial line was ventilated with a Harvard respirator. In addition to an hindlimb infusion of saline and into the external jugular vein for blood sampling. Priming infusions of insulin and d-aminophenyl-2-aminohippurate (PAH) were administered at a rate of 1 ml/min in physiological saline. Aqueous vasopressin was added to the infusion in an amount calculated to cause an increase in the mU/min. Volume expansion was accomplished by infusing a 0.9% saline solution at a rate of 1.0 to 1.5 mEq/liter of sodium and calcium.

The total amount of saline infused was approximately 2.5% of the body weight. After the experiment, the animals were adjusted and then infused with 1 ml/min of physiological saline. The experiment continued for approximately 2 hr, at which time 10 to 12 clearance periods of 10 min each were obtained on one dog (group B) 0.625 μg of 1α-vitamin D₃ (1α-hydroxycholecalciferol-HCC) dissolved in 0.25 ml of propylene glycol was given according to the schedule described for the control. Group C consisted of five dogs with the same dosage.

1 The 1α-HCC utilized in this study was supplied by Dr. Jack Hinman, Upjohn Company, Kalamazoo, Mich.
renal effects of vitamin D3 metabolites

0.625 μg of 24R,25-dihydroxyvitamin (24R,25-dihydroxycholecalciferol, 24R,-
HCC) dissolved in 0.25 ml of propylene glycol. The animals in experimental group D
drew 0.625 μg of 1α,24R,25-THCC dis-
solved in 0.25 ml of propylene glycol. Blood
drawn at the beginning of the study, at
plateau of each steady state, before each
rimental maneuver, and every 30 min-
ughout the study. Blood and urine were
ized with inulin, PAH, phosphorus, cal-
inum, and sodium by methods previously de-
ed from this laboratory (1). Serum ult-
ates were obtained by centrifuging
-handled anaerobically through CF-50
rifuge cones (Amicon Corp., Lexington,
Massachusetts). Statistical evaluation of the data was
formed by paired t test.

Results. Table I summarizes the data ob-
ed in the control experiments (group A)
all as those in which the synthetic analog
vitamin D, 1α-HCC (group B) or the vi-
in D metabolites, 24R,25-THCC (group C)
and 1α,24R,25-THCC (group D), were ad-
istered intravenously. In the control ani-
mals the intravenous administration of pro-
ne glycol did not cause any changes in the absolute urinary excretion of ions or in their percentage excretion.
(Figs. 1–3, group A, Table I). Neither
renal hemodynamics nor serum ultral-
able calcium concentration (SUFca) al-
l in any consistent manner. The acute instillation of 0.625 μg of 24R,25-DHCC
had no effect on either the absolute or per-
centage excretion rates of phosphate, calcium,
dium (group C, Table I). The mean delta
i was −3.6 ± 3.9% (P > 0.40). However,
1α,24R,25-THCC and 1α-HCC, when
added in the same amount (0.625 μg), induced
ificant decline (by 28 and 30%, respec-
ively) in the percentage excretion of phos-
e (P < 0.01, < 0.05). The mean changes
oxphate excretion were −6.6 ± 1.6 and
± 1.4%, respectively. These decrements
accompanied by reductions in the ab-
ence excretion rates of phosphate of 18 and
respectively, which were also statisti-
significant (P < 0.05, < 0.02, Fig. 1).
A significant change in either absolute or

indly provided by Dr. Milan Uskokovic, Roche
atories, Nutley, N.J.
<table>
<thead>
<tr>
<th></th>
<th>A (N = 5)</th>
<th>B (N = 5)</th>
<th>C (N = 5)</th>
<th>D (N = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>1α-HCC</td>
<td>24R,25-DHCC</td>
<td>1,24R,25-THCC</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>E</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>C_{in} (ml/min)</td>
<td>49.7 ± 6.0</td>
<td>47.5 ± 5.0</td>
<td>86.4 ± 5.6</td>
<td>87.8 ± 6.5</td>
</tr>
<tr>
<td>$CPAM$ (ml/min)</td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
</tr>
<tr>
<td>$%E_{PO4}$</td>
<td>133.6 ± 22.5</td>
<td>138.0 ± 20.8</td>
<td>263.6 ± 34.6</td>
<td>269.0 ± 32.5</td>
</tr>
<tr>
<td></td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
</tr>
<tr>
<td>$%E_{Ca}$</td>
<td>19.4 ± 4.0</td>
<td>20.3 ± 4.2</td>
<td>15.6 ± 2.4</td>
<td>10.9 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
</tr>
<tr>
<td>$%E_{Na}$</td>
<td>8.4 ± 2.0</td>
<td>8.9 ± 1.3</td>
<td>13.4 ± 4.3</td>
<td>12.1 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
</tr>
<tr>
<td>SUF_{Ca} (μEq/liter)</td>
<td>2.03 ± 0.05</td>
<td>2.08 ± 0.02</td>
<td>1.87 ± 0.13</td>
<td>1.89 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
<td>P = NS</td>
</tr>
</tbody>
</table>

* Abbreviations: 1α-HCC, 1α-hydroxyvitamin D₃; 24R,25-DHCC, 24R,25-dihydroxyvitamin D₃; 1α,24R,25-THCC, 1α,24R,25-trihydroxycholecalciferol. N, number of studies. C and E, control and experimental phases of the experiment, respectively. C_{in} and $CPAM$, glomerular filtration rate and effective renal plasma flow as estimated by the clearances of inulin and p-aminohippurate, respectively. $%E_{P}$, $%E_{Ca}$, and $%E_{Na}$, % excretion rates of phosphate, calcium, and sodium, respectively. SUF_{Ca}, serum ultrafilterable calcium concentration.
1. The effects of vitamin D₃ metabolites and 1α-25(OH)D₃ on the absolute excretion rate of phosphate. Note significant reduction in phosphate excretion following administration of both 1α-HCC and 1α,24(R,25)-25,24R,25-HCC was without effect on urinary phosphate excretion. Data points represent the mean values or all dogs before (C) and after (E) administration of compounds.

2. The effect of vitamin D₃ metabolites and 1α-HCC on urinary calcium excretion. All three compounds, DHCC, 1α,24R,25-THCC, and 1α-HCC, were effective on the renal tubular handling of calcium.

at the 1 position is necessary for the manifestation of its biological activity. Thus, a common feature of all the compounds which in the present study effected a reduction in phosphate excretion, was the presence of the 1α-hydroxy configuration. Since glomerular filtration rate and effective renal plasma flow, as well as the filtered load of phosphorus were unchanged (Table 1), it is reasonable to conclude that the changes observed were due to a direct action of these compounds on the renal tubule. Furthermore, we conclude from these findings that the activity of vitamin D metabolites on the tubular transport of phosphate depends upon the presence of the 1α-hydroxyl configuration. Since, in earlier studies from this laboratory, 25-HCC was likewise very effective in reducing phosphate excretion (1), we infer that the latter metabolite was converted in vivo to another vitamin D₃ derivative containing a 1α-hydroxyl group. This most probably means the formation of 1α,25-DHCC or some other “tissue active” substance, as yet unidentified (2). The fact that 25-HCC does not act immediately on renal electrolyte transport (1) and requires the “permissive” effect of either parathyroid hormone (4, 7) or vasopressin (6) for its renal tubular effects to become evident, are supportive of this thesis.

Perhaps the most important synthetic analog of 1α,25-DHCC currently available, at least from a therapeutic standpoint, is 1α-
HCC. This compound is almost as potent as 1α,25-DHCC in stimulating intestinal calcium transport in the chicken (15) and has approximately two to five times the activity of vitamin D3 on calcification of the skeleton and in stimulating gut absorption of calcium in the rat (16). It has recently been reported that the intravenous administration of 1α-HCC to the rachitic rat produces an enhancement of intestinal calcium absorption within 1 hr of its infusion (17). This extremely rapid onset of action suggested to the investigators that 1α-HCC might act directly on the cell membrane transport of calcium. However, studies by Zerwekh et al. (18) suggest that the action of 1α-HCC requires prior conversion to 1α,25-DHCC. In addition, it has been demonstrated that tritiated 1α,25-DHCC appears in the intestine and bone within 2 hr after intravenous administration of 1α-[6-3H]hydroxy vitamin D3 (19). The design of the acute clearance studies presented in this report was such that observations were made for only 2 hr following the administration of the vitamin D3 derivatives. Thus, since further metabolic conversion of both 1α-HCC and 24R,25-DHCC appears to require longer than 2 hr, we presume that the observed changes in renal transport were due to the action of the unchanged compounds. As regards the effects of 1α-HCC, our results confirm the observations of Pechet and Hesse (8) and Toffolon et al. (17) that 1α-HCC has a very rapid onset of action. Of course, we cannot rule out the possibility of some (more rapid) metabolism of these substances to an as yet unidentified "tissue-active" metabolite or metabolites.

Unlike 25-HCC and 1,25-DHCC (1, 2), none of the vitamin D3 derivatives examined in the current study (1α-HCC, 24R,25-DHCC, or 1α,24R,25-THCC) were effective in altering either sodium or calcium excretion when given acutely. While no explanation of these observations is conclusively provided by the data, the findings could be explained as follows. The 1α-hydroxylated compounds (1α-HCC and 1α,24R,25-THCC) may act at different sites within the nephron or other receptor molecules than those affected by 25-HCC and 1α,25-DHCC. Alternatively, it may be that in order for a compound to alter calcium and sodium reabsorption, it must have a hydroxyl group in the 25 position in both the 1 and 25 positions. Further, it appears that the 25-hydroxyl group also be sterically unhindered. Indeed, et al. recently presented evidence that DHCC was rather less potent than 1α-HCC or 24R-HCC in its ability to enhance resorption (20). They proposed that several factors, steric hindrance, or an excess of hydrophilic groups in this region may explain the decreased activity of this compound. Further study will be required to elucidate the role of the above postulated mechanisms in the experimental observations.

Summary. The acute effects of DHCC, 1α,24R,25-THCC, and 1α-HCC on the renal handling of phosphate, calcium, and sodium were evaluated in the TP rat, which had been mildly volume expanded and infused with vasopressin to establish polyphaturia. Both 1α-HCC and 1α,24R,25-THCC when given intravenously in a dose of 0.625 μg produced a significant decrease in urinary phosphate excretion. Phosphate excretion decreased by 28%, respectively (P < 0.05, < 0.01) there was no alteration in renal hemodynamics or in the filtered load of this ion, suggesting the effect of the compounds on renal tubular transport mechanisms. A decrease in the urinary excretion of calcium was observed following administration of the two vitamin D3 derivatives. 24R,25-DHCC was without effect on the renal handling of all three ions.

When previous experimental findings regarding the renal actions of 25-HCC and 1α,25-DHCC are considered, the data suggest that the 1-hydroxylating group is required for the metabolites of vitamin D to stimulate phosphate transport at the renal tubule. It appears that a sterically unhindered hydroxyl group is necessary in order for the vitamin D3 derivatives to act on the reabsorption of either calcium or sodium.

This work was supported by grants from the National Institutes of Health (AM 17,575 and RR 00061) and the National Science Foundation (PCM 77-09055). We acknowledge the technical assistance of Kenneth Swint, Mrs. Roberta Sheffer, and Sylk.
RENAL EFFECTS OF VITAMIN D₃ METABOLITES

Stimulation of Growth Hormone Release by Intraventricular Administration of 5HT or Quipazine in Unanesthetized Male Rats1 (40316)

E. VIJAYAN, L. KRULICH, AND S. M. MCCANN

Department of Physiology, University of Texas Health Science Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75235

Although there is considerable evidence in favor of a stimulating role of the central serotonergic system on the secretion of GH in man and nonhuman primates (1–4), little information is available in other species (5). Collu et al. (6) reported that intraventricular injection of serotonin stimulated GH secretion in rats anesthetized with urethane and that the effect was abolished by phenoxybenzamine, an α receptor blocker. Since experiments on animals in deep urethane anesthesia are opened to some criticism, we have investigated, in the present work, the effect of intraventricular administration of serotonin in unanesthetized unrestrained rats and compared them with the effect of intraventricular administration of the serotonin receptor agonist quipazine (7).

Materials and Methods. Adult male rats of the Sprague–Dawley strain (Simonsen Laboratories, Gilroy, California) were used. They were housed under controlled conditions of lighting (light on from 0500 to 1900 hr) and temperature (24 ± 1°) with free access to food and water. After 2 weeks of adaptation in our animal facility, a 23-gauge stainless-steel cannula was implanted into the third ventricle and 1 week later the animals were fitted with Silastic intraventricular catheters as described earlier (8, 9). On the day of the experiment, usually 2 days after implantation of the intraventricular cannulas, the animals were transferred in their cages into a quiet laboratory and polyethylene extension tubes (PE50, 12 in. long) filled with a solution of heparin in 0.9% NaCl were attached to the distal end of permanent iv cannulas. Thirty to sixty minutes later a preinjection blood sample (0.6–0.8 ml) was withdrawn; then the intraventricular injection was performed and postinjection samples (0.6–0.8 ml) were taken at 10, 30, and 60 min into heparinized syringes. The volume of each sample was replaced immediately after each bleeding by an equal volume of 0.9% saline.

The intraventricular injections were performed according to the procedure described earlier (8, 9): Serotonin (serotonin creatinine sulfate complex, Calbiochem) or quipazine maleate (gift of Miles Labs, Inc.) were freshly dissolved in 0.9% NaCl; the pH was adjusted to 5.5 and then administered into the ventricle in a volume of 2 μl. The dosage of 5HT is in terms of the free base. Controls for the 5HT-treated animals received 40 μg of creatinine sulfate while controls to quipazine were injected with 0.9% NaCl. In all cases the intraventricular injection was given over a period of approximately 60 sec.

In two experiments the animals were injected with serotonin receptor blocker, methysergide maleate (gift of the Sandoz Laboratories), 10 mg/kg ip, 60 min before the intraventricular administration of either 5HT or quipazine.

After centrifugation of the heparinized blood samples, plasma was collected and stored frozen at −20° until assay. Concentration of GH in the samples was determined by the NIAMDD radioimmunoassay system for rat GH.3 All samples were measured in duplicates at two different dilutions. The results are expressed in nanograms per milliliter in terms of the RP-1 GH standard provided with the kit.

The statistical significance of the results was evaluated by the paired t test for sequential changes within the same group and by Student's t test for differences between two groups for a particular time.

Results and Discussion. Intraventricular injection of 5HT, 4 or 20 μg, caused a significant

1 Supported by Grants AM10073 and HD09988.
2 On leave of absence from Delhi University, India.
3 Kits for determination of GH were provided through the NIAMDD–NIH Pituitary Hormone Program.
n of plasma GH levels, which was t at 10 min and persisted throughout ation of the experiment (Table I). The dose was related to the dose of 5HT he peak levels at 30 min were signifi-n higher in animals injected with 4 µg. 3 of creatinine sulfate to control ani-l not influence plasma GH. Pretreat- the rats with methysergide had no e on the preinjection GH levels, but letely abolished the GH-stimulating 'intraventricular 5HT.

Urine also induced elevation of GH. However, in comparison with ct of 5HT, the secretory responses layed and a dose-related increase ap- only at 30 min after administration of g which persisted until the 60-min u of the experiment (Table II). The ory effect of quipazine was abolished etment of the animals with methy-

Intraventricular administration of nCl in the group of controls had no l plasma GH.
hink that our results provide strong evidence that activation of the central serotonergic system promotes secretion of GH in the rat. This conclusion is most directly supported by the GH-stimulating effect of intraventricular administration of 5HT. Suppression of the effect of 5HT with serotonin receptor blocker, methysergide, lends additional support to this conclusion.

There is considerable evidence that quipazine activates the central serotonergic system (10–12) probably by a combination of several effects, which include activation of serotonin receptors, inhibition of serotonin reuptake by serotonergic nerve terminals, and possibly enhanced release of serotonin (7, 13–15). It is, therefore, highly probable that the stimulation of GH secretion following intraventricular administration of quipazine originated in the activation of the central serotonergic system. The similarity between the effect of 5HT and quipazine as well as the fact that the effect of both drugs was suppressed by methysergide also speaks for this conclusion.

Difficult to explain is our observation that the GH-stimulating effect of quipazine was

<table>
<thead>
<tr>
<th>Treatment and dose</th>
<th>Preinjection</th>
<th>10</th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>creatinine sulfate, 40 µg (7)*</td>
<td>33.2 ± 1.5</td>
<td>28.9 ± 4.0</td>
<td>30.8 ± 2.8</td>
<td>34.0 ± 2.0</td>
</tr>
<tr>
<td>.4 µg (4)</td>
<td>31.3 ± 3.2</td>
<td>51.4 ± 7.6*</td>
<td>54.6 ± 6.0*</td>
<td>55.6 ± 12.0*</td>
</tr>
<tr>
<td>.20 µg (8)</td>
<td>27.8 ± 4.4</td>
<td>54.7 ± 9.0*</td>
<td>103.6 ± 6.5**</td>
<td>55.6 ± 3.4*</td>
</tr>
<tr>
<td>gide, 10 mg/kg. + serotonin, 5)</td>
<td>24.5 ± 4.6</td>
<td>17.5 ± 6.3</td>
<td>25.8 ± 3.2</td>
<td>38.7 ± 7.5</td>
</tr>
</tbody>
</table>

ber of rats per group.
ysergide was given ip in a volume of 0.1 ml of saline 1 hr before third ventricular injection.
1.05 vs preinjection level.
0.001 vs preinjection level.

E II. Third Ventricular Injection of Quipazine or Systemic Administration of Methysergide lowed by Intraventricular Quipazine on Plasma GH Levels (Nanograms per Milliliter of Plasma).

<table>
<thead>
<tr>
<th>Treatment and dose</th>
<th>Preinjection</th>
<th>10</th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2 µl</td>
<td>27.0 ± 3.3</td>
<td>30.6 ± 1.1</td>
<td>29.8 ± 3.2</td>
<td>30.3 ± 0.8</td>
</tr>
<tr>
<td>.4 µg (5)</td>
<td>31.0 ± 1.5</td>
<td>27.2 ± 2.1</td>
<td>62.6 ± 8.9*</td>
<td>67.2 ± 4.1*</td>
</tr>
<tr>
<td>.20 µg (4)</td>
<td>33.5 ± 2.3</td>
<td>26.3 ± 2.3</td>
<td>105.4 ± 2.6**</td>
<td>80.6 ± 9.2**</td>
</tr>
<tr>
<td>gide, 10 mg/kg. + ne, 20 µg (4)</td>
<td>30.6 ± 2.1</td>
<td>23.6 ± 1.2</td>
<td>26.0 ± 0.6</td>
<td>27.0 ± 0.6</td>
</tr>
</tbody>
</table>

Table I. ysergide was given as in Table I.
1.05 vs preinjection level.
0.001 vs preinjection level.
delayed as compared with the effect of 5HT. This delay is probably not caused by different pharmacodynamic properties of quipazine, because both drugs induce activation of prolactin secretion, attaining peak levels 10 min after intraventricular administration (unpublished results). It is, therefore, possible to speculate that quipazine, in addition to activation of the central serotonergic system, may have a short-lasting effect of another kind which is inhibitory to GH secretion.

Our results obtained with the intraventricular administration of 5HT in unanesthetized free-moving animals confirm the earlier work of Collu et al. (6) on animals anesthetized with urethane. To our knowledge this is the first report on the GH-releasing effect of quipazine.

Summary. Intraventricular injection of 5HT (4 and 20 µg) in unanesthetized, unrestrained male rats fitted with permanent intrajugular cannulas for withdrawal of blood samples caused a dose-related elevation of plasma GH levels. Similar effects were also observed following intraventricular injection of the serotonin receptor agonist, quipazine. The GH-releasing effect of both drugs was abolished by a serotonin receptor blocker, methysergide. It is concluded that activation of the central serotonergic system stimulates GH secretion in the rat.

The authors wish to thank Mrs. Shirlee Barnes for secretarial assistance.

Effects of Ethanol on the Absorption and Retention of Lead (40317)

JAMES C. BARTON AND MARCEL E. CONRAD

of Hematology and Oncology, University of Alabama in Birmingham, Birmingham, Alabama 35294, and Veterans Administration Hospital, Birmingham, Alabama

sequent clinical association of plumb- increased alcohol intake has sug- gusted that ethanol may augment lead ab- and toxicity. This investigation was ten to determine the effects of acute and chronic ethanol administration on lead ab- sorption and excretion.

Methods. Male albino rats of gen-free Wistar strain weighing 200 at the time of absorption measure- intravenous lead injection were used periments. The principles of labora- nal care as promulgated by the Na- esearch Council were observed. All were housed in polypropylene cages and absorbent bedding in a room pro- ith automatically controlled tempera- dium lighting. The rats were given a pelleted laboratory chow (Wayne x, Allied Mills, Inc.) fed ad libitum. deionized water was supplied imals except in some experiments in 9% ethanol (v/v) was substituted for

Absorption studies were performed urement of total body radioactivity ill animal whole-body liquid scintil- scelvetor (Packard-ARMAC). The ras- pines utilized were obtained from New Nuclear as 203Pb acetate (sp act iCi/mg of lead) or 207Pb nitrate (sp iCi/mg of lead). Because of its half-2 years, 207Pb was selected for use in e studies only; 203Pb, having a half-2 days, was used for all other exper- All measurements of radioactivity cected for radiodecay by comparison ppropriate standard after subtraction round radioactivity. Lead absorption ents were performed in rats fasted f from food but not fluids. Under ip bital anesthesia (4 mg/100 g), the was tied with a silk suture to prevent loss of absorbed lead. A laparotomy formed, the small intestine was iso-
ditional similarly prepared experimental and control animals for light and electron microscopic studies. The influence of acute alcohol ingestion was studied by the quantification of lead absorption in groups of animals receiving 1 ml of the following solutions in 50% ethanol: (1) 1 μg of Pb; (2) 10 μg of Pb; (3) 100 μg of Pb; and (4) 1 mg of Pb. Controls received the same quantities of lead in aqueous solutions. Segments of duodenum from similarly prepared experimental and control rats were examined by light and electron microscopy.

To determine whether the diminished lead absorption from ethanol solutions was due to a direct effect on the intestine, 16 rats were given 1 μg of Pb in the isolated intestinal segment. Half the animals simultaneously received 1 ml of 50% ethanol above the pyloric ligature by orosophageal intubation. Control animals received 1 ml of saline. In an additional experiment, intestinal loops with open distal ends were injected with 50% ethanol followed after 15 min by lavage with 0.5 ml of air and 1 ml of saline and subsequent tying of the cecal ligature. Intestinal loops in controls were pretreated with saline followed by similar washing. Lead absorption experiments were then performed using 1 μg of Pb.

In a final study to assess the role of the site of absorption in lead absorption, six groups of eight animals were subjected to laparotomy with bile duct and cecal ligation. The rats in each group received 1 μg in water or 50% ethanol (pH 4) by the following means: (1) aqueous and (2) alcoholic lead via orosophageal tube, the solution confined to the stomach by a pyloric ligature; (3) aqueous and (4) alcoholic lead via orosophageal tube without pyloric ligature; (5) aqueous and (6) alcoholic lead in isolated gut loop. Lead absorption was then quantified as previously described.

To study the effects of aqueous and alcoholic solutions on lead solubility, 100 ml of each of the following solutions were prepared as controls: (1) 1 μg of Pb/ml; (2) 10 μg of Pb/ml; (3) 100 μg of Pb/ml; and (4) 1 mg of Pb/ml. Similar solutions of lead in 50% ethanol were also prepared. One microCurie of 209Pb was added to each 100-ml solution and the pH was adjusted to 2.0. After mixing, 1 ml of each of the resulting solutions was removed as a standard. Each solution was titrated against 0.1 N NaOH to pH 2. 2-ml samples being removed at each pH value. Similar samples were taken returning to pH 2 with 0.1 N HCl. taken from each titration were centrifuged 3000 rpm x 30 min and 1 ml of supernatant was removed from each for quantitation radioactivity in a Packard auto-gamma spectrometer. Solubility of aqueous and alcoholic lead was expressed as percentage of Pb as a function of pH. Supernatants of ethanol solutions varying from aqueous to ethanol by more than 5% were applied to adsorbed G-25 columns equilibrated with ethanol at the appropriate pH. Solutions were counted successively to locate peaks of radioactivity which would indicate the presence of soluble lead-containing molecules.

In lead excretion experiments, experimental animals were given 10% ethanol feeding for 3 weeks prior to injection and received water. Ethanol was continued throughout measurements. While similar weight experimental and control rats at the time of injection (143 ± 7 g, 141 ± 5 g) were noted, ethanol-treated animals were less at the time of injection (205 ± 1 g, 205 ± 9 g, p < 0.05). Each animal was sodium pentobarbital anesthesia (4 g) to facilitate injection of 1.0 μCi of 0.5 ml of 0.9% NaCl (pH 7.4) into the vein of the penis. Whole-body counts obtained immediately after dosing, thereafter. Body retention of Pb was calculated by comparison to counts with correction for decay by ison to a standard. At the terminus excretion studies 4 weeks after dosing whole-body radioactivity was measured for electron microscopic study fixed in 2% glutaraldehyde, postfixation by osmic acid, and embedded in Araldite 150 to 200 A thick were stained with uranyl acetate and lead citrate examined using an RCA EMU4 electron microscope. Thick sections (1 μm) were with toluidine blue. Additional specimen light microscopy were fixed in 10% paraformaldehyde, and stained with toxylin and eosin.
absorption and excretion experiments of eight animals were used. Except as above for animals receiving ethanol, there were no differences in animal weights among the various compared in this study. For absorptions, all rats received 1 ml of a leading solution adjusted to pH 4.0, which was the pH of gastric contents and ns lead solubility. All lead quantities ressed as grams of elemental lead as 1 μCi of 209Pb or 210Pb was used as a ns label for each rat. Data are as means and standard errors of n. Statistical comparisons were made 2-tailed t test for unpaired

chronic ethanol ingestion signifi-

educed the absorption of a single dose ous lead. While animals receiving wa-

fluid source for 3 weeks absorbed 1.6% of a test dose of 1 μg of Pb, those d with 10% ethanol for 3 weeks ab-

only 15.2 ± 2.9% (p < 0.05). While rom animals receiving alcohol for 3 howed moderate fatty change, no light opic or ultrastructural changes were a duodenal mucosa of the same ani-
s illustrated in Fig. 1, the absorption from aqueous solutions was signifi-
greater than that from ethanol solu-
t concentrations of 1 and 10 μg of
(p < 0.005, p < 0.005). At lead con-
ons of 100 and 1 mg of Pb/ml, ab-
e from alcoholic solutions appeared greater than from controls but the ces were not significant (p = 0.20, p . Duodenal mucosa from animals re-
50% ethanol acutely with or without owed disruption of villous tips, pyk-
uclei, and increased villous invasion onuclear cells. By electron micro-
estion of microvilli, mitochondrial y, and irregularity of mitochondrial e noted in addition. No abnormalities ted in animals given saline or aqueous solutions. The solubility of 209Pb in solutions is shown in the upper half 2. Lead is more soluble in acid solu-
d increasing amounts are precipitated ncreases. As illustrated in the lower Fig. 2, little change in radiolabeled sol occurs when 50% ethanol is used as a carrier. Application of supernatants obtained in these experiments to Sephadex G-25 columns revealed no evidence of lead-containing macromolecules.

Since animals receiving ethanol on both an acute and chronic basis appeared to have diminished lead absorption unattributable to reduced lead solubility or macromolecule formation in the presence of alcohol, additional experiments were performed to determine whether at least part of this inhibitory effect was due to a direct effect of ethanol on intesti

cellular. Rats with a pyloric ligature simultaneously administered 1 μg of Pb in the intestinal loop and 50% ethanol in the stomach showed lead absorption (Fig. 3) which did not significantly vary from that observed in control animals. Absorption of lead in animals with ethanol-pretreated intestinal loops, however, was significantly less than that seen in rats with saline-pretreated gut loops (3.9 ± 0.5 vs 13.5 ± 1.5% control, p < 0.0005). As shown in Table I, only small quantities of aqueous or alcoholic lead were absorbed by the stomach (2.5 ± 0.7 and 2.1 ± 0.4%, respectively). The absorption of lead in aqueous solution by the intestine (30.6 ± 1.5%) was significantly higher than that of lead in alcoholic solution (8.2 ± 0.8%, p < 0.005) and is similar to findings shown in Fig. 1. When alcoholic lead solutions were given via oroophagal intubation such that both stomach and intestine could act as absorptive sites, lead absorption increased to 22.4 ± 3.2%. This value was less, however, than lead

FIG. 1. The acute effects of ethanol administration on the absorption of a single dose of lead chloride.
uptake from aqueous solutions \((28.6 \pm 1.7\% \ p < 0.05) \). The findings suggest that a gastric factor, perhaps ethanol-stimulated gastric acid, may act to modify lead absorption although in these experiments alcoholic lead uptake remained significantly less than controls.

As seen in Fig. 4, the excretion of lead in animals chronically receiving 10% ethanol did not significantly vary from control animals at any time during the experiment. Both groups showed an initial rapid phase of lead elimination during the first week after injection, in which time about one-half of the administered dose was excreted. This was followed by a slower phase of lead loss from the body. By using a best fit slope derived from mean-square analysis plotted on semilogarithmic graph, the half excretion time for lead remaining after Day 7 was approximately the same for each group, about 160 days.

Discussion. A variety of clinical reports of lead poisoning in heavy consumers of alcohol (2–4) has suggested that ethanol may enhance lead accumulation and potentiate its toxic manifestations. While Mahaffey et al. (1) concluded that there was little synergism of ethanol and lead as measured by morphologic and biochemical parameters of lead toxicity, no studies to date have directly measured the effects of alcohol on lead absorption or retention. The results of this study indicate that: (1) the acute and chronic administration of ethanol inhibits the ability of the rat small intestine to absorb lead; (2) the effect does not seem attributable to diminished lead solubility in alcohol; (3) the inhibitory effect may be related, in part, to the direct toxicity of ethanol on intestinal mucosa; and (4) chronic ethanol ingestion does not appear to alter the excretion of lead given as a single intravenous dose. While the mechanism of lead absorption is unknown, Krawitt (5, 6)
ethanol and lead absorption and retention

...d that acute or chronic ethanol ad-
tration inhibited calcium transport in
d rat gut sacs and that this effect was
ated with direct mucosal toxicity. Since
ce exists that one or more intestinal
ns important in calcium mucosal bind-
g transfer may participate in lead ab-
on (7), a similar direct toxic effect on
nal mucosa may be responsible for the
ished lead absorption found in these
ments. Whether the anatomic damage
enal mucosa observed in these exper-
s after acute ethanol administration is
sible for the diminished lead absorp-
s from acute or chronic ethanol adminis-
tion cannot be determined at present. The
of obvious mucosal damage in rats-
tically fed ethanol suggests that acute
chronic alcohol exposure may diminish
sorption by different mechanisms.
workers, however, have noted ultra-
ral changes in small intestinal mucosa
ng more prolonged low-level ethanol
ure (8). While there is evidence that a
factor may modify the absorption of
alcoholic lead from stomach and intestine,
the lead absorption does not exceed that ob-
erved in aqueous lead control animals.
Factors enhancing the susceptibility to lead
poisoning have been reviewed (9). Several
dietary deficiencies common among heavy
alcohol users have been established as capa-
ble of potentiating the manifestations of lead
toxicity. While protein deficiency reduces
lead absorption (11), it produces greater sus-
cceptibility to lead toxicity (12, 13). Dietary
calcium deficiency increases lead retention
(14, 15) and potentiates morphological and
biochemical parameters of lead poisoning
(16) but does not alter lead absorption (7).
Iron deficiency both enhances lead toxicity
(17) and increases lead absorption (10, 11).
The effects of ascorbic acid, pyridoxine,
and other micronutrients on lead metabolism
and toxicity are not known with certainty (9).
Since these experiments indicate that acute
or chronic ethanol exposure does not increase
lead absorption, particularly at concentra-
tions commonly seen in lead-containing
"moonshine" whiskey (1–10 μg of Pb/ml)
(18), the apparent synergism of lead and
ethanol reported in alcoholics may be related
to increased lead exposure (lead-contami-
nated illicit whiskey or industrial environ-
ments) and/or nutritional deficiencies as pre-
viously concluded (1). These studies suggest
that chronic ethanol ingestion does not alter

3. The intestinal absorption of a single dose of
lode in rats without prior ethanol exposure as-
ced by gastric injection of saline or 50% ethanol
and pretreatment of the intestinal loop by saline
ethanol (right).

FIG. 4. The whole-body retention of lead following
a single intravenous dose of lead-210 in rats chronically
ingesting 10% ethanol.

<table>
<thead>
<tr>
<th>TABLE 1. EFFECT OF ABSORPTIVE SITE ON ABSORPTION OF LEAD FROM AQUEOUS AND ALCOHOLIC LEAD SOLUTIONS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of absorption</td>
</tr>
<tr>
<td>Stomach</td>
</tr>
<tr>
<td>Solution</td>
</tr>
<tr>
<td>Absorption (%)</td>
</tr>
</tbody>
</table>
the elimination of small quantities of lead administered as a single intravenous dose. Although there are no previously published reports of the effects of ethanol on lead excretion, the variety of renal lesions seen in plumbism and the known augmentation of lead-induced renal abnormalities by alcohol (1) suggest that diminished excretion may be of significance only when large quantities of lead are involved.

Summary. To determine the effects of acute and chronic ethanol ingestion on the absorption of lead, experiments were performed using an in vivo isolated gut loop technique. Acute administration of 50% ethanol significantly reduced the absorption of lead at concentrations of 1 and 10 µg of Pb/ml. This effect appears to be independent of lead solubility in alcohol and is associated with structural changes in intestinal mucosa, suggesting toxicity. Absorption of a single dose of lead was also diminished in animals chronically exposed to ethanol. Elimination of a single intravenous dose of lead was not affected by chronic alcohol ingestion. These findings suggest that the clinically reported synergism of lead toxicity and ethanol is related not to increased lead absorption or diminished lead excretion but to nutritional deficiencies and increased lead exposure among some alcoholics.

Received December 12, 1977. P.S.E.B.M. 1978
Scatter Characteristics of Erythroid Precursor Cells Studied in Flow Analysis (40318)

McLEAN GROGAN, ROBERT B. SCOTT, AND JAMES M. COLLINS

Institute of Biochemistry, Medicine, and Pathology and the Cancer Center, Medical College of Virginia, Richmond, Virginia 23298

Analysis is a powerful new tool to characterize the attributes of individual cells in suspension. The presently available flow instruments measure either scatter of monochromatic light by cells or fluorescence of fluorescent-labeled cell structures. In addition, scatter (LS) or fluorescence can be a discriminating parameter by which cells can be separated electronically for further study.

Marrow is a complex mixture of cells, developing myeloid (granulocytes, megakaryocytes, and lymphocytes) as well as lymphocytes. Effective flow analysis requires samples enriched with an individual cell type. Flow instruments to sort a cell type, based on either LS or fluorescence, must match the cell type. For example, cell sorting is cell-sparing, sorted cells chemically unaltered and possibly chemically active. Studies of bone marrow flow analysis have shown the possibility of separating selected cell types of mononuclear cells. In previous reports from this laboratory, emphasis has been placed on the study of granulocyte precursors of varying development. In this report, the study of separating erythrocytes and granulocyte precursors in relatively pure form was extended. This was accomplished by a simple isopycnic fractionation of rabbit density gradients followed by flow of the gradient fractions, using LS to determine sorting parameters.

Methods. Preparation of Marrow. Rabbit marrow was removed from long bones, filtered, and washed as described except that hypotonicity of erythroid precursors was not decreased.

Flow analysis and electronic cell sorting. Fractions from the preliminary isopycnic separation of cells were analyzed with a Coulter Electronics Company TPS-1 sorter. Cells were analyzed at a flow rate of 1000 to 3000 cells per second and LS histograms were generated as described previously. The distinct and reproducible distributions in the LS histograms were used to set electronic sort windows by which 100,000 cells were sorted in each of two windows simultaneously.

Sorted cells were collected in fetal calf serum and collected on microscope slides in a Shandon cytocentrifuge. Differential cell counts were performed after staining with Wright's stain.

Results. Light scatter profiles of bone marrow cells at separating buoyant densities. Blood cell precursors of the bone marrow, both erythroid and myeloid, increase in buoyant density as they mature. Thus a preliminary separation of bone marrow cells by isopycnic sedimentation in Ficoll/Hypaque gradients allows collection of gradient fractions near the top of the gradient which are rich in immature cells and fractions of increasing maturity progressing to the bottom of the gradient.

The cells recovered from each density gradient fraction were subjected to flow analysis. The LS histograms, with the cell numbers on the ordinate and increasing LS intensity on the abscissa, are shown in Fig. 1. For clarity, 4 of the 10 gradient fractions which best illustrate the typical changes in the profiles from top to bottom of the gra-
dients are shown. The Arabic numerals on the abscissa designate sort fractions and indicate the segments under the LS profile chosen for individual electronic sorts. In gradient fraction X, too few cells were available for a fourth sort fraction.

The pattern consists of distributions representing distinct classes of cells with similar LS properties. The peak included in sort fraction 1 dominates in terms of cell number. Each curve is adjusted to show the peak at the top of the histogram so that the relative proportions of the sort fractions can be compared.

In gradient fraction 1 (top of the density gradient) the peak included in sort fraction 2 is more prominent than the third peak (sort fraction 3), but both peaks are similar in gradient fractions closer to the bottom of the density gradient, and both are small compared to the peak in sort fraction 1 at the bottom of the gradient.

In terms of total cells, 46% of the cells in gradient fraction 1 are erythrocyte, over half of which are nucleated. Erythrocytes make up 84% of the cells of the gradient fraction X, but only 3% of these are nucleated.

The differential counts of individual sort fractions in Fig. 2 show the distribution of cell classes in several sort fractions derived from each density gradient fraction. The differential cell counts from each sort fraction are reported in three categories, represented by the three bars under each sort designation in Fig. 2. The "lymph" bar indicates lymphocytes and smudged nuclei (shaded portion), which may sort with lymphocytes. The "RBC" bar indicates erythrocytes and erythroid precursors. The latter are indicated by shading and "nRBC". The third bar ("gran") in each sort indicates granulocytes, mature polys, and their precursors.

Sort 1 is predominantly an erythroid fraction, sort 2 is enriched with nucleated red cells, and sorts 3 and 4 are primarily granulocyte fractions. If sort fraction 2 of gradient IV (mid-gradient) is chosen, a sample of cells is obtained which is over 90% erythrocyte, 64% of the cells being nucleated erythroid precursors.

An example of this fraction is shown in Fig. 3. This photomicrograph shows a group of nucleated erythrocyte precursors and one larger cell which may be lymphoid. The granulocytes chiefly responsible for the LS peak in sort fraction 3 are more mature than those which predominate in sort fraction 4. The larger less mature granulocytes scatter more light than the more mature cells (3).

Discussion. The scatter by cells of an incident beam of light is determined in part by the size of the cell, but also depends on reflection from cell surfaces, phase-shift in light passing around or through the cell, and diffraction of light by internal structure within the cell. The instrument involved in this study utilizes a light detector which collects light scattered 2° to 20° from the incident beam. It is known that cell size is the most important determinant at low angles of scatter (2° to 5°) and presumably internal structure plays a greater role in determining the intensity of scatter at larger angles (5).

It is clear from these studies that cell size is not the only determinant of scatter. The mature erythrocytes and reticulocytes scatter less light than any other cell type in the marrow, and there is a distinct separation of peaks of nucleated and non-nucleated erythrocytes. Since the size of the maturing red cell precursors decreases in a continuous fashion, if size were the major determinant of LS, there would be one broad, continuous peak.
Fig. 2. Differential cell counts of cells sorted from density gradient fractions whose LS profiles are seen in Fig. Each sort fraction contains cells obtained from the abscissa in Fig. 1. Each sort fraction is reported as lymphs (lymphocytes and smudged nuclei), RBC (erythrocytes and nuclear RBC), and gran (neutrophils and their cursors). In gradient fraction X only three sort fractions were collected.

Fig. 3. Photomicrograph of sort fraction 2 of density gradient fraction IV. Cells shown are nucleated erythrocyte cursors and one probable lymphoid cell. Original magnification. × 1000.
of erythroid LS. Instead, discrete distributions were observed (Fig. 1). This was also evident in other LS studies from our laboratory (3) in which it was shown that lymphocytes of various sizes were found to have very similar LS properties. It is evident that the character of the nucleus is an important LS determinant.

Granulocytic cells tend to scatter more light than erythrocytes, normoblasts, or lymphocytes. This is due no doubt to both greater cell size and much greater complexity of cytoplasmic organelles.

It is evident that LS of cells, especially when combined with separation based on buoyant density differences, is a useful means of isolating erythrocyte precursors for study.

Summary. Light scatter (LS) differences among cells of rabbit marrow was studied by flow analysis using a Coulter two-parameter cell sorter. A preliminary fractionation of the marrow into samples enriched with cells of varying degrees of maturation was accomplished in Ficoll/Hypaque density gradients.

Subsequent study of each of these samples in flow analysis demonstrated unique profiles which distinguished erythroid from nucleated erythroid precursor granulocyte precursors. The combination procedures made it possible to fractionate erythroid precursors with as 90% erythroid cells, two-thirds of which were nucleated precursors.

This research was supported by Research Center 08482, CA 16059, and CA 17177 from the Institutes of Health.

Received March 29, 1978. P.S.E.B.M. 1978, Vo
Salbutamol as a Topical Anti-inflammatory Drug (40319)

ROBERT J. SEELY1 AND E. MYLES GLENN2

Upjohn Company, Department of Hypersensitivity Diseases Research, Kalamazoo, Michigan 49001

the initial events in acute inflammation include the release of histamine from mast cells in response to tissue injury or antibody complexes. Histamine release is increased by secondary characteristics of pain (1). Drugs that inhibit histamine prevent or reduce tissue inflammation by acting partly by increasing the cellular cyclic adenosine monophosphate (2). Anti-inflammatory steroids stimulate the synthesis of the enzyme adenosine to control adenosine uptake into cells, and β-adrenergic agonists stimulate adenyl cyclase at the β-adreceptor (3).

Cortisone (17α-hydroxycorticosteroid) is used effectively to reduce inflammation; however, salbutamol offers several distinct advantages. Salbutamol is a xylene-α,α′-diol,α′-terbutylamino-hydroxy) is a relatively specific β2 agonist and selectively stimulates bronchial smooth muscle. The cardiovascular and peripheral nervous system effects of other mimetic amines are caused in part by the receptors which are present in these tissues.

We report the local anti-inflammatory effect of salbutamol when applied topically to rat ears. Salbutamol is effective in reducing ear swelling.

Its mechanism of action in rat ears is essentially that of Tonelli et al. (v/v) croton oil solution in absolute alcohol applied with a micropipet to the outer surfaces of both ears (0.05 ml each). The ears were investigated at 5, 6, and 24 hr and remain red and inflamed at 48 hr. Inflammation is measured by cutting off the ears at 5.5 hr and weighing them. Drugs are usually applied simultaneously in the croton oil–ethanol mixture. In some cases, as noted, drugs are applied after the croton oil. Male Sprague-Dawley rats (200–240 g) are used. Untreated control rats provide the weight of normal nonedematous ears. Croton oil-treated rats demonstrate the extent of inflammation in the absence of drugs. Hydrocortisone (1%), serving as a positive control, consistently inhibits inflammation by 80 to 100%. Data are expressed as milligrams of edema of both ears, that is, the increase in weight of both ears over the untreated control. The weights in each group are averaged and the standard error of the mean is calculated (depicted by vertical line extensions on the graphs).

Results. Local inflammation is inhibited totally by hydrocortisone and salbutamol when they are applied topically to the ears at 1 to 2% (w/v) in the croton oil solution (Fig. 1). Croton oil causes the ears to gain an average of 155 mg in the absence of any anti-inflammatory agent. Drug concentrations of 0.1% reduce the edema by 80%. When drugs are applied to a distant shaven area of the back, anti-inflammatory activity still occurs but higher concentrations are required (Fig. 1B).

Hydrocortisone and salbutamol reduce local edema even when applied after the inflammation reaction is in progress (Fig. 2). In the case of salbutamol, significant reduction of inflammation is obtained when given up to 2 hr after application of the croton oil. Hydrocortisone is not as effective when given this late in the development of acute inflammation.

Salbutamol is found to be inactive orally in our model (Fig. 3). Doses of up to 35 mg/kg body wt, delivered orally by stomach tube, failed to significantly inhibit ear edema. Propranolol (a β-adrenergic receptor blocking agent) interferes with the ability of salbutamol to inhibit inflammation, but di-
Salbutamol is active in inflammation

Fig. 1. Local and systemic anti-inflammatory activity of hydrocortisone and salbutamol. The drugs are applied directly to the ears (A) or to a shaved area on the back (B). In both A and B, the croton oil was applied to the ears to induce inflammation. In this and subsequent graphs the averages of five animals per group are presented, and the vertical line extensions represent the standard errors of the mean.

Fig. 2. The effects of salbutamol and hydrocortisone on local inflammation when they are administered during the course of the inflammation reaction. Croton oil was applied to the ears to induce inflammation, while salbutamol (1%) and hydrocortisone (1%) were also applied but at various times after the croton oil.

Dibenamine (an α-adrenergic receptor blocking agent) has no influence (Fig. 4). Neither propranolol nor dibenamine prevents the anti-inflammatory activity of hydrocortisone.

Discussion. The need exists for a locally active anti-inflammatory drug that can be applied directly. Salbutamol (Ventolin, Allen and Hansbury) is used in foreign countries in the management of asthma (6). Green (7) has reported that salbutamol, injected ip, could reduce inflammation both in the mouse peritoneum induced by acetic acid and in the rat hindpaw edema induced by carrageenan. He also demonstrated that the activity is not mediated by release of adrenal corticoids.

Salbutamol is very effective in the prevention of local inflammation. Although it is orally active in our model of inflammation, salbutamol is effective if applied directly to the inflamed site or at a remote site. It suggests that the drug is readily absorbed into the circulatory system; however, larger concentrations are required if the drug is applied at the site of inflammation.

Fig. 3. Topical and oral activity of salbutamol in local inflammation. Salbutamol was applied directly to the ears, or given orally by stomach tube, at various doses, 30 min prior to the croton oil.

Fig. 4. Effects of 4% propranolol (pro) and 4% benamine (dib) on the local anti-inflammatory activity of hydrocortisone and salbutamol. Croton oil, propranolol, and dibenamine were given independently (controls) and in combination with the drugs (simultaneous application, including croton oil).
SALBUTAMOL IS ACTIVE IN INFLAMMATION

ion of salbutamol as a bronchodilator in the treatment of asthma is mediated through beta-adrenoceptors in the bronchus and mast cells. Dibenamine, a beta-blocking agent, has no effect. Hydrocortisone, in a different manner since neither salbutamol nor hydrocortisone block the effect of beta-blocking agent.

Cardiac side effects are expected to be minimal, because salbutamol is selective for beta-2-receptors and has no effect on beta-1 receptors which predominate in heart. The minimal adverse effects of salbutamol compared with other beta-agonists that control of asthma are discussed in (8) and by Dockhorn (9). We have demonstrated that salbutamol was pursued because it is more effective and because of its low toxicity. Morrison and Farebrother (10) reported a case of salbutamol overdose with sequelae in children that occur. Further studies are needed to establish its safety in inflammatory conditions of the airway.

Summary. Using croton oil-induced edema, hydrocortisone and salbutamol anti-inflammatory activity when applied locally. Both drugs act to some extent when applied after the inflammation is in progress. Both drugs are also active when applied to a shaven area of the back, remote from the ear inflammation. Salbutamol acts by a different mechanism than inflammatory steroids. The advantages of salbutamol are discussed and it appears to be a useful adjunct in the treatment of inflammatory dermatoses.

Interaction of Ethanol and Thyroxine on Hepatic Oxygen Consumption

SANT P. SINGH AND ANN K. SNYDER

Medical Research Service, Veterans Administration Hospital and the Department of Medicine, Chicago Me. School, North Chicago, Illinois 60064

Chronic feeding of ethanol to rats has been shown to stimulate respiration by liver slices through an increase in conversion of ATP to ADP by the (Na + K)-ATPase system (1, 2). The calorogenic effect of thyroid hormones also involves stimulation of (Na + K)-ATPase (3). However, some studies have suggested that the availability of mitochondrial substrate and not ADP may determine the rate of respiration and that thyroxine (T4) enhances the availability of the substrate for mitochondrial oxidation (4).

The present study was done to investigate interrelationship between the effects of chronic ethanol ingestion and T4 treatment on O2 consumption by rat liver slices and isolated mitochondria. Further, the influence of the available oxidizable substrate for the ethanol and T4 effects on respiration of rat liver slices was studied.

Materials and Methods. Thirty-two Sprague-Dawley male rats weighing 150 to 200 g were divided equally into four groups at random. Group A received tap water and group B received 20% (v/v) ethanol as the only drinking solution ad libitum. Group C was rendered thyrotoxic by daily ip injection of 1-T4 (150 µg/100 g body wt) for 14 days. Group D received 20% (v/v) ethanol as drinking solution and T4 treatment as outlined for group C. All animals were housed in individual cages, fed regular Purina Chow ad libitum, and weighed at regular intervals. Animals in group D lost considerable weight (see Table 1) and appeared sick, although none died. In eight relatively young rats, average weight 100 g, a 25% mortality rate was observed during 20% ethanol + T4 treatment and therefore present studies involved relatively larger animals.

After 14 days the animals were fast 18 hr and then sacrificed by decapitation. Blood was collected for the estimation of T4 levels (5). Livers were removed and placed immediately in ice-cold oxygen medium containing 135 mM NaCl, 1.17 mM K2HPO4, 0.5 mM MgCl2, 5 mM Tris, and 10 mM glucose, pH 7.4. Liver slices 2 mm thick were prepared and their respiration was determined in a Warburg apparatus (cision Scientific). Each Warburg flask contained approximately 60 mg of tissue in 1 ml of the oxygenated medium mentioned. Respiration was measured for three consecutive 30-min periods. Thereafter 50 µl M succinate was added to the medium in the side arm to give a final concentration of 7 mM and respiration of the liver slice was estimated for three additional 10-min periods.

To determine oxygen consumption by isolated mitochondria instead of liver slices, mitochondria were isolated from the same livers according to the technique of Johnson and Lardy (6). An aliquot, 0.05 ml, of the mitochondrial suspension was placed in a Warburg flask containing 3 ml of incubation medium which contained 62.5 mM sodium succinate, 185.5 mM mannitol, 10 mM KCl, 10 mM Tris–HCl, pH 7.4, 5 mM K2HPO4, 2.0 mM EDTA, 7 mM succinate, 83.3 µM ADP. Respiration was measured for three consecutive 10-min periods.

Respiration estimations for liver slices and mitochondria were done in triplicate for each liver. The protein content of the liver and of each mitochondrial suspensions was determined by the Lowry method (7) and statistically analyzed by Student's t test.

Results. Table 1 shows mean ± SEM of body weight and serum thyroxine level in rats receiving ethanol, thyroxine, or a combination of these two substances (n = each group of animals). Rats that re
TABLE 1. Effect of Ethanol Ingestion on Body Weights and Serum T₄ Levels of Normal and Thyroxine-Treated Rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Initial body weight (g)</th>
<th>Final body weight (g)</th>
<th>Difference</th>
<th>Serum thyroxine (µg%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Saline</td>
<td>166 ± 8</td>
<td>238 ± 8</td>
<td>72 ± 6</td>
<td>4.6 ± 0.4</td>
</tr>
<tr>
<td>B. Ethanol</td>
<td>179 ± 8</td>
<td>194 ± 9</td>
<td>15 ± 4*</td>
<td>3.9 ± 0.3</td>
</tr>
<tr>
<td>C. T₄</td>
<td>176 ± 10</td>
<td>229 ± 12</td>
<td>53 ± 8</td>
<td>16.6 ± 2.4*</td>
</tr>
<tr>
<td>D. Ethanol + T₄</td>
<td>179 ± 7</td>
<td>132 ± 7</td>
<td>-47 ± 4*</td>
<td>14.1 ± 2.9*</td>
</tr>
</tbody>
</table>

* p < 0.001 compared to controls. (saline).

either ethanol or T₄ gained significantly less weight than controls (p < 0.05). Simultaneous treatment with ethanol and thyroxine produced a marked loss in body weight as compared to controls (176.2 ± 7 vs 127 ± 7; p < 0.01). Serum T₄ levels were significantly higher (p < 0.01) in T₄-treated animals and ethanol ingestion exerted no discernible effect on serum T₄ values.

Effect of ethanol on O₂ consumption by liver slices of euthyroid and thyrotoxic rats. Figure 1 shows that chronic ethanol ingestion decreased the rate of oxygen utilization from a control value of 0.098 ± 0.004 to 0.082 ± 0.004 µg of O₂/min/mg of protein in liver slices of euthyroid rats. The results were significant at the 2% level. Addition of succinate to liver slices produced a marked increase in O₂ consumption to 0.183 ± 0.01 and 0.243 ± 0.01 µg of O₂/min/mg of protein in controls and ethanol-treated animals, respectively. Furthermore, with succinate as oxidizable substrate, ethanol pretreatment produced an increase (p < 0.001) in the rate of respiration instead of a depression of respiration observed with glucose as the substrate.

Figure 2 shows that in thyrotoxic rat liver slices the O₂ consumption was 50% greater than in euthyroid rat liver slices (p < 0.001). Chronic ethanol ingestion decreased O₂ consumption by nearly 50% from 0.147 ± 0.004 to 0.071 ± 0.005 µg of O₂/min/mg of protein (p < 0.001) with glucose as substrate. Addition of succinate increased respiration of T₄-treated rat liver slices and chronic ethanol ingestion enhanced the rate of respiration further from 0.282 ± 0.015 to 0.367 ± 0.028 µg of O₂/min/mg of protein (p < 0.02).

Effect of ethanol and thyroxine on O₂ consumption of isolated mitochondria of rat liver. As shown in Fig. 3, mitochondria isolated from euthyroid rat liver showed no significant difference in respiration after chronic ethanol treatment as compared to control values.

FIG. 1. Mean ± SEM (n = 8) oxygen consumption rate by liver slices of rats fed 20% ethanol as drinking solution or tap water (controls) for 14 days. The rate of O₂ consumption was estimated with liver slices in media containing glucose before and after the addition of succinate.

FIG. 2. Mean ± SEM (n = 8) oxygen consumption by liver slices of T₄-treated rats that received 20% ethanol or tap water ad libitum for 14 days. Oxygen estimation was done as described under Fig. 1 and T₄ injections were given as described in the text.

However, in mitochondria isolated from thyrotoxic rat livers it was observed that chronic ethanol treatment enhanced O₂ consumption significantly from 1.27 ± 0.032 to 1.57 ± 0.118 µg of O₂/min/mg of protein (p < 0.05).

Discussion. Previously it has been shown that daily ingestion of ethanol (35% calorie-wise) for 21 to 27 days enhanced oxygen consumption by rat liver slices. The under-
Fig. 3. Mean ± SEM (n = 8) oxygen consumption by mitochondria isolated from livers of euthyroid and T₄-treated rats. Both groups of euthyroid or T₄-treated rats were given 20% ethanol or tap water ad libitum for 14 days. Injections of T₄ were given as described in the text.

Lying mechanism was reported to be an increased activity of the (Na + K)ATPase activity (1, 2). The present data derived from rats consuming relatively less ethanol (i.e., 20% (v/v) as drinking solution ad libitum for 14 days) show that the ethanol effect on respiration of rat liver slices is dependent on the available oxidizable substrate. The O₂ consumption by liver slices was increased in medium containing succinate as substrate but decreased when glucose was used instead of succinate.

Substrates can provide electrons to the respiratory chain at the beginning (the level of NADH dehydrogenase), at the middle (ubiquinone level), and at the terminus (cytochrome c level). Succinate which is flavin-linked provides electrons to the cytochrome b–ubiquinone segment and therefore bypasses energy coupling site I at the level of NADH dehydrogenase. The utilization of electrons from glucose is partly NAD-linked and thus involves energy coupling site I. The present results might be explained by an inhibitory effect of ethanol on coupling site I or on some steps prior to it. In fact, Cederbaum et al. (8) have shown that chronic ethanol ingestion (36% calorie-wise) depresses mitochondrial respiration by damaging coupling site I.

Whereas ethanol enhanced O₂ consumption in rat liver slices incubated with succinate, it did not exhibit a similar effect when isolated mitochondria from the same livers were studied. Other studies have reported a depression of mitochondrial respiration when chronic ethanol ingestion and asc effect to a damage to the respiratory. Furthermore, structural changes in mitochondria including swelling, disorganization of cristae, and intramitochondrial crystalline inclusion are observed with chronic ethanol treatment (9). Coexistence of fat infiltration of hepatocytes has been shown (10). In the present study rats less ethanol, and any morphological studies in mitochondria, although not done, were perhaps insufficient to depression in fact, the O₂ consumption of mitochondria isolated from thyrotoxic rats was enhanced by chronic ethanol. Therefore, it is unlikely that the respiratory chain was damaged by ethanol as in rats in this study.

The calorigenic effect of thyroid hormone on liver is ascribed to an increased production due to stimulation of (Na + K)ATPase activity (3). However, Prin and Buchanan (4) showed O₂ consumption by liver slices was greater with succinate with glucose and suggested that the availability of oxidizable substrate rather than carbohydrate controls the rate of O₂ consumption. The present data show that chronic ethanol treatment decreased O₂ consumption of rat liver slices when glucose was an oxidizable substrate but a converse effect occurred when succinate was added. It seems that the inhibition of energy coupling site I discussed above, was sufficient to block O₂ consumption in a glucose-containing medium. On the other hand, increase in succinate-supported respiration was the same liver slices might be released from (Na + K)-ATPase activity.

It needs to be emphasized that rats receiving ethanol + T₄ lost condition weight and appeared sick. A decrease in food intake might have resulted in a limit of substrate for O₂ utilization. The conceivable effect of malnutrition is to that of ethanol should be considered in the interpretation of data derived from rats. Nonetheless, individual rat liver has its own control in terms of comparability of O₂ utilization during two substrates, i.e., glucose and succinate.

Summary. Interrelationship bet
of chronic ethanol ingestion and T₄ ent on O₂ consumption by rat liver and isolated mitochondria was investigated. The data showed that ethanol influences O₂ consumption by liver slices was determined on the available oxidizable substrate; it was decreased when estimated in containing glucose but increased in containing succinate as oxidizable substrate. The respiration of thyrotoxic rat liver was altered by ethanol in a manner similar to that observed with euthyroid rat liver slices. Whereas ethanol ingestion enhanced succinate-supported respiration of euthyroid and thyrotoxic rat liver slices, it produced a similar effect in isolated mitochondria of thyrotoxic rat livers but not of euthyroid livers.

The authors wish to thank Mrs. Ruth M. Bonovich for this manuscript.

5. T, RIA (PEG) Diagnostic Kit, Abbott Laboratories, North Chicago, Ill.

Effect of a Phosphodiesterase Inhibitor, 3-Isobutyl 1-methylxanthine, upon the Stimulatory Effect of Human Follicle-Stimulating Hormone and Human Luteinizing Hormone upon Cyclic Adenosine 3′:5′-Monophosphate Accumulation by Porcine Granulosa Cells¹ (40321)

ADA M. LINDSEY AND CORNELIA P. CHANNING²

Department of Physiology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, Maryland 21201

A mechanism of polypeptide hormone action on target cells is to stimulate formation of cAMP which subsequently acts as an intracellular mediator of hormone action. Intracellular cAMP levels are the result of given rates of synthesis combined with a given rate of degradation or extracellular release. The cyclic nucleotide is believed to be hydrolyzed to 5′-AMP by one or more cyclic nucleotide phosphodiesterases (1). Methylxanthines have been shown to exert inhibitory effects on the action of phosphodiesterase (2, 3). We have shown previously that LH and FSH can stimulate cAMP accumulation by porcine granulosa cells (GC) and that the amount of cAMP accumulated in response to the two gonadotropins differs according to the stage of maturation of the follicle (4). In addition, observations from previous studies (4) suggest that the phenomenon of cAMP accumulation by porcine GC in response to the stimulatory effects of the gonadotropins occurs over time. For GC from small and medium follicles the intracellular cAMP accumulated in response to FSH was not observed to decline significantly in incubations of 30 min or less. The decline occurred between 30- and 60-min periods of incubation and it was during this time interval that the increase in cAMP accumulation in the incubation medium was observed to occur. For GC from large follicles the intracellular cAMP accumulated in response to LH was not observed to decline with 30- nor with 60-min incubations; however, a significant increase in the cAMP accumulation in the incubation medium occurred between 30- and 60-min periods of incubation. The present studies were designed to investigate the influence that phosphodiesterase may exert on the cAMP accumulation phenomenon previously observed in porcine GC in response to the stimulatory effects of FSH and LH. In the present studies the phosphodiesterase influence was examined indirectly using a potent phosphodiesterase inhibitor.

The effects of phosphodiesterase inhibition upon cAMP accumulation by porcine GC previously have not been adequately examined. The influence of methylxanthine upon the stimulatory effects of purified hFSH and hLH on porcine GC intracellular cAMP accumulation and upon cAMP accumulation in the incubation medium was investigated. These studies enabled the determination of the relative approximate contribution of synthesis, degradation, and extracellular release to cAMP levels occurring in porcine GC during various stages of follicular maturation in response to hFSH and hLH.

Materials and methods. Granulosa cell harvest. Porcine ovaries were obtained from a local meat packing plant within 15 to 20 min of sacrifice of the animals. Granulosa cells were harvested from small (1–2 mm), medium (3–5 mm), and large (6–12 mm) follicles according to the method of Channing and Ledwitz-Rigby (5). Using dye exclusion as an indication of cell viability, the cells were counted in a hemocytometer in 0.06% trypan blue.

Hormones and chemicals. Highly purified hLH, LER-1705, having a potency of 3800 IU/mg and an FSH activity of 3 IU/mg, and hFSH, LER-1577², having an FSH potency of 880 IU/mg were used. These two hormone preparations were provided by Dr. L. E. Reichert, Jr. The FSH preparation as sup-

¹ Supported by Research Grant Hd 08835 and Training Grant HD 00435 from the National Institute of Child Health and Human Development.
² Author to whom reprint requests should be addressed.
Dr. Reichert had been pretreated motretroin in toactivate the contam-
LH selectively (6). The residual LH reorted to be 5.7 IU/mg using the
ascorbic acid depletion assay (7). Ac-
to Amir et al. (8), controlled chymo-
ligestion doesn't destroy FSH activ-
determined by the Steelman-Pohley
(9).
ells were incubated in the absence or
of the hormones in Eagle's medium
ng Earle's salts (pH 7.4; Grand Island
al Co., Grand Island, N.Y.), 25 mM
buffer (Calbiochem), 2.2 g/liter
3 (Grand Island Biological Co.), and
ce serum albumin (BSA) fraction V
Chemical Company). This was des-
Eagle's medium plus 1% BSA, 3-Is-
methylxanthine (MIX) was pur-
rom the Aldrich Chemical Company
ke) and was diluted in Eagle's me-
s 1% BSA. The final concentration
d for incubations with the cells and
opins was 0.2 mM. Both [3H]cAMP
4 Ci/mmol) and nonlabeled cAMP
hased from Schwartz Bio-Research,
osa cell incubations and experimental
es. Granulosa cells from small and
olicles were suspended in Eagle's
 plus 1% BSA and dispensed in ali-
 2 × 10^6 cells. Cells from large folli-
e dispensed in aliquots of 5 × 10^6
ubations were carried out in Packard
stillation vials containing the appro-
ormones. When 3-isobuty1 1-meth-
éine (MIX) was used it was added to
aining the appropriate hormone
als containing no hormone prior to
 of the cells. The final incubation
 vial was 1.0 ml. Three to five
 aliquots of cells were used for each
 in each experiment. Incubations
ted out for 30 and 60 min under
ns previously described (5). The
as arrested by placing the vials im-
y in ice. The cells were separated
: incubation medium by centrifuga-
: incubation medium was decanted en
 for later assay of cAMP content.
aining cell pellets were subjected to
m acetate extraction and following
ation the clear supernatant was de-
canted and frozen for later assay of intracel-
ular cAMP.
Cyclic AMP assay. Cyclic AMP accumulation
was determined by a competitive pro-
tein binding assay (10) with modifications (5,
11). Using 1.25 pmol of cAMP as a standard
after every 10 unknown samples, the intra-
assay coefficient of variation was less than
16% and for 30 randomly selected assays the
between assay coefficient of variation was
less than 15%.
Results. Effect of MIX upon intracellular
cAMP accumulation. The presence of 0.2 mM
MIX in the incubation medium did not sig-
ificantly alter the control levels of intracel-
lar cAMP in GC harvested from small,
medium, and large follicles following 30- or
60-min incubation periods (Table I). Addi-
tion of 1.0 and 10 μg of hFSH resulted in an
increase in intracellular cAMP accumulation
in GC from small, medium, and large follicles
(Table I). In the case of cells from small
follicles, addition of 10 μg of hFSH led to a
greater than 13-fold increase (p < 0.001) in
intracellular cAMP levels following 30-min
incubations and a greater than 22-fold in-
crease (p < 0.001) following a 60-min incu-
bation period (Tables I and II). In contrast,
addition of 10 μg of hFSH to cells from large
follicles led to less than a 3-fold increase above
control levels after either 30- or 60-min
incubation periods (p < 0.001 and p < 0.01,
respectively). A small nonsignificant (p >
0.05) potentiating effect of 0.2 mM MIX upon
the stimulatory effect of 1.0 and 10 μg of
hFSH upon intracellular cAMP accumula-
tion was observed (Table I).
Addition of hLH stimulated intracellular
cAMP accumulation in GC (Table I). The
stimulation was greater in the case of GC
harvested from large compared to medium
and small follicles. Addition of 0.2 mM MIX
exerted a small nonsignificant (p > 0.05)
potentiating effect upon the LH stimulation
of intracellular cAMP levels in cells from all
three types of follicles (Table I). If GC were
incubated for 60 rather than 30 min addition
of 0.2 mM MIX still had no significant effect
upon hFSH and hLH stimulation of intracel-
lular cAMP levels (Table II).
Effect of MIX upon cAMP released into the
incubation medium. The presence of 0.2 mM
MIX in the incubation medium did not sig-
TABLE I. COMPARISON OF EFFECT OF 0.2 mM 3-Isobutyl 1-Methylxanthine upon hFSH and hLH STIMULATION OF INTRACELLULAR cAMP ACCUMULATION IN PORCINE GC DURING 30-MIN INCUBATIONS.*

<table>
<thead>
<tr>
<th>Source of GC and treatment</th>
<th>3-Isobutyl 1-methylxanthine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Small follicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>8.1 ± 0.7</td>
<td>8.9 ± 0.9</td>
</tr>
<tr>
<td>0.1 μg hFSH</td>
<td>10.4 ± 1.3</td>
<td>14.2 ± 2.8</td>
</tr>
<tr>
<td>1.0 μg hFSH</td>
<td>62.7 ± 3.7</td>
<td>71.0 ± 5.6</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
<td>91.5 ± 9.4</td>
<td>99.3 ± 9.3</td>
</tr>
<tr>
<td>0.01 μg hLH</td>
<td>8.6 ± 2.2</td>
<td>8.7 ± 1.3</td>
</tr>
<tr>
<td>0.1 μg hLH</td>
<td>9.5 ± 1.9</td>
<td>12.7 ± 1.9</td>
</tr>
<tr>
<td>1.0 μg hLH</td>
<td>12.7 ± 2.1</td>
<td>15.4 ± 2.1</td>
</tr>
<tr>
<td>Medium Follicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>8.9 ± 1.6</td>
<td>8.4 ± 1.2</td>
</tr>
<tr>
<td>0.1 μg hFSH</td>
<td>8.0 ± 0.3</td>
<td>9.9 ± 0.5*</td>
</tr>
<tr>
<td>1.0 μg hFSH</td>
<td>38.3 ± 6.1</td>
<td>37.6 ± 4.5</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
<td>51.6 ± 4.2</td>
<td>40.4 ± 6.9</td>
</tr>
<tr>
<td>0.01 μg hLH</td>
<td>13.2 ± 3.6</td>
<td>11.3 ± 1.0</td>
</tr>
<tr>
<td>0.1 μg hLH</td>
<td>23.5 ± 3.4</td>
<td>30.6 ± 3.2</td>
</tr>
<tr>
<td>1.0 μg hLH</td>
<td>30.8 ± 1.4</td>
<td>36.9 ± 3.5</td>
</tr>
<tr>
<td>Large follicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>92.9 ± 6.2</td>
<td>109.6 ± 8.2</td>
</tr>
<tr>
<td>0.1 μg hFSH</td>
<td>85.9 ± 14.8</td>
<td>95.0 ± 17.7</td>
</tr>
<tr>
<td>1.0 μg hFSH</td>
<td>184.5 ± 10.3</td>
<td>191.0 ± 21.8</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
<td>204.3 ± 9.9</td>
<td>231.8 ± 20.5</td>
</tr>
<tr>
<td>0.01 μg hLH</td>
<td>134.3 ± 10.0</td>
<td>149.4 ± 31.0</td>
</tr>
<tr>
<td>0.1 μg hLH</td>
<td>236.5 ± 12.0</td>
<td>272.1 ± 13.9</td>
</tr>
<tr>
<td>1.0 μg hLH</td>
<td>278.6 ± 12.4</td>
<td>314.5 ± 13.4</td>
</tr>
</tbody>
</table>

* Data are expressed as the means ± SE of four observations. Granulosa cells harvested from small, medium, and large porcine follicles were incubated for 30 min with hFSH or hLH in the absence or presence of 0.2 mM MIX and the intracellular cAMP levels were determined. Student’s t test was used to compare results (MIX present vs MIX absent). The differences were not statistically significant (p > 0.05) unless indicated.

* p < 0.05.

Significantly alter control levels of cAMP released into the incubation medium by GC from any size follicle during 30- or 60-min incubation periods (Tables III and IV). Addition of 10 μg of hFSH to GC from small follicles led to a 16- and 45-fold increase in incubation medium cAMP levels following 30- and 60-min incubation periods, respectively (Tables III and IV). In the case of GC from small and medium follicles, addition of 0.2 mM MIX in the presence of 1.0 (data not shown) and 10 μg of hFSH led to a significant increase in incubation medium cAMP content (Tables III and IV). In contrast, the presence of MIX did not significantly potentiate the effect of hFSH upon cAMP accumulation in the incubation medium by GC from large follicles (Tables III and IV).

The presence of MIX brought about a significant potentiation of the stimulatory effect of 1.0 μg of hLH upon cAMP released into the incubation medium by GC from small and medium follicles following 30- and 60-min incubations (Tables III and IV). In the case of GC from large follicles the potentiating effect of MIX upon hLH stimulation of cAMP accumulation in the incubation medium was not significant (p > 0.05) during 30- or 60-min incubations (Tables III and IV).

After a 60-min incubation period with either 10 μg of hFSH or 1.0 μg of hLH the incubation medium cAMP levels were consistently greater than the intracellular levels in the case of cells from all three follicle types (Tables II and IV).
II. COMPARISON OF EFFECT OF 0.2 mM 3-
1-METHYLXANTHINE UPON hFSH AND hLH IMULATION OF INTRACELLULAR cAMP ACCUMULATION IN PORCINE GC DURING 60-MIN INCUBATIONS.*

<table>
<thead>
<tr>
<th>Incubation medium cAMP (pmol/5 × 10^5 cells)</th>
<th>3-Isobutyl 1-methylxanthine</th>
<th>Absent</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>cle</td>
<td>3.1</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>±0.2</td>
<td>±0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFSH</td>
<td>71.0</td>
<td>75.8</td>
<td></td>
</tr>
<tr>
<td>±4.8</td>
<td>±3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>10.8</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>±0.8</td>
<td>±3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>follicle</td>
<td>3.8</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>±0.3</td>
<td>±0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFSH</td>
<td>22.0</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td>±3.6</td>
<td>±3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>11.1</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>±2.0</td>
<td>±3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cle</td>
<td>86.8</td>
<td>61.5</td>
<td></td>
</tr>
<tr>
<td>±6.6</td>
<td>±6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFSH</td>
<td>224.1</td>
<td>264.6</td>
<td></td>
</tr>
<tr>
<td>±30.6</td>
<td>±34.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>369.1</td>
<td>385.5</td>
<td></td>
</tr>
<tr>
<td>±25.2</td>
<td>±44.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

are expressed as the means ± SE of four
as. Granulosa cells harvested from small, me-
large porcine follicles were incubated for 60
hFSH or with hLH in the absence or presence
MIX and the intracellular cAMP levels were
at Student's t test was used to compare results
ent vs MIX absent). The differences were not
not significant (p > 0.05).

sion. The lack of a significant poten-
effect of MIX on intracellular cAMP
action by porcine GC in response to
0-min periods of incubation with
hFSH or hLH could indicate that en-
hydrolysis of cAMP by a phospho-
e(s) is not a major mechanism re-
for controlling the intracellular lev-
e cyclic nucleotide. Alternatively, it
le that this methylxanthine does not
me the GC plasma membrane
essfully inhibit phosphodiesterase or
centration employed was not suf-
hibit GC intracellular phospho-
e(s). It is evident from the findings
vestigators that concentrations of
aging from 0.01 to 1.0 mM have
potentiating effects on cAMP accumulation.
Methylxanthine has been observed to poten-
tiate the effect of ACTH upon cAMP levels
in rat adrenal homogenates and quarters (13)
and in isolated fat cells (14). Mendelson et al.
(12) reported that the sensitivity of isolated
rat testis interstitial cells to hCG stimulation
was significantly enhanced with the presence
of 0.1 mM MIX and in the absence of MIX,
cAMP accumulation in response to hCG was
reduced in magnitude by about 60%. These
investigators used the sonicated incubation
mixture for assay of cAMP; thus their re-
ported findings reflect inclusion of both the
intracellular and incubation medium cAMP
content and the site of the potentiating effect
remains obscure. Channing (15) observed

| TABLE III. COMPARISON OF EFFECT OF 0.2 mM 3-
1-METHYLXANTHINE UPON hFSH AND hLH STIMULATION OF cAMP ACCUMULATION IN THE
INCUBATION MEDIUM BY PORCINE GC DURING 30-MIN INCUBATIONS.* |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation medium cAMP (pmol/5 × 10^5 cells)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Source of GC and treatment</td>
</tr>
<tr>
<td>Small follicle</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
</tr>
<tr>
<td>±3.2</td>
</tr>
<tr>
<td>1.0 μg hLH</td>
</tr>
<tr>
<td>±0.7</td>
</tr>
<tr>
<td>Medium follicle</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
</tr>
<tr>
<td>±2.9</td>
</tr>
<tr>
<td>1.0 μg hLH</td>
</tr>
<tr>
<td>±1.6</td>
</tr>
<tr>
<td>Large follicle</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
</tr>
<tr>
<td>±19.5</td>
</tr>
<tr>
<td>1.0 μg hLH</td>
</tr>
<tr>
<td>±62.8</td>
</tr>
</tbody>
</table>

* Data are expressed as the means ± SE of eight
as. Granulosa cells harvested from small, me-
large, porcine follicles were incubated for 30
min with hFSH or with hLH in the absence or presence
of 0.2 mM MIX and the incubation medium cAMP
levels were determined. Student's t test was used to
compare results (MIX present vs MIX absent).

*** p < 0.001.
TABLE IV. COMPARISON OF EFFECT OF 0.2 mM 3-ISOBUTYL 1-METHYLMETHANOXINE UPON hFSH AND LH STIMULATION OF cAMP ACCUMULATION IN THE INCUBATION MEDIUM BY PORCINE GC DURING 60-MIN INCUBATIONS.*

<table>
<thead>
<tr>
<th>Source of GC and treatment</th>
<th>Incubation medium cAMP (pmol/5 × 10^6 cells)</th>
<th>3-Isobutyl 1-methylxanthine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Absent</td>
</tr>
<tr>
<td>Small follicle Control</td>
<td>4.4</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>±0.4</td>
<td>±1.8</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
<td>198.6</td>
<td>297.7</td>
</tr>
<tr>
<td></td>
<td>±12.2</td>
<td>±19.5**</td>
</tr>
<tr>
<td>1.0 μg LH</td>
<td>28.2</td>
<td>68.3</td>
</tr>
<tr>
<td></td>
<td>±2.3</td>
<td>±3.4***</td>
</tr>
<tr>
<td>Medium follicle Control</td>
<td>11.7</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>±3.8</td>
<td>±4.8</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
<td>101.1</td>
<td>146.0</td>
</tr>
<tr>
<td></td>
<td>±16.6</td>
<td>±5.4*</td>
</tr>
<tr>
<td>1.0 μg LH</td>
<td>38.9</td>
<td>77.9</td>
</tr>
<tr>
<td></td>
<td>±5.4</td>
<td>±3.6***</td>
</tr>
<tr>
<td>Large follicle Control</td>
<td>77.6</td>
<td>72.6</td>
</tr>
<tr>
<td></td>
<td>±15.5</td>
<td>±12.8</td>
</tr>
<tr>
<td>10.0 μg hFSH</td>
<td>591.3</td>
<td>639.4</td>
</tr>
<tr>
<td></td>
<td>±21.1</td>
<td>±38.6</td>
</tr>
<tr>
<td>1.0 μg LH</td>
<td>830.9</td>
<td>810.8</td>
</tr>
<tr>
<td></td>
<td>±52.2</td>
<td>±55.3</td>
</tr>
</tbody>
</table>

* Data are expressed as the means ± SE of four observations. Granulosa cells harvested from small, medium, and large porcine follicles were incubated for 60 min with hFSH or with LH in the absence or presence of 0.2 mM MIX and the incubation medium cAMP levels were determined. Student's t test was used to compare results (MIX present vs MIX absent).

\[p < 0.05 \]

\[** p < 0.01 \]

\[*** p < 0.001 \]

that in 20-min incubations of porcine GC from medium-sized follicles, addition of 3.0 mM aminophylline to incubation medium containing either FSH or LH significantly increased the concentration of intracellular cAMP when compared to the effect of FSH or LH alone. The difference in these findings and the results observed in the present studies could be due to differences in the effect of the two inhibitors on GC phosphodiesterase activity; it is possible that aminophylline has a synergistic effect with the gonadotropins in stimulating cAMP production. In another series of experiments, addition of theophylline alone without gonadotropins to incubations of isolated prepubertal rat ovaries resulted in a stimulation of cAMP accumulation significantly above control levels in both the tissue and in the incubation medium (16). The effects of theophylline could have been due to the indirectly mediated inhibitory influence upon protein synthesis or due to a direct inhibition of phosphodiesterase (17).

If cAMP is protected from the hydrolytic action of phosphodiesterase by subcellular compartmentalization in GC, inhibition of the degradative enzymatic activity by methylxanthine would not be significantly apparent. Cheung (18) has shown that cAMP bound to the protein kinase regulatory subunit is not susceptible to phosphodiesterase activity and only is degraded when dissociated from the protein. It was concluded that the rate of hydrolysis of cAMP is governed by its rate of dissociation from the protein kinase regulatory subunit. In the present studies it is possible that the lack of a significant potentiating effect of methylxanthine upon gonadotropin stimulation of intracellular cAMP accumulation could have resulted from cAMP being bound to the protein kinase regulatory subunit during the time intervals examined. Means et al. (19, 20) observed that when testis were incubated for 1 hr with FSH, the protein kinase remained maximally active following an additional 2 hr of incubation without the gonadotropin present. Similar compartmentalization of intracellular cAMP may occur in porcine GC and explain the lack of a significant potentiating response of the phosphodiesterase inhibitor.

The finding that methylxanthine has a significant potentiating effect upon cAMP content in the incubation medium in response to either hFSH or hLH stimulation could be due to the presence of plasma membrane fragments in the incubation medium which makes the phosphodiesterase more accessible to the inhibitory action of MIX. Alternatively, it is possible that an extracellular phosphodiesterase may exist and have a role in the degradation of cAMP released from the GC. It is apparent from these and previous studies (4) that significant concentrations of cAMP are released extracellularly by porcine GC in response to the stimulatory action of the gonadotropins. Enzymatic degradation of extracellular cAMP has been reported for
ions of prepubertal rat ovaries using appearance of labeled cAMP as well as of labeled products of cAMP cation, indicating that cAMP released in incubation medium was undergoing intracellular degradation by a phosphodies-

ors influencing the intracellular location of extracellular release, plasma membrane permeability, and metabolism of in porcine GC require more definitive before the questions posed can be asked.

However, does exist that the MIX has side effects other than inhibition of phosphodiesterase.

itary. In order to examine a possible phosphodiesterase in mediation of the effects of LH and FSH upon granulosa cell levels, porcine (GC) from small (1–2 medium (3–5 mm), and large (6–12 mm) follicles were incubated with human hFSH) and LH (hLH) for 30 and 60 the absence or presence of 3-isobutyl 1xanthine (MIX), a potent phosphodiesterase inhibitor. Subsequently, the intracellular and incubation medium cAMP concen-
dere determined by a protein binding assay. A 30-min incubation, 10 μg of done brought about a 11-fold, 5-fold increase in intracellular cAMP. A 16-fold, approximately and 4-fold increase in incubation mediated levels in GC from small, medium large follicles, respectively. Addi-
tion 0.2 mM MIX exerted a nonsignificant 1.05) potent effect upon hFSH tion of intracellular cAMP accumu-

In the case of cells obtained from large medium follicles, addition of 0.2 IX in the presence of 10 μg/ml hFSH (g/ml hLH led to 10 to 69% potentiality of < 0.001) of the effect of the FSH and on cAMP accumulation in the currencumedium. This was evident after a 30-

min incubation period. In the case of tained from large follicles, addition of 1 MIX had a nonsignificant potentiat-

xt (p > 0.05) on either hFSH or hLH tion of cAMP accumulation in the ion medium.

ay be concluded that probably there are low levels of intracellular phosphodiesterase in porcine granulosa cells and that gonadotropins act to stimulate the generation of cAMP rather than alter the rate of destruction of cAMP. The findings support the existence of an extracellular phosphodiesterase which may act to regulate or modulate the extracellular levels of cyclic AMP.

We thank Dr. Leo Reichert and the National Pituitary Agency for provision of the purified human pituitary gonadotropins.

3. Beavo, J. A., Rogers, N. L., Crofford, O. B., Hard-
17. Ryan, R. J., Birnbaum, L., Lee, C. Y., and Hunzicker-Dunn, M., in “International Review of Physiolo-
y Reproductive Physiology, II” (R. O. Greep,

Effect of Big and Little Gastrins on Pancreatic and Gastric Secretion (40322)

GE E. VALENZUELA, ROLAND BUGAT, AND MORTON I. GROSSMAN

VA Wadsworth Hospital Center and UCLA School of Medicine, Los Angeles, California

Gastrin exists in several molecular forms, which, big gastrin (G34) and little (G17), account for most of the gastrin circulation (1). The molar concentration of G34 in blood plasma is about twice G17. Infusion of equimolar doses of big G34 and G17 produces approximately equal gastric acid secretory responses to molar blood concentrations of about five to seven times greater than reflecting the slower removal of G34 from circulation.

It is not known whether the different molecular forms of gastrin have different relative potencies for various target organs. To examine this question we studied simultaneous gastric acid and pancreatic protein secretion in response to G34 and G17 in dogs with gastric and pancreatic fistulas. The dog was made available for this study since in this species the doses of gastrin needed to stimulate pancreatic protein secretion and gastric secretion are in the same range (2).

Materials and Methods. Natural human unfractionated little gastrin (G17-I) and natural porcine big gastrin (G34-II) were kindly provided by Professor R. A. Gregory and Doctor Tracy, University of Liverpool, England. CCK, 20% pure, was supplied by the G.I.H. Research Unit, Institute of Medicine, Stockholm, Sweden.

Methods. Four dogs weighing 20 to 24 kg were anesthetized with a Thomas gastric fistula and a pancreatic fistula (PF) by a modified technique (3). Studies were conducted on no fewer than 4 weeks after surgery, but not water was withheld for 18 hr each test. The interval between tests was at least 48 hr.

Procedures. NaCl (0.15 M) was infused slowly into a leg vein at 30 ml hr⁻¹. Pituitary extract was added to the saline infusion to give the required doses (25, 50, 100, 200, 400, 800, and 1600 pmol kg⁻¹ hr⁻¹ of 1 and 33, 106, 213, 425, and 851 pmol kg⁻¹ hr⁻¹ of CCK). Each dose was given during 45 min starting with the lowest dose and doubling it until the highest dose was given. Gastric and pancreatic juices were collected continuously and separated into 15-min samples. Volumes were measured to the nearest 0.1 ml. Acid concentration was determined by titrating 0.2-ml samples with 0.2 M NaOH to pH 7 on an automatic titrator (Radiometer, Copenhagen). Total protein concentration was measured spectrophotometrically at 280 nm, using bovine serum albumin as standard. The responses were expressed as the mean of the last two 15-min collections from each dose. Two tests were done with each stimulant in each of three dogs and a fourth dog had one test with each stimulant. Basal was subtracted from each 15-min sample, and results of these two tests in each dog were averaged. Before averaging, the square root of acid output was computed and used in all analyses to make variances more uniform and straighten out the response curves.

Results. G34-II and G17-I were found to be approximately equipotent in stimulating gastric acid secretion (Fig. 1), confirming earlier studies (6). The relative potency of G17 with respect to G34 was 0.7 with 95% limits of 0.4 to 1.5 using doses 100, 200, and 400 for G17 and 50, 100, and 200 for G34. G34-II and G17-I appeared to differ from each other in potency in stimulating pancreatic protein secretion (Fig. 2). Relative potency of G17 with respect to G34 was about 0.3 to 0.4, depending on the doses used, with limits of about 0.1 to 0.6. The response to CCK was shown for comparison. CCK did not stimulate acid secretion. Relative potency of CCK to G17 was 1.5 (0.99 to 2.4) and to G34 was 0.5 (0.3 to 0.7).

The data do not, however, show a significant difference in selectivity for gastric acid and pancreatic protein secretion between G17 and G34. Comparison of the relative potency of G17 to G34 for acid secretion to that for protein secretion was made by computing
potency of G17 to G34 for each dog separately for acid and for protein. The mean differences ± SE for relative potency for acid secretion minus relative potency for protein secretion were 0.49 ± 0.29 and 0.58 ± 0.30 depending on the G34 doses used for estimating protein potency. These differences were not significant by paired t test. As a further comparison, we computed the equation: protein = a + b (acid)\(^1\) for each dog for each test. The slopes were similar for G17 and G34. Figure 3 shows means for pancreatic protein response plotted against gastric acid response.

Discussion. These studies show that the potency of G34 relative to G17 is not significantly different for gastric acid and pancreatic protein secretion, indicating that one of these gastrins is not more selective than the other for these targets. Although the present results do not show a large difference in selectivity, further studies with other gastrins or other targets or in other species might reveal such differences.

Summary. In dogs with gastric and pancreatic fistulas the potency of porcine big gastrin (G34-II) relative to human little gastrin (G17-I) was not significantly different for stimulation of gastric acid and pancreatic protein secretion.

This work was supported by a Veterans Administration Senior Medical Investigatorship (MIG) and by Grant 20971 from the National Institute of Arthritis, Metabolism and Digestive Diseases. Doctor Valenzuela held a Fogarty International Fellowship (5 F05 TW2197) from the National Institutes of Health. Doctor Bugal held a fellowship from the French Ministry of Foreign Affairs.

We thank Janet Elashoff for statistical assistance. Ruth Abercrombie for drawing the figures. and Kuw Chou for typing the manuscript.

Differential Centrifugation Studies of Guinea Pig Lung Proteases (40323)

RY G. FERREN, WILLIAM T. STAUBER, AND GEORGE KALNITSKY

Ritcements of Biochemistry and Physiology and Biophysics, College of Medicine, The University of Iowa, Iowa City, Iowa, 52242

The literature has indicated the presence of several cathepsins in lung tissue. In ude preparations, Otto (1) reported rat organs, including lung, con-thepsins B1 and B2. McDonald and nrs (2), using aqueous extracts of a rat tissues and employing highly synthetic substrates, reported that tained dipeptidylpeptidase I (cath-II, III, and IV. Finally, cathepsin D is isolated and purified from extracts genized rabbit and beef lung (3). Little is known about the properties proteolytic enzymes in this tissue, or their distribution among the subcellu-lons of lung. A preliminary study of ng (4) indicated that the subcellular prepared were heterogeneous, that zyme markers were widely distrib-bing the fractions, and that classical ul enzymes appeared to be distributed y in lung than in liver. With lung ng several different kinds of cells, one spect a heterogeneity of organellar consequently a wider distribution of enzymes in particles of varying size. terest in proteolytic enzymes in lung, noma (5, 6) and pathological (7) con-stas prompted us to examine the dis-of 18 enzymes among five subcel-lations prepared by differential pellet-n marker enzymes and eleven pro-enzymes were examined to lay a basis re detailed examination of lung ly-and lysosomal proteases and pepti-ials and methods. Disruption and sub-fractionation. Lungs were obtained in part by a grant from The National HL 16920).

The suspended material was disrupted by brief homogenization, achieved by five up-and-down strokes of a motor-driven (1000 rpm) Potter-Elvehjem homogenizer (clearance, 4–6 μm). This homogenate protocol consistently resulted in high yields of intact lysosomes. The homogenate was brought to 10% (w/v) with 0.25 M sucrose and was filtered through cheesecloth prior to centrifugation. Fractionation of the homog-enate was achieved by 5-fraction differential centrifugation following the procedure for liver (8) without modification. These fractions were: nuclear, N (510g × 10 min); heavy mitochondrial, M (10,000g × 5 min); light mitochondrial, L (40,000g × 10 min); microsomal, P (100,000g × 45 min); and soluble, S (non-sedimentable). Total activity of 18 en-zymes was investigated in each of these fractions after treatment with Triton X-100 (Sigma). The overall concentration of Triton X-100 was 0.2% (w/v). It was used to release membrane-bound enzyme activities. This low level of Triton did not affect any of the enzyme assays.

Enzyme analysis. All concentrations given are final concentrations in the assay mixture. Cytochrome oxidase and cathepsin D were assayed as described by Canonico and Bird (9). Lactate dehydrogenase was detected using Sigma Kit 500. N-Acetyl-β-glucosaminidase was detected using the (0.02 M) p-nitrophenyl derivative (Sigma) in 0.1 M acetate buffer, pH 5.0. The reaction was stopped with 1.25 N NaOH and filtered (Whatman No. 42), and the absorbance was read at 440 nm on a Gilford spectrophotometer. Acid p-nitrophenylphosphatase was assayed as de-scribed by Bosmann and Hemsworth (10). Alkaline p-nitrophenylphosphatase was determined by the procedure of Garen and Levinthal (11) except that the pH was held at 8.8 (where the color is somewhat more intense) rather than at 8.0. Succinate dehydro-
Genase was measured using the method of Pennington (12) in which the dye 2-(p-iodyo-
phenyl)-3-p-nitrophenyl)-5-phenyl-tetrazo-
lium was reduced by succinate to produce
formazan which was extracted into ethyl ace-
etate and read at 490 nm. Glucose 6-phos-
phatase was determined by the method of
Nordlie and Arion (13) using the sodium caco-
dylate buffer, pH 6.5. Inorganic phos-
phorus was determined by the method of
Chen et al. (14). Cathepsin A was measured
using the method of Iodice et al. (15) with N-
carbobenzoxy-a-glutamyl-l-tyrosine (Cyclo
Chemical Co., Los Angeles, California)2 as
substrate. The rate of production of free amino
acid groups was monitored with the nin-
hydrin reagent of Moore and Stein (16). To
analyze the cathepsin B1, the method of Bar-
rett (17) was employed. Dipeptidylpeptidases I,
II, III, and IV were determined using the
method of McDonald et al. (18). The sub-
strates used for the fluorimetric assays were
as follows: dipeptidylpeptidase I, 0.1 mM
Gly-Arg-β-naphthylamide (2) in 5 mM
NaCl-7.5 mM 2-mercaptoethanol-70 mM
sodium succinate, pH 5.0; dipeptidylpepti-
dase II, 0.2 mM Lys-Ala-β-naphthylamide
in 10 mM 3,3-dimethylglutaric acid, pH 5.5;
dipeptidylpeptidase III, 0.03 mM Arg-Arg-
β-naphthylamide in 62.5 mM Tris-HCl, pH
9.0; dipeptidylpeptidase IV, 0.17 mM
Gly-Pro-β-naphthylamide in 20 mM
Tris-HCl, pH 7.8. Calibration was carried
out with known standards of β-naphthyla-
mine. All β-naphthylamides were purchased
from Bachem (Torrance, California). For the
analysis of elastolytic esterase, the method of
Visser and Blout (19) was used. In this pro-
cedure, 0.33 mM p-nitrophenyl N-tet-buty-
loxycarbonyl-l-alanate (Sigma) was used as
substrate in 0.05 M sodium phosphate-3%
acetonitril, pH 6.5. Dipeptidase was assayed
using the titrimetric assay of Bryce and Rabin
(20). Glycyl-l-leucine was used as the sub-
strate. A radiometer titrigraph Type SBR 2c
was used to keep the pH constant at 8.4 by
adding standardized acid. Neutral and alka-
line protease activities were measured on 1%
heat-denatured casein solutions at pH 7.0 and
8.5, respectively, similar to the method of
Kunitz (21). After 30 min, 10% trichloroacetic
acid was used to precipitate proteins and
large peptide fragments. The absorbance
of the supernatant at 280 nm was used as an
indication of protease activity.

Protein was determined by the Biuret
method of Gornall et al. (22) using bovine
serum albumin Fraction V (Sigma) as stan-
dard.

Presentation of results. To simplify con-
struction of tables and graphs, the following
symbols were used: N = nuclear fraction; M = heavy mitochondrial fraction; L = light
mitochondrial or lysosomal fraction; P = mi-
crosomal fraction; S = final supernatant or
cytoplasmic fraction.

The percentage of an enzyme in any one
fraction was determined by dividing the ac-
tivity in that fraction by the total activity
obtained in the five fractions × 100. The
percentage recovery was determined by di-
viding the sum of an enzyme's activity in the
five fractions, N, M, L, P, and S, by the
activity determined on a sample of homoge-
nate prior to centrifugation, × 100.

The relative specific activity in each frac-
tion was obtained as follows: percentage of
total activity/percentage of total protein ×
10, according to de Duve et al. (8).

The distributions of the enzymes' activities
differ after differential centrifugation are pre-
sented by plotting the mean relative specific activity against the protein content of each fraction.
The area of each block represents the per-
centage of the total activity recovered in that
fraction, and the height corresponds to the
degree of purification achieved (8).

Enzyme specific activities are presented in
milliunits per milligram of protein where 1
unit equals 1 μmole of substrate hydrolyzed,
or 1 unit of absorbance released at 280 nm
per minute at 37°C. The units for cytochrome
oxidase are calculated according to Cooper-
stein and Lazarow (23).

Results. Enzyme distribution following dif-
ferential centrifugation. The distribution of 18
enzymes and of the lung protein following
differential centrifugation are presented in
Table 1, along with the percentage of each
enzyme recovered. Despite the heterogeneity
of the lung cell populations, the distribution
recorded for the various enzymes paralleled
that found in liver. For example, the major

2 Cyclo Chemical Company's inventory has been pur-
chased by Vega-Fox Biochemicals, Tucson, Arizona.
The activities of both cytochrome oxidase and succinate dehydrogenase are found in the ivy mitochondrial fraction, and of lactate dehydrogenase in the supernatant fraction expected.

Percentage recovery of nine enzymes: cytochrome oxidase, succinate dehydrogenase, N-acetyl-β-glucosaminidase, acid-p-nitrophenylphosphomonoesterase, and of protein ood (i.e., 79–122%); the recoveries of enzymes (alkaline p-nitrophenylphospho- nate, cathepsin A, and dipeptidylpeptidase) were low (62–70%) whereas six enzymes (glucose 6-phosphatase, cathepsins B1, dipeptidylpeptidase III, and neutral cathepsin B1) showed significantly total activity in the sum of the fraction in the whole homogenate (Table 1). It is possible that fractionation removed inhibitor of these enzymes and allowed appropriate expression of total activity in the ns. This has already been demonstrated in our laboratory, where the addition of an aliquot of the supernatant fraction light mitochondrial fraction strongly ed cathepsin B1 activity, as measured e hydrolisis of benzoyl-arginyl-β- ylamide (24).

TABLE I. Percentage of Total Activity in Tissue Fractions.

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>N</th>
<th>M</th>
<th>L</th>
<th>P</th>
<th>S</th>
<th>Percentage enzyme recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-acetyl-β-glucosaminidase (3)</td>
<td>12.1 ± 6.8</td>
<td>39.2 ± 22.4</td>
<td>25.5 ± 15.6</td>
<td>12.7 ± 12.1</td>
<td>10.5 ± 12.6</td>
<td>121.7 ± 48.3</td>
</tr>
<tr>
<td>Hydrogenase (3)</td>
<td>8.6 ± 6.2</td>
<td>3.7 ± 3.4</td>
<td>3.1 ± 0.6</td>
<td>7.7 ± 1.9</td>
<td>7.6 ± 8.1</td>
<td>79.2 ± 8.6</td>
</tr>
<tr>
<td>O-phosphatase (3)</td>
<td>22.6 ± 10.9</td>
<td>14.5 ± 5.7</td>
<td>21.5 ± 5.5</td>
<td>19.8 ± 5.3</td>
<td>21.5 ± 1.8</td>
<td>96.0 ± 6.4</td>
</tr>
<tr>
<td>Nitrophenylphosphatase (3)</td>
<td>4.8 ± 5.1</td>
<td>13.6 ± 5.7</td>
<td>20.9 ± 4.5</td>
<td>29.3 ± 5.6</td>
<td>31.1 ± 9.2</td>
<td>69.9 ± 31.9</td>
</tr>
<tr>
<td>Phosphatase (3)</td>
<td>13.2 ± 6.0</td>
<td>9.8 ± 4.1</td>
<td>18.3 ± 4.8</td>
<td>25.8 ± 1.7</td>
<td>32.8 ± 6.6</td>
<td>198.6 ± 131.0</td>
</tr>
<tr>
<td>A-1 (3)</td>
<td>19.0 ± 13.6</td>
<td>5.2 ± 5.2</td>
<td>31.6 ± 14.1</td>
<td>4.6 ± 6.3</td>
<td>39.7 ± 3.7</td>
<td>62.3 ± 24.2</td>
</tr>
<tr>
<td>B-1 (3)</td>
<td>24.5 ± 13.9</td>
<td>15.2 ± 21.0</td>
<td>39.5 ± 24.4</td>
<td>3.5 ± 4.8</td>
<td>17.2 ± 0.6</td>
<td>362.5 ± 417.7</td>
</tr>
<tr>
<td>D-1 (3)</td>
<td>17.5 ± 4.8</td>
<td>20.5 ± 5.8</td>
<td>20.8 ± 5.7</td>
<td>7.6 ± 2.8</td>
<td>33.6 ± 4.4</td>
<td>142.2 ± 29.9</td>
</tr>
<tr>
<td>Peptidase I (3)</td>
<td>13.9 ± 17.1</td>
<td>8.9 ± 1.6</td>
<td>25.6 ± 4.8</td>
<td>3.4 ± 2.9</td>
<td>42.8 ± 12.8</td>
<td>68.8 ± 12.8</td>
</tr>
<tr>
<td>Peptidase II (3)</td>
<td>18.7 ± 8.8</td>
<td>24.1 ± 9.0</td>
<td>20.2 ± 3.6</td>
<td>4.2 ± 3.2</td>
<td>32.7 ± 9.9</td>
<td>114.5 ± 33.6</td>
</tr>
<tr>
<td>Peptidase III (3)</td>
<td>1.8 ± 1.1</td>
<td>5.9 ± 9.0</td>
<td>4.6 ± 4.7</td>
<td>2.6 ± 0.7</td>
<td>85.3 ± 15.2</td>
<td>147.5 ± 12.3</td>
</tr>
<tr>
<td>Peptidase IV (3)</td>
<td>16.6 ± 14.9</td>
<td>9.4 ± 3.8</td>
<td>22.1 ± 4.9</td>
<td>33.5 ± 13.8</td>
<td>184.3 ± 3.3</td>
<td>113.2 ± 6.2</td>
</tr>
<tr>
<td>Esterase (3)</td>
<td>11.9 ± 7.3</td>
<td>9.2 ± 3.7</td>
<td>15.5 ± 3.4</td>
<td>10.5 ± 2.7</td>
<td>52.9 ± 6.5</td>
<td>99.2 ± 15.8</td>
</tr>
<tr>
<td>Xanthine (3)</td>
<td>3.9 ± 3.8</td>
<td>5.5 ± 3.8</td>
<td>11.3 ± 2.0</td>
<td>29.7 ± 13.1</td>
<td>49.5 ± 21.5</td>
<td>139.2 ± 50.2</td>
</tr>
<tr>
<td>Yeast (3)</td>
<td>2.8 ± 3.9</td>
<td>5.3 ± 4.6</td>
<td>11.4 ± 10.0</td>
<td>31.1 ± 13.2</td>
<td>49.4 ± 10.3</td>
<td>151.2 ± 16.3</td>
</tr>
<tr>
<td>Enzyme (1)</td>
<td>1.3 ± 0.7</td>
<td>0.7 ± 0.8</td>
<td>1.3 ± 1.8</td>
<td>21.3 ± 12.2</td>
<td>13.2 ± 3.3</td>
<td>9.9 ± 4.0</td>
</tr>
</tbody>
</table>

The percentage of total activity in each fraction is given in the graphs which are presented in Fig. 1.

Cytochrome oxidase and succinate dehydrogenase, two mitochondrial markers, were enriched in the heavy mitochondrial fraction, M, and to a lesser extent in the light mitochondrial fraction, L. N-Acetyl-β-glucosaminidase, acid p-nitrophenylphosphatase, dipeptidylpeptidase I, dipeptidylpeptidase II, cathepsin A, cathepsin B1, cathepsin D, and elastolytic esterase all showed greatest enrichment in the light mitochondrial fraction, L. Among these enzymes there appeared to be two separate patterns of distribution. Cathepsin A, cathepsin B1, and dipeptidylpeptidase I appeared to distribute so that the light mitochondrial fraction was greatly enriched over the neighboring fractions. On the other hand, N-acetyl-β-glucosaminidase, cathepsin D, dipeptidylpeptidase II, acid p-nitrophenylphosphatase, and elastolytic esterase distributed throughout the fractions such that the light mitochondrial fraction, L, was only slightly enriched over the neighboring fractions. In this second class of enzymes, the distribution throughout the fractions seemed to be broader than the first class.

The microsomal fraction, P, was enriched in glucose 6-phosphatase, alkaline p-nitro-
TABLE II. RELATIVE SPECIFIC ACTIVITIES IN TISSUE FRACTIONS.*

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>NADH Dehydrogenase</td>
<td>0.7</td>
</tr>
<tr>
<td>Lactate Dehydrogenase</td>
<td>1.3</td>
</tr>
<tr>
<td>Succinate Dehydrogenase</td>
<td>1.6</td>
</tr>
</tbody>
</table>

* Values are the mean relative specific activity ± standard deviation of the mean. Numbers in parentheses are the number of experiments.

Fig. 1. Distribution patterns of enzymes after differential centrifugation. Fractions are N, nuclear; M, heavy mitochondrial; L, light mitochondrial; P, microsomal; and S, non-sedimentable. Enzyme abbreviations are phenylphosphatase, neutral protease, dipeptidylpeptidase IV, and alkaline protease. For these enzymes considerable activity was also found in the light mitochondrial fraction.

Three enzymatic activities were found in the cytosol: lactate dehydrogenase, dipeptidylpeptidase, and dipeptidylpeptidase III. The specific activities for the 18 enzymes in guinea pig lung are presented in Table III.

Discussion. This study of differential centrifugation, combined with the biochemical analysis of marker enzymes, satisfies the criteria of de Duve et al., (8) for separation of organelles. The fact that the mitochondrial enzymes, cytochrome oxidase and succinate dehydrogenase, the lysosomal enzyme, N-acetyl-beta-glucosaminidase, the microsomal enzyme, glucose 6-phosphatase, and the cytosol enzyme lactate dehydrogenase, were enriched in the fractions M, L, P, and S, respectively, indicated that the experimental procedure employed was capable of resolving to some degree the designated subcellular organelles. The somewhat broad distributions observed with these markers indicated that the fractions were heterogeneous in the organelles they contained. This was confirmed
III. SPECIFIC ACTIVITIES OF VARIOUS LUNG ENZYMES.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Activity (U/mg prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne oxidase (5)</td>
<td>50.2 ± 7.8</td>
</tr>
<tr>
<td>Dehydrogenase (4)</td>
<td>12.3 ± 2.2</td>
</tr>
<tr>
<td>A (4)</td>
<td>46.3 ± 20.4</td>
</tr>
<tr>
<td>B1 (4)</td>
<td>3.4 ± 0.6</td>
</tr>
<tr>
<td>Lipoprotein I (2)</td>
<td>10.8</td>
</tr>
<tr>
<td>D (5)</td>
<td>11.7 ± 2.7</td>
</tr>
<tr>
<td>Esterase (4)</td>
<td>31.7 ± 2.0</td>
</tr>
<tr>
<td>Lipoprotein II (2)</td>
<td>1.2</td>
</tr>
<tr>
<td>3-glucosaminidase (5)</td>
<td>5.2 ± 1.7</td>
</tr>
<tr>
<td>N-acetylhexosaminephosphatase (5)</td>
<td>5.3 ± 1.7</td>
</tr>
<tr>
<td>N-acetylhexosaminidase</td>
<td>12.0</td>
</tr>
<tr>
<td>Phosphatase (2)</td>
<td>1.6</td>
</tr>
<tr>
<td>Lipoprotein IV (2)</td>
<td>2.9</td>
</tr>
<tr>
<td>Rotease (2)</td>
<td>4.0</td>
</tr>
<tr>
<td>Lipoprotein II (3)</td>
<td>5.1</td>
</tr>
<tr>
<td>Lipoprotein III (2)</td>
<td>3.1</td>
</tr>
<tr>
<td>3′-exonuclease</td>
<td>1086.0</td>
</tr>
<tr>
<td>Hydrogenase (2)</td>
<td>402.0</td>
</tr>
</tbody>
</table>

Values (obtained with the whole homogenate) sit per milligram of protein ± the standard error mean. The numbers in parentheses are the experiments.

Under microscopic examination. The broad dist is observed in guinea pig lung were also in rabbit lung (4).

Other enzymes were used as secondary. Acid p-nitrophenylphosphatase was a lysosomal marker in spite of that isoenzymes of the true acid tase exist in different parts of the cell. Since the distribution of p-nitrophenylphosphatase activity was broad, it did not relate to that of a lysosomal enzyme. Alkaline nitrophenylphosphatase was also a secondary marker of the microsome since this enzyme has generally been recognized as being a component of the plasma membrane (26). Fragmented plasma membrane of rat kidney (27) and liver (28) have been found to sediment with the microsomal fraction of the dipeptidylpeptidase (dipeptidylaminopeptidase) enzyme in lung parallels their distributions in tissue. Dipeptidylpeptidase I (or dipeptidylaminopeptidase I or cathepsin C) has calzation in rat liver (2) and bovine liver (2). A cytosol distribution was noted pepsinpeptidase III from bovine an- distubary (2). Dipeptidylpeptidase IV is shown to have a microsomal distribution in porcine kidney (2) and rat liver (2). A number of proteolytic enzymes has been localized in subcellular fractions in tissues other than lung, largely using the technique of differential centrifugation. Cathepsin A and another carboxypeptidase-like enzyme appeared to be found in the heavy mitochondrial fraction (29); cathepsins B (29) and D (30) were lysosomal in origin; and dipeptidylpeptidases in different tissues have been variously reported as being in the supernatant (29) and in the microsomal fractions (31, 32). Lung cathepsins A, B1, and D all appear to be lysosomal in nature. The lung dippeptidase activity was found to be clearly associated with the cytosol fraction, as assayed with Gly-β-Leu, Gly-Gly, Gly-Val-Phe, or Gly-Ala-Ser. Of eight dipeptides tested with this enzyme, the most effective substrate was Gly-β-Leu, the data for which are reported here. No tripeptidase activity against Gly-Gly-Gly or β-Leu-Gly-Gly was noted.

Elastolytic esterase was determined by the rate of breakdown of a synthetic substrate, p-nitrophenyl N-tet-butylcarbonyl-L-alanine. The enzyme present could not be detected using the orcinol–elastin assay (33). The failure to react with the latter substrate could have been due to extremely low levels of elastase or to the fact that this enzyme was not a true elastase. Such an enzyme has been recently characterized from human pancreas (34). We have, therefore, chosen to call the enzyme measured, elastolytic esterase. This enzyme was enriched most in the light mitochondrial fraction, L, but was also present in the cytosol in sizeable quantities. The possibilities of a dual location of the same enzyme or of two different enzymes remain for consideration.

Neutral and alkaline proteases distributed with the microsomal enzyme markers. The similarity of distribution and the method of assay of the two proteases would leave open the possibility that the same enzyme is being measured at two different pH values.

The distribution of enzymes noted in this work does not differ significantly from the distributions of similar enzymes in other tissues. Further work performed on guinea pig lung using isopycnic-sonic centrifugation to obtain better resolution of fractions will be reported.

Summary. Five subcellular fractions were isolated from guinea pig lung homogenates by differential centrifugation. These fractions
were defined biochemically by the analysis of 18 enzymes representing different subcellular compartments. Succinate dehydrogenase and cytochrome oxidase distributed with the heavy mitochondrial fraction, while N-acetyl-β-glucosaminidase, acid p-nitrophenolphosphate, cathepsins A, B1, and D, dipetidylpeptidases I and II, and elastolytic esterase distributed with the light mitochondrial fraction. Alkaline p-nitrophenolphosphate, glucose 6-phosphatase, dipetidylpeptidase IV, neutral peptase, and alkaline peptase all demonstrated a "microsomal" enrichment. In the cytosol were found lactate dehydrogenase, dipetidylpeptidase III, and a dipetidase. The lung subcellular fractions were heterogeneous with cross-contamination between the heavy mitochondrial, light mitochondrial, and "microsomal" fractions. The enzyme distributions noted were similar to those found in other tissues.

Secretion of human pancreatic polypeptide (hPP) is stimulated by food ingestion. Hence, this response persists for several hours, it could be predicted that under the dietary habit of this study. Their ages ranged from 20 to 24 years. Informed consent was obtained. In a group of seven male volunteers, plasma levels were measured at intervals of 8:30 to 24:00 hr while following meal schedules: breakfast at 8:30 (a cup of coffee with milk and two slices of bread), lunch at 13:00 hr (300 g of boiled rice, 200 g of grilled beef, and one pear); dinner at 20:00 hr (vegetable salad, 200 g of rice, 50 g of white bread, and one slice of cheese) and, a second group of 12 volunteers (six males and four females) fasting was used. At 84 hr. They received water ad libidum and 40 mEq of KCl daily. During the course of the experiments, a body weight of ±0.2 kg was recorded. Blood samples were obtained at 12, 18, 24, 36, 42, 48, 60, and 84 hr after the last meal, which was the final study period (21:00 hr) prior to the experiments. Volunteers were admitted to our clinical research center on the day preceding the experiments. In further experiments, six volunteers (three males and four females) were given either 400 g of salad (250 g of asparagus and 150 g of meat) or 500 ml of tap water on two different days. These tests were performed after an overnight fast.

The collection and processing of blood samples has been previously described (3). Plasma glucose was determined by means of a commercial glucose-oxidase preparation (Biochemia Test Combination, Boehringer Mannheim GmbH). Radioimmunoassay was used to estimate insulin (4), glucagon (5), and hPP (6). Results are expressed as means±SEM. Differences between values were calculated for significance by paired t test analysis.

Results. Figure 1 shows the daily fluctuations of plasma hPP levels in a group of seven subjects kept on a conventional meal schedule. Mean fasting hPP concentration was 61±15 pg/ml. Ingestion of each meal was followed by a sustained hPP elevation. After breakfast plasma hPP rose to 158±35 pg/ml at 11:30 hr (p < 0.01) while lunch and dinner elicited more marked increases (551±131 pg/ml at 15:00 hr, p < 0.01; 640±153 pg/ml at 20:30 hr, p < 0.01, respectively). It is noteworthy that between meals circulating hPP did not return to basal values. As expected, following each meal the concentrations of glucose and insulin in plasma increased in a parallel fashion.

In view of the apparent association of hPP secretion with the consumption of food, we tested the effect of a low-calorie, bulky meal on plasma hPP (Fig. 2). This meal elicited a sixfold increase of hPP concentration with only a small rise of plasma insulin and glucose. The ingestion of even 500 ml of tap water (Fig. 3) more than doubled the levels of circulating hPP.

In Fig. 4 are depicted the mean hPP, glucagon, insulin, and glucose plasma levels for a group of 12 volunteers subjected to 84 hr of fasting. Basal (after a 12-hr overnight fast) hPP concentration was 61±16 pg/ml. Prolonging of fasting resulted in an increase of circulating hPP, which became statistically significant.

significant 24 hr after the last meal (181 ± 53 pg/ml, p < 0.02) and persisted elevated during the remainder of the experimental period. It is remarkable that for each day plasma hPP showed a distinct pattern, with a progressive rise from 9:00 to 21:00 hr and a subsequent decline during the night overall curve, however, exhibited a rising trend. Finally, during fasting plasma glucose and insulin declined while glucose.

Discussion. The foregoing data confirm a stimulatory effect of food intake on pancreatic polypeptide secretion in man that the ingestion of a fiber-rich meal as plain water provokes hPP release that the hPP response to food repart a nonspecific effect, perhaps a quence of gastric distension as pointed out in dogs as well (8). Furthermore, we demonstrate that under normal conditions, the successive postprandial circulating hPP maintains its levels at ing values throughout the daytime. the physiological role of pancre peptide remains enigmatic, it is to have the category of a digestive since the administration of the bovine peptide in dogs modifies gastric and pancre tion as well as gastrointestinal and motility (8). Contextually, the pers state of plasma hPP may be thought of as a tonic influence on some of these.

On this basis, in conditions of food ingestion a decrease of circulating hPP

![Graph](image-url)

Fig. 1. Daily fluctuations of plasma pancreatic polypeptide in normal subjects under conditions of normal food ingestion (mean±SEM). The large dots represent statistically significant differences from the baseline values.

![Graph](image-url)

Fig. 2. Effect of ingestion of a vegetable meal on pancreatic polypeptide plasma levels in normal (mean±SEM). The large dots represent statistically significant differences from the baseline values.
hPP DURING NORMAL FEEDING AND FASTING

The effect of tap water ingestion on pancreatic polypeptide plasma levels in normal subjects (mean ± SEM) represent statistically significant differences from the baseline values.

Circadian rhythms were reported for gastrin (9). Hanged fasting resulted in a progression of this factor in blood, an observation with that of Floyd and I. Moreover, in the absence of plasma hPP showed circadian with higher concentrations in the late evening than in the preceding and subsequent morning. A similar pattern was observed by the above-mentioned authors with determinations at 8:00 AM and 4:00 PM. In interpreting the rise of plasma hPP during fasting, the concomitant decline of glycemia should be considered, since even a modest fall of blood sugar provokes hPP secretion (1, 6). Also, as described for glucagon (10), the possibility of diminished metabolic clearance of hPP should be contemplated. However, either of these alternatives fails to explain the circadian oscillations of hPP. Current evidence indicates that parasympathetic stimulation induces hPP secretion (11, 12) and, thus, changes in vagal tone may affect circulating hPP. Accordingly, the reduction of vagal tonic activity associated with sleep (13) could be responsible for the low hPP plasma levels found in the morning. In man, during a 24-hr fast a circadian rhythm of gastric acid secretion, with greater output in the evening than in the morning has been documented (14). The relationship between this phenomenon and the parallel changes of hPP remains speculative.

In any case, the understanding of the paradoxical rise of plasma hPP in both anabolic (feeding) and catabolic (fasting) situations awaits a better knowledge of the biological activity of this putative hormone.
Summary. In this work we have examined the daily fluctuations of circulating hPP in normal individuals subjected to a conventional meal schedule (breakfast, lunch, and dinner) as well as during food deprivation for 84 hr. In addition, we have tested the effect of ingestion of a low-calorie, fiber-rich salad as well as 500 ml of tap water on hPP secretion.

Ingestion of each meal was followed by a sustained hPP elevation. Between meals, circulating hPP did not return to basal values. Both the vegetable meal and the water load evoked hPP release, suggesting that the hPP response to food intake is partially a nonspecific effect. In the fasted group, plasma hPP rose significantly 24 hr after the last meal and persisted elevated for the remainder of the experimental period. Moreover, in this condition hPP showed circadian variations, with higher values in the late evening than in the preceding and subsequent morning.

Since pancreatic polypeptide is suspected to possess gastrointestinal functions, its elevation in plasma throughout the daytime in conditions of normal feeding may be thought to exert a tonic influence on some digestive process. On this basis, the increase of hPP during prolonged fasting appears paradoxical and, indeed, the explanation of this phenomenon awaits a better knowledge of the biological activity of this peptide.

The expert technical assistance of Ms. Ana Ramirez, Ms. Pilar Garcia, and Ms. Begoña Samper is gratefully acknowledged.

Received May 16, 1978. P.S.E.B.M. 1978, Vol. 1:
Mechanism of Prostaglandin E₂ Stimulation of Renin Secretion (40325)

J. L. OSBORN, B. NOORDEWIER, J. B. HOOK, AND M. D. BAILIE

Departments of Human Development, Physiology, and Pharmacology, Michigan State University, East Lansing, Michigan 48824

renal infusion of prostaglandins or the andin precursor, arachidonic acid, en shown to stimulate renin secretion (1), rats (2), and rabbits (3). In addi-
tion, prostaglandin synthesis de-endogenous renin secretion (3), renin
1 in response to hemorrhage (4), and ide-stimulated renin secretion (5). In
which renin release has been blocked methacin, infusion of prostaglandin
E₂ significantly increased the release
1 beyond the original control values

mechanism by which PGE₂ increases cretion may involve one or a combi-
not of factors. First, the hormone ve a direct effect upon the juxtaglo-
apparatus. Second, PGE₂ may act-
avascular baroreceptor mechanism by
ation of the renal vasculature (7).

'GE₂ may stimulate a tubular macula-
ceptor since in addition to decreasing
stance, PGE₂ infusion also increases
odium excretion (6). In the present
cents, the mechanism by which PGE₂
es renin secretion was evaluated by
son of the effect of PGE₂ on renin
1 with the vasodilating agents acetyl-

bradykinin and edelosin.

Material and methods. Male mongrel dogs
esthetized with sodium pentobarbital
kg iv). Following insertion of a cuffed
cheal tube, dogs were artificially ven-
Harvard Apparatus, Inc.). A femoral
and two femoral veins were cannulated
recording of arterial blood pressure,
of insulin (3% solution at 1 ml/min),
usion of saline. Blood pressure was
1 with a strain gauge pressure trans-
atham P23AA) and a direct writing
aph (Grass polygraph). The left kid-
exposed via a flank incision and the
of both kidneys were cannulated with
lene tubing. A noncannulating elec-
getic flowmeter probe (Carolina Med-

ical Electronics) was placed on the renal ar-
tery and renal blood flow was recorded on
the oscillograph. Renal venous blood samples
were collected by placing a curved 20-gauge
needle attached to polyethylene tubing into
the renal vein. A curved 22-gauge needle
attached to polyethylene tubing was inserted
into the renal artery distal to the flow probe
for the intrarenal infusion of PGE₂, acetyl-
choline, bradykinin, and ededosin. Each dog
was hydrated prior to the experiment with a
solution containing 140 mEq/liter sodium
chloride and 3.0 mEq/liter potassium chlo-
ride, infused at 5.0 ml/min until the total
urine flow rate reached 0.5 to 1.5 ml/min.
The infusion rate was then decreased to equal
the urine flow rate. Experiments were begun
1 hr following the completion of surgery.

In each experiment, two control clearance
periods of 10 min duration each were fol-
lowed by the infusion of one of the vasodi-
lating agents. The rate of infusion of the
drug was adjusted to increase renal blood flow 20
to 40%. Two additional clearance periods
were obtained. Systemic arterial and renal
venous blood samples were collected at the
midpoint of each clearance period. Drug in-
fusion was stopped and a 30-min period en-
sued during which renal blood flow returned
to control levels. Drug metabolism was as-
sumed to be complete when RBF was stable
again and the next control period and drug
treatment were begun. The order of admin-
istration of acetylcholine, bradykinin, and
prostaglandin E₂ was randomized throughout
the experiments. Eledosin was always ad-
ministered last, due to its presumed slower
rate of metabolism. The range of doses of
each vasodilator used were as follows: acetyl-
choline, 210 to 420 ng/kg/min; bradykinin,
7 to 21 ng/kg/min; ededosin, 15 to 32
ng/kg/min; and prostaglandin E₂, 14 to 60
ng/kg/min.

Analytical and statistical procedures. Plasma and urine inulin concentration were
determined by the diphenylamine method described by Walser et al. (8). GFR was estimated by the clearance of inulin. Plasma renin concentration was determined by radioimmunoassay for the generated angiotensin I (9). Hematocrit was measured on all arterial blood samples by the micromethod. Renal plasma flow was calculated from the renal blood flow and hematocrit. Sodium and potassium concentration of both plasma and urine were determined by flame photometry and the electrolyte excretion rates were calculated. Renin secretion was calculated as the product of the renal venous–arterial renin concentration difference and renal plasma flow. Renal blood flow and renin secretion mean differences were tested by a paired t analysis. Sodium and potassium excretion was calculated as the percentage increase from control and treatments were compared by one-way analysis of variance. The 0.05 level of probability was used as the criterion of significance.

Results. Infusion of PGE₂ significantly increased renal blood flow (Fig. 1). The increase in renal blood flow was associated with an increase in renin secretion from a control value of 925±327 to 1710±486 ng/min (Fig. 1). Eledoisin also increased renal blood flow but did not change renin secretion (Fig. 1).

Both acetylcholine and bradykinin increased renal blood flow but neither drug affected renin secretion (Fig. 2).

Renal vasodilation with acetylcholine, bradykinin, PGE₂, or eledoisin increased both sodium and potassium excretion of the treated kidney (Table I). The percentage increases following each drug were not significantly different from each other. The sodium and potassium excretion of the contralateral kidney was not affected by drug infusion. The glomerular filtration rate of the treated and untreated kidneys did not change during drug infusion. Unilateral renal vasodilation did not alter the mean systemic blood pressure.

Discussion. The secretion of renin may be altered by a vascular mechanism located in the afferent glomerular arteriole (7) since decreases in renal resistance stimulate the release of renin (10). The present experiments demonstrate that PGE₂ increased both ipsilateral renal blood flow and renin secretion (Fig. 1) while not affecting mean systemic blood pressure or contralateral renal function. Renal vasodilation due to acetylcholine, bradykinin, or eledoisin, however, did not affect renin secretion (Figs. 1 and 2). Since the increase in renal blood flow was similar following infusion of all drugs, a vascular

![Graph](image_url)

Fig. 1. Effect of prostaglandin E₂ (PGE₂) and eledoisin (Ele) on renal blood flow (RBF) and renin secretion (RS). C = control. Values are expressed as means ± SEM. n = (). *p < 0.05.
nism does not appear to be primarily responsible for the increase in renin secretion induced by PGE2.

Renal infusion of bradykinin has been shown to increase renal PGE2 secretion (11). Bradykinin may affect renin secretion in a manner similar to that of PGE2. In recent experiments, the dose of bradykinin, which increased renal blood flow ap- parently 20 to 40% of control was less than the dose of bradykinin previously re- quired to increase PGE2 release (11). Thus, plasma or tissue PGE2 concentration in the response to bradykinin in these renal blood vessels not have been sufficient to cause a response similar to that produced by fusion of PGE2.

A tubular mechanism located at the macula densa region of the distal nephron also affects renin secretion by sensing changes in tubular sodium or chloride transport (12). Acetylcholine and PGE2 have been shown to decrease proximal tubular sodium reabsorption (13). Similarly, bradykinin decreased proximal tubular sodium reabsorption by a mechanism related to vasodilation of the renal vasculature (14). The present data demonstrate that intrarenal infusion of acetylcholine, bradykinin, PGE2, or edeoisin increased sodium and potassium excretion (Table I) to a similar degree in all experiments without affecting GFR. Since changes in tubular sodium reabsorption or changes in potassium excretion following infusion of acetylcholine, bradykinin, edeoisin, or PGE2 are similar, the changes in electrolyte excretion do not account for the PGE2-induced increase in renin secretion. PGE2 has been shown to increase renin release in vitro (15). Although Weber et al. did not report PGE2 to increase renin release, arachidonic acid, PGE2, and endoperoxide I and II all increased renin release in vitro (16). In the present experiments, both the hemodynamic and tubular responses produced by PGE2 appear to be similar to those elicited by bradykinin, edeoisin, and acetylcholine in vivo. Thus, PGE2 may increase renin secretion by a direct ac-

Table I. Effect of Acetylcholine, Bradykinin, and Edeoisin on Sodium and Potassium Excretion.

<table>
<thead>
<tr>
<th></th>
<th>Na excretion*</th>
<th>K excretion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine</td>
<td>301.2 ± 135.2</td>
<td>26.2 ± 12.3</td>
</tr>
<tr>
<td>Bradykinin</td>
<td>385.7 ± 212.1</td>
<td>75.9 ± 30.6</td>
</tr>
<tr>
<td>Edeoisin</td>
<td>121.4 ± 36.6</td>
<td>22.5 ± 12.3</td>
</tr>
<tr>
<td>n</td>
<td>478.0 ± 231.3</td>
<td>118.8 ± 51.6</td>
</tr>
</tbody>
</table>

Values expressed as percent increase.

2. Effect of bradykinin (Bdk) and acetylcholine (Ach) on renal blood flow (RBF) and renin secretion (RS).

Control (C) and infused with Ach and Bdk. Values are expressed as means ± SEM. n = 6. *p < 0.05.
tion on the vascular juxtaglomerular cells or a component of the juxtaglomerular apparatus.

Summary. Intrarenal infusion of acetylcholine, bradykinin, edeoisin, and PGE$_2$ increased renal blood flow to a similar degree. Sodium and potassium excretion were similarly affected by each vasodilator. Renin secretion increased following PGE$_2$ but was unaffected by acetylcholine, bradykinin, or edeoisin. It is suggested that PGE$_2$ increases renin secretion by a direct effect on the juxtaglomerular apparatus.

We express our appreciation to Mr. Keith Crosslan, Mrs. Peggy Wagner, and Mr. Terry Steele for their excellent technical assistance and to Miss Diane Hummel for the preparation of the manuscript. This research was supported by USPHS Grants AM 10913 and HD 06290.

(4R)-Arabinofuranosyladenine Inhibition of Chemically Induced Rat Embryo Cell Transformation (40326)

PAUL J. PRICE, P. C. SKEEN, AND C. M. HASSETT

Biological Associates’ Torrey Pines Research Center, 2945 Science Park Road, La Jolla, California 92037

An antileukemic chemotherapeutic drug, arabinofuranosylcytosine (ara-C) was shown to be an in vitro transform-er (1) for an established line of Fischer ryo cells, which had previously been a be an accurate and sensitive indicator of genotoxic chemicals having carcinogenic prop-erty (3). We were interested in using this stem to examine the transforming price of 9-β-D-arabinofuranosyladenine an analog of ara-C which is is used clinically as a cancer chemother-apy and antiviral agent in humans (4, 5). Its tumor and antiviral activities of both ara-C and ara-A appear to be derived from inhibition of DNA synthesis (6–8). We were that unlike ara-C, ara-A is not a active agent for Fischer rat embryo (706). Further, nontoxic levels of ara-alter the cells from transformation in-y the known polycyclic hydrocarbon gen, 3-methylcholanthrene (MCA). rials and methods. (A) Toxicity testing in plating efficiency relative to a control was used to determine the of ara-A. Five hundred cells (F1706 5 ml of the complete growth medium minimum essential medium in salts supplemented with 10% fetal bo-um, 2 mM L-glutamine, 0.1 mM non-l amino acids, 100 units of penicillin, 1 μg of streptomycin/ml) were added 60-mm plastic cell culture dish (Lux). es were incubated overnight at 37°C edified 5% CO2-in-air incubator. The ening the medium was decanted and 1 with a fresh medium containing sec-tions of ara-A which had been diluted into the growth medium. Five days the dishes were fixed and stained (meth-ylene-carbol fuchsin) and macroscopic were counted.

Transformation assay. In two separate ets run concurrently by two differ-estigators, F1706 D95 cells were inocu-lated into 75-cm² plastic cell culture flasks (Lux) at a concentration of 10,000 cells/ml and 14 ml per flask. On Days 2 and 5, cultures were refed with either growth medium alone or growth medium containing either 0.01 or 1.0 μg/ml ara-A. On Day 6, the cells from each group were transferred to fresh cultures in their respective media at a concentration of 1000 cells/ml and 10 ml per flask. The next day, 10 ml of growth medium was added to one-half the cultures from each group (without decanting the old media), and 10 ml of medium containing 0.4 μg/ml of MCA to the other half. MCA was diluted in acetone to 1000 μg/ml and was further diluted in the growth medium. After an additional 2 days of incubation, the medium was decanted, and the cultures were washed with growth medium and refed with growth medium still supplemented with ara-A, but no longer con-taining the MCA. Three days later the cul-tures were again refed, but now with a growth medium void also of ara-A. The next day, new cultures were initiated at 500 cells/ml. This treatment schedule resulted in the following duplicate sets of cultures: media only (negative control), 0.2 μg/ml MCA (positive control), 0.01 μg/ml ara-A, 1.0 μg/ml ara-A, 0.01 μg/ml ara-A plus 0.2 μg/ml MCA, and 1.0 μg/ml ara-A plus 0.2 μg/ml MCA. At each subculture following the initial treat-ment, one set of flasks was set aside to be held without subdivision (holding series), and the other set subdivided 1:2 weekly to provide two new sets of cultures, one for the holding series and one for subdivision. Transformation was determined by the appearance of foci of cells lacking contact inhibition and orientation and by the formation of macroscopic colonies in semisolid agar (9). Tumor-genicity was determined by subcutaneous inoculation of 5 × 10⁶ cells into newborn Fischer rats (F344/f Mai).

Results. We routinely test each compound for oncogenic potential at approximately the
INHIBITION OF CELL TRANSFORMATION

LD30 (concentration reducing the relative plating efficiency by approximately 30%) and at the highest concentration resulting in no reduction in relative plating efficiency (MNTD or maximum nontoxic dose). For ara-A these levels were 1.0 and 0.01 μg/ml, respectively (Table I).

At neither level did ara-A, itself, induce cell transformation of F1706 cells. However, as expected, cells treated with 0.2 μg/ml MCA were phenotypically transformed by the third vertical subculture (D + 3), and when tested at D + 6 produced macroscopic colonies in semisolid agar. When tested at D + 3, all cultures were negative for growth in agar. Cultures treated with MCA in the presence of either level of ara-A were still phenotypically normal at the termination of the experiment 8 subcultures after treatment and failed to grow in semisolid agar when tested at D + 3 and D + 6. When inoculated into the newborn Fischer rats at D + 8, the cultures treated with MCA alone were tumorigenic. The first tumor was found 52 days post inoculation and by the 82nd day, 11 of the 14 rats were positive. In contrast, a total of 45 rats inoculated with cells from cultures treated 8 subcultures earlier with either ara-A or MCA in the presence of ara-A were still tumor free when the experiment was terminated 94 days post inoculation (Table II).

Discussion. Many drugs used in cancer chemotherapy are transforming agents (1, 10, 11), mutagens (12), and oncogens (13, 14). One such agent, ara-C, had previously been found to induce transformation in mass cultures of secondary hamster embryo cells (15). This observation was later confirmed using a quantitative hamster transformation system, as well as the F1706 cells used in the present study (1). Subsequently, it was demonstrated,

<table>
<thead>
<tr>
<th>Concentration (μg/ml)</th>
<th>Relative plating efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>1.0</td>
<td>73</td>
</tr>
<tr>
<td>0.1</td>
<td>87</td>
</tr>
<tr>
<td>0.01</td>
<td>95</td>
</tr>
<tr>
<td>0.001</td>
<td>100</td>
</tr>
</tbody>
</table>

*9-β-D-Arabinofuranosyladenine.
*A serial line of Fischer rat embryo cells in its 95th population doubling.
*The percentage of cells giving rise to macroscopic colonies, relative to the media only control, in which the absolute plating efficiency was arbitrarily set at 100%. The absolute plating efficiency of the control was 20% (108 colonies out of 500 cells plated).

<table>
<thead>
<tr>
<th>Treatment (per ml)</th>
<th>Morphological transformation</th>
<th>Growth in agar (D6)</th>
<th>Tumor results, a No. positive/No. inoculated (days to 1st tumor-days to last tumor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media control</td>
<td>-(+8)</td>
<td>-</td>
<td>ND*</td>
</tr>
<tr>
<td>Media control</td>
<td>-(+8)</td>
<td>-</td>
<td>0/5</td>
</tr>
<tr>
<td>0.2 μg/ml MCA</td>
<td>+(+3)</td>
<td>+</td>
<td>11/12 (56–82)</td>
</tr>
<tr>
<td>0.2 μg/ml MCA</td>
<td>+(+3)</td>
<td>+</td>
<td>0/2/</td>
</tr>
<tr>
<td>1.0 μg ara-A</td>
<td>-(+8)</td>
<td>-</td>
<td>0/9</td>
</tr>
<tr>
<td>1.0 μg ara-A</td>
<td>-(+8)</td>
<td>-</td>
<td>0/13</td>
</tr>
<tr>
<td>0.01 μg ara-A</td>
<td>-(+8)</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>0.01 μg ara-A</td>
<td>-(+8)</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>1.0 μg ara-A + 0.2 μg MCA</td>
<td>-(+8)</td>
<td>-</td>
<td>0/10</td>
</tr>
<tr>
<td>1.0 μg ara-A + 0.2 μg MCA</td>
<td>-(+8)</td>
<td>-</td>
<td>0/13</td>
</tr>
<tr>
<td>0.01 μg ara-A + 0.2 μg MCA</td>
<td>-(+8)</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>0.01 μg ara-A + 0.2 μg MCA</td>
<td>-(+8)</td>
<td>-</td>
<td>ND</td>
</tr>
</tbody>
</table>

*a3-Methylcholanthrene.
*A serial line of Fischer rat embryo cells.
*Newborn Fischer rats inoculated with 5 × 10⁶ cells (0.05 ml) from D + 8. Rats without tumors were held 94 days and then sacrificed.
*Triplicate agar dishes were each inoculated with 50,000 cells from cultures at D + 6 (6 population doublings after removal of the MCA), held 4 weeks at 37°C in a humidified 5% CO₂ incubator, and screened for the appearance of macroscopic colonies.
*Not done.
*Twelve rats inoculated, 10 killed by mother.
using the C3H/10T1/2 mouse embryo cells (16), that oncogenic transformation took place maximally in the S phase of the cell cycle (17). We know from double-blind studies that 90% of the chemicals which transform these cells are also oncogenic for mice and rats (2). Since it is possible that tumor induction in the rodent may be relevant to tumor induction in man, it seems wise to avoid where possible the use of chemotherapeutic agents which transform rodent cells. Ara-C is a transforming agent. Ara-A did not transform the F1706 rat cells, and at nontoxic doses protected the cells from transformation induced by the potent carcinogen, MCA.

We have previously used this in vitro system (F1706) to show that several antiviral antibiotics, i.e., streptonigrin (18), cordycepin (19), and geldanamycin (20), could protect the cells from chemically induced transformation. We suggested that this protection was due to the ability of the antibiotic to inhibit endogenous oncorna virus expression, since each drug also inhibited the "turn-on" of endogenous virus by halogenated pyrimidines. This explanation, however, is not applicable to ara-A protection of MCA-induced cell transformation, since ara-A did not inhibit transient virus induction by halogenated pyrimidines under similar conditions.

These studies suggest that in vitro cell transformation assays may have value, not only as a prescreen for potentially oncogenic chemicals, but also for compounds having anticancer properties.

Summary. The cancer chemotherapeutic and antiviral agent 9-β-d-arabinofuranosyl-adenine (ara-A) was examined for potential oncogenicity, using a serial line of Fischer rat embryo cells, which was previously shown to be a sensitive and accurate indicator of chemicals carcinogenic for rodents. We report here that at the concentrations tested, ara-A was not a transforming agent. Further, ara-A protected the cells from transformation induced by the known carcinogen, 3-methylcholanthrene.

The authors thank Dr. Aaron E. Freeman for his technical assistance, and Ms. Joan Owens for assistance in preparation of this manuscript. This work was supported by Contract NO1-CP-43240 within the Virus Cancer Program of the National Cancer Institute.

13. Harris, C. C., Cancer 37, 1014 (1976).

Prolactin Receptors in Mouse Liver: Species Differences in Response to Estrogenic Stimulation 1 (40327)

STEPHEN MARSHALL, JOHN F. BRUNI, AND JOSEPH MEITES2,3
Department of Physiology, Neuroendocrine Research Laboratory, Michigan State University, East Lansing, Michigan 48824

Specific prolactin (PRL) receptors have been demonstrated in the liver of many species, including rats and mice (1–3). Ovariectomy (OVX) decreased and estrogen replacement increased PRL binding sites. The inductive effects of estrogen on PRL binding in the liver was dose related in OVX rats, and anti-estrogens reduced PRL receptors in the liver of female rats (4). One mechanism whereby estrogen induced PRL receptors is by stimulation of pituitary PRL release, resulting in induction of hepatic PRL binding sites in the liver (5, 6). However, very low doses of estrogen increased PRL binding in the liver without altering serum PRL levels (4), and since the PRL-inhibiting ergot drug CB-154 did not decrease the estrogen-induced increase in hepatic PRL binding sites (4), it is possible that estrogen may act directly on the liver to increase PRL receptors.

All of the above studies were performed in rats. To determine whether the estrogen effect on PRL receptors was observable in other species, we examined the effects of estrogen on PRL receptors in the liver of mice. The results indicate that estrogen inhibits induction of PRL receptors in the liver of female mice, in contrast to its stimulation of PRL receptors in the liver of male and female rats.

Materials and methods. Adult male and female Swiss–Webster mice were obtained from Spartan Research Animals, Haslett, Michigan. Mice were housed in a temperature-controlled (25 ± 1°) and artificially illuminated room (lights on from 0500 to 1900 hr daily) and received food and water ad libitum.

Experiment 1. Female mice were OVX on Day 1 and were injected subcutaneously with 2 µg of estradiol benzoate (EB) in 50 µl of corn oil on Days 8 through 14. On the 15th day all OVX were killed together with a group of intact females which were similarly injected daily on Days 8 through 14 with vehicle alone.

Experiment 2. Female mice, OVX 14 days prior to estrogen treatment, were given daily subcutaneous injections of either 1, 10, 20, or 50 µg of EB in 50 µl of corn oil. Mice were then killed after 12 days of treatment, together with groups of intact and OVX controls which were injected with vehicle alone. Additional treatment groups given daily injections of 20 µg of EB were killed after 6 or 9 days of treatment.

Experiment 3. Male mice were given a single 2-µg EB sc injection in 50 µl of corn oil and killed 7 days later. Controls were injected with vehicle alone.

At the end of each experiment the mice were anesthetized with ether and decapitated, and the blood obtained from the cervical wound was allowed to clot at 4°. The serum was separated by centrifugation and stored at −20° for later serum PRL measurements. Livers were removed and a microsomal membrane fraction was obtained by differential centrifugation as described previously (1). PRL was iodinated by a lactoperoxidase method (1) and the binding of [125I]iodo-PRL to liver membranes was determined. Incubations with membrane protein and [125I]iodo-PRL were performed at 4° for 60 hr, in the presence of excess (1 µg) unlabeled PRL and in its absence. Livers from female mice were assayed for PRL binding, using 300 µg of membrane protein per tube, whereas for male livers 1000 µg per tube was used. Specific binding refers to the difference in radioactiv-
bound to membranes after incubations with and without unlabeled PRL, and for this reason is expressed as a percentage of the total counts added. PRL binding to liver membranes from mice has been shown to be both time and temperature dependent, and specific for lactogenic hormones. Mouse PRL was measured by a double antibody radioimmunoassay using the materials and methods of Sinha et al. (7). The biological potency of the mouse PRL standard was 25.0 IU/mg. The data in Expts 1 and 2 were treated by an analysis of variance with unequal sample size, followed by a Student-Neuman–Kuels test for comparison of means among groups. Student's t test was used to determine significance in Expt 3. P < 0.05 was considered to be significant.

Results. Figure 1 shows that OVX significantly increased (P < 0.01) [125I]iodo-PRL binding to mouse liver membranes and that enhanced binding could be decreased by estrogens replacement. When this experiment was repeated (Fig. 2) with various doses of EB and longer treatment times, similar results were obtained. /X increased (P < 0.05) specific [125I]iodo-L binding from 14.48 ± 0.85% in the intact controls to 19.93 ± 0.60%. Replacement by ecting 1 and 10 µg of EB for 12 days raised PRL binding to 11.84 ± 0.53 and 90 ± 0.81%, respectively, which were not significantly different from intact control values, whereas 20 and 50 µg of EB significantly reduced binding to below intact levels. Serum PRL was reduced from 12.0 ± 1.5 ng/ml (intact controls) to 8.09 ± 2.0 ng/ml in the OVX rats. All estrogen-treated groups had serum PRL values significantly higher than those in intact controls.

Figure 3 demonstrates the effects of a single injection of 2 µg of EB on specific PRL binding sites in liver membranes obtained from male mice. PRL binding increased (P < 0.01) from 22.6 ± 1.16 to 33.72 ± 1.29% at 7 days postinjection. Since PRL binding sites on male liver membranes were measured using 1000 µg of membrane protein rather than 300 µg of membrane protein (as used in quantitating PRL receptors in the liver of females), specific binding is higher in the livers of females than in the livers of males when compared on a milligram of protein basis. This is in agreement with the data of Posner (3).

Discussion. The presence of specific PRL...
receptors in liver membranes of female mice agrees with the findings of other investigators (3, 8). However, our results indicate that OVX results in an increase of hepatic PRL receptors in female mice, whereas estrogen treatment over a large dose range reduced PRL binding to intact or below intact values. These data in female mice represent a striking contrast to the effects of OVX and estrogen replacement on PRL receptors in liver of female and male rats.

In female rats the effects of estrogen on increasing hepatic PRL receptors was convincingly demonstrated to be mediated through stimulation of pituitary PRL release (5, 9). However, other data suggest a direct effect of estrogen on the liver to modulate PRL binding sites (4). In the present study, all doses of estrogen significantly increased serum PRL levels in female mice. The increase in PRL, however, is not believed to have altered hepatic PRL receptors since other investigators have reported that neither the high levels of endogenous PRL during pregnancy, nor exogenous PRL injections to female mice, influenced PRL binding sites in the liver (3, 8). Therefore, a direct effect on the liver appears likely, although an indirect effect of estrogen cannot be excluded.

In male mice a single injection of 2 μg of EB was able to significantly increase PRL binding sites in the liver. Since estradiol valerate has been reported to stimulate PRL binding sites in the liver of male rats (5) apparent that both male rats and male respond similarly to the stimulatory action of estrogen on hepatic PRL receptors. This contrast to the opposite effects of estrogenic hepatic PRL binding sites of female rat mice.

Although the physiological significance of these results is not known at this time, has been shown to have numerous effects on liver function of various species. Thus, was reported to regulate free fatty acid levels in dog (10) and rat (11) livers, stimulate hepatic RNA synthesis in dwarf mice, modulate ornithine decarboxylase activity of the liver of rats (13), and increase sor medin release from rat livers (14). How in order for PRL to exert an effect on a target cell, it must first bind to a specific plasma membrane receptor to induce cellular changes. Consequently, regulation could provide a mechanism for altering the sensitivity of target organs, grease circulating PRL. Therefore, determine which hormones can alter PRL receptor density or changes in these changes are important for clarifying the physiological action of PRL on liver function.

The present data clearly demonstrate an important species difference between female rats and mice in estrogenic control of hepatic PRL receptors and may have several implications. Thus, the use of the rat as an animal for investigating factors modulating receptors in the liver cannot be considered for other species. Moreover, the functional role of PRL on liver function may be different between males and females of even the same species, since control of PRL receptor is different for male and female mice are different. Our data indicate that estrogen inhibits binding sites in the female, whereas in male, binding is stimulated. Thus, the response of hepatic PRL receptors to estrogen is species and sex dependent. The mechanisms of action by which these effects are mediated remain to be clarified. The essential findings in these two species need to be considered when designing and interpreting studies on the effects of PRL on liver function.

Summary. Serum PRL and hepatic PRL receptors were measured in intact and
and OVX mice given several doses of OVX significantly increased PRL bind-

ing to the liver of female mice, and EB re-
duced receptors to intact or below intact lev-

els was concluded that estrogen decreases re-
ceptors in the liver of female mice. This is a striking contrast to the stimulatory

role of estrogen on hepatic PRL receptors in male and female rats. EB elevated serum

in OVX mice, but since other investi-
gations reported that PRL does not alter hep-

atic PRL receptors in female mice, it appears

that estrogen reduced PRL binding by a direct effect on the liver. However,

direct effect cannot be excluded. In male

estrogen increased PRL receptors in the

as in male rats.

The present data demonstrate important

differences between female rats and

male mice in estrogenic control of hepatic

receptors. Moreover, the inhibitory ef-

fect of estrogen in female mice, and its stimu-

latory action in male mice, suggest that the

role of hepatic PRL receptors to estrogen

be sex dependent in different species.

mechanisms of action by which these

are mediated remain to be clarified.

4. Kelly, P. A., Ferland, L., Labrie, F., and Delean, H., in "Hypothalamus and Endocrine Function" (F. La-

Hemopoiesis in Diffusion Chambers in Strontium-89 Marrow-Ablated Mice

SOLOMON S. ADLER and FRANK E. TROBAUGH, JR.

Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612

Hemopoiesis can be evaluated by studying the proliferation of hemopoietic cells in diffusion chambers (DCs) implanted into the peritoneal cavities of animals. During the initial several hours after seeding and implantation, the number of cells recoverable from the inoculum declines by 40 to 60% (1).

The predominant hemopoietic precursor cell responsible for the enlarging hemopoietic cell population in DCs appears to be a granulocyte/macrophage committed precursor (2, 3). Multipotent hemopoietic stem cells (CFU-S), however, have also been shown to play a role in DC hemopoiesis (2, 4–7) and the number of these cells reaches its peak in DC cultures before the total number of hemopoietic elements reaches its maximum (8, 9).

If the hemopoietic cell inoculum consists of steady state cells, such as cells from marrows of normal mice, proliferation in DCs begins after a lag of about 18 hr (1). A number of investigators have found that in DCs the number of cells harvested, at least from Days 4 to 7 after implantation, is related linearly to the number of cells in the inoculum, suggesting that there is little or no significant cell–cell interaction (10–12). Niskanen and his colleagues (13, 14), on the other hand, found that as the numbers of cells seeded in DCs were increased, the growth of both differentiated granulocytes as well as CFU-S was inhibited. In addition, proliferation of cells in DCs is modified substantially by pretreatment of the host animals with agents such as irradiation (8, 10, 15, 16) or cytotoxic drugs (2, 4, 10, 13, 15, 17), both of which perturb the hemopoietic state of host animals.

Elevated levels of colony-stimulating activity (CSA), i.e., glycoproteins required for the growth of granulocyte/macrophage precursors in vitro, have been found in the serum of animals treated with whole-body irradiation (13, 16, 18–20). In whole-body-irradiated animals, hemopoiesis in DCs has been found to parallel the increase in serum CSA levels (15, 16); this relationship is expected, as the DC technique primarily assesses granulopoiesis.

The bone-seeking radionuclide, 89mSr, can be used to ablate marrow hemopoiesis selectively (21–24). By 10 days after 89mSr injection (4 μCi/g body wt) the marrows of mice are aplastic and contain less than 2% of the normal number of CFU-S (24). The spleens of 89mSr-treated mice support marked compensatory-hemopoiesis and these mice develop only a mild anemia but a more severe leukopenia; with the passage of time, hemopoiesis is gradually restored in the marrows of these mice (21, 24, 25). In a previous study, we did not detect an elevation in serum CSA levels in 89mSr-treated mice (26).

In an attempt to evaluate the presence of a humoral stimulus for hemopoiesis in 89mSr-treated mice, at various times after 89mSr treatment, we implanted into such mice DCs containing 1×10^6 marrow cells from normal mice. We evaluated the total number of cells, proportions of the various cellular elements, and the number of CFU-S in the DCs 72 hr after implantation.

Materials and methods. Pathogen-free female CAF (Balb/c X A/He) mice (Cumberland View Farms, Clinton, Tenn.), 14 to 16 weeks old, were housed in cages with disposable plastic bottoms; a maximum of 10 mice were housed per cage. The mice were permitted food and acidified (pH 3.2) water ad libitum. On Day 0 the mice were given ip injections of 89mSrCl$_2$ (Oak Ridge National Laboratories, Oak Ridge, Tenn.), 4 μCi/g body wt, in 0.25 ml of a solution buffered to pH 5 to 6; control mice were injected with a comparable amount of cold 89mSrCl$_2$. On days...
and 39 after the Sr injections, DCs implanted into the peritoneal cavities of
ized (sodium pentobarbital) mice 1 hr later the DCs were removed. Prior to treatment, blood was obtained from each mouse by bleeding it from the lateral
plexus into heparinized capillary tubes. Microhematocrit determination, to
cel count (by hemacytometer), 0-cell differential count were performed on the blood from each mouse. For the studies, five radio-68Sr-treated and 1-85Sr-treated mice were studied. Each was implanted with two DCs, one into each side and the other into the left side peritoneal cavity; the chambers were
for identification prior to implantation.

were constructed by gluing deionized pore membranes (Nuclepore Corp.,
on, Calif.) which had 0.22-µm pores, two sides of plastic rings (Millipore Medford, Mass.) with Millipore MF
the DCs were tested for leaks by
with air under water and then ster
70° dry heat for 16 hr. They were
1 × 10⁶ marrow cells pooled from
ar of three CAF mice; the cells were
ed in 0.1 ml of Hanks’ balanced salt
(HBSS). The holes used to fill the
rs were occluded with plugs of dental
or to implantation, the DCs were
ed in a solution of penicillin and strep
. After 72 hr in the mice, the cham
re removed and placed into a solution
0.5% grade B Pronase (Calbi
San Diego, Calif.) and 5% Ficoll (Lit
cetics Lab Products, Kensington, they remained for 90 min at
perature; they were agitated contin
The wax plugs were removed and the
 of the DCs were removed by aspir
through the filling hole by means of a
e needle attached to a tuberculin sy
the chambers were washed thrice with
HBSS; the last wash was performed
 removal of one of the Nuclepore
nes. At each time studied, the con
the five chambers which were im
into the right sides of the mice were
ed to form one suspension of pooled
d those from the five chambers from
sides another. These two suspensions
of pooled cells were counted and assayed separately. Cytospin centrifuge (Shandon Southern Instruments, Inc., Sewickley, Penn.) slides were prepared from each suspension of pooled cells and a 400-cell differential count was performed on each of the suspensions. The criteria of Benestad (27) were used to classify proliferative and nonproliferative granulocytic elements. Duplicate nucleated cell counts were performed on each cellular suspension by means of a hemacytometer.

The CFU-S content of each cellular suspension was assayed by the surface spleen colony technique of Till and McCullough (28). The pooled cellular suspensions were diluted so that the equivalent of 1/4th or 1/8th of the contents of a single chamber was con
tained in 0.5 ml of HBSS which was then injected into a lateral tail vein of an assay mouse which had been exposed to 900 rad of whole-body irradiation provided by a 137Cs source (Gamma Cell 40, Atomic Energy of Canada, Ltd., Ottawa, Canada) within the previous 3 hr. We used 12 to 15 mice to assay each suspension of cells.

The results of the studies performed on the chambers implanted into the right and left sides of the mice were evaluated separately; as the results from the two groups were virtually identical we will report only the pooled data. We had control studies at each time interval and report the results of the cell counts and CFU-S assays individually. The differential counts performed on the contents of the chambers implanted into the control mice were very similar at the four times evaluated; this is to be expected, as the control mice, injected with 85SrCl₂ were “normal” animals at all times. To simplify the reporting of differential counts of the DC cells, we have reported the differential counts from the cells implanted into the normal mice as means ± SE obtained from all the time intervals studied; the results from the experimental mice are reported separately for each time.

Student’s t test was used to evaluate the statistical differences between the results ob
tained from the 68Sr and 85Sr groups. As there are only two values (obtained from the right and left chamber suspensions) for the total numbers of cells per chamber and for the differential counts of the cells for each group at each time studied, we did not analyze these
statistically (Fig. 1C; Table I).

Results. The 89Sr-treated host mice were significantly anemic only during the period in which the second group of chambers were implanted, i.e., 10 to 13 days after 89Sr injection (Fig. 1A), but these mice were granulocytopenic at all times studied (Fig. 1B).

The total number of nucleated cells harvested from the DCs implanted into the 89Sr-treated mice was greater than that harvested from the DCs housed in the control mice at all times studied (Fig. 1C); the largest differences occurred at the 10- to 13-day and 18- to 21-day time periods when the ratios between the cell contents of the DCs from the 89Sr and those from the 89Sr control mice were 1.8 and 2.4, respectively (Fig. 1C). In addition, at the first three times studied, the numbers of cells harvested from the chamber housed in the 89Sr-treated mice exceeded the numbers (1×10^6 cells) in the original inoculum.

In general, the proportion of the various cellular elements in the DCs of the 89Sr and 88Sr mice were quite similar (Table I). There was, however, a slight increase in the proportion of blasts in the DCs from the 88Sr mice during the first three times studied (Table I). In addition, in the 10- to 13-day DCs from the 88Sr-treated mice there was a modest increase in the proportion of nucleated red blood cells (Table I); this was the only time during which the 88Sr-treated mice were significantly anemic (Fig. 1A).

The inoculum contained about 340 CFU-S. The numbers of CFU-S harvested from the DCs housed in the 88Sr-treated mice were significantly greater than those from the DCs housed in the 89Sr control mice. The greatest difference between the numbers of CFU-S in the two groups occurred in those chambers implanted during the second (10–13 days) and third (18–21 days) intervals studied (Fig. 1D); these were the same times during which the largest differences were found in total numbers of nucleated cells per chamber. The second-interval-chambers, implanted 10 days after 88Sr injection, contained more than

Fig. 1. (A) Packed red cell volume (as a percentage) and (B) granulocyte counts per cubic millimeter of blood from diffusion chamber (DC) host mice; and (C) nucleated cell counts and (D) numbers of CFU-S of DCs. All chambers were in mice for 72 hr. Days indicated are numbers of days after Sr injections which also were days on which blood counts were performed and DCs harvested. Means ± SE. N.S., not significant; *p < 0.01; **p < 0.001.
vice as many CFU-S as did the inoculum. **Discussion.** The larger number of CFU-S in DCs cultivated in 65Sr-treated mice as compared to that in DCs from control mice suggests that in 65Sr-treated mice there is a hormonal mechanism(s) which effects either more rapid proliferation of CFU-S or a shortening of the proliferative lag period in both. The early (by 72 hr) substantial increase in the number of differentiated blood elements in DCs from 65Sr-treated mice suggests that there also is a stimulus for the proliferation of committed precursor cells.

In Table II we have summarized studies from the literature on the growth of cells in DCs implanted into hemopoietically stressed mice in which both cell numbers and CFU-S were studied early after DC implantation. The increase in DC contents above that in the inoculum in our 65Sr-treated mice occurred as early (Day 3) as a similar increase in 800-rad whole-body-irradiated (WBI) mice (8) (Table II); on Day 3, the magnitude of the increase in DCs from 65Sr-treated mice may even have been slightly greater than that in DCs from 800-rad WBI mice (8). Moreover, if cell density does influence the growth rate of cells in DCs, the increase noted in our

TABLE I. DIFFERENTIAL COUNTS, AS PERCENTAGES, OF CELLS FROM MICE USED TO INOCULATE DIFFUSION CHAMBERS (DCS) AND OF CELLS HARVESTED FROM DCs CULTIVATED IN 65Sr- OR 80Sr-TREATED MICE.

<table>
<thead>
<tr>
<th>Inoculum</th>
<th>Blasts</th>
<th>Proliferative granulocytes</th>
<th>Nonproliferative granulocytes</th>
<th>Monocytes and macrophages</th>
<th>Red cell precursors</th>
<th>Lymphocytes</th>
<th>Other*</th>
</tr>
</thead>
<tbody>
<tr>
<td>65Sr</td>
<td>2.1 ± 0.3</td>
<td>11.1 ± 1.3</td>
<td>30.3 ± 3.0</td>
<td>0.6 ± 0.2</td>
<td>30.0 ± 1.4</td>
<td>20.6 ± 0.6</td>
<td>5.3 ± 1.2</td>
</tr>
<tr>
<td>80Sr</td>
<td>1.0 ± 0.7</td>
<td>19.6 ± 3.3</td>
<td>42.0 ± 2.1</td>
<td>26.1 ± 1.6</td>
<td>1.0 ± 0.9</td>
<td>7.2 ± 1.7</td>
<td>3.1 ± 1.8</td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.3</td>
<td>18.7</td>
<td>39.2</td>
<td>33.8</td>
<td>0.5</td>
<td>4.7</td>
<td>0.8</td>
</tr>
<tr>
<td>13</td>
<td>2.2</td>
<td>19.5</td>
<td>43.7</td>
<td>25.3</td>
<td>5.5</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>21</td>
<td>2.0</td>
<td>18.8</td>
<td>48.2</td>
<td>23.8</td>
<td>1.0</td>
<td>4.0</td>
<td>2.2</td>
</tr>
<tr>
<td>42</td>
<td>1.5</td>
<td>19.0</td>
<td>38.5</td>
<td>27.5</td>
<td>1.3</td>
<td>3.3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* This category includes: basophils, eosinophils, plasma cells, megakaryocytes, and cells in mitoses.

† For each interval, cells pooled from the femurs of three normal CAF-1 mice were used to inoculate the DCs.

§ Data for DCs cultivated in 80Sr-treated mice are values pooled from all four times studied; means ± SE.

Data for DCs cultivated in 65Sr mice are averages of data obtained from two groups (right and left) of chambers each time.

† Day after injection of 65Sr; this was the day on which chambers were harvested. All chambers were in mice for 2 hr.

‡ There were more red cell precursors in DCs implanted into 65Sr-treated mice on Day 10 and harvested on Day 3; Day 13 was the only time at which 65Sr mice were substantially anemic (Fig. 1A).

TABLE II. REVIEW FROM THE LITERATURE OF STUDIES IN WHICH BOTH NUMBERS OF CELLS AND CFU-S WERE ASSESSED IN DCs IMPLANTED INTO HEMOPOIETICALLY STRESSED MICE: (A) THE FIRST DAY AFTER DC IMPLANTATION ON WHICH THE CELL POPULATION (TOTAL AND CFU-S) EXCEEDED THAT OF THE INOCULUM AND (B) THE MAGNITUDE OF THIS VERY EARLY INCREASE.

<table>
<thead>
<tr>
<th>Author (method used to stress mouse hemopoiesis) and size of inoculum</th>
<th>Nucleated cells/chamber* Day; magnitude of increase over input†</th>
<th>CFU-S/chamber Day; magnitude of increase over input‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niskanen et al. (13) (Cyclophosphamide, 350 mg/kg)</td>
<td>5; 2×</td>
<td>4; 2×</td>
</tr>
<tr>
<td>1 × 10⁴ nucleated cells</td>
<td>5; 1.6×</td>
<td>Not done</td>
</tr>
<tr>
<td>5 × 10⁴ nucleated cells</td>
<td>4; 3.4×</td>
<td>6; 1.4×</td>
</tr>
<tr>
<td>Shulman and Robinson (9) (500 R WBI')</td>
<td>3; 1.2×</td>
<td>3; 1.2×</td>
</tr>
<tr>
<td>1 × 10⁴ nucleated cells</td>
<td>3; up to 1.7×</td>
<td>3; up to 2×</td>
</tr>
<tr>
<td>Boyum et al. (8) (800 R WBI)</td>
<td>4; 3.4×</td>
<td>6; 1.4×</td>
</tr>
<tr>
<td>7 × 10⁴ granulocytes</td>
<td>3; 1.2×</td>
<td>3; 1.2×</td>
</tr>
<tr>
<td>Adler and Trobaugh (present study) (4 μCi/g of 80Sr)</td>
<td>3; up to 1.7×</td>
<td>3; up to 2×</td>
</tr>
</tbody>
</table>

* For the study of Boyum et al. (8) data are granulocytes/chamber rather than nucleated cells/chamber.

† In some cases the magnitude of increase had to be approximated from data supplied in the publications.

‡ WBI, whole body irradiation
studies becomes even more striking as we seeded the DCs with 1×10^6 cells, substantially more cells than were used in the other studies cited in Table II. The contents of the DCs exceeded the input levels earlier in our 89Sr-treated mice (Day 3) than they did in cyclophosphamide-treated mice (Days 4–5) (13) even though the latter had a lower neutrophil nadir (250/mm3 vs 1/mm3). Thus, it seems that DC growth is influenced not only by the degree of neutropenia but also by the modality used to induce it. This confirms the finding of Brevik and Benestad (7) who have noted that irradiation provides a stronger stimulus for DC chamber than does cytoxan treatment; we might add that 89Sr irradiation may provide even a stronger stimulus than external WBI.

Although we did not assay the committed granulocyte/macrophage precursor cells (CFU-C), this cell is one of the primary cells which proliferates and differentiates in DCs (9, 14, 29, 30). Beran (15) has shown that the increase in mature cells in DCs implanted into hemopoietically stressed mice from the third day onward is not due to variations in survival times of the cells implanted, rather it is related to proliferative characteristics of the cells and Quesenberry et al. (14) have shown that granulocyte production correlates well with CFU-C proliferation. Based on this knowledge it seems reasonable to assume that the larger population of differentiated white cell elements in DCs in 89Sr-treated mice as compared to that in DCs in control mice results from increased CFU-C proliferation in the DCs implanted into the 89Sr-treated mice. In spite of the augmented granulopoiesis in 89Sr-treated mice as measured by the DC assay, in a previous study (26) we were not able to detect any elevated levels of CSA in 89Sr-treated mice. It may be that for the 89Sr model, the DC technique is more sensitive to CSA than is the in vitro assay for CSA. Alternatively, a factor other than CSA may be responsible for the enhanced granulopoiesis in DCs. Although some investigators have found support for the role of CSA in DC growth (15, 16), Rothstein et al. (31) have added experimental evidence which casts doubt on the role of CSA in DC hemopoiesis. In any event, the studies reported here underscore the importance of employing multiple experimental systems before ing the presence of a humoral factor of hemopoietic stress.

Summary. The numbers of plu stem cells (CFU-S) and of the mon entiated granulocyte/macrophage in diffusion chambers (DCs) implant the peritoneal cavities of radio-89Sr-ablated mice are increased as com those in DCs implanted into cold marrow-ablated mice. These findings sug there is a systemic humoral response of stimulating hemopoiesis even in aplastic marrows and whose hemopo localized to their spleens. The magni this response and the promptness wit the response is manifest in DC gro ves that marrow aplasia induced provides a stronger stimulus for prol cells in DCs than does either cy phamide or lethal external whole-bc diation.

We sincerely thank S. A. Conti, M. Dansi Hussein for their technical assistance; Dr. G. 'for his help with the isotope; and L. Bielitz secretarial efforts.

1. Benestad, H. B., Cell Tissue Kinet. 5, 421
15. Beran, M., Cell Tissue Kinet. 8, 561 (197
DIFFUSION CHAMBER HEMOPOIESIS IN 85Sr MICE

265

Effect of Long-Term Administration of Epinephrine and Propranolol on Serum Ca
Parathyroid Hormone, and Calcitonin in the Rat (40329)

ALFRED N. HARNEY, SUBHASH C. KUKREJA, GARY K. HARGIS,
PATRICIA A. JOHNSON, E. NELSON BOWSER, AND GERALD A. WILLIAMS
Departments of Medicine and Nuclear Medicine, VA West Side Hospital, and University of Illinois College
of Medicine, Chicago, Illinois 60612

Previous short-term in vitro and in vivo studies have shown the importance of β-adrenergic stimuli in the secretion of parathyroid hormone (PTH) (1–5) and calcitonin (CT) (6–8). In these studies, β-adrenergic agonists, epinephrine and isoproterenol, increased PTH and CT secretion, whereas the β-adrenergic antagonist, propranolol, inhibited the secretion of these two hormones. Subsequent studies have suggested that the effects of isoproterenol in the perfusion system (9) and of epinephrine in vivo in the cow (10) may be short-lived, lasting for 40 to 50 min. The present studies therefore evaluated the effects of long-term administration of epinephrine or propranolol on PTH and CT secretion in the rat.

Materials and methods. Sprague-Dawley rats weighing 250 to 300 g were divided into three groups.

Group I rats received daily injection of 1-epinephrine in sesame seed oil (0.3 mg/day for 2 weeks followed by 0.6 mg/day for an additional 3 weeks) (n = 5).

Group II rats received dl-propranolol (approximately 40 mg/day) for 5 weeks in their drinking water and in addition received daily im injections of sesame seed oil (n = 4).

Group III rats served as control and received daily im injections of sesame seed oil (n = 6).

All animals were bled via orbital sinus puncture at weekly intervals with bleedings being performed 24 hr after the last injection. Serum was separated within 2 hr of the bleeding and frozen for subsequent analysis for serum PTH, CT, calcium, and total proteins.

Serum parathyroid hormone was mined by a slight modification of the usually described method for rat PTH oped in our laboratory (11). The method utilizes an antibody against parathyroid hormone developed in our laboratory (12). Figure 1 illustrates a standard curve for the use of this antisera in the range of 1:20,000,131I-labeled bovine PTH, a series of unlabeled bovine PTH, the antibody bound (B) and free (F) values expressed as a percentage of initial (100%). Figure 1 also shows the percentage values when (a) increasing volumes (A, ml) of serum from a rat, obtained 48 h after bilateral nephrectomy, and (b) increasing volumes (1–20 ml) of pooled tissue culture medium, in which rat parathyroid gland cultured for 48 hr, were added. It is apparent that the displacement curves for PTH are parallel to the standard, rat serum, and tissue culture medium from rat parathyroid glands are indistinguishable. In addition, by utilizing antisera, appropriate changes are observed (data not shown) in serum PTH by hypocalcemia and hypercalcemia in the rat. Parathyroidectomized rats demonstrate undetectable serum levels of PTH. Basal serum PTH in the normal rats with this assay are 6.35 pg-equiv of bovine PTH/ml (n = 6).

Calcitonin was determined by a method similar to the one developed for human and monkey CT. The assay utilizes an antibody determined against human synthetic CT in a goat antiserum dilution of 1:20,000, 131I-labeled human CT, and various concentrations of unlabeled bovine CT; the B/F values are expressed as a percentage of initial or trace B/F. Figure 2 illustrates a standard curve prepared with the use of this antisera and dilution of 1:20,000, 131I-labeled human CT, and various concentrations of unlabeled bovine CT; the B/F values are expressed as a percentage of initial or trace B/F. Figure 2 also shows the percentage B/F value.

1 dl-Propranolol was kindly supplied by the Ayerst Laboratories, New York, New York. Fifty milligrams was dissolved in 50 ml of water and kept in light-proof drinking water bottles. Each rat consumed approximately 40 ml of water daily.
Results. The animals tolerated the injection procedures and propranolol administrations well and gained weight normally. Initial weights were 255 ± 4, 254 ± 5, and 254 ± 3 and the final weights at the end of the study were 334 ± 2, 334 ± 3, and $327 \pm 6 \text{g}$ for groups I, II, and III respectively.

Figures 3 and 4 depict the changes in serum PTH and CT, respectively, in the rats receiving epinephrine, propranolol, or vehicle. There were no significant changes observed with time in either the serum PTH or CT levels in the vehicle-injected control rats. The concentrations of both serum PTH and CT were significantly increased in epinephrine-injected rats as compared to control animals at the end of 2 and 3 weeks, respectively, with further progressive increases during the remainder of the study. The maximum concentrations of PTH and CT were 158 ± 8 and $173 \pm 25\%$ of control, respectively, and were reached at the end of 5 weeks.

Fig. 2. Comparison of tracer displacement curves of synthetic human CT standard, serum from a calcium infused rat, and acetone acetic acid extract of a rat thyroid gland. B/F values along the ordinate are expressed as a percentage of the initial or trace B/F. Concentration scales along the abscissa are adjusted as shown to allow superimposition of one point of each curve to allow determination of similarity of curves. Each point represents the mean ± SD of six replicates in a single assay.
EPINEPHRINE, PROPRANOLOL, AND PTH

FIG. 3. Effect of administration of epinephrine, propranolol, or vehicle on serum parathyroid hormone concentration. Each point represents the mean ± SE. The data are expressed in absolute values. See text for percentage changes.

FIG. 4. Effect of administration of epinephrine, propranolol, or vehicle on serum calcitonin concentration. Each point represents the mean ± SE. The data are expressed in absolute values. See text for percentage changes.

The concentrations of both serum CT and PTH were significantly decreased in rats receiving propranolol as compared to control animals at the end of 1 and 2 weeks, respectively, with further progressive decreases during the remainder of the study. The lowest concentrations for serum CT and PTH were 49 ± 4 and 54 ± 5% of control and were reached at the end of 4 and 5 weeks, respectively.

Figure 5 demonstrates that serum calcium values were not significantly different among the three groups at any time tested during the study.

Serum total proteins did not significantly change during the study in any of the groups.

Discussion. β-Adrenergic stimuli have been shown to play a role in the secretion of CT (1–5) and CT (6–8) in short-term studies. Recent studies clearly demonstrate that adrenocorticotropic hormone administration of large doses of epinephrine and propranolol can also affect serum concentration of these two hormones. Previous short-term studies, the stimulatory effects of isoproterenol and epinephrine on PTH and CT have been shown to be adrenergic as these could be blocked by propranolol (1, 4, 6).

The changes in the serum PTH and CT observed in the present studies were not due to hemoconcentration or hemodilution, there was no change observed in the protein concentration. The present studies do not entirely exclude the possibility that the changes observed in serum PTH and CT were not due to changes in their peripheral metabolism. However, epinephrine and propranolol can respectively stimulate or inhibit PTH secretion in in vitro studies (1). Therefore it is likely that the changes observed in the concentrations of PTH in the present studies were because of changes in its secretion and changes observed in the serum concentration of CT were also presumably because of changes in its secretion.

The lack of change in serum calcium observed in the present studies may possibly be explained on the basis of simultaneous and comparable changes in both the PTH and CT which have opposite effects on serum calcium concentration.

Previous case reports (14, 15) of patients with pheochromocytoma and excessive PTH production, one of whom had hypercalcemia (14), suggested that a short-term excess of catecholamines may cause hyperparathyroidism. However, in subsequent studies, serum PTH levels were found to be normal in 10 unselected patients with
chromocytoma (16). The present studies show that, at least in the rat, long-term excess of catecholamines can increase serum PTH concentrations.

Summary. Injection of epinephrine to 250- to 300-g rats (0.3 mg/day for 2 weeks, followed by 0.6 mg/day for another 3 weeks) progressively increased the serum PTH and CT, whereas administration of approximately 40 mg of propranolol daily, in drinking water, progressively decreased the serum levels of both these hormones in comparison to control animals. The studies indicate that, similar to the short-term effects observed in previous studies, long-term modification of β-adrenergic stimuli can affect PTH and CT secretions.

The authors thank Mrs Barbara Lovett for her secretarial assistance.

The Effects of Ethanol on Cerebral Regional Acetylcholine Concentration and Utilization

TELF AIR H. PARKER, RODERICK K. ROBERTS, GEORGE I. HENDERSON, ANASTACIO M. HOYUMPA, JR., DENNIS E. SCHMIDT, AND STEVEN SCHENKER

Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Veterans Administation Hospital, and Tennessee Neuropsychiatric Institute, Nashville, Tennessee 37203

The precise cerebral mechanism(s) of the acute effects of alcohol (ethanol) on the brain are still uncertain, but an alteration in neurotransmitter balance has been proposed as one possibility (1). Unfortunately, the available data concerning the level and metabolism of most key putative neurotransmitters following the acute and chronic administration of alcohol are conflicting (1). This may be due to species differences, dose of alcohol given, acute or chronic ethanol administration, brain area(s) assayed, and other methodologic difficulties.

The effect of acute and chronic alcohol exposure on cerebral acetylcholine (ACh) is controversial and incompletely defined (1). The aims of the present study were (i) to determine the effects of increasing acute oral doses of alcohol on regional cerebral ACh levels, (ii) to correlate the brain ACh concentrations with blood alcohol levels, (iii) to measure regional cerebral ACh utilization rates in rats at blood ethanol levels seen during modest human inebriation when rat brain ACh levels are essentially unaltered, and (iv) to assess the effects of prolonged oral alcohol consumption on brain ACh levels in rats. The results of these studies are the basis of this report.

Experimental procedures. Nonfasted female Sprague–Dawley rats, weighing 200 to 250 g, and female Swiss albino mice, weighing 20 to 25 g, were used for the acute alcohol and acetaldehyde experiments. Alcohol was diluted with saline to give a 25% solution (v/v) and was given by gavage to rats as a single oral dose of 3 to 7 g/kg body wt. Mice received orally 20% ethanol as single 1.5 or 3 g/kg. Controls for the 3 g/kg dose received orally an equal volume of isocaloric glucose and were sacrificed the appropriate time. Since glucose is not used in the brain, wherein net brain ACh levels were measured (Tables I and II) only saline controls were used. Acetaldehyde was dissolved in saline and was given to rats as 40 mg/kg intraperitoneally 15 min before sacrifice; this concentration has previously been reported to lower brain ACh levels in mice (2).

For the chronic alcohol study, Sprague–Dawley female rats weighing 200 and 250 g were paired, one receiving ethanol and the second serving as a control. All rats were maintained on a light–dark cycle in stainless-steel cages. They received the Lieber–DeCarli liquid containing either 6% (v/v) ethanol or an isocalorically balanced maltose-dextrins formulation containing 12% (v/v) ethanol and 24% (v/v) maltose-dextrins (3). Controls were sacrificed after 2 weeks on alcohol and blood alcohol levels were measured.

In both acute and chronic studies in the various brain regions we measured by pyrolysis–gas chromatography following head-focused microwave excitation (5). The landmarks for identifying the brain regions were those described by us earlier (6).

In order to estimate relative ACh turnover, the rate of decline of ACh levels following inhibition of ACh synthesis by hemicholinium-3 (HC-3) was determined. This decline of ACh has been shown to be dependent upon neuronal firing rate of cholinergic neurons (7–9) and therefore apoptosis...
TABLE I. The Effect of Oral Acute Alcohol Administration on Regional Cerebral Acetylcholine Levels in Rats.

<table>
<thead>
<tr>
<th>Alcohol dose and time of sacrifice</th>
<th>Brain areas assayed</th>
<th>Cortex (nmol/g wet wt, mean ± SE)</th>
<th>Corpus striatum (nmol/g wet wt, mean ± SE)</th>
<th>Midbrain (nmol/g wet wt, mean ± SE)</th>
<th>Blood alcohol level (mg/100 ml, mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 g/kg. 15 min Saline control (5)§</td>
<td>Cortex</td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
<tr>
<td>Alcohol (5)</td>
<td>Corpus striatum</td>
<td>24.6 ± 0.7</td>
<td>75.7 ± 3.2</td>
<td>41.0 ± 1.6</td>
<td>29.9 ± 1.8</td>
</tr>
<tr>
<td>Glucose control (5)</td>
<td>Midbrain</td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
<tr>
<td>3 g/kg. 15 min Saline control (5)§</td>
<td>Brainstem</td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
<tr>
<td>Alcohol (5)</td>
<td></td>
<td>24.6 ± 0.7</td>
<td>75.7 ± 3.2</td>
<td>41.0 ± 1.6</td>
<td>29.9 ± 1.8</td>
</tr>
<tr>
<td>Glucose control (5)</td>
<td></td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
<tr>
<td>1 g/kg. 30 min Saline control (5)§</td>
<td>Cortex</td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
<tr>
<td>Alcohol (5)</td>
<td>Corpus striatum</td>
<td>24.6 ± 0.7</td>
<td>75.7 ± 3.2</td>
<td>41.0 ± 1.6</td>
<td>29.9 ± 1.8</td>
</tr>
<tr>
<td>Glucose control (5)</td>
<td>Midbrain</td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
<tr>
<td>3 g/kg. 30 min Saline control (5)§</td>
<td>Brainstem</td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
<tr>
<td>Alcohol (5)</td>
<td></td>
<td>24.6 ± 0.7</td>
<td>75.7 ± 3.2</td>
<td>41.0 ± 1.6</td>
<td>29.9 ± 1.8</td>
</tr>
<tr>
<td>Glucose control (5)</td>
<td></td>
<td>26.0 ± 0.9</td>
<td>71.2 ± 2.6</td>
<td>39.7 ± 1.1</td>
<td>30.2 ± 1.4</td>
</tr>
</tbody>
</table>

* Statistical information:
 †p < 0.05, one-tailed test.
 ‡p < 0.05, two-tailed test.
 §p > 0.05 vs three saline controls assayed on the same day but <0.05 vs pooled saline controls.
 ¶p < 0.05, one-tailed test, vs saline group (n = 3) assayed on same day and <0.05, two-tailed, vs all 45-min saline midbrain control data.
 †In rats receiving 3 g/kg alcohol, the saline and glucose values for each time interval and each area of brain were comparable (p > 0.05) and were pooled (n = 10–12) for statistical analysis.
 ‡Saline groups for 4 and 5 g/kg alcohol and for 6 and 7 g/kg alcohol groups, respectively, were the same. In all instances where the saline controls for a given result consisted of only three rats assayed on the same day, comparison of the same alcohol data vs all pooled appropriate saline data (n = 17) confirmed the statistical interpretation derived from the three saline controls alone.

TABLE II. The Effect of Acute Oral Alcohol Administration on Cerebral Regional Acetylcholine Levels in Mice.

<table>
<thead>
<tr>
<th>Dose of alcohol</th>
<th>Cortex‡</th>
<th>Corpus striatum (nmol/g wet wt)</th>
<th>Midbrain (nmol/g wet wt)</th>
<th>Blood alcohol (mg/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 g/kg (7)†</td>
<td>25.5 ± 1.4</td>
<td>56.9 ± 2.7*</td>
<td>28.5 ± 1.0</td>
<td>28.2 ± 1.2</td>
</tr>
<tr>
<td>3 g/kg (7)†</td>
<td>35.1 ± 1.6*</td>
<td>68.3 ± 4.4*</td>
<td>38.2 ± 3.4*</td>
<td>28.1 ± 3.1</td>
</tr>
<tr>
<td>Saline control (6)‡</td>
<td>21.9 ± 0.9</td>
<td>47.4 ± 0.9</td>
<td>23.9 ± 2.2</td>
<td>27.7 ± 3.9</td>
</tr>
</tbody>
</table>

† Sacrifice 45 min after alcohol or saline administration.
‡ Mean ± SE.
* p < 0.05 vs saline controls.

Acetylcholine and other cholinergic function.
Briefly, rats were implanted with intraventricular polyethylene cannula as described by Robison et al. (10). Following 3 to 5 days of recovery, 20 µg of HC-3 dissolved in water was administered to rats given ethanol (3 g/kg orally) or to controls which received isocaloric glucose. Previous studies (11) have shown that this dose of HC-3 produces a linear decline in brain ACh in the areas studied over 45 min without mortality. The time of administration of HC-3 was varied relative to the time of alcohol administration so as to allow analysis of brain ACh at 0, 15, 30, and 45 min after HC-3 in both ethanol-treated rats and controls. The ethanol during
this period averaged 170 ± 17 mg/100 ml (mean ± SE). Declines in ACh in each brain region were converted into slopes by regression analysis, giving the relative turnover rate. Blood alcohol in rats and mice in the acute studies and in the chronic studies were measured by the alcohol dehydrogenase method (12).

Statistical analysis of brain ACh data in the acute studies was carried out by Student’s t test, correlations between alcohol dose and ACh levels over the whole alcohol dose range by regression analysis, and the comparison of ACh slopes by analysis of covariance (13). The data were considered statistically significant with a p value of <0.05.

Results. Table I shows the effects of acute oral alcohol administration in various doses on the ACh concentration of several brain regions in rats. With 3 g of alcohol/kg body wt, blood alcohol levels were achieved at 45, 90, and 150 min, which roughly correspond to the concentration of alcohol considered legally intoxicating in man. With this dose, especially at 90 min when the mean blood alcohol was 179 mg/100 ml, cerebral regional ACh levels tended to be slightly higher than in controls, but this was not uniform in all brain areas and was statistically significant in only a few of them (wherein the control values tended to be lower). With increasing doses of alcohol of 4 to 7 g/kg the blood alcohol level rose progressively as one would expect (r = 0.945, p < 0.001) and brain ACh also tended to increase gradually (Table I). Again, however, the rise was modest and was not present in all brain areas studied even at very high blood alcohol concentrations. For cortex and corpus striatum the relationship between alcohol dose and increase in ACh was significant (r = 0.53, p < 0.001 and r = 0.729, p < 0.001, respectively) while the correlation for midbrain and brainstem was not significant (r = 0.265, p = 0.118 and r = 0.260, p = 0.142, respectively). As is shown in Table II, doses of 1.5 and 3 g/kg of alcohol which gave mean blood alcohol levels of 134 and 332 mg/100 ml in mice at 45 min also tended to increase brain ACh levels and this was especially evident with the higher dose. There was no change in brainstem ACh with alcohol administration. By contrast, a single dose of acetaldehyde had no effect on regional brain ACh levels in rats (Table III). In addition, chronic administration of ethanol orally in a liquid diet for 5 weeks did not alter brain ACh concentration in rats (Table IV). This type of alcohol intake has been shown in previous studies to involve an average daily consumption of 3.7 ml of absolute alcohol per rat and gives blood alcohol levels of 70 to 200 mg/100 ml. At the time of brain assay for ACh (about 11:00 AM), with the animals fasted since 8:00 AM, the blood alcohol levels were essentially undetectable.

As a more sensitive index of possible derangement of ACh metabolism, the utilization rate of ACh was studied regionally in the brain at blood alcohol levels which coincide with human legal intoxication (approx 170 mg/100 ml) and which give essentially no evidence of alteration of net brain ACh in

<table>
<thead>
<tr>
<th>TABLE III. The Effect of Acetaldehyde on Regional Cerebral Acetylcholine Levels in Rats.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Acetaldehyde (7)</td>
</tr>
<tr>
<td>Saline (3)</td>
</tr>
</tbody>
</table>

† 40 mg/kg given iv. Rats sacrificed 15 min later. The acetaldehyde-injected rats had brain acetylcholine levels comparable to control values (p > 0.05) (see also control values in Table I).

* Mean ± SE, nmoles/g wet wt.

<table>
<thead>
<tr>
<th>TABLE IV. The Effect of Chronic† Alcohol Ingestion on Regional Cerebral Acetylcholine Levels in Rats.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Alcohol‡ (8)</td>
</tr>
<tr>
<td>Pair-fed control (8)</td>
</tr>
</tbody>
</table>

† Five weeks of oral alcohol intake (see Experimental Procedures).
‡ None of the alcohol values were statistically significantly different from appropriate control data.
* Mean ± SE, nmoles/g wet wt.
kg of ethanol at 45 min, Table I). In Table V, the rate of utilization was significantly decreased with this ethanol in the cortex and midbrain. Corpus striatum and brainstem tended to be lower in the alcohol group (and not reach statistical significance). The present study clearly shows that mice that acute oral administration of ethanol increases significantly the levels of ACh in some areas of the brain (I and II). The changes, however, were only modest and occurred primarily in blood ethanol concentrations. Our agreement with prior observations (with a single large dose of ethanol per po) (14) but do not confirm the finding of Rawat (2) who found depressed ACh in whole brain of mice given 3 mol of ethanol. This discrepancy may be explained by the use of brain rapidly frozen in liquid nitrogen in our study (2); such a sacrifice procedure was necessary to result in partial degradation and indeed the levels of ACh in that region were less than half of those obtained in acute fixation of brain. In our studies, the corpus striatum shows the most consistent effect of ethanol, perhaps because most rapid ACh turnover (Taude, the cortex and midbrain ACh, were also affected by alcohol, especially at higher blood alcohol levels. Therefore, that the ethanol effect on ACh is a general one.

Mechanism(s) by which ethanol may increase ACh is still uncertain. Rawat et al. (9) the acetaldehyde generated from metabolism may combine with sulphhydryl groups of coenzyme A and thus decrease the precursor pool for ACh synthesis (2). In our studies, utilizing the same acetaldehyde protocol, no change in brain ACh was noted (Table III). Thus, while blood and brain acetaldehyde concentrations were not measured and it is possible that higher doses of acetaldehyde or administration of this drug over a prolonged time would exert some effect, our data with the single bolus of acetaldehyde do not support such a hypothesis. Against the acetaldehyde concept (2) are not only the observations that brain ACh increased, and not decreased, with alcohol administration but also the extensive in vitro and in vivo data with brain exposed to ethanol (15-17). In these studies, wherein no significant acetaldehyde is generated, alcohol inhibited the release of ACh from cerebral cortical slices and the mesencephalic reticular formation. These data clearly indicate that alcohol per se exerts an inhibitory effect on ACh release from brain. Our in vivo measurements of ACh utilization (Table V) (to our knowledge not previously carried out) showed a statistically significant decreased ACh turnover after ethanol administration in cortex and midbrain. In the corpus striatum and brainstem there was a tendency to a lower ACh utilization but this did not show statistical significance. This is consistent with the slight net accumulation of ACh in most of these areas with this low dose of alcohol. Conceivably at higher blood and brain alcohol levels a greater effect on ACh utilization would be shown. The changes observed here by us and by others (1) on brain ACh with ethanol are most consistent with the concept of Nikander and Wallgren (18) that alcohol

1. The Effect of Acute Oral Alcohol Administration on Regional Cerebral Acetylcholine Utilization.

<table>
<thead>
<tr>
<th>Control†</th>
<th>Alcohol†</th>
<th>Decrease in ACh content (‰)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nmol/g brain/min)</td>
<td>(nmol/g brain/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>striatum</td>
<td>0.43 ± 0.03 (33)*</td>
<td>0.30 ± 0.03 (32)</td>
<td>30.2</td>
</tr>
<tr>
<td>n</td>
<td>1.23 ± 0.08 (36)</td>
<td>1.09 ± 0.09 (38)</td>
<td>10.9</td>
</tr>
<tr>
<td>m</td>
<td>0.54 ± 0.05 (35)</td>
<td>0.39 ± 0.03 (37)</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td>0.17 ± 0.05 (28)</td>
<td>0.10 ± 0.04 (31)</td>
<td>39.8</td>
</tr>
</tbody>
</table>

†Given to rats as 3 g/kg orally while controls received isocaloric glucose in an equal volume of saline. All values are the mean ± SE turnover rate for the number of animals shown. For technique used to measure see Experimental Procedures.

Number of samples assayed over 45 min, with 4 to 6 specimens at each time interval.
inhibits the action potential in brain. This may be mediated by a direct effect of alcohol on ionic conductance in the neuronal membrane (18, 19) and/or may be exerted at the presynaptic level (19). The net effect would be, as reported here, decreased utilization resulting in an accumulation of ACh. A precise quantitative stoichiometry between net ACh levels and its turnover, however, may not occur due to compartmentation of ACh in brain. No significant effects of alcohol on cerebral acetyltransferase or acetylcholinesterase activity have been reported (20). The effect of alcohol on brain ACh is not unique for this sedative and is shared by higher alcohols and barbiturates (19). Our observation (Table IV) that chronic alcohol intake does not alter brain ACh levels when alcohol is not present in blood implies that it is the presence of high concentrations of ethanol and not the duration of its administration which is relevant. An alternate interpretation, for which there are good data (17, 21), and which is not addressed by these studies, is that with chronic alcohol use the brain becomes insensitive or less sensitive to the effects of ethanol on ACh turnover.

The functional significance of ethanol-induced changes in brain ACh is uncertain. Erickson and Burnam (22) have shown that physostigmine shortens ethanol-induced sleep-time in mice and these studies have been confirmed by others (23). However, ethanol-induced EEG synchrony, an index of cerebral depression, could not be correlated with brain ACh changes after ethanol (16) and the use of various drugs which alter cerebral ACh status did not predictably alter behavioral depression (24). Finally, physostigmine appears to be a relatively nonspecific analeptic since it may reverse sedation induced by diazepam (unpublished observations) and other sedatives. Thus, the present study documents an increase in brain ACh and its decreased utilization with high levels of alcohol, but the functional significance of these findings remains to be established.

Summary. This study assessed the effect of alcohol, given as single increasing doses or chronically, on regional cerebral acetylcholine concentration. In the acute studies in both rats and mice, brain acetylcholine rose significantly, but modestly, at higher blood ethanol concentrations. This effect was most consistent in the corpus striatum. At low blood alcohol levels, when brain acetylcholine levels were unaltered, the utilization rate of acetylcholine decreased in all brain areas and this was statistically significant in the cortex and midbrain. By contrast, in rats exposed to chronic oral ethanol intake but studied when blood alcohol was normal, brain acetylcholine was unaltered. These data are most consistent with the concept that alcohol directly depresses neuronal function resulting in decreased release (utilization) of acetylcholine and at high alcohol concentrations induces a modest accumulation of acetylcholine in brain.

Effect of Diet on Adhesion and Invasion of Microflora in the Intestinal Mucosa of Chicks1, 2 (40331)

G. G. UNTAWALE, A. PIETRASZEK,3 AND JAMES McGINNIS

Department of Animal Sciences, Washington State University, Pullman, Washington 99164

Published results based on experiments with young chicks (1, 2) do not show conclusive evidence about active microbial participation in modifying the nutritional response of young chicks to a given diet. Our earlier work done in this laboratory (unpublished) with different cereal grains did, however, suggest that counts of microbes in the lumen of the gut differ with age and diet and, depending upon the diet, could be involved in the response of chicks to antibiotic-supplemented diets.

Adhesion of microflora to the intestinal wall in young pigs (3), man (4), and chicks (5) has been observed. The Lactobacilli are known to adhere to the epithelium of the crop and bursa in chicks soon after hatching, but no penetration into deeper tissues has been observed (6). Implantation of Lactobacilli through the oral route suppressed Enterococci in the small intestine and ceca and promoted growth in young chicks (7).

The present investigation was designed to characterize the nature and distribution of intestinal microbes which might adhere to the intestinal epithelium, penetrate the mucosa or become translocated to other organs. The growth response of young chicks on different diets, with and without supplemental penicillin, was also determined.

Materials and methods. Three replicate groups of 10 (five each of male and female) 1-day-old broiler chicks were randomly assigned to each of the eight different diets (Table I) under study. The chicks were housed in electrically heated battery brooders with wire floors and free access to feed and water. Birds were reared up to 2 weeks of age, and effects of different diets on weekly body weights, feed consumption, and mortality were recorded and analyzed (8).

Microbiological examinations of intestine and tissues. At 10 days of age, three chicks from each treatment (one chick selected randomly from each of the three replicates) were fasted for 16 hr, sacrificed by electrocution, and immersed in a disinfectant (1% septisol) to minimize contamination of internal organs. The livers were then aseptically exposed, the surface of the right lobe was cuterized by a hot metal spatula, and samples were taken from the site (1.25 cm below the surface) with an inoculating loop for subsequent culturing on blood agar plates and incubation at 37° under aerobic and anaerobic conditions. Bacterial cultures were made similarly from the left kidneys. Bacterial isolates from livers and kidneys were identified by morphological characteristics and biochemical tests (9).

A section of small intestine (2.5 cm long) immediately below the yolk-stalk was removed without contaminating the exterior and transferred to preweighed sterile bottles containing 50 ml of phosphate-buffered saline, pH 7.1 (PBS). Each gut sample was opened with sterile scissors, washed with four changes of PBS (50 ml for the first washing, 10 ml for the subsequent washings), weighed, and then ground using a Thomas glass tissue grinder to make a 5% homogenate in sterile reinforced clostridial medium (RCM, BBL 11565) without agar. Serial dilutions of the fourth washing and the intestinal homogenate were made in liquid RCM, and each of at least five serial dilutions plates in triplicate for bacterial counts. Pour plates of standard method agar (BBL 11638) containing 0.1% starch, 0.5% dextrose, and 5% horse blood and brilliant green bile agar (BBL

1 Scientific Paper No. 4814, College of Agriculture Research Center, Washington State University, Pullman, Project 1533.

2 This research was supported by Grant 11H-3031-0190, Food and Drug Administration, Washington, D.C.

3 Present address: Department of Studying the Inherited Resistance of Disease, Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzebiec, 05-0551, Poland.

\textsuperscript{77/78/1592-0276$01.00/0 1978 by the Society for Experimental Biology and Medicine1}

276
ere used for enumeration of aerobes orms, respectively. RCM agar with horse blood (with second layer with-
abic jars with a Gaspak and catalyst Microbial adhesion to the intestinal s considered to have occurred if the of colony-forming units (CFU) re-
rom the homogenized intestine sig-
nificantly (P < 0.05) exceeded that of the fourth washing (12).

Results. Effects of diets on growth, feed, efficiency, and mortality. The chicks fed a diet containing corn gained significantly higher body weights (P < 0.05) than chicks fed diets containing either rye or beans (raw or cooked) (Table II). The chicks fed a diet containing rye grew significantly better (P <

TABLE I. COMPOSITION OF DIETS AND OUTLINE OF THE EXPERIMENT.

<table>
<thead>
<tr>
<th>Treatment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>meal</td>
<td>22.09</td>
<td>22.09</td>
<td>22.09</td>
<td>22.09</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>d</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>l bone meal</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>soy product</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ted alfalfa</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>alt</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>vo</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>n phosphate</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>premix<sup>a</sup></td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>premix<sup>b</sup></td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>ionine</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>al</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>tal diets</td>
<td>36.46</td>
<td>36.46</td>
<td>36.46</td>
<td>36.46</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>orn</td>
<td>63.54</td>
<td>63.54</td>
<td>63.54</td>
<td>63.54</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>l Mexican beans</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>80.00</td>
<td>80.00</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ed Red Mexican</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>80.00</td>
<td>80.00</td>
</tr>
<tr>
<td>penicillin (ppm)</td>
<td>—</td>
<td>0.50</td>
<td>—</td>
<td>—</td>
<td>0.50</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

n premix at 0.25% of the diet supplies the following per kilogram of the diet: vitamin A, 5500 I.U.;¹ 1650 I.C.U.; vitamin E, 4.4 I.U.; riboflavin, 3.3 mg; calcium pantothenate, 4.4 mg (or pantothenic acid, iacin; 22 mg; choline chloride, 577 mg; vitamin B₁₂, 0.011 mg; and ethoxyquin, 62.2 mg.

il premix at 0.05% of the diet supplies the following per kilogram of the diet: Mn, 50 mg; Fe, 50 mg; Cu, 0 mg; I, 1.5 mg; Ca, 60 mg; and Co, 0.5 mg.

exican beans were autoclaved at 1.06 kg/cm² of pressure for 30 min and oven-dried at 70°F.

exican beans (%¹) were used during these studies.

BLE II. BODY WEIGHTS, FEED EFFICIENCY, AND MORTALITY OF CHICKS FED DIFFERENT DIETS.

<table>
<thead>
<tr>
<th>Average body weights (g)</th>
<th>Average feed efficiency (g)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diets</td>
<td>1 week</td>
<td>2 weeks</td>
</tr>
<tr>
<td>scaine penicillin</td>
<td>106<sup>a</sup></td>
<td>224<sup>a,b</sup></td>
</tr>
<tr>
<td>108<sup>a</sup></td>
<td>224<sup>a,b</sup></td>
<td>1.47<sup>d</sup></td>
</tr>
<tr>
<td>82<sup>c,d</sup></td>
<td>168<sup>c</sup></td>
<td>1.85<sup>c,d</sup></td>
</tr>
<tr>
<td>penicillin</td>
<td>91<sup>a</sup></td>
<td>199<sup>b</sup></td>
</tr>
<tr>
<td>52<sup>c</sup></td>
<td>63<sup>c</sup></td>
<td>6.25<sup>d</sup></td>
</tr>
<tr>
<td>+ procaine penicillin</td>
<td>60<sup>d</sup></td>
<td>75<sup>c</sup></td>
</tr>
<tr>
<td>l beans</td>
<td>78<sup>c</sup></td>
<td>131<sup>d</sup></td>
</tr>
<tr>
<td>l beans + procaine penicillin</td>
<td>87<sup>c</sup></td>
<td>162<sup>c</sup></td>
</tr>
</tbody>
</table>

^{a,b} within each column followed by superscripts having common letters are not significantly different (P = calculated with Duncan's multiple range test.
0.05) than the chicks fed a diet with raw beans. When autoclaved, the bean diet supported chick growth that was better \((P > 0.05)\) than that obtained with the diet containing rye, though it was still significantly lower \((P < 0.05)\) than that with the diet containing corn. Penicillin added at a 50 ppm level gave significantly higher body weights \((P < 0.05)\) over controls with diets containing rye or beans, but not in chicks fed a diet containing corn.

Birds on diets containing rye or autoclaved beans (Table II) were less efficient than those fed a corn diet. The efficiency of feed conversion was poorest in the chicks fed the diet containing raw beans during the same period. Replacing raw beans with autoclaved beans resulted in improved feed efficiency of chicks. Addition of penicillin to all of these diets markedly improved the feed efficiency.

During the 2-week period, 83% mortality was observed in chicks fed the diet containing raw beans (Table II). When procaine penicillin (50 ppm) was supplemented to this diet, mortality was reduced to 66%. In chicks fed the diet containing autoclaved beans, the mortality was only 2%, and supplement of penicillin to this diet prevented mortality completely. No mortality resulted in chicks fed diets containing corn or rye.

Effects of diets on intestinal microbes. In chicks fed diets containing corn, \(10^4\) aerobic organisms/g of wet sample from the lumen of the ileum were enumerated (Table III). Replacing rye with corn in the chick diet resulted in a significant decrease \((P < 0.05)\) in the viable counts of aerobes in lumen material of the gut and a significant increase \((P < 0.05)\) in the viable counts of aerobes adhered to the epithelial wall of the intestine. Feeding of diets containing raw beans to chicks significantly increased \((P < 0.05)\) the luminal and epithelial counts of viable coliforms, total aerobes, and total anaerobes. Compared to raw beans feeding of autoclaved beans resulted in a significant decrease \((P < 0.05)\) in the viable counts of coliforms and total anaerobes in lumen and of those aerobes adhered to the epithelial wall. Supplementing the diets containing either corn or rye with penicillin (50 ppm) resulted in an insignificant \((P > 0.05)\) decrease in viable counts of total anaerobes (excluding coliforms) and total aerobes. A significant decrease \((P < 0.05)\) in viable counts of coliforms and anaerobes was observed in chicks fed diets containing raw or autoclaved beans.

Adhesion of aerobes to the epithelial wall was not affected by feeding diets containing corn, while chicks fed diets containing rye or raw beans showed a significant increase \((P < 0.05)\) in adhesion of aerobes to the gut wall.

TABLE III. Influence of Different Diets on the Numbers of Intestinal Bacteria Free in the Lumen and Adhered to Gut Wall (One Inch Below Yolk-Stalk) of Chicks at Ten Days of Age.

<table>
<thead>
<tr>
<th>Diets</th>
<th>Coliforms</th>
<th>Total aerobes</th>
<th>Total anaerobes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In lumen</td>
<td>Adhered</td>
<td>In lumen</td>
</tr>
<tr>
<td>Corn</td>
<td>2.1</td>
<td>2.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Corn + procaine penicillin</td>
<td>2.1</td>
<td>2.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Rye</td>
<td>2.0</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Rye + procaine penicillin</td>
<td>2.0</td>
<td>2.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Raw beans</td>
<td>2.9</td>
<td>3.9</td>
<td>5.4</td>
</tr>
<tr>
<td>Raw beans + procaine penicillin</td>
<td>2.2</td>
<td>3.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Autoclaved beans</td>
<td>2.1</td>
<td>2.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Autoclaved beans + procaine penicillin</td>
<td>2.5</td>
<td>3.7</td>
<td>4.9</td>
</tr>
</tbody>
</table>

\(^a\) In the fourth washing solution of the sampled intestine.

\(^b\) In the 5% homogenates of the sampled intestine that had been washed four times.

\(^c\) Least significant difference \((P = 0.05)\) for:

- **Means within each diet:** 0.5 0.62 0.44
- **Means within “in lumen” and “adhered” organisms in each diet:** 0.31 0.53 0.25

Means within each diet that differ by more than the stated value are significantly different \((P = 0.05\) or less).
Diet Influence on Intestinal Microflora

The feeding of beans prior to feeding reduced adhesion of aerobes. No significant (P < 0.05) increase of coliforms to the gut wall was observed in chicks fed diets containing corn or rye; however, feeding diets containing beans (raw or autoclaved) resulted in significant increase (P < 0.05) in adhering coliforms and total anaerobes. Supplementation of these diets with penicillin significantly (P < 0.05) reduced the adhesion of aerobes (in chicks fed diets containing ye, or autoclaved beans) and significantly (P < 0.05) increased the adhesion of Escherichia coli and Streptococcus faecalis from the livers and kidneys of chicks fed diets containing raw beans is highly suggestive of microbial involvement in the heavy mortality observed in chicks on these diets and confirms our recent observation (17) that these organisms cause mucosal tissue damage, penetrate the epithelium and cause septicaemia, organ invasion, and death.

Feeding a diet containing autoclaved beans caused adhesion of coliforms to the intestinal wall, but no organisms were isolated from livers and kidneys. This indicates that the factors in raw beans which permit microbial penetration of the gut wall are heat-labile. Earlier Jayne-Williams and Hewitt (18) implicated strains of E. coli being responsible for the lethal effects of raw beans. Furthermore, they postulated that hemagglutinins (or possibly other heat-labile toxic factors) may interfere with normal body defense mechanisms, thereby allowing the normal intestinal bacteria to pass through lumen to other body tissues. The findings of the present study support the above hypothesis (19, 20). The increase in the microbial adhesion to the intestines of chicks fed diets containing either rye or raw beans could be the result of lectin-mediated attachment of bacterial cells to the intestinal wall since lectins are known to combine with bacteria as well as intestinal mucosal cells. Our observations confirming it to be so will be reported in a separate publication.

A significant reduction in mortality of chicks (from 83% on diets containing raw beans to 2% on diets containing autoclaved beans) observed in this study is similar to that reported for Japanese quail (18). Penicillin added to the diet containing raw beans did not prevent mortality in chicks completely.

In our earlier work (unpublished) on the influence of dietary levels of raw beans on growth of chicks, a 46% dietary level resulted in 7% mortality versus 83% mortality in chicks fed at a level of 80% raw beans.

From the above observations and related earlier work in this laboratory (17), it is postulated that feeding diets containing raw beans causes the normal intestinal microflora to colonize on the intestinal wall in young chicks, and its magnitude is proportional to the level of raw beans in the diet. The more extensive colonization or damage to the inti-
Diet influence on intestinal microflora
destinal mucosa due to the components of raw
beans enables the microorganisms to become
more invasive, as evidenced by the presence
of aerobic organisms in the livers and kid-
neys. Further work on pathological exami-
nation of liver and kidney of chicks fed diets
containing raw beans is in progress.

Summary. Compared to chicks fed a diet
containing corn, those fed a diet containing
rye showed significantly lower growth that
was ameliorated by antibiotic supplement to
the diet. Adhesion of aerobes (excluding col-
iforms) and anaerobes to the intestinal wall
was indicated in the chicks fed the diet con-
taining rye which was reduced by penicillin
supplementation. There was no mortality in
chicks fed diets containing corn or rye,
whereas the poorest growth and a very high
mortality resulted in chicks fed diets contain-
ing raw beans. Such adverse effects were
alleviated by dietary antibiotic supplement.
High numbers of aerobes, mainly coliforms,
were found adhered to the mucosal wall of
the chicks fed diets containing raw beans,
and *E. coli* and *S. fecalis* organisms were
isolated from their kidneys. Autoclaving the
beans greatly improved growth, reduced mor-
tality, and caused no adhesion of intestinal
anaerobes to the mucosal wall. A penicillin
supplement to the diet resulted in further
improvement of growth and reduction of
mortality.

1. Jayne-Williams, D. J., and Fuller, R., in "Physiology

2. Barnes, E. M., Mead, G. C., Barnum, D.,
5. Fuller, R., and Jayne-Williams, D. J., Res.
11, 368 (1970).
York (1960).
9. Breed, R. S., Murray, E. G. D., and Sm
"Bergey's Manual of Determinative Bacteri-
ology," 7th ed. Williams & Wilkins, Baltimore (1957
1464 (1965).
(1971).
1130 (1971).
14. Saxena, H. C., Jensen, L. S., McGinnis,
(1963).
16. Hewitt, D., Coates, M. E., Kakade, M.
1 (1976).
18. Jayne-Williams, D. J., and Hewitt, D., J. Ap-
teriol. 35, 331 (1972).
(1973).
20. Jayne-Williams, D. J., and Burgess, C. D.,

Received May 27, 1977. P.S.E.B.M. 1978, Vol. 1
The Effect of Prostaglandin E2 and Indomethacin on the Placental Vascular Response to Norepinephrine

ANNE BERSSENBRUGGE, DEBRA ANDERSON, TERRANCE PHERNETTON,
AND JOHN H. G. RANKIN

Departments of Physiology and Gynecology-Obstetrics, University of Wisconsin Medical School, and Wisconsin
Perinatal Center, Madison General Hospital, Madison, Wisconsin 53775

Various studies provide indirect or direct evidence that prostaglandin E2 is involved in regulating the maternal placental blood flow (1–5). Terragno et al. (1), using anesthetized pregnant dogs, and Venuto et al. (2), using anesthetized pregnant rabbits, have demonstrated: (a) that the uteroplacental unit is a rich source of prostaglandin E-like material and (b) that the blockade of prostaglandin synthesis is accompanied by a decrease in the uterine blood flow and a decrease in the concentration of prostaglandin E-like material in the uterine venous blood.

Direct evidence comes from a study previously reported by this laboratory using near-term pregnant sheep (3). In this study the injection of 20 \(\mu g/kg \) prostaglandin E2 directly into the maternal circulation increased the placental vascular resistance. This increase in placental vascular resistance was due to the uterine contraction induced by prostaglandin E2 which masked the effect of prostaglandin E2 on the placental vasculature. When this effect of prostaglandin E2 on the noncotyledonary uterus was bypassed by administering the drug via the fetal venous catheter, there was a small but significant increase in placental blood flow.

Thus, there appears to be evidence supporting the involvement of prostaglandins in the maintenance of placental blood flow. The mechanisms by which prostaglandins contribute to the control of placental blood flow are not clear. Many investigators have demonstrated that prostaglandins can regulate regional blood flow in a variety of vascular beds by modifying their reactivity to adrenergic stimuli (6–10). However, the modulation of the vascular response to adrenergic stimuli by prostaglandins varies greatly both quantitatively and qualitatively depending upon the species or vascular bed studied. It was therefore the purpose of this study to investigate the possibility that prostaglandins may influence the regulation of blood flow in the near-term ovine placenta by altering the response of the vasculature to catecholamines.

Methods. Eleven pregnant sheep were surgically prepared between Day 125 and Day 135 of gestation. The jugular vein was catheterized and the sheep was sedated with sodium pentobarbital (Nembutal, 10 mg/kg) and a spinal anesthetic (Xylocaine). Xylocaine (3%) was injected subcutaneously in the ventral cervical region to serve as a local anesthetic during the placement of the left ventricular catheter via the carotid artery. The left ventricular catheter consisted of a polyethylene catheter (i.d. 1.6 mm, o.d. 2.0 mm) within which was threaded a polyvinyl catheter (i.d. 0.7 mm, o.d. 1.2 mm) which extended 1 cm from the tip. Correct placement of the left ventricular catheter was confirmed by monitoring the blood pressure recording. A polyvinyl catheter was inserted in a superficial artery of the maternal hindlimb and advanced 20 cm into the femoral artery. In order to monitor amniotic fluid pressure a catheter was secured to the fetal hindlimb via a midline incision in the maternal abdomen. The femoral and amniotic catheters were secured on the side of the abdomen. The left ventricular and jugular catheters were encased in a gauze bandage which was tucked under an elastic bandage wrapped around the neck. The ewes were injected with 200,000 units of penicillin following surgery.

The experiments were performed 2 days after surgery with the ewe standing quietly in a stanchion in the laboratory. At this time the maternal arterial pH of all sheep was not less...
than 7.4. All pressures were monitored with Statham P23Db transducers positioned at the level of the scapulo-humeral joint and recorded by an R411 Beckman recorder. The placental blood flow was measured using the radioactive microsphere technique in which the microspheres were injected into the left ventricle while simultaneously withdrawing an integrated arterial sample from the femoral catheter at the rate of 2.06 ml/min using a Harvard infusion pump as previously described (11). The microspheres (3M Co., New England Nuclear) had a mean diameter of 25 μm and were labeled with one of the following isotopes: 125I, 109Cd, 57Co, 46Sc, or 85Sr. Organ blood flows were measured with the use of microspheres rather than electromagnetic flow probes because the microsphere technique allows the separation of the uteroplacental blood flow, which is measured by the flow meter method, into the individual placental and nonplacental components.

The protocol for all experiments was to measure the blood flow before (control) and 1.5 min after (test) the left ventricular injection of 1 μg/kg norepinephrine (Levophed, Winthrop). The response to norepinephrine was measured 1.5 min following norepinephrine injection because of observations made in pilot experiments in which a uterine arterial flow probe was employed. Uteroplacental blood flow was found to be relatively stable and depressed maximally at 1.5 min post-norepinephrine injection. The animal was allowed to return to control conditions and one of two additional procedures was then performed.

(1) Pretreatment with prostaglandin E₂. In this series of experiments prostaglandin E₂ was infused continuously into the jugular catheter at the rate of 20 μg/min. Ten minutes after the start of prostaglandin E₂ infusion, blood flows were measured before and after the injection of norepinephrine as previously described. Amniotic fluid pressure was monitored throughout the experiment. If the infusion of prostaglandin E₂ caused an increase in amniotic fluid pressure, the infusion rate was decreased to 10 μg/min. This was done in animal number 2. Five sheep were used in this series.

(2) Pretreatment with indomethacin. Indomethacin was used to inhibit endogenous prostaglandin synthesis. Venuto et al. (2) have reported that the intravenous infusion of 2 mg/kg indomethacin significantly decreased uterine venous prostaglandin E₂ concentration in pregnant rabbits. In this series of experiments, 10 mg/kg indomethacin (Sigma) dissolved in dimethyl sulfoxide (100 mg/ml) was infused into the jugular catheter at a rate of 0.5 ml/min. Twenty minutes later the blood flows were measured before and after the injection of norepinephrine as previously described. Six sheep were used in this series.

At the end of the experiments the ewes were sacrificed and the uterus and contents were removed. The fetus and fetal membranes were removed from the uterus. The placental cotyledons were dissected free from the remaining uterine tissue and were prepared and analyzed for radioactivity in a three-channel Nuclear Chicago 1185 gamma counter in a manner previously described (11). Counts per minute obtained from the gamma counter output were reduced to the number of spheres contained in the sample. Placental blood flows were calculated by the following equation from Makowski et al. (12):

placental flow (ml/min) = (spheres in organ/spheres in reference arterial sample) (withdrawal rate).

The resistance was calculated by dividing the mean maternal arterial pressure by the blood flow.

The changes in vascular resistance in response to norepinephrine were expressed as resistance ratios. The resistance ratios were defined as the ratio of the resistance seen in the test condition 1.5 min after norepinephrine injection, to the resistance seen in the control condition. The paired t test was used to determine the significance of differences between means. Data are reported as means ± standard errors of the mean.

Results. Part 1: The effect of prostaglandin E₂ infusion on the vascular response to norepinephrine. The effect of norepinephrine on the arterial blood pressure, placental flow, and vascular resistance of five sheep before and after pretreatment with prostaglandin E₂ is given in Table I. Twins occurred in sheep 3 and 4. In these cases the placentas serving each fetus were analyzed separately. The in-
n of norepinephrine increased the arterial blood pressure by 22% (P < 0.02). When animals were pretreated with prostaglandin E$_2$ the injection of norepinephrine increased the blood pressure by 14% (P < 0.03). The injection of norepinephrine decreased the placental blood flow by 35% (P < 0.03). After pretreatment with prostaglandin E$_2$ the injection of norepinephrine increased the placental blood flow by 17% (P < 0.03). With prostaglandin E$_2$ present the injection of norepinephrine increased the placental resistance by 48% (P < 0.03). With prostaglandin E$_2$ present the injection of norepinephrine increased the placental resistance by 48% (P < 0.03). Expressing these changes in placental vascular resistance in response to norepinephrine in terms of resistance ratios, we found a resistance ratio of 2.27 ± 0.52 after prostaglandin E$_2$ pretreatment. After treatment with prostaglandin E$_2$, we observed a resistance ratio of 1.47 ± 0.21. This depression of the resistance ratio was significant (P < 0.03).

In the present study we observed that the continuous infusion of 20 μg/min prostaglandin E$_2$ for 10 min caused (a) no change in the maternal blood pressure, (b) a decrease in the placental blood flow, and (c) an increase in the placental vascular resistance.

Part 2: The effect of indomethacin on the placental response to norepinephrine. The effect of pretreatment with indomethacin on the maternal responses to norepinephrine in six sheep is given in Table II. The injection of norepinephrine increased the arterial blood pressure by 9% (P < 0.007). When the animals were pretreated with indomethacin the injection of norepinephrine increased the blood pressure by 20% (P < 0.005). The injection of norepinephrine decreased the placental blood flow by 44% (P < 0.02). Following the pretreatment with indomethacin the injection of norepinephrine decreased

Table I. The Effect of Pretreatment with 20 μg/min Prostaglandin E$_2$ (PGE$_2$) on Mean Arterial Pressures, Placental Blood Flow, and Vascular Resistances before (C) and 1.5 min after (T) the Injection of 1 μg/kg Norepinephrine in Five Near-Term Sheep.

<table>
<thead>
<tr>
<th>No.</th>
<th>C1</th>
<th>T1</th>
<th>C2</th>
<th>T2</th>
<th>C1</th>
<th>T1</th>
<th>C2</th>
<th>T2</th>
<th>C1</th>
<th>T1</th>
<th>C2</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>134</td>
<td>95</td>
<td>115</td>
<td></td>
<td>921</td>
<td>477</td>
<td>627</td>
<td>499</td>
<td>0.103</td>
<td>0.281</td>
<td>0.152</td>
<td>0.230</td>
</tr>
<tr>
<td>98</td>
<td>102</td>
<td>90</td>
<td>95</td>
<td></td>
<td>1226</td>
<td>1030</td>
<td>873</td>
<td>927</td>
<td>0.080</td>
<td>0.099</td>
<td>0.103</td>
<td>0.102</td>
</tr>
<tr>
<td>100</td>
<td>116</td>
<td>92</td>
<td>107</td>
<td></td>
<td>761</td>
<td>549</td>
<td>590</td>
<td>506</td>
<td>0.131</td>
<td>0.211</td>
<td>0.156</td>
<td>0.211</td>
</tr>
<tr>
<td>90</td>
<td>110</td>
<td>99</td>
<td>101</td>
<td></td>
<td>645</td>
<td>446</td>
<td>511</td>
<td>402</td>
<td>0.155</td>
<td>0.260</td>
<td>0.180</td>
<td>0.266</td>
</tr>
<tr>
<td>100</td>
<td>128</td>
<td>105</td>
<td>128</td>
<td></td>
<td>530</td>
<td>414</td>
<td>496</td>
<td>433</td>
<td>0.170</td>
<td>0.266</td>
<td>0.200</td>
<td>0.233</td>
</tr>
<tr>
<td>97</td>
<td>118</td>
<td>96</td>
<td>109</td>
<td></td>
<td>704</td>
<td>174</td>
<td>552</td>
<td>254</td>
<td>0.142</td>
<td>0.736</td>
<td>0.190</td>
<td>0.504</td>
</tr>
<tr>
<td>±1.9</td>
<td>±5.8</td>
<td>±2.7</td>
<td>±5.7</td>
<td>±99.2</td>
<td>±106.6</td>
<td>±59.9</td>
<td>±82.9</td>
<td>±0.016</td>
<td>±0.076</td>
<td>±0.020</td>
<td>±0.047</td>
<td></td>
</tr>
</tbody>
</table>

p < 0.02 p < 0.02 p < 0.003 p < 0.03 p < 0.03 p < 0.04

Table II. The Effect of Pretreatment with 10 μg/kg Indomethacin (INDO) on Mean Arterial Pressures, Placental Blood Flows, and Vascular Resistances before (C) and after (T) the Injection of 1 μg/kg Norepinephrine in Six Near-Term Sheep.

<table>
<thead>
<tr>
<th>No.</th>
<th>C1</th>
<th>T1</th>
<th>C2</th>
<th>T2</th>
<th>C1</th>
<th>T1</th>
<th>C2</th>
<th>T2</th>
<th>C1</th>
<th>T1</th>
<th>C2</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>100</td>
<td>100</td>
<td>125</td>
<td></td>
<td>954</td>
<td>583</td>
<td>1003</td>
<td>450</td>
<td>0.100</td>
<td>0.172</td>
<td>0.110</td>
<td>0.278</td>
</tr>
<tr>
<td>106</td>
<td>116</td>
<td>116</td>
<td>124</td>
<td></td>
<td>1642</td>
<td>996</td>
<td>1447</td>
<td>794</td>
<td>0.065</td>
<td>0.110</td>
<td>0.080</td>
<td>0.156</td>
</tr>
<tr>
<td>90</td>
<td>98</td>
<td>94</td>
<td>104</td>
<td></td>
<td>408</td>
<td>332</td>
<td>312</td>
<td>247</td>
<td>0.221</td>
<td>0.295</td>
<td>0.301</td>
<td>0.421</td>
</tr>
<tr>
<td>112</td>
<td>119</td>
<td>112</td>
<td>126</td>
<td></td>
<td>461</td>
<td>378</td>
<td>355</td>
<td>305</td>
<td>0.243</td>
<td>0.315</td>
<td>0.315</td>
<td>0.413</td>
</tr>
<tr>
<td>110</td>
<td>120</td>
<td>118</td>
<td>155</td>
<td></td>
<td>953</td>
<td>604</td>
<td>937</td>
<td>546</td>
<td>0.115</td>
<td>0.199</td>
<td>0.126</td>
<td>0.284</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>93</td>
<td>125</td>
<td></td>
<td>1179</td>
<td>259</td>
<td>874</td>
<td>173</td>
<td>0.068</td>
<td>0.389</td>
<td>0.106</td>
<td>0.723</td>
</tr>
<tr>
<td>±5.2</td>
<td>±6.1</td>
<td>±6.7</td>
<td>±188.2</td>
<td>±109.7</td>
<td>±174.8</td>
<td>±93.2</td>
<td>±0.032</td>
<td>±0.042</td>
<td>±0.043</td>
<td>±0.080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p < 0.007 p < 0.005 p < 0.02 p < 0.01 p < 0.03 p < 0.03
the placental flow by 49% \((P < 0.01) \). As seen in Table II, the injection of norepinephrine caused an increase in the vascular resistance of the placenta by 83% \((P < 0.03) \). With indomethacin pretreatment the injection of norepinephrine increased the placental resistance by 119% \((P < 0.03) \). When these changes in placent al vascular resistance in response to norepinephrine were expressed in terms of resistance ratios, we found a resistance ratio of \(2.25 \pm 0.70 \) without indomethacin pretreatment. After pretreatment with indomethacin, the resistance ratio was \(2.71 \pm 0.84 \). This increase in the resistance ratio was significant \((P < 0.03) \).

The infusion of indomethacin caused a significant increase in placental vascular resistance of 28% \((P < 0.02) \).

Discussion. Prostaglandins are lipids which are produced by most cells and appear to act locally \((13) \). These characteristics have made their physiologic actions difficult to describe. There are two aspects to prostaglandin action: (i) the substance may act directly and (ii) they may act to modify the action of other agents. Several investigators have attempted to delineate the role of prostaglandins in the maintenance of vascular homeostasis by describing how exogenous prostaglandins modify the action of systemic vasoactive agents and how the blockade of endogenous prostaglandin synthesis modifies the action of systemic vasoactive agents \((8, 14) \). These observations have been made either using nerve stimulation or exogenous norepinephrine as the primary stimulus. The action of the primary stimulus on the organ in question is observed in the control condition, after the infusion of prostaglandin \(E_2 \) and after the infusion of indomethacin. Using this rationale Malik and McGiff \((8) \) have shown that indomethacin potentiates the response of the rabbit kidney to norepinephrine and Fink *et al.* \((14) \) have shown that prostaglandin \(E_2 \) depresses the response of the rabbit kidney to norepinephrine. These results have led these investigators to postulate that prostaglandins play a role in the maintenance of vascular homeostasis in this organ. In the work described here we are concerned only with the rationale and logic behind this type of approach. There is considerable controversy over the factors which regulate renal blood flow and the actual results that are obtained vary depending on species and preparation used. While gators may differ as to the role that prostaglandins play in the renal lature they appear to be united in their approval of the logical sequence behind the design of the experiments such as the described above.

Previous studies have shown indirect evidence that endogenous prostaglandins may be important in the regulation of the blood flow in the pregnant uterus \((1, 2) \). In an attempt to gain direct evidence of this action we have applied the above rationale to the study of the placental vascular bed in near-term sheep. We have used exogenous norepinephrine as the primary stimulus and have attempted to modulate the response of the uterine vascular bed to the stimulus with exogenous prostaglandin \(E_2 \) and with indomethacin.

When the placent al vascular bed was treated with prostaglandin \(E_2 \) we observed an increase in vascular resistance which confirms a previous result from this laboratory \((3) \) which was postulated at that time to be due to the ability of prostaglandin \(E_2 \) to increase the uterine contraction. In the first series of experiments we observed that pretreatment with prostaglandin \(E_2 \) significantly depressed the placental response to norepinephrine. In the second series of experiments we observed that pretreatment with indomethacin significantly increased the placental response to norepinephrine. Data support the conclusion that the placental vascular bed synthesizes prostaglandins and that these substances can explain the response of that vascular bed to exogenous norepinephrine.

Summary. The vascular response of the placental bed to norepinephrine is expressed in terms of the vascular resistance which is defined as the ratio of the vascular resistance seen 1.5 min after norepinephrine administration to that seen before norepinephrine administration. The injection of 1 \(\mu \)g/kg of norepinephrine to near-term sheep significantly increased the vascular resistance of the placenta to a ratio of 0.52 \((\text{mean} \pm \text{SEM}; N = 7) \). Pretreatment with 20 \(\mu \)g of prostaglandin \(E_2 \) per significantly decreased the placental resu
to norepinephrine to a resistance ratio of 1.47 ± 0.21 which was 65% of the untreated response (N = 7). Pretreatment with 10 mg/kg indomethacin significantly increased the placental response to norepinephrine from a resistance ratio of 2.25 ± 0.70 to 2.71 ± 0.84, which is 120% of the untreated value (N = 6). Prostaglandin E$_2$ attenuated the placental vascular response to norepinephrine and indomethacin potentiated this response.

Relation of Vitamin D-Dependent Intestinal Calcium-Binding Protein to Calcium Absorption during the Ovulatory Cycle in Japanese Quail (40333)

R. H. WASSERMAN* AND G. F. COMBS, JR.†

*Department of Physical Biology, New York State College of Veterinary Medicine, and †Department of Poultry Science, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853

The concentration of the vitamin D-dependent calcium-binding protein (CaBP) in the small intestine correlates with the degree of vitamin D-mediated intestinal absorption of calcium with few exceptions (1). One presumed exception was from studies with the laying hen and laying Japanese quail. In both of these species, it was noted that the absorption of calcium was greater during the period when the eggshell was undergoing calcification than when no eggshell was being formed; however, the amount of CaBP in the intestinal mucosa did not change correspondingly (2–4). It was proposed by Bar, Hurwitz, and colleagues (2–4) that there exists in the laying bird a rapidly modulating calcium transport mechanism not associated with CaBP.

In evaluating the relation between CaBP concentrations and calcium absorption, critical consideration must be given to the method by which calcium absorption is measured. In the Bar–Hurwitz experiments, use was made of a nonabsorbable indicator method that measures net calcium absorption. Distinct from this are procedures that measure the unidirectional movement of calcium from intestine to blood using a radiotracer of calcium. The latter gives an estimate of the efficiency of the calcium absorptive mechanisms, which better correlates with CaBP concentrations than would net calcium absorption.

The present experiment was undertaken to determine if there is, in fact, a change in the efficiency of calcium absorption during the egg-laying cycle in Japanese quail. The results indicate no significant difference in calcium translocation across the intestine as a function of eggshell formation.

Methods. Japanese quail in the egg-laying stage were individually housed and periodicity of oviposition was recorded for each bird. Calcium absorption was measured in quail forming an eggshell (12–17 hr after oviposition verified by intrauterine presence of an egg) and in quail not forming an eggshell (1–2 hr after oviposition). For the measurement of the absorption of calcium, quail were anesthetized with ether, a laparotomy was performed, and a 0.5-mL dose of 45Ca (1 mCi CaCl2, 150 mM NaCl, pH 7.4, 0.1 pCi 45Ca) was injected into the lumen of the ligated loop of duodenum. The loop was replaced into the peritoneal cavity and the incision was closed with wound clips. After 15 min, the quail were bled by heart puncture and then they were killed with an overdose of nembutal. The duodenal loop was excised and counted immediately for residual 45Ca activity using a gamma scintillation detector with a single-channel analyzer set to eliminate any contribution from the 57Co daughter. After the gut loop was counted, the residual contents in the lumen were removed by rinsing, the loop was cut open and scraped, and the concentration of CaBP in the intestinal mucosa was determined by a radial immunodiffusion assay, as previously described (5). The tibiae were also excised and counted for 45Ca.

The calcium content of the plasma was determined by atomic absorption spectrometry, and plasma phosphorus by the Fiske-Subbarow method (6).

Calcium absorption is expressed as a percentage of administered dose, and CaBP as micrograms per milligram of total soluble protein. Protein was determined by the Lowry procedure (7).

Results. The data in Table I indicate that there were no significant differences (P > 0.05) in any of the measured parameters between those Japanese quails in which eggshells were being calcified and in those quail in the noncalcifying stage. The only exception was body weight (P < 0.025) which undoubtedly reflects the presence or absence of the forming egg in the body cavity.

Discussion. The present finding that the
ion of calcium does not change as a function of eggshell formation is in apparent contrast with the information previously reported by Bar-Hurwitz, and colleagues. However, the disparity is more likely conceptual than real. The significant difference between the two studies is the manner in which calcium absorption was measured. As alluded to previously, the Hurwitz technique measures net calcium ion and, by this procedure, the net ion of calcium was observed to be present in the quail during the period of eggshell formation than during the period when eggshell was being formed. This is possible since the forming eggshell constitutes a significant calcium "sink" into which calcium is deposited and, thus, less calcium is available for return to the intestinal tract. When no eggshell is in the formative stage, the absorbed calcium can be rapidly secreted into the intestinal lining, leading to a decrease in net calcium absorption.

The procedure used in the present study, assessment of calcium absorption is identical to that described for the intestinal tract, and therefore is not negligible. Under these conditions, no difference in calcium absorption was detected between the different groups of the egg-laying cycle.

Conclusion is offered that the efficiency of calcium absorption does not change in the calcifying stage and the noncalcifying stage of the egg in Japanese quail. This is consistent with the observation that kidney 25-hydroxycholecalciferol-1-ylase activity does not differ during the ovulation and in the noncalcifying period, up to 4 hr after ovulation (4, 8).

Thus, there appears to be a reasonable correlation between the intestinal transport of calcium, intestinal CaBP levels, and the activity of the kidney 1-hydroxylase enzymes in this physiological state, and the proposal that the laying quail contains a rapidly modulating, non-CaBP-dependent, calcium-absorptive mechanism appears to be warranted.

Summary. Duodenal CaBP levels and the efficiency of calcium absorption by the duodenal segment of ovulating Japanese quail were determined as a function of eggshell formation. No differences in these parameters were noted in quail in which eggs were being calcified and in quail with no egg in the calcification stage. Thus, there is a correlation between the efficiency of calcium absorption and the level of vitamin D-dependent intestinal calcium-binding protein in this physiological state in Japanese quail.

Technical assistance and advice by M. Brindak, Dr. C. S. Fullmer, F. Davis, Dr. R. A. Corradino, and N. J. Jayne are gratefully acknowledged. Supported in part by National Institutes of Health Grant AM-04652.

Synthesis of Rat Liver Mitochondrial Proteins after the Administration of a Nonlethal Dose of Cycloheximide (40334)

JOHN J. CH'IH, PATRICIA A. FROMAN, AND THOMAS M. DEVLIN
Department of Biological Chemistry, Hahnemann Medical College and Hospital, Philadelphia, Pennsylvania

Since the earliest report that mitochondria incorporate labeled amino acids into polypeptides in vitro (1), major efforts have been directed toward the isolation and characterization of mitochondrially synthesized polypeptides (2-4). From carefully designed in vitro systems, a few of the products of mitochondrial protein synthesis have been identified. Most of these proteins were low molecular weight, hydrophobic, chloroform-methanol-extractable inner-membrane proteins (5-12). Understanding of the mitochondrial protein synthetic system has also been aided by the use of cycloheximide and chloramphenicol in in vitro and in vivo systems (13-16). Most often studies with cycloheximide in vivo were carried out with lethal doses (10-100 mg/kg) which cause irreversible metabolic and cellular changes (17-20). Thus, it is difficult to distinguish normal physiological events from toxic effects of the antibiotic. With a nonlethal dose of cycloheximide (2 mg/kg) we have demonstrated that the incorporation of radioactive label into low molecular weight mitochondrial trichloroacetic acid-insoluble material is stimulated in the absence of cytoplasmic protein synthesis whereas the synthesis and/or incorporation of large cytoplasmically synthesized proteins into mitochondria requires the presence of cytoplasmic protein synthesis. The differential labeling patterns of these mitochondrial proteins presented in this report extend the cooperative nature of cytoribosomal and mitoribosomal proteosynthetic systems observed with mammalian cells in culture to the intact rat.

Materials and Methods. The experiments were performed on male Wistar rats (210 ± 10 g). Maintenance and treatment of the animals were carried out as previously described (21). Mitochondria (3x washed) of the control and cycloheximide-treated rat liver were isolated in separate tubes under identical conditions according to the procedure described (15).

Extractions of mitochondrial proteins performed with 0.05 M Na2HPO4, but various pH values containing 0.05 M β captoethanol. The specific pH values produced by the dropwise addition of sodium hydroxide (5 N) or concen phosphoric acid to 0.05 M β-mercaptoethanol in 0.05 M Na2PO4. Proteins were extracted sequentially with buffers of decreasing values (7.5, 6.5, 5.5, 4.5) and with buffers increasing pH values (8.5, 9.5, 10.5, 11.5) each extraction, the pellet was stirred for 10 min in the appropriate buffer and centrifuged for 30 min at 27,000 g. The pellet from each series (4.5P and 11.5P solubilized in 1% SDS/0.1 M β-mercaptoethanol/10 mM Tris-HCl buffer, pH 7.5, to 100° and dialyzed against 0.01 M sc phosphate buffer (pH 7.2) containing 0.1% SDS. Analysis, separation of proteins was carried immediately on 10% polyacrylamide gel containing 0.1% SDS according to the proo of Dehlinger and Schimke (22).

For amino acid incorporation, grow four animals were injected ip with [3H]leucine (40-60 Ci/mmmole) or [3H]-labeled protein drolysate (mixture 3130-08, Schwarz/M 1 hr before sacrifice. Samples containing radioactivity were determined as described Ch'iib et al. (23). Protein was determin- the method of Lowry et al. (24). To eliminate interfering substances such as β-mercapto- anol, all samples were treated with 10% trichloroacetic acid and the precipitates redissolved in 0.1 N NaOH before p determinations.

Results and discussion. The incorporation of [3H]leucine or [3H]-labeled protein hydrolysate into liver mitochondria and subchondrial fractions during cyclohex treatment (2 mg/kg body wt) were simi rat kidney (25), with an inhibition at 2 h stimulation at 24 hr (26). Prior to the determination of [3H]-labeled protein hydro radioactivity in the gel slices of the vi.
Mitochondrial proteins and cycloheximide

Mitochondrial protein fractions separated by SDS-PAGE system, absorbance profiles obtained and showed no differences in control and treated animals. A typical scan of the insoluble fractions is shown in Fig. 1.

As shown in Fig. 2, the major peaks of the activity profiles from the insoluble protein fractions of the control corresponded well with their respective absorbance patterns. In the insoluble mitochondrial protein fractions (pH 11.5 and 4.5) from animals treated for 2 hr there was no inhibition of incorporation into the low molecular weight region. In contrast, during cycloheximide-stimulated synthesis (24 hr), there were of equal or, in most instances, greater incorporation than in the corresponding control fractions. As to the high molecular weight region (Fig. 2), incorporation of label into these polypeptides was significantly inhibited in the absence of cytoplasmic protein synthesis. These results obtained from in vivo experiments demonstrate (i) that sublethal levels of cycloheximide will transiently suppress synthesis and/or incorporation of large cytoplasmically synthesized proteins into mitochondria and (ii) synthesis and/or incorporation of this material seems to be stimulated during the recovery phase.

As to the incorporation of radioactive label into the soluble fractions (Figs. 3 and 4), labeling of high molecular weight polypeptides was inhibited at 2 hr after cycloheximide treatment and stimulated at 24 hr. Radioactivity exhibited by the materials migrated to

1. Electrophoretic distribution of insoluble polypeptides isolated from normal and cycloheximide-treated mitochondria. Isolation of mitochondria and submitochondrial protein fractions and method for SDS-polyacrylamide gel electrophoresis as in text. Proteins (75 μg) were separated at 3 mA/gel for 90 min in the anodal direction at room temperature. Molecular weight markers were: γ-globulin (160,000), bovine serum albumin (67,000), myoglobin (17,000), and cytochrome c (12,400). Relative mobilities of standard proteins were determined by plotting log(molecular weight) against log(molecular weight) giving a linear relationship. The correlation coefficient was 0.995, which was highly significant. Standard proteins were run as markers with each set of gels and ion of molecular weight of 2000 was observed among the various runs.
form and methanol were avoided, the molecular weight products observed in 24-hr treated animals may represent crosslinked proteolipids of the mitochondrial membrane as discussed by O'Brien (4) thermore, the SDS-PAGE separation of various polypeptides present in submitochondrial fractions was carried out immed with freshly extracted samples, without age, avoiding both aggregation and degration (4); thus, the low molecular weight materials were presumably not the result ofoteolysis. The cycloheximide-resistant activity appeared in the low molecular weight region of the SDS gel may suggest the product of mitochondrial protein synthesis because gels were routinely staine and scanned at 550, 280, and 26 and consistent patterns were obtained cases. However, the correlation between material and mitochondrially synthesized polypeptides requires further experimentation.

Employing lethal doses of cycloheximide in vivo (5, 7, 11–16), the reversal of inhibition of cytoplasmic protein synthesis and the increase of labeled high molecular weight peptides can never be seen because the cytoplasmic protein synthetic system is irreversibly inhibited and the animals die within a few hours (17–20); thus, the use of high doses as well as the use of cycloheximide on chondria in vitro studies eliminate coupling between the cytoplasmic and mitochondrial systems, thereby disallowing evidence this relationship may exert on mitochondrial translation products.

In conclusion, the interdependency of mitochondrial and cytoplasmic protein thetic systems has been demonstrated in eukaryotes and cultured mammalian cells. Employing cycloheximide at a lethal dose provides a direction for the action of a similar response in the living animal. There is no doubt that coordination between mitochondrion and cell sap involves immediate regulatory mechanism which may be easily resolved by the in vivo approach. Carefully designed experimentation on whole animals may offer some insight into future investigation in the area of mitochondrial biogenesis.

Summary. Following in vivo treatment...
rats with a nonlethal dose of cycloheximide (2 mg/kg body wt), analysis of the newly synthesized liver mitochondrial polypeptides by SDS–PAGE system showed: (i) sublethal levels of cycloheximide did transiently suppress synthesis and/or incorporation of large cytoplasmically synthesized proteins into mitochondria; (ii) synthesis and/or incorporation of this material was stimulated during the recovery phase. The differential labeling patterns of these mitochondrial proteins observed in vivo during cycloheximide treatment substantiate the cooperative nature of the cytoribosomal protein synthetic system to the
Fig. 4. Radioactivity profiles of soluble proteins extracted with alkaline buffers from control and cycloheximide treated (2 and 24 hr) mitochondria. For details see the legends to Figs. 1 and 2.

formation of functional mitochondrion observed with mammalian cells in culture.

MITOCHONDRIAL PROTEINS AND CYCLOHEXIMIDE

Glutaminase-γ-Glutamyltransferase: Subcellular Localization and Ammonia Production in Acidosis (40335)

T. C. WELBOURNE

Department of Physiology and Biophysics, Louisiana State University Medical Center, Shreveport, Louisiana 71130

In the rat kidney, glutamine is utilized by either the mitochondrial glutaminase 1-glutamate dehydrogenase pathway (1–3) or a glutaminase-γ-glutamyltransferase pathway (4–6). The subcellular location of the glutaminase-γ-glutamyltransferase is unknown, although if localized in the cytosol, it would lend support to the previously proposed hypothesis (7) postulating glutamine utilization by dual pathways. The present study was designed (i) to determine its subcellular location and (ii) to determine its quantitative contribution to ammonium production by acidic kidneys perfused with 1 mM L-glutamine.

Materials and Methods. Male Sprague-Dawley rats, weighing between 350 and 400 g, were tube fed 1400 μmoles of NH₄Cl (0.40 M) per day for 3 days; at the end of the second day they were placed in metabolic cages, one per cage, and 24-hr urine collections were observed. Throughout the study the animals were maintained on rat chow (Purina) and water ad libitum. A constant ingestion of NH₄Cl ensured a similar degree of acidosis in all rats; this was confirmed by monitoring systemic blood pH and HCO₃⁻ concentration (Radiometer pH–bloodgas analyzer) at time of perfusion and determining 24-hr ammonium excretion.

Two hours prior to perfusion, rats were injected with either methionine-DL-sulfoximine (Sigma), 1.8 mmoles kg⁻¹, ip, dissolved in 1.0 ml of 0.9% saline or 0.9% saline alone. The animals were anesthetized with sodium pentobarbital, 30 mg kg⁻¹, ip, and their kidneys were isolated (8, 9) and perfused with an artificial plasma solution containing albumin (Sigma, fraction IV) and 1 mM L-glutamine; albumin was defatted (10) and dialyzed, two changes, for 48 hr against 4 liters of the perfusate solution, minus albumin. Kidneys were perfused, pH 7.40, with 80 ml of perfusate for 60 min and samples of the perfusate media were taken at 15-min intervals. The media were analyzed for ammonia concentration by both the enzymatic (6) and the Conway microdiffusion methods modified for blood ammonia (4); glutamine concentration was determined by measuring liberated ammonia after enzymatic (Escherichia coli glutaminase, Sigma) deamidation (3, 9). Ammonia production and glutamine uptake rates were calculated as described (3, 9).

Following perfusion, acidotic and acidotic plus MSO-treated rat kidneys were homogenized in ice-cold 0.44 M sucrose containing 50 mM MgCl₂ and 2 mM HEPES, pH 7.4. Subcellular fractionation was carried out according to a standard schedule (11) on a Sorval RC2B refrigerated, 0–4°C, centrifuge; the postmitochondrial fraction was transferred to a Beckman L ultracentrifuge and centrifuged at 105,000 g for 1 hr. The fractions obtained, nuclear + cellular debris, mitochondrial, microsomal, and soluble, were resuspended in fresh homogenizing solution and suitable aliquots were assayed for NH₄⁺ and glutamohydroxamate formation by the γ-glutamyltransferase reaction (5). Protein content was determined using the biuret reaction (12) employing bovine albumin (Sigma, fraction IV) as the standard.

Results. The response to the standard NH₄Cl load is shown in Table I. Both groups, control and pre-MSO-treated rats, received an identical acid load, exhibited a similar degree of mild acidosis, and excreted identical amounts of ammonium (coefficient of variation, 6.2 for control and 4.5 for pre-MSO-treated rats). Differences in ammonia production by perfused kidney from MSO-injected rats are not, therefore, due to a variable response to the acid load.

The effect of MSO on ammonia release and glutamine uptake is presented in Table II. Kidneys released 50 ± 4 and 48 ± 6 μmoles of ammonia g⁻¹ hr⁻¹ in the absence of exogenous glutamine. In the presence of gluta-
1. Ammonium Chloride Intake, Systemic Ase Balance, and Ammonium Excretion.

<table>
<thead>
<tr>
<th>Intake (μmoles day⁻¹)</th>
<th>Blood pH (U)</th>
<th>Blood HCO⁻³ (mEq liter⁻¹)</th>
<th>Excreted NH₃ (μmoles day⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>7.32±0.6</td>
<td>23.4±1.5</td>
<td>1358±85</td>
</tr>
<tr>
<td>1400</td>
<td>7.34±0.7</td>
<td>22.8±0.9</td>
<td>1375±62</td>
</tr>
</tbody>
</table>

as 0.4 M NH₄Cl, 1400 μmoles day⁻¹ for 3 methods.

administered, 0.9% NaCl, 1 ml, ip.
± SEM from four rats.
administered, 0.9% NaCl plus MSO, 1.8 μmoles day⁻¹.

II. The Effect of MSO Administration on Ammonia Release and Glutamine Uptake.

<table>
<thead>
<tr>
<th>Ammonia released (μmoles g⁻¹ hr⁻¹)</th>
<th>Glutamine uptake (μmoles g⁻¹)</th>
<th>Ammonia/glutamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>50±4</td>
<td>191±18</td>
<td>1.60±0.6</td>
</tr>
<tr>
<td>241±24</td>
<td>55±9</td>
<td>1.98±0.6</td>
</tr>
</tbody>
</table>

acidotic rats (Table I).

Acidemia with 1 mM glutamine⁻0 mM

1.8 μmoles kg⁻¹ given 2 hr prior to perfusion.

Acidotic kidneys released 241, 157 μmoles of ammonia while MSO-treated used significantly less (P < 0.01), 55 μmoles of ammonium. Glutamine uptake was 191±13 which fell to only 55±9 μmoles (P < 0.01) if one assumes ammonia released, studies, accurately reflects production of the NH₃ produced per glutamine 1 ratios are 2.02±0.05 for acidotic and 2.85±0.08 for acidotic plus salt kidneys. Since a value of 2.0 is est possibly attained from complete and deamination of glutamine, r that ammonia released in the ab-glutamine contributes to the total in the presence of glutamine. Subthis gives an NH₃/Gln ratio of 1.60 in the acidic control and 1.98 in the MSO-treated acidotic rats.

A direct effect of MSO on ammonia production from glutamine can be shown by adding the inhibitor to the perfusate (Fig. 1). Over the 30-min control period, the production rate averaged 1.43 μmoles min⁻¹; within 10 min production rates fell to 1.04 μmol min⁻¹. The fall in glutamine uptake was disproportionately greater than with ammonia production, falling from 25.9±3.2 μmoles per 30 min to 16.0±2.9 μmoles per min (P < 0.05). Consequently, the ammonia produced per glutamine extraction ratio rose from 1.66 to 1.95.

The subcellular localization of the glutamine-utilizing enzyme is shown in Table III. The activity, measured as both a glutaminase (ammonia liberated in absence of NH₂OH) and γ-glutamyltransferase, appears to be a soluble enzyme for the following reasons. The activity is mainly in the soluble fraction, 56% of the total homogenate activity, and its specific activity is significantly enriched only in

![Fig. 1](image-url)
the soluble fraction. Both ammonia production and \(\gamma \)-GHA formation were markedly inhibited in the soluble fraction to values less than 15% of the control. Noteworthy ammonia production by the mitochondrial fraction (glutaminase I pathway) was unaffected.

Discussion. The results clearly demonstrate the inhibition of a glutaminase-\(\gamma \)-glutamyltransferase activity localized in the soluble fraction (Table III) which contributes 30 to 40% of ammonia produced by these mildly acidicotic kidneys (Table II and Fig. 1). The disproportionately greater fall in glutamine uptake, 54%, than in ammonia production, 43%, is consistent with the glutaminase-\(\gamma \)-glutamyltransferase pathway contributing only one ammonia per glutamine. The rise in the \(\text{NH}_3 \) produced/glutamine extracted ratio to 2.0 after inhibition of the cytoplasmic pathway is consistent with complete deamidation and deamination by the mitochondrial pathway. These results therefore support the previous proposal of dual glutamine-utilizing pathways in the rat kidney with \(\text{NH}_3 / \text{Gln} \) ratios reflective of the contribution from each pathway.

The present study underlines an important point in calculating the ammonia produced to glutamine extraction ratio (Table II). It must be realized that total ammonia release is not necessarily equivalent to that produced from the glutamine extracted. Thus, Hems (13) observed that nonacidotic kidneys perfused with 1 mM L-glutamine released 119 \(\mu \)moles of \(\text{NH}_3 \) per 45 \(\mu \)moles of glutamine, giving an \(\text{NH}_3 / \text{Gln} \) ratio of 2.64; ammonia released in the absence of glutamine was similar to the present study, some 47 ± 4 \(\mu \)moles. Since a ratio of greater than 2 is clearly impossible, subtracting the glutamine-independent release, 47 \(\mu \)moles, from 119 gives 72 actually produced from glutamine and an \(\text{NH}_3 / \text{Gln} \) ratio of 1.6. Ross (14) calculated an ammonia recovered to glutamine removed ratio of 1.9 with 1 mM L-glutamine as the substrate; however, if 47 \(\mu \)moles of glutamine-independent ammonia release is subtracted, the ratio falls to 130 - 47 = 83/68 or 1.22; furthermore, subtracting a similar ammonia blank from the ammonia released by acidicotic kidneys, 297 - 47 = 250 \(\mu \)moles, and dividing by glutamine removed, 154 \(\mu \)moles, gives a ratio of 1.62. In previous work, employing dextran in place of albumin, I observed an ammonia/glutamine ratio of 1.4 in nonacidotic, increasing to 1.8 in acidicotic rat kidneys (3, 4, 6). Subsequently, the role of a glutaminase-\(\gamma \)-glutamyltransferase was revealed in a series of studies (5, 6, 7, 15) culminating in the isolation of the enzyme from the soluble fraction (15).

The exact identity of this glutaminase-\(\gamma \)-
γ-glutamyltransferase is at present unclear. It is not γ-glutamyltranspeptidase (5, 15) probably not glutamine synthetase (although this enzyme complex is capable of inase-γ-glutamyltransferase activity inhibited by MSO) since synthetase is innantly microsomal (15, 16, 17) while sent activity is predominantly soluble III, 15). Another enzyme, γ-glutamyl-

synthetase, is a soluble protein (18) inhibited by MSO (19), but does not glutamine (20). Consequently, further are required to determine the exact of this activity.

mary. Glutaminase-γ-glutamyltransferase contributes some 30% of the ammonia ded from glutamine by mildly acidic nyes. The enzyme is localized in the and its inhibition results in an am-

produced per glutamine extracted ra-

.0. The results are therefore consistent dual glutamine-utilizing system, one ismic and the other mitochondrial, in actioning rat kidney.

grateful to Mrs. Lorene Rogers for her excellent asistance.

4. Wadoux, P., and Welbourne, T. C., Canad. J. Bio-

chem. 53, 930 (1975).
10. DeDuce, C., Pressman, B. C., Gianetto, R., Wat-

Accumulation of Latex in Peyer’s Patches and Its Subsequent Appearance in Villi and Mesenteric Lymph Nodes. 1, 2 (40336)

M. E. LEFEVRE, R. OLIVO, 3 J. W. VANDERHOFF, 4 AND D. D. JOEL

Medical Research Center, Brookhaven National Laboratory, Upton, New York 11793

Recent interest in the Peyer’s patches of the small intestine has centered on the ability of these lymphoid structures to take in (sample) antigenic material from the intestinal lumen (1–4). Little attention has been paid to Peyer’s patch uptake of inert particulates in the micron size range, in part because of the belief that large particles do not readily pass the intestinal epithelial border. We recently reported, however, that 2-μm latex particles accumulate in Peyer’s patch macrophages during chronic feeding of latex to mice (5).

The present communication extends this finding and presents additional observations on the transport of particles from Peyer’s patches to adjacent villi and the mesenteric lymph node.

Materials and methods. Latex feedings.

Ten-week-old female Swiss mice (Hale-Stoner strain) were used for all experiments. Table 1 gives information on latex feeding to six groups of mice. A water suspension of latex (mean particle diameter ± SD, 2.02 ± 0.014 μm; identification No. LS-1078-B, Dow Chemical Co.), was given ad libitum as drinking fluid. Periodic shaking of the bottles and the mixing action of air bubbles as the mice drank kept the latex suspensions relatively uniform and monodisperse. Examination of fresh intestinal contents indicated that the latex was distributed as single particles in the small intestine. All mice gained weight normally and appeared healthy.

Tissue preparation. To permit the examination of large amounts of tissue, clearing procedures were applied to whole Peyer’s patches and to 0.5-mm-thick slices of mesenteric lymph node. The use of xylene-based solvents, which dissolve latex, was avoided. Peyer’s patches: Intestinal segments of ether-killed mice were fixed in 70% alcohol for several days. Peyer’s patches together with small adjacent areas of intestine were excised gently cleaned with a jet of 70% alcohol from a syringe, and rinsed in water. The tissue was treated as follows: 2% KOH, 2 hr; clearing solution I (150 ml of 2% KOH, 150 ml of glycerol, 150 ml of 0.2% formalin), 2 days; clearing solution II (100 ml of 2% KOH, 400 ml of glycerol), 2 days. Cleared Peyer’s patches were stored in 100% glycerol containing a crystal of thymol. Mesenteric lymph node: Whole alcohol-fixed mesenteric lymph nodes were too thick and slices were too fragile for successful clearing. Slices of formalin-fixed lymph node remained intact during the clearing process but did not become as transparent as alcohol-fixed material. They were, however, sufficiently cleared by lengthening the time of exposure to 2% KOH to 2 days. Cross sections for the present study were taken from the anterior and posterior regions of the major mesenteric node.

For observation, the cleared tissue was placed on a depression slide in glycerol, coverslipped, and examined with a Zeiss inverted microscope.

Results. Peyer’s patches. Five ileal Peyer’s patches from each mouse were examined after clearing. The major structures such as crypts and villi around the patch and reticular fibers within the patch could be discerned despite the transparency of the specimen. Each patch consisted of two to eight lymphoid follicles. In mice fed high concentrations of latex (Groups A, B, D, and E), the center of each follicle on the mucosal side (the dome) was characterized by an accumulation of particles. Figure 1 shows a low-power view of such an accumulation in the dome of a Group D mouse. Under high power the par-
TABLE I. LATEX-FEEDING REGIMENS.

<table>
<thead>
<tr>
<th></th>
<th>Short-term</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Number of animals</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Percentage (w/v)</td>
<td>1.0</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Days (days)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Threshold (days)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Long-term</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>Number of animals</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Percentage (w/v)</td>
<td>1.0</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Days (days)</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Threshold (days)</td>
<td>14–74</td>
<td>14–74</td>
<td>14–74</td>
</tr>
</tbody>
</table>

*between termination of latex feeding and sacrifice.

1. Mucosal aspect of a cleared Peyer's patch from a young adult mouse given drinking water containing latex for 61 days followed by 14 days without latex. Patch contains a single follicle (upper right) and two small follicles (below). Arrow indicates an accumulation of latex particles in the center of the dome of the large crypts and villi are not visible. × 35.

2–4. Representative latex accumulations in the domes of cleared Peyer's patch follicles from mice given Fig. 2), 0.1% (Fig. 3), and 1.0% (Fig. 4) suspensions of 2-μm latex as drinking fluid for 61 days. Latex feeding terminated 14 days before sacrifice of the mice. Plane of focus is near the mucosal surface. Black circles are latex above the plane of focus. × 340.

The latex was refractile, uniform spheres, identified in the latex with which the mice had been fed. The amount of latex in large patches was not uniform; central domes usually contained more latex than peripheral ones. Nevertheless, the total amount of latex
present was related to the amount fed in both short-term and long-term experiments. Figures 2 through 4 show representative latex accumulations in Peyer’s patch domes. Latex could also be seen near the serosal surface of Peyer’s patches from mice of Groups D and E, often in aggregates of 15 to 25 particles. Individual latex-containing macrophages could be discerned in some but not all of the specimens (Fig. 5).

In mice fed the low concentration of latex, the particles were rare (Group F) or not discernible (Group C) in Peyer’s patches. Cleared Peyer’s patches of control mice given tapwater to drink contained no particles that resembled 2-μm latex although many small rod-shaped and crystalline-appearing particulates were present.

Latex particles were still present in Peyer’s patches 74 days after the cessation of latex feeding in Groups D through F, but the number had declined to approximately 10% of the number seen in patches of comparably fed mice sacrificed 60 days earlier.

Villi. Latex frequently appeared in a few villi adjacent to follicles in long-term, but not short-term, experiments. In Group D mice, if a villus contained latex it almost always contained more than one particle; villi from Groups E and F usually contained only one particle. The total number of latex-containing villi was small, e.g., only 3 or 4 of the 10 to 20 villi surrounding a typical follicle might contain latex. Latex-containing villi were readily seen in a scan of the mucosal surface of a cleared Peyer’s patch because of the location of particles in the villous tips (Fig. 6). The particles were usually isolated, in contrast to the close aggregates sometimes seen on the serosal side of Peyer’s patches.

The latex in villi was contained in granular structures, probably macrophages (Fig. 7). Latex was never observed in villi distant from Peyer’s patches. No particles resembling latex were seen in villi of control mice although macrophages containing smaller particles were present. After the cessation of latex feeding, latex particles were still present in juxtafollicular villi of Groups D and E at 74 days, but in smaller numbers than at 14 days.

Mesenteric lymph node. Latex particles were present in cleared mesenteric lymph node tissue from latex-fed mice although they were extremely rare in short-term latex-fed mice. All subsequent observations apply to long-term experiments. The particles were seen around germinal centers and in the central region of mesenteric lymph nodes; no particles were observed in the germinal centers themselves. Particles were more abundant in the anterior than in the posterior region of the node, and they appeared singly, never in aggregates. The total number of particles observed in lymph-node tissue was generally related to the latex concentration fed. The number of particles in mesenteric lymph-node tissue 74 days after the cessation of latex feeding was the same or larger than in comparably fed mice 14 days after the cessation of feeding. Figure 8 illustrates an area of maximum accumulation of latex in mesenteric lymph-node tissue.

Discussion. The present report and a previous communication from this laboratory (5) describe the accumulation and retention of 2-μm latex particles of intestinal origin in mouse Peyer’s patches. These observations support the contention that the Peyer’s patch epithelium is continuously taking in (sampling) intestinal contents (1–4, 6, 7). Although latex particles remained in Peyer’s patches for weeks, they were slowly eliminated after the cessation of latex feeding. The results also demonstrate the important finding that appreciable numbers of latex particles reached mesenteric lymph nodes (Fig. 8). The possibility of direct entry of latex particles into villi (8) as an explanation for the finding of latex in juxtafollicular villi (Figs. 6 and 7) cannot be totally ruled out, but our findings suggest that latex does not appear in villi until after its accumulation in Peyer’s patches. The functional implications of these observations should be considered.

Peyer’s patches produce immunoglobulin A (IgA) precursor cells which enter the circulation and eventually home to the mucous membranes of the gastrointestinal tract (3, 9–12). This production of IgA precursor cells is probably stimulated by the intake and transport of antigenic material through special cells in the Peyer’s patch epithelium and its delivery to lymphocytes within the patch (4). The sampling of intestinal contents, however, is potentially dangerous in that it may permit entry of living pathogens and toxic materials. This risk can be minimized by delivery of sampled materials to a region rich
Portion of a cleared Peyer's patch from a mouse treated as described for Fig. 1. Macrophages (one is by arrow) appear as granular bodies containing latex. × 510.

Latex particles in the tip of a villus which adjoins a Peyer's patch from a mouse treated as described for 510.

A latex particle (arrow) in a villus which adjoins a Peyer's patch from a mouse treated as described for particle is contained within a macrophage, a portion of which is visible as a stellate granular body. × 510.

Latex particles among reticular fibers in cleared mesenteric lymph-node tissue. Mouse was given 1.0% 11 days followed by 74 days without latex. Maximum accumulation of latex in this tissue is illustrated. ×
in macrophages which can phagocytize and inactivate some of the toxic material; macrophages are outstandingly abundant in Peyer's patch tissue (15, 16), particularly in the immediate subepithelial zone. Thus, in overall function, the Peyer's patches may constitute a specialized system for processing intestinal antigens and particulates with little risk to the rest of the body.

Phagocytized particulate matter cannot accumulate in Peyer's patches indefinitely, and mechanisms for its elimination must be sought. Our findings suggest the existence of a population of macrophages in Peyer's patches that ingest particulate material and then migrate to neighboring villi, mesenteric lymph nodes, and possibly other locations. Since large latex aggregates were not seen in mesenteric nodes or villi, the migratory population, if it exists, has either a limited capacity to engulf particulates or a relatively short residence time in areas containing free particulates. Latex-containing macrophages that migrate from Peyer's patches to the tips of neighboring villi are probably shed into the lumen of the gut. The finding of latex in some, but not all, villi adjacent to Peyer's patches is unexplained although this may simply reflect favorable lymphatic channeling.

An alternative explanation for the finding of latex in villi and mesenteric lymph nodes after its accumulation in Peyer's patches is the movement of free particles via open lymphatic channels connected to Peyer's patches. Carter and Collins (15) have described such lymphatic connections in the mouse intestine.

The two suggested mechanisms for latex movement away from Peyer's patches (as free particles or within macrophages) are, of course, not mutually exclusive. Whether or not some particles are also shed directly from the Peyer's patch dome in the reverse of their route of entry is not known, but the finding by Bockman and Stevens (16) that the follicle-associated epithelium of appendix and Peyer's patches appears to conduct bidirectional transport of horseradish peroxidase suggests that direct elimination of particles from the dome may occur.

Summary. Latex particles (2 μm in diameter) accumulated in intestinal Peyer's patches and mesenteric lymph nodes of mice given latex suspensions as drinking fluid. After a 61-day period of latex feeding, the particles were also present in villi adjacent to Peyer's patches; they were not seen, however, after only 3 days of latex feeding. The amount of latex in Peyer's patches 74 days after the termination of latex feeding was much less than the amount present 14 days after the termination of feeding. It is suggested that migratory macrophages take up latex particles within Peyer's patches and subsequently move out of the patch to mesenteric nodes and villi. Some free particles may also be transported out of Peyer's patches to mesenteric nodes and villi through open lymphatic channels. The observations support the contention that Peyer's patches "sample" intestinal contents and they suggest a mechanism for the elimination of accumulated inert particulate matter from these lymphoid structures.

Evidence for Maternal and Fetal Differences in Vitamin D Metabolism (40337)

GAYLE E. LESTER,* T. KENNEY GRAY,* AND ROMAN S. LORENC†

Department of Medicine and Pharmacology, UNCG School of Medicine, Chapel Hill, North Carolina 27514, and
†Hospital for Mother and Child's Health Center, Warsaw, Poland

Pregnancy induces striking changes in mineral osteostasis including the translocation of calcium and phosphorus from the mother to the fetus and elevations in the maternal parathyroid hormone (1) and 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) (2). Hormonal changes enhance the intestinal absorption of calcium and phosphorus mother and the net movement of these elements from the maternal bone mineral to the fetus (3). The effects of these physiologic alterations on the fetoplacental unit are profound at present. Furthermore, our studies of the relationship between D₃ and fetuses of the metabolism of vitamin D and the potential interdependence of the regulation of these metabolic processes is fragmentary. During the trimester of pregnancy, maternal blood levels of vitamin D₃ (25-OH-D₃) seen to decrease (4). A maternal al gradient for the blood levels of D₃, the D₃-metabolite produced by the fetus, has been described (5). Metabolites polar than 25-OH-D₃ were identified in the homogenates after the administration of 1,25(OH)₂D₃ to pregnant rats (6). In a of similar design, differences in the maternal and fetal distribution of metabolites polar than 25-OH-D₃ were observed but not the identity of these metabolites was determined (7). Our studies are devoted to examine the distribution and metabolism of 1,25(OH)₂D₃ in selected tissues of the D₃-deficient pregnant rat and its detection during vitamin D supplementation.

Sera and Methods: Female Sprague-Dawley rats were obtained at 2 to 3 months and fed a synthetic, vitamin D-free diet vitamin D deficiency was documented by the analysis of plasma 25-OH-D₃ levels by competitive binding assay (9). After 6 weeks s diet, the plasma levels of 25-OH-D₃ was not detectable. These rats were bred of normal males after at least 8 weeks of the diet. The presence of spermatozoa in vaginal aspirates was used to identify the first day of pregnancy. On the 19th and 20th days of pregnancy, 0.125 μg of 25-OH-(1,25(OH)₂D₃) dissolved in 0.2 ml of ethanol was injected intravenously. On the 21st day the pregnant rats were anesthetized with ether and bled by cardiac puncture. The uterus and fetuses were exposed via a midline abdominal incision. Each fetus was removed and fetal blood was obtained by cardiac puncture. Fetal kidneys and small intestine were removed by microdissection. Plasma was separated from red blood cells by centrifugation and other tissues were minced, washed in Tris buffer (0.1 M, pH 7.4, 4°), and frozen pending homogenization. Maternal kidneys were removed, cleaned of extraneous tissue, and handled as described. Maternal small intestine was removed, cleaned with cold buffer, and opened and mucosal scrapings were obtained. Wet weight of all tissues was obtained prior to freezing and subsequent homogenization. In some animals, maternal kidneys were removed surgically under ether anesthesia prior to the first injection of 1,25(OH)₂D₃. The kidneys are currently known to be the sole organs containing the enzymes which convert 25-OH-D₃ to its two dihydroxylated metabolites, 1,25(OH)₂D₃ and 24,25(OH)₂D₃ (10). Maternal nephrectomy was performed to determine if the reduction in maternal metabolites was accompanied by a parallel reduction in the fetal metabolites.

Tissues were homogenized in Tris buffer and extracted with methanol:chloroform (2:1) for 1 hr. Chloroform fractions were dried under N₂ and chromographed on Sephadex LH-20 columns (2 x 30 cm) with chloroform: hexane (65:35) elution solvent. Radioactivity recovered from the LH-20 columns averaged 96% of the total extracted counts. Peak areas of radioactivity in the eluates were pooled, dried, and chromatographed on a
Spherisorb column (Laboratory Data Control, 5-μm microslica) using a high-pressure liquid chromatography (HPLC) system (Laboratory Data Control, Riviera Beach, Florida) for further separation and confirmation of peak identity by cochromatography with synthetic standards (25OHD₃, 24R,25-(OH)₂D₃, and 1α,25(OH)₂D₃).

Results and discussion. Figure 1 depicts the LH-20 chromatograms of the maternal tissue extracts. Peaks I, II, and III cochromatographed on HPLC with 25OHD₃, 24R,25-(OH)₂D₃, and 1α,25(OH)₂D₃, respectively. The amounts of dihydroxylated metabolites formed from [³H]25OHD₃ are shown in Table I. The amount of each metabolite was calculated from the recovered radioactivity of the tissue extracts and the specific activity of the [³H]25OHD₃ given the assumption that the injected 25OHD₃ was the only source of vitamin D in these D-deficient animals. Based on these calculations, maternal plasma contained 145 pg/ml of 1,25(OH)₂D₃ and 34 pg/ml of 24,25(OH)₂D₃ while the maternal kidneys contained 75 pg/g wet wt of 1,25(OH)₂D₃ and 12 pg/g wet wt of 24,25(OH)₂D₃. Mucosa from the maternal small intestine contained 125 pg/g wet wt of 1,25(OH)₂D₃ and no detectable 24,25-(OH)₂D₃. Fetal tissues contained different amounts and proportions of the dihydroxylated metabolites of vitamin D compared to maternal tissues. Figure 2 shows the two dominant peaks in the fetal tissues which cochromatographed on HPLC with 25OHD₃ and 24R,25(OH)₂D₃, respectively. Fetal plasma contained 40 pg/ml of 1,25(OH)₂D₃ and 109 pg/ml of 24,25(OH)₂D₃. Fetal kidneys and small intestine had no detectable 1,25(OH)₂D₃ but contained 58 pg/g wet wt and 49 pg/g wet wt of 24,25(OH)₂D₃, respectively. These findings are in sharp contrast to the distribution of the metabolites in the maternal tissues (Figs. 1 and 2). Fetal plasma

![Diagram showing LH-20 chromatograms of maternal tissue extracts from pregnant, D-deficient rats. Maternal blood (-----), kidneys (-----), and small intestinal mucosal scrapings (- - -) from pregnant D-deficient rats treated with [³H]25OHD₃ were extracted. Dried extracts were chromatographed on LH-20 columns with chloroform:hexane solvent system. Fractions 5 ml in volume were collected. Aliquots were taken for radioactive counting on a Beckman LS-230 liquid scintillation counter (50% efficiency) in a toluene base cocktail. Remaining fraction volumes were reserved for analysis by HPLC. Radioactivity in peaks I, II, and III comigrated with synthetic 25OHD₃, 24R,25(OH)₂D₃, and 1α,25(OH)₂D₃, respectively, when analyzed by HPLC.](image-url)
TABLE 1. PICOROGAMS OF METABOLITES FORMED FROM [3H]-
250HD3 IN MATERNAL AND FETAL TISSUE EXTRACTS.*

<table>
<thead>
<tr>
<th></th>
<th>24,25(OH)2D3</th>
<th>1,25(OH)2D3</th>
<th>24,25/1,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma (pg/ml)</td>
<td>34</td>
<td>145</td>
<td>0.23</td>
</tr>
<tr>
<td>Kidneys (pg/g)</td>
<td>12</td>
<td>75</td>
<td>0.16</td>
</tr>
<tr>
<td>Intestinal mucosa (pg/g)</td>
<td>N.D.</td>
<td>125</td>
<td>—</td>
</tr>
<tr>
<td>Urine (pg/ml)</td>
<td>109</td>
<td>40</td>
<td>2.8</td>
</tr>
<tr>
<td>Kidneys (pg/g)</td>
<td>58</td>
<td>N.D.</td>
<td>—</td>
</tr>
<tr>
<td>Intestine (pg/g)</td>
<td>49</td>
<td>N.D.</td>
<td>—</td>
</tr>
</tbody>
</table>

*were calculated as picograms of metabolite based on the specific activity of the injected isotope and an
1:1 conversion of 250HD3 to metabolites. Metabolite amounts were expressed either per milliliter (plasma)
ul of wet tissue weight. Data shown are average values from three experiments.

detectable.

es from all fetuses in each pregnant rat were pooled and results represent pooled organ content.

ed 320% more 24,25(OH)2D3 than the
onding maternal plasma. In contrast,
al plasma contained 360% more
1,25D3 than the corresponding fetal
al.

When expressed as a ratio of
250HD3:1,25(OH)2D3, the ratio in ma-
plasma was 0.23 and the ratio in fetal

plasma was 2.8, a 12-fold difference between
the mother and the fetus (Table I).

Maternal nephrectomy (Nx) reduced
the conversion of [3H]250HD3 to its dihydroxy-
lated metabolites. The mean plasma level of
1,25(OH)2D3, determined from three separate
experiments, in the Nx mother was 36 pg/ml,
75% lower than the concentration in animals with intact kidneys. The observed difference in the maternal plasma level of 1,25(OH)\(_2\)D\(_3\) was highly significant (p < 0.001).\(^1\) The mean maternal plasma level of 24,25(OH)\(_2\)D\(_3\) was 19.5 pg/ml, a 43% reduction compared to the plasma level in animals with intact kidneys. The difference was also significant (p < 0.02). The levels of 1,25(OH)\(_2\)D\(_2\) and 24,25(OH)\(_2\)D\(_3\) in the plasma of fetuses from these Nx mothers were 39.8 and 114.5 pg/ml, respectively. These fetal plasma levels were not significantly different from the levels observed in the fetuses from mothers with intact kidneys. When the maternal plasma levels of the dihydroxylated metabolites were lowered by Nx, the fetal plasma levels were essentially the same as the levels observed in the fetuses from mothers with intact kidneys.

The results of these studies show that the distribution and metabolism of \(^{3}H\)25OHD\(_3\) in the mother and fetus were different in blood, kidneys, and the small intestine. At a time when 1,25(OH)\(_2\)D\(_3\) was the dominant metabolite in maternal tissues, 24,25(OH)\(_2\)D\(_3\) was the dominant metabolite in fetal tissues. This difference is emphasized by the lack of detection of 1,25(OH)\(_2\)D\(_3\) in fetal kidneys and small intestine as well as by the 12-fold differences in the 24,25(OH)\(_2\)D\(_2\):1,25(OH)\(_2\)D\(_3\) ratio between maternal and fetal plasma. As expected, maternal Nx reduced the plasma levels of both dihydroxylated metabolites of vitamin D in the mother but, surprisingly, this reduction in maternal plasma levels was not associated with a parallel reduction in the fetal plasma levels. The maintenance of fetal plasma levels of 24,25(OH)\(_2\)D\(_3\) and 1,25-(OH)\(_2\)D\(_2\) after maternal Nx indicates that the fetal-placental metabolism of \(^{3}H\)25OHD\(_3\) is to some degree independent of the maternal metabolism. This concept of independent fetal-placental metabolism is a heretofore unsuspected aspect of vitamin D metabolism in pregnancy and fetal development. Despite these results, which demonstrate that 24,25(OH)\(_2\)D\(_3\) is the dominant fetal metabolite, the role of this metabolite in fetal development is unknown at present. Recent reports describing the formation of 24,25(OH)\(_2\)D\(_3\) from 25OHD\(_3\) in cultured chondrocytes and the stimulation of \(^{3}SO\) incorporation into these cells by 24,25(OH)\(_2\)D\(_3\) indicate that this metabolite may be involved in the growth and differentiation of the fetal skeleton (11, 12).

Summary. Vitamin D metabolism was studied in pregnant, D-deficient rats and their fetuses. D-depleted, pregnant rats were supplemented with \(^{3}H\)25OHD\(_3\) on the 19th day of pregnancy. The distribution and metabolism of radiolabeled D metabolites was different in maternal and fetal blood, kidneys, and small intestine. 24,25(OH)\(_2\)D\(_3\) was the predominant dihydroxylated D metabolite in the fetus, whereas 1,25(OH)\(_2\)D\(_3\) was the predominant dihydroxylated D metabolite in the mother. The ratio of 24,25(OH)\(_2\)D\(_3\):1,25-(OH)\(_2\)D\(_3\) was 12-fold greater in fetal plasma than maternal plasma. Maternal nephrectomy reduced the metabolism of \(^{3}H\)25OHD\(_3\) to 24,25(OH)\(_2\)D\(_3\) (43%) and 1,25(OH)\(_2\)D\(_3\) (75%). However, plasma levels of these two metabolites were unchanged in the fetuses of these animals when compared with levels observed in fetuses from mothers with intact kidneys. These results suggest the possibility of independent control of 25OHD\(_3\) metabolism by the fetal-placental unit and raise questions as to the possible role of 24,25(OH)\(_2\)D\(_3\) in fetal development.

\(^1\) Percentage differences were calculated by comparison of the mean value and p values were determined by the analysis of variance.

Received May 26, P.S.E.B.M. 1978, Vol. 159.
Influence of Dietary Fat, Fasting, and Acute Premature Weaning on in Vivo Rates of Fatty Acid Synthesis in Lactating Mice¹ (40338)

DALE R. ROMSOS, KATHLEEN L. MUIRURI, PI-YAO LIN, AND GILBERT A. LEVEILLE

Food Science and Human Nutrition Department, Michigan State University, East Lansing, Michigan 48824

Pregnancy and lactation necessitate alterations in carbohydrate and lipid metabolism to provide for fetal development and for milk production. The activities of lipogenic enzymes in rat liver and adipose tissue have been assayed to provide information on the rates of carbohydrate conversion to fatty acids in these organs during pregnancy and lactation. Reported changes in the activities of several lipogenic enzymes suggest that rates of fatty acid synthesis may be increased, decreased, or unchanged in liver (1–5) and adipose tissue (1, 5–7) of pregnant rats. Likewise, it is difficult from the reported data on lipogenic enzymes (1, 3–5, 8) to predict how lactation might alter in vivo rates of fatty acid synthesis in the liver. Activities of lipogenic enzymes, as measured in vitro, respond rather slowly to changes in flux of carbon to fatty acids; thus, it is possible that the activities of the enzymes measured did not reflect the dynamic metabolic changes which occur at the end of gestation and at the initiation of lactation.

The purpose of the present report was to evaluate the contribution of liver, adipose tissue, and mammary gland to in vivo fatty acid synthesis in pregnant and lactating mice; values for virgin mice were included for comparative purposes. The influence of dietary fat, fasting, and acute premature weaning on fatty acid synthesis in lactating mice was also investigated. Injection of tritiated water was utilized to obtain the in vivo estimates of rates of fatty acid synthesis independent of the source of the substrate (9).

Materials and methods. Female Swiss Webster² mice, 10 to 12 weeks of age, were housed in solid bottom cages with wood shavings for bedding. They were fed a stock diet ad libitum unless indicated otherwise. Ambient temperature was 25 ± 2°C. Male mice were placed with female mice for 48 hr; mice which became pregnant were used in subsequent experiments. Litter size was standardized to 10 pups within 24 hr postpartum.

In one experiment virgin and lactating mice were fed one of two semipurified diets for 5 days. The high-carbohydrate diet contained, in grams per 100 g: casein, 20.0; methionine, 0.3; mineral mix (10), 4.0; vitamin mix (11), 0.4; choline chloride, 0.2; cellulose, 5.0; corn oil, 5.0; and glucose, 65.1. The high-fat diet was formulated by replacing 43.1 g of glucose with tallow on an equal energy basis. The high-carbohydrate diet contained 21, 12, and 67% energy from protein, fat, and carbohydrate, respectively, whereas the high-fat diet contained 21, 51, and 28% energy from protein, fat, and carbohydrate, respectively.

In vivo rates of fatty acid synthesis were calculated by determining the rate of ³H₂O incorporated into fatty acids. Each mouse was injected intraperitoneally with 0.2 ml of saline containing 1.5 mCi of ³H₂O. Mice were killed at the times indicated under results. Plasma was collected and used to obtain an estimate of the body water specific activity. All removable adipose tissue was stripped from the mice. In virgin mice, the removable adipose tissue depots comprised 55% of total body fat. Adipose tissue, liver, and mammary gland (pregnant and lactating mice) were weighed and homogenized in an equal weight of water. Aliquots were saponified and fatty acids were extracted and counted as previously described (12). Results were calculated

¹ Supported in part by NIH AM 18957 and by a Research Career Development Award KO4 AM 00112 to DRR. The present address for P.Y.L. is Tunghai University, Department of Chemistry, Taichung, Taiwan. Michigan Agricultural Experiment Station Journal Article No. 8540.

moles of tritium incorporated into fatty acids in liver, adipose tissue, and mammary gland of lactating mice (Fig. 1); rates of incorporation are approximately linear for the first 20 min for all three tissues. Rates of fatty acid synthesis in mammary gland were approximately double the rates observed in liver. Incorporation of \(^3\text{H}_2\text{O} \) into fatty acids in adipose tissue occurred at a considerably slower rate than in mammary gland or liver. Ten minutes after injection of \(^3\text{H}_2\text{O} \), 30 ± 1, 1 ± 1, and 69 ± 1% of total fatty acid synthesis occurred in liver, adipose tissue, and mammary gland, respectively. Similar values were observed at 20 and 30 min. In subsequent experiments, mice were killed 15 min after injection of the tracer.

Body weights of 18- to 19-day pregnant mice were heavier than body weights of lactating mice; virgin mice weighed less than either pregnant or lactating mice (Table I). A marked decrease in gastrointestinal tract fill contributed to the large loss of body weight in the fasted, lactating mice. Food intake was 50% higher in pregnant mice and 147% higher in lactating mice than in virgin mice (Table I).

Liver weight increased approximately 50% in the pregnant and lactating mice and fasting for 12 hr decreased liver weight (Table I). The in vivo rate of fatty acid synthesis in liver, expressed per gram, was 62% lower in pregnant mice than in virgin mice; but the rates per total liver were not significantly lower.

E I. In vivo Rates of Fatty Acid Synthesis in Liver, Adipose Tissue, and Mammary Gland of Virgin, Pregnant, and Lactating Mice.

<table>
<thead>
<tr>
<th></th>
<th>Virgin</th>
<th>Pregnant</th>
<th>Lactating</th>
<th>Pups Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>g(^{-1})</td>
<td>33 ± 1(^{1})</td>
<td>33 ± 1(^{1})</td>
<td>58 ± 2(^{1})</td>
<td>45 ± 2(^{1})</td>
</tr>
<tr>
<td>g(^{-1})</td>
<td>+0.4 ± 0.3(^{1})</td>
<td>-3.2 ± 0.3(^{1})</td>
<td>+1.8 ± 0.4(^{1})</td>
<td>-0.9 ± 0.7(^{1})</td>
</tr>
<tr>
<td>g(^{-1})</td>
<td>5.5 ± 0.4(^{1})</td>
<td>2.0 ± 0.1(^{1})</td>
<td>8.3 ± 0.3(^{1})</td>
<td>13.6 ± 0.5(^{1})</td>
</tr>
<tr>
<td>(\text{mg}^\text{w}^\text{t})</td>
<td>1.9 ± 0.1(^{1})</td>
<td>1.5 ± 0.1(^{1})</td>
<td>2.9 ± 0.1(^{1})</td>
<td>3.0 ± 0.1(^{1})</td>
</tr>
<tr>
<td>(\text{mg}^\text{w}^\text{t})</td>
<td>1105 ± 236(^{1})</td>
<td>221 ± 13(^{1})</td>
<td>644 ± 97(^{1})</td>
<td>2359 ± 522(^{1})</td>
</tr>
<tr>
<td>m/min(^{-1})</td>
<td>2.3 ± 0.2(^{1})</td>
<td>2.1 ± 0.3(^{1})</td>
<td>1.6 ± 0.2(^{1})</td>
<td>0.7 ± 0.1(^{1})</td>
</tr>
<tr>
<td>m/min(^{-1})</td>
<td>741 ± 19(^{1})</td>
<td>247 ± 41(^{1})</td>
<td>115 ± 37(^{1})</td>
<td>121 ± 26(^{1})</td>
</tr>
<tr>
<td>m/min(^{-1})</td>
<td>2584 ± 74(^{1})</td>
<td>468 ± 42(^{1})</td>
<td>987 ± 169(^{1})</td>
<td>9540 ± 117(^{1})</td>
</tr>
<tr>
<td>g/(\text{hr}^\text{w}^\text{t})</td>
<td>60 ± 5(^{1})</td>
<td>50 ± 4(^{1})</td>
<td>66 ± 3(^{1})</td>
<td>24 ± 3(^{1})</td>
</tr>
<tr>
<td>g/(\text{hr}^\text{w}^\text{t})</td>
<td>40 ± 4(^{1})</td>
<td>50 ± 4(^{1})</td>
<td>11 ± 2(^{1})</td>
<td>1 ± 3(^{1})</td>
</tr>
<tr>
<td>g/(\text{hr}^\text{w}^\text{t})</td>
<td>—</td>
<td>—</td>
<td>23 ± 2(^{1})</td>
<td>75 ± 3(^{1})</td>
</tr>
</tbody>
</table>

SEM for 10 mice. All mice were 10 to 12 weeks old. Mice were killed on the 18th or 19th day of pregnancy and on the 5th day of lactation. Mice were killed 12 hr before the fasted mice were killed and pups were removed 12 hr before one group of lactating mice was killed. Means with the \(^{1}\) superscript letter (\(^{1}\) through \(^{1}\)) are not significantly different (\(P < 0.05\)).

Note: Values obtained in liver, adipose, and mammary gland.
because pregnant mice had enlarged livers. Rates of fatty acid synthesis in livers of lactating mice were double the rates observed in virgin mice. Fasting for 12 hr, as expected, decreased tritium incorporation into hepatic fatty acids in both virgin and lactating mice. Removal of pups from the lactating mice for 12 hr did not alter rates of fatty acid synthesis in the liver.

Weight of removable adipose tissue was lower in pregnant and lactating mice than in virgin mice (Table I). Removal of pups for 12 hr resulted in a twofold increase in adipose tissue weight in lactating mice, but the increase was not significant. Rates of fatty acid synthesis were highest in adipose tissue of fed virgin mice; pregnancy, lactation, and fasting decreased tritium incorporation in fatty acids. Removal of pups for 12 hr doubled the rate of fatty acid synthesis in adipose tissue of lactating mice.

Rates of fatty acid synthesis in mammary gland were quantitated in pregnant (18–19 days) and in lactating (5 days) mice (Table I). Only minimal quantities of tritium were incorporated into mammary fatty acids in the pregnant mice, whereas the rate of fatty acid synthesis in mammary glands of the lactating mice was rapid.

The quantity of fatty acids synthesized in the three organs examined was summed (Table I). The fed, lactating mice synthesized fatty acids at a rate nearly four times faster than observed in virgin mice and at a rate 10 times faster than observed in pregnant mice. Removal of pups for 12 hr reduced the total quantity of fatty acids synthesized by approximately 50% in lactating mice. Fasting the virgin and lactating mice markedly reduced the total quantity of fatty acids synthesized.

Approximately 50 to 60% of the fatty acid synthesis occurred in the liver of virgin mice, whereas in lactating mice only 24% of the total fatty acid synthesis occurred in the liver (Table I). The mammary gland accounted for 75% of total fatty acid synthesis in lactating mice. Adipose tissue was relatively unimportant as a site for fatty acid synthesis in pregnant and lactating mice.

The influence of a high-fat diet on fatty acid synthesis in lactating mice is presented in Table II. Values for virgin mice were included for comparison. Body weight, food intake, and liver weights were elevated in the lactating mice but adipose tissue weight was reduced relative to values observed in the virgin mice.

In agreement with the previous experiment, rates of fatty acid synthesis were elevated in the liver and depressed in the adipose tissue of the lactating mice relative to values obtained in virgin mice (Table II). High rates of fatty acid synthesis were found in the mammary gland of lactating mice.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Virgin Diet 1</th>
<th>Virgin Diet 2</th>
<th>Lactating Diet 1</th>
<th>Lactating Diet 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final body weight, g</td>
<td>35 ± 1 †</td>
<td>36 ± 1 †</td>
<td>43 ± 1 †</td>
<td>43 ± 1 †</td>
</tr>
<tr>
<td>Food intake, kcal/day</td>
<td>24 ± 1 †</td>
<td>26 ± 1 †</td>
<td>50 ± 3 †</td>
<td>56 ± 3 †</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, g</td>
<td>2.2 ± 0.1 †</td>
<td>2.1 ± 0.1 †</td>
<td>2.9 ± 0.1 †</td>
<td>2.9 ± 0.1 †</td>
</tr>
<tr>
<td>FAS, nm/min a</td>
<td>2524 ± 364 †</td>
<td>605 ± 96 †</td>
<td>3622 ± 314 †</td>
<td>1017 ± 139 †</td>
</tr>
<tr>
<td>Adipose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, g</td>
<td>2.4 ± 0.2 †</td>
<td>3.2 ± 0.4 †</td>
<td>0.7 ± 0.1 †</td>
<td>0.6 ± 0.1 †</td>
</tr>
<tr>
<td>FAS, nm/min a</td>
<td>1204 ± 184 †</td>
<td>751 ± 107 †</td>
<td>323 ± 106 †</td>
<td>97 ± 28 †</td>
</tr>
<tr>
<td>Mammary gland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total FAS, nm/min a</td>
<td>3728 ± 1086 †</td>
<td>1355 ± 328 †</td>
<td>14,145 ± 1748 †</td>
<td>7349 ± 1324 †</td>
</tr>
<tr>
<td>Percentage of total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>65 ± 5 †</td>
<td>45 ± 6 †</td>
<td>27 ± 3 †</td>
<td>16 ± 2 †</td>
</tr>
<tr>
<td>Adipose</td>
<td>35 ± 5 †</td>
<td>55 ± 6 †</td>
<td>2 ± 1 †</td>
<td>1 ± 1 †</td>
</tr>
<tr>
<td>Mammary gland</td>
<td></td>
<td></td>
<td>71 ± 3 †</td>
<td>83 ± 2 †</td>
</tr>
</tbody>
</table>

* Mean ± SEM for ten 10- to 12-week-old mice fed the respective diets for 5 days. Mice had been lactating for 5 days also. Means with the same superscript letter (a through f) are not significantly different (P < 0.05). Diet 1 was a high-carbohydrate diet and Diet 2 was a high-fat diet.

See Table I.
acid synthesis were observed in mammary gland of the lactating mice. Consumption of the high-fat diet reduced tritium in lation into fatty acids in liver and adipose tissue of both virgin and lactating mice. Early, rates of fatty acid synthesis were as high as approximately 40% in the mammary gland of lactating mice consuming the diet.

Discussion. The rate of fatty acid synthesis from a combination of substrates can be estimated from the incorporation of labeled hydrogen into water (9). This is a particularly difficult technique to compare in vivo rates of acyl synthesis in several organs as compared to the use of a carbon tracer since the former procedure is not completely reliable. Both liver and adipose tissue were important sites for fatty acid synthesis in the virgin mice. These results agree with another report (15) and with the chicken (16) where de novo synthesis occurs almost exclusively in liver and with the pig (17) where adipose tissue is the major organ for fatty acid synthesis.

Rates of fatty acid synthesis in liver, adipose tissue, and mammary gland were obtained in mice. Liver contributed 60 to 65%, and adipose tissue 35 to 40% of the fatty acids synthesized in virgin mice fed a high-carbohydrate diet. Mice in the 18th and 19th day of gestation synthesized less than half the quantity of fatty acids synthesized in virgin mice, even though the pregnant mice consumed more food than the virgin mice. Rates of fatty acid synthesis were elevated more than threefold in lactating mice and 71 to 83% of the fatty acid synthesis occurred in the mammary gland of the lactating mice. Fasting for 12 hr or consumption of a high-fat diet for 5 days depressed rates of fatty acid synthesis in all three tissues examined. Removal of the pups for 12 hr decreased the rate of fatty acid synthesis in mammary gland and increased the rate in adipose tissue of lactating mice.

S-Adenosylhomocysteine Metabolism in Rat Hepatomas* (40339)

[ES D. FINCKELSTEIN, BARBARA J. HARRIS, MICHAEL R. GROSSMAN, AND HAROLD P. MORRIS]

Washington Administration Hospital and George Washington University, School of Medicine, Washington, D.C., 20422, and Department of Biochemistry, College of Medicine, Howard University, Washington, D.C. 20001

ethionine metabolism in neoplasms may significantly from tumor metabolism in normal tissue (Fig. 1). Changes in the rates of synthesis of polyamines (1) and the demethylation of macromolecules (2-7) into an increased requirement for S-adenosylmethionine. In turn, this implies a need for precursor methionine which could be achieved by an increase in homocysteine remethylation relative to transsulfuration (cystathionine synthesis).

An earlier study of six rat hepatoma, we measured the tumor content of five samples of methionine metabolism (8). We did considerable variation between the tissues and between the tumors and liver. Never, we did not observe any changes aceristic of neoplasia. Specifically, we do not define an enzymatic basis for the observed changes in methionine metabolism. An alternative regulatory hypothesis focuses on S-adenosylhomocysteine. This metabolite, which is the product of all trans-sulfation reactions which utilize S-adenosylmethionine as the methyl donor (Fig. 1, section 2) is hydrolyzed by S-adenosylhomocysteine hydrolase (EC 3.3.1.1; Fig. 1, reaction 3)—an enzyme present in virtually all mammalian tissues (10, 11). Adenosylhomocysteine possesses several interesting regulatory properties. It is a potent inhibitor of rat classes of transmethylation reactions (16). Adenosylhomocysteine also inhibits betaine-homocysteine methyltransferase (Fig. 1, reaction 7) (17) and S-methyltetrahydrofolate-homocysteine methyltransferase (Fig. 1, reaction 8) (18)—the two enzymes which can conserve methionine. Conversely adenosylhomocysteine activates the competing cystathionine synthase reaction (Fig. 1, reaction 4) (17).

Thus, a decrease in the concentration of S-adenosylhomocysteine in neoplastic tissues could result in the metabolic alterations described in the first paragraph. However, the observation that S-adenosylhomocysteine hydrolase declines when chick embryo fibroblasts are transformed following infection with Rous sarcoma virus (19) would not be consistent with this formulation. For this reason we are reporting the results of direct assays of the adenosylhomocysteine enzyme in the six lines of rat hepatoma.

Since the hepatic content of adenosylhomocysteine hydrolase increases in animals fed a high-protein diet (10), we included studies to define whether the enzyme in hepatomas was subject to similar control. In addition, we measured the effect of the tumors both on the basal level of enzyme activity in the livers of host animals and on the regulation of the hepatic enzyme by changes in the dietary protein content. Materials and methods. We studied a spectrum of transplantable hepatomas which ranged from the highly differentiated hepatoma 7787 which grew at 0.7 cm/month to the less-differentiated hepatomas 5123tc and 7777 with growth rates of 4.0 to 5.0 cm/month. The Morris hepatoma cells were inoculated into the thigh muscles of male Buffalo rats. The tumor-bearing and control animals received either a high-protein (55% casein) or low-protein diet (8% casein) for the 7 to 10 days prior to sacrifice. General Biochemicals Corporation (Chagrin Falls, Ohio) supplied the diets.

When the tumors attained a diameter of
approximately 2 cm, we weighed the animals and sacrificed them by carotid exsanguination. Livers and tumors were removed rapidly and chilled. The tumors were dissected free of necrotic tissue. We prepared homogenates in 4 to 5 vol of 10 mM potassium phosphate, pH 7.4. The crude homogenate was centrifuged at 8000g at 4° for 15 min and the supernatant was stored at -70° until the time of assay. In preliminary studies, we had established that S-adenosylhomocysteine synthase is stable for at least 6 months under these conditions.

In all individual experiments the body weight of the tumor-bearing rats was comparable to that of the control animals fed the same diet. There were differences in body weights between studies of the various hepatomas since the slower growing tumors reached the designated size at a later time. Body weight and liver weight were lower in animals fed the low-protein ration. In general, dietary protein content had no effect on the weight of the tumors. Only with hepatoma S123tc did we observe that the tumors hosted by animals fed the low-protein diet were smaller than the tumors in rats fed the high-protein ration.

Assay of adenosylhomocysteine synthase. We have published the details of our method (10). This is a specific and sensitive assay based on the synthesis of radioactive product from [8-14C]adenosine. The reaction mixture contains 0.2 M potassium phosphate, pH 7.3; 2 mM L-homocysteine; 1 mM [8-14C]adenosine (containing 106 dpm); and tissue extract in a final volume of 1.0 ml. Following a 15-min incubation, we stop the reaction with 0.1 ml of 30% perchloric acid and add S-[8-3H]-adenosylyhomocysteine. The neutralized supernatant is placed on a column of AG-50(H+) × 4 (100–200 mesh), 0.9 × 3.0 cm. After washes with 1% thiodiglycol and 1 N HCl, we elute the adenosylyhomocysteine with 3 N NH4OH. By measuring the ratio 3H/4C, we can calculate product formation from the [8-14C]adenosine. Protein concentration was determined by the method of Lowry (20).

Expression of results. We have presented our results as specific activities in nanomoles of product per 15 min per milligram of protein. In these studies and in previous experiments, we found that the relative values in liver rarely change when we relate product formation to wet weight of tissue rather than to extractable protein. We used the t test for

3 This figure was reproduced from the article by Mudd, S. H., and Poole, J. R., Metabolism 24, 721 (1975) with the permission of the publisher.
ADENOSYLHOMOCYSTEINASE IN HEPATOMA 315
d samples of all statistical compar-

'/rs. The mean specific activity of S-

/lhomocysteine synthase in the livers

ol animals was 425 ± 65 units in rats

low-protein diet and was 517 ± 70

the high-protein group. Although the

z in specific activities was statistically

ant in five of the six individual studies,

ess than the twofold increase observed

earlier study with Sprague-Dawley

activity of S-adenosylhomocysteine

was comparable in the livers of host

ntrol rats. We found no instance in

he presence of the hepatoma affected

he hepatic content of enzyme or the

e to dietary protein.

I demonstrates that extracts from

lor line contained enzyme activity.

ast to the liver enzyme, the specific

of S-adenosylhomocysteine synthase

hepatomas did not increase signif-

when the host rat ingested the high-

diet. Indeed, the only statistically sig-

; change induced by diet was the par-

il increase in activity in hepatoma

om animals fed the low-protein diet.

ssion. The regulation of the tissue

ration of adenosylhomocysteine de-

on the integrity of a metabolic se-

which includes S-adenosylhomocys-

drolase linked to enzymes with the

y to catabolize adenosine and homo-

z. In the current study, we found that

I. ADENOSYLHOMOCYSTEINE SYNTHASE IN RAT

HEPATOMAS.

<table>
<thead>
<tr>
<th>Specific activity (nmole/mg of protein/15 min)</th>
<th>LPD</th>
<th>HPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-adn</td>
<td>127 ± 16</td>
<td>80 ± 14*</td>
</tr>
<tr>
<td>Tc</td>
<td>101 ± 19</td>
<td>123 ± 18</td>
</tr>
<tr>
<td>A</td>
<td>132 ± 24</td>
<td>160 ± 49</td>
</tr>
<tr>
<td></td>
<td>207 ± 43</td>
<td>151 ± 30</td>
</tr>
<tr>
<td></td>
<td>93 ± 25</td>
<td>101 ± 10</td>
</tr>
<tr>
<td></td>
<td>48 ± 19</td>
<td>50 ± 20</td>
</tr>
</tbody>
</table>

* study of a specific hepatoma line included at

mals fed the low-protein diet (LPD) and the

-protein diet (HPD). Hepatoma lines are listed in the order of increas-

rate.

1 ± SD.

| 0.05 for statistical significance between diet groups: P <

the hydrolase was present in six rat hepatoma

lines. This is consistent with our previous

report that these same tumors contained five

other enzymes which are components of the

pathway for methionine metabolism in mam-
malian liver (8). However, the various hepa-

toma lines differed in the pattern of enzyme

activities. On that basis, we suggested that

hepatomas 9633, 7800, and 5123tc might be

capable of conserving methionine by means of

homocysteine remethylation. Conversely, the

hepatomas 7778, 7794A, and 7777 were rel-

tively deficient in cystathionine synthase and

might require an exogenous supply of cyst(e)ine.

In contrast, the specific activity of S-ade-

nosylhomocysteine synthase in these hepa-

mas was remarkably constant. When we ex-

pressed the results relative to the activities in

host livers, the range was 25 to 56% in animals

fed the 8% casein diet and was 12 to 28% in

rats fed the 55% casein ration. These relative

values are equivalent to, or greater than, the

relative values obtained for the other five

enzymes—with the exception of one study.

In hepatoma 5123tc obtained from rats fed

the low-protein diet, the relative specific ac-

tivities were: methionine adenosyltransferase,

99%; 5-methyltetrahydrofolate-homocysteine

methyltransferase, 139%; cystathionine syn-

thase, 225%; and betaine-homocysteine meth-

yltransferase, 37% (8). In this hepatoma, a

value of 31% may indicate a relative defi-

ency of S-adenosylhomocysteine synthase.

Clearly the present study does not define a

significant role for adenosylhomocysteine in

the pathochemistry of oncogenesis. The

data do not support the suggestion that a

deficiency of adenosylhomocysteinase may

be characteristic of neoplastic tissue (19).

However, adenosylhomocysteine might be

present in excess as a consequence of either

augmented transmethylation or the failure to

catabolize adenosine. Conversely, malignant

cells may contain diminished concentrations

of adenosylhomocysteine. Indeed, abnormal

methylation is compatible with the release of

the transmethylyases from product inhibition.

Obviously we require detailed studies of the

adenosylhomocysteine concentration in tu-

mors of known biological properties under

controlled conditions of nutrition.

Summary. S-Adenosylhomocysteine syn-
thase was present in extracts prepared from six lines of rat hepatoma. There was no apparent correlation between the specific activity of this enzyme and any of the other biological properties of the tumors. The presence of the hepatoma did not affect the activity of adenosylhomocysteine synthase in livers of host animals. Hepatic enzyme activity in both host and control rats showed an adaptive increase to an increase in dietary protein. In contrast, dietary protein failed to affect the specific activity of adenosylhomocysteine synthase in five hepatomas. Paradoxically, enzyme activity in hepatoma 7787 declined when the host rats were fed a high-protein ration.

pressed Splenic T Lymphocyte Numbers and Thymocyte Migratory Patterns in Murine Malaria (40340)

WILLIAM H. BRISSETTE, ROBERT M. COLEMAN, AND NICHOLAS J. RENCRICCA

Department of Biological Sciences, University of Lowell, Lowell, Massachusetts 01854

Infected with the malarial parasite *Plasmodium berghei* develop a fulminating anemia, a concomitant severe anemia usually succumb within several weeks (1, number of studies (3–5) have demonstrated that a significant degree of nonspecific suppression is associated with malaria. *In vitro* studies of the T-cell response to phytohemagglutinin have shown transient depression in with resolving *P. berghei yoelli* infections permanent depression in mice with fatal *bergehi*-infections (6). The cause of the obv nonspecific immunosuppression is unal, although a number of possibilities have proposed (7–10).

In lymphoid populations duration and recovery may account, in for the observed changes in immunity. Depressions in B- and T-cell pop in the thymus and lymph nodes of ed mice have been reported (10). The ice of adequate numbers of splenic T although not measured in the previous (10), are considered critical to the immune response in view of the role of the in malaria. In this regard, alterations in cellularity and compartmentalization of the spleen resulting from *P. berghei yoelli* infections have been observed (9). Contrast ular T and B-cell populations have reported for adult rats with resolving *P. yoelli* infections and in immature young which the infection was fatal (11). It certain, however, whether these differ reactions between young and old rats may be due to an age-related altered responses of T- and B-lymphocyte populations and spleen morphological and mature r to some other factor.

Different subpopulations of lymphoid cells have been shown to migrate to different sites (12). It has been shown that thymocytes, in contrast to lymph node cells, migrate predominantly to the spleen and liver. Labeled syngeneic lymphocytes subjected to heating or freeze thawing, prior to transfer, are taken up almost exclusively by the liver (13, 14). The relative increase in hepatic uptake of radioactive label has been suggested as a sensitive index of diminished cell viability (13, 14). Furthermore, administration of antilymphocytic serum directly to recipients of labeled lymphocytes caused a reduced uptake into lymphoid tissue with a striking increase in the radioactivity recovered from the liver (15).

The following study was undertaken to quantify the absolute numbers of T lymphocytes in the spleen during the course of virulent malaria in mature mice and to determine where normal thymocytes migrate in the diseased host.

Materials and methods. Twelve to fifteen-week-old BALB/c mice (Charles River Labs) were injected intraperitoneally with 2.0 × 10⁶ erythrocytes parasitized with *Plasmodium berghei* (NK/65 strain). At designated intervals, groups of four to six control and infected mice were monitored for circulating erythrocyte, parasitemia, and splenic T-lymphocyte levels.

Erythrocytes were counted electronically (Coulter Electronics, Inc.), and the percentage parasitemias scored from blood smears stained with Giemsa. Monocellular suspensions of dispersed spleen cells were prepared in TC medium 199 (Difco Laboratories, Inc.) containing 5% fetal calf serum, by sequential passage through 19- to 23-gauge needles (16). Counts of nucleated cells were performed by hemocytometer following red cell lysis with 3% acetic acid; total numbers of lymphocytes/spleen were determined from differen-
MALARIA: T CELL NUMBERS AND VIABILITY

tial smears. Lymphocytes were harvested by layering 10-ml suspensions (representing 1 spleen) on 3 ml of Ficoll/Isopaque (Litton Bionetics, Inc.) and centrifuging at 900g for 30 min at 20° (17). Interface cells, containing 80 to 90% lymphocytes were washed and labeled with Na\(^{51}\)CrO\(_4\) (50μCi) (New England Nuclear). Lymphocytes were washed several times, enumerated by hemocytometer and diluted to 2.0 × 10\(^6\) cells/ml. Mouse ant-Thy-1.2 serum (AKR, Litton Bionetics, Inc.) was employed at a dilution of 1:4 and rabbit anti-mouse lymphocytic serum (Microbiological Assoc.) at a dilution of 1:8. Serum from syngeneic donors served as the control (1:8 dilution). Guinea pig complement (Cappel Labs.) was absorbed with mouse liver and spleen cells and diluted 1:4.

The numbers of \(\theta\)-bearing cells were determined by a \(^{51}\)Cr release cytotoxic assay (18). In the assay, 0.1 ml of diluted serum (normal, anti-\(\theta\), or antilymphocyte), and 0.1 ml of \(^{51}\)Cr-labeled splenic lymphocytes (2 × 10\(^5\) cells) from normal or infected mice were incubated in duplicate 3-ml tubes at 4° for 10 min. Following the addition of 0.1 ml of complement, tubes were reincubated for 45 min at 37° in a 7% CO\(_2\) atmosphere. Thereafter, 0.5 ml of cold TC medium was added to each tube and following centrifugation, the supernatant material was assayed in a Bio-Gamma scintillation counter (Beckman Instruments). The percentage \(\theta\)-bearing splenic lymphocytes were determined in the conventional manner.

The efficiency of normal thymocytes to seed the spleen of control and infected mice was determined as follows: Normal thymus suspensions were washed with 0.83% NH\(_4\)Cl-Tris buffer (19) and labeled by incubation with Na\(^{51}\)CrO\(_4\) (200 μCi). Following several washings, suspensions were examined for viability with trypan blue and diluted to contain 1 × 10\(^6\) cells/ml with a viability of at least 90%. At designated times during infection, groups of control and parasitized mice received an intravenous inoculum of 2 × 10\(^7\) cells. Twenty-four hours later, splenic \(^{51}\)Cr was determined and expressed as a percentage of injected standard. T-cell splenic seeding was determined in additional mice receiving 5 × 10\(^5\), 5 × 10\(^6\), or 2 × 10\(^7\) \(^{51}\)Cr-labeled thymocytes on Day 10 of infection and assayed 24 hr later.

All data reported herein is expressed as the group mean ± 1 SE. Based on Student’s t test, \(P < 0.05\) was considered to be a significant difference.

Results. Plasmodium berghei infection in mice is characterized by a progressive parasitemia and concomitant anemia (Fig. 1) and is fatal within several weeks. During the course of infection, the numbers of nucleated splenic cells steadily increased severalfold (Fig. 2A), which easily accounted for the elevation in numbers of total lymphocytes (Fig. 2C). In distinction, the percentage (Fig. 2D) and absolute numbers (Fig. 2E) of splenic \(\theta\) cells (T lymphocytes) steadily declined to approximately 20% of control levels (\(P < 0.001\)) by Day 20. The efficiency of transplanted normal \(^{51}\)Cr-labeled thymus cells to seed into the infected spleen was significantly (\(P < 0.001\)) reduced to approximately 45% of control levels by Day 5 and gradually declined further to 30% of control values on Day 20 (Fig. 3). The seeding efficiency was relatively constant over an inoculum range of 5 × 10\(^5\) to 2 × 10\(^7\) thymus cells, when transplanted on Day 10 of infection.

Discussion. Plasmodium berghei-infected mice succumb to the effects of high parasit-
MALARIA: T CELL NUMBERS AND VIABILITY

Fig. 2. Numbers of splenic nucleated cells, total lymphocytes and T lymphocytes following the intraperitoneal injection of 2×10^9 erythrocytes parasitized with *P. berghei*.

ia and severe anemia by the third week. response to the progressive anemia (Fig. an increase in erythroid precursors (20) d macrophages (21) may have accounted part for the elevation in numbers of splenic cleated cells in parasitized mice (Fig. 2A). e proportion of lymphocytes to total nu- nated cells decreased dramatically to ap- proximately 50% of normal on Day 10 (Fig.). Nevertheless, the lymphocyte population attributed to the increased nucleated cellu- iity as reflected by an almost twofold rise absolute numbers on Day 10 (Fig. 2C). In trast to the lymphocyte population as a whole, the absolute numbers of T cells de-ased on Day 10 of the infection (Fig. 2E) d the proportion of lymphocytes bearing *T. tigen* was depressed to about 40% of nor- d controls on this day (Fig. 2D). These ults compare favorably with depressions in percentage of T cells observed in the spleens of *P. berghei*-infected young rats which suc- cumb with high parasitemia and anemia similar to mice (11). It is possible, however, that in the latter study the absolute numbers of splenic T cells may not have been depressed, since spleen weights showed a greater than sixfold increase during the course of the in- fection. The decline in numbers of T cells in the spleen associated with the reported invo- lution and depressed T-cell populations of the thymus and lymph nodes (10) suggest a general reduction in the entire pool. The ob- served progressive depression in T-cell num- bers as well as the reported decrease in the volume of thymus-dependent areas of the spleen (9) could reflect a decline in available space as a result of the expanded erythro- poietic activity (20) or could result from an overall decrease in numbers of thymus-de- rived cells seeding the spleen. Furthermore, adverse environmental effects in the diseased host may affect the ability of the spleen to accept T-cells or may affect the viability and/or survival of T lymphocyte populations. The thymocyte seeding study was initiated to examine this question.

The distribution patterns for thymocytes at 24 hr in normal BALB/c mice were similar to those reported for CBA mice (14). The percentage of 51Cr-labeled thymocytes enter- ing the spleen markedly decreased during the course of the infection (Fig. 3). At the same time increasingly higher uptake of radioactivity was observed in the liver. Our findings that proportional distribution of thymocytes remained unchanged for the dose range (5×10^8 to 2×10^9) in both normal (21%) and infected (8%) spleens argues against possible decreased available T-cell sites in the infected

Fig. 3. Percentage of radiolabelled thymocytes in liver and spleen of infected hosts 24 hr after the intra- venous transplantation of 2×10^9 cells.
spleen, at least at these inoculum levels. Others have shown that labeled lymph node cells in normal mice do not differ in distribution characteristics at 24 hr following intravenous injection using a four log dose range (10^6 to 10^8 cells) (12). Treatment of aliquots of labeled lymphocyte in vitro with cytotoxic materials including anti-lymphocyte serum and thymocytotoxic autoantibody (NZB mice) results in a dramatic increase in the uptake of radioactive label by the liver of recipients suggesting loss of cell viability (13–15, 22, 23).

Administration of anti-lymphocytes serum directly to recipients of labeled lymphocytes also caused increased liver uptake (15). Shirai et al. (22) state that the increase of the liver-localizing population after treatment of lymphocyte with thymocytotoxic autoantibody is consistent with the suggestions that T-cell depletion with aging of NZB mice is mediated by a continuous process of autosensitization which causes phagocytosis. It would appear possible that the viability of the thymocytes we inoculated into infected mice was adversely affected by the parasitized host environment.

Summary. The results obtained in this study show that a progressive depression in the splenic T-cell population occurs in P. berghei-infected mice and that T-cell migration is abnormal also. Since the thymus and lymph nodes involute in P. berghei-infected mice (10), it is likely that the total T-cell pool is depleted in the infected mouse. The decreased ability of transplanted thymus cells to seed into the infected spleen and the decreased T-cell population may indicate that infected mice have an environment hostile to T-cell viability.

Academic Press publishes books and journals in many areas of the biological, medical, and biomedical sciences including:

anatomy, histology and cell biology
biochemistry and molecular biology
cancer research and oncology
cardiology and the vascular system
environmental science
food science and nutrition
 genetics and human development
immunology and hematology
microbiology and virology
neurosciences, neurology and psychiatry
oceanography and marine biology
ophthalmology and otolaryngology
pathology, clinical pathology and parasitology
pharmacology, therapeutics and toxicology
physiology, biophysics and biostatistics
radiology and nuclear medicine
reproductive and perinatal medicine

For a list of titles in your subject area, please write to the publisher, attention: Sales Department.
INTERNATIONAL REVIEW
OF CYTOLOGY
edited by G. H. BOURNE and J. F. DANIELLI

FROM REVIEWS OF PUBLISHED VOLUMES:
"... maintains the tradition and set-up of the previous volumes and certainly provides up-to-date data on varied aspects of cytology... a valuable acquisition to any library."
—THE NUCLEUS

"... in keeping with the high standards set by the editors... this series is a significant contribution to a science that impinges on many fields."
—THE QUARTERLY REVIEW OF BIOLOGY

"... contains several excellent reviews with a substantial amount of information on each topic... the volume will prove a valuable addition to your library."
—ASM NEWS

Complete information on each volume in the series is available on request.

Take advantage of the convenience of our Continuation Order Plan: Your CONTINUATION ORDER authorizes us to ship and bill each volume automatically, immediately upon publication. This order will remain in effect until cancelled. Please specify volume number with which your order is to begin. Please direct all inquiries and orders to the Sales Department.
Friends of the Society

Our members are requested to note the following list of Friends. We wish to express our thanks to each of them. Their contributions help materially in meeting the very sharp increase in costs of publication.

FRIENDS

Burroughs Wellcome Co., Inc.
Ciba Pharmaceutical Products, Inc.
E. I. du Pont de Nemours & Co.
Hoffmann-LaRoche, Inc.
Eli Lilly and Co.
Mead Johnson & Co.
Merrell-National Laboratories
Chas. Pfizer and Co., Inc.
Ortho Pharmaceutical Corporation
Rogoff Foundation
Damon Runyon Memorial Fund
Sandoz Pharmaceuticals

Schering Corporation
G. D. Searle and Co.
Sharp and Dohme, Division of Merck & Co., Inc.
Smith Kline and French Laboratories
Squibb Inst. for Medical Research
Sterling-Winthrop Research Institute
Syntex USA, Inc.
Wallace Laboratories, Division of Carter
Products, Inc.
Warner-Lambert Laboratories
Wyeth Laboratories
NOTICE TO CONTRIBUTORS

General Instructions

Manuscripts should be written in clear, concise and grammatical English, and should conform to the general style of the Journal and the specific instructions listed below. Manuscripts which are not adequately prepared will be returned to the authors, since it is not feasible for the Editors to undertake extensive revision or rewriting of manuscripts submitted. Contributors, particularly those unfamiliar with English usage, are encouraged to seek the help of colleagues in the preparation and review of manuscripts prior to submission. This practice will usually reduce the time required for review and will avoid delays in the publications of the manuscript.

SUBMIT MANUSCRIPTS IN DUPLICATE (ONE ORIGINAL AND ONE COPY). A $10.00 CHECK OR MONEY ORDER (NON-REFUNDABLE) MUST ACCOMPANY THE MS TO COVER HANDLING COSTS FOR ALL MSS RECEIVED.

All manuscripts should be submitted to Dr. M. R. Nocenti, 630 W. 168th Street, New York, N.Y. 10032. EDITORIAL OFFICE IS CLOSED DURING AUGUST.

Authors submitting manuscripts containing data from experiments involving recombinant DNA molecules must provide a statement for each of the two reviewers which certifies that their experiments complied with the NIH guidelines on physical and biological containment procedures.

1. Only original papers will be considered. Manuscripts are accepted for review with the understanding that the same work has not been and will not be published nor is presently submitted elsewhere, and that all persons listed as authors have given their approval for the submission of the paper; further, that any person cited as a source of personal communications has approved such citation. Written authorization may be required at the Editor's discretion. Articles and any other material published in the Proceedings of the Society for Experimental Biology and Medicine represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s), the Society, or the Publisher.

Authors submitting a manuscript do so on the understanding that if it is accepted for publication, copyright in the article, including the right to reproduce the article in all forms and media, shall be assigned exclusively to the Society. The Society will not refuse any reasonable request by the author for permission to reproduce any of his or her contributions to the journal. Send requests for permission to reproduce items published in Proceedings of the Society for Experimental Biology and Medicine to: Dr. Mero R. Nocenti, Managing Editor, Society for Experimental Biology and Medicine, 630 W. 168th St., N.Y., N.Y. 10032.

A manuscript rejected by the PSEBM should not be re-submitted. All manuscripts will be given a quality rating by the two reviewing editors; those manuscripts with low priority ratings will not be accepted even though they have been classed as generally acceptable. Split decisions will be decided on the basis of the two priority ratings.

2. a. Manuscripts should be as concise as possible, yet sufficiently detailed to permit critical appraisal.
 b. Manuscripts (including tables, legends, and footnotes) should be double or triple spaced.
 c. The first page of the manuscript should contain the complete title of the paper, category for the "Table of Contents" (select from list in item 20), names of authors (without degrees), affiliations (including Zip Codes), and a running title consisting of no more than 40 characters (including spaces). The second page of the manuscript should give the name and complete address of the author to whom ALL correspondence should be sent. Please include Zip Code.
 d. Units of weights, measures, etc., when used in conjunction with numerals, should be abbreviated and un-punctuated, e.g., 6 R. 3 g. 5 ml, 8% (see No. 20 below).
 e. Manuscripts of nonexperimental researches, or those with inadequate controls, are not acceptable.
 f. Unnecessary subdivision of a research into several manuscripts is not acceptable.
 g. Manuscripts devoted to improvement of procedure or of apparatus may be accepted when a new principle is involved or when decidedly superior biological results are obtained. Evidence of such superiority should be given.

3. Confirmation or negative results will not be accepted unless they are of obvious biological significance.

4. Length of manuscripts should average 3 printed pages, including tables, charts, and references. The maximal length allowed is 7 printed pages. All manuscripts exceeding 17 typed pages (including tables, charts and references) will be returned to authors.

5. Title should be limited to 15 words. Manuscripts should contain an Introduction, Materials and Methods, Results, Discussion and a Summary.

6. Conclusions should be based upon experimental data submitted.

9. Figures. All figures should be cited consecutively by Arabic numerals in the text with figure legends typed on a separate sheet. These should contain sufficient experimental detail to permit the figure to be interpreted without reference to the text. Units should be clearly indicated in the figures themselves. Wherever possible, curves should be combined into a single figure in order to keep the number of illustrations to a minimum.

PLEASE NOTE: All figures and illustrations are to be submitted in such form as to permit photographic reproduction without retouching or redrawing. This includes the lettering, which is reproduced as part of the photogravure and is not set in type. Line drawings should be carefully drafted with black India ink on white drawing paper or blue drafting cloth, no larger than 8.5 x 11.5 inches overall (21 x 27.5 cm). The lettering should be large enough to allow a reduction of two-thirds off. High quality glossy prints are acceptable.

10. Tables. These should be numbered with Roman numerals and cited consecutively in the text. Each table should be titled and typed double-spaced on a separate sheet. Refer to current issues of the Proceedings for acceptable style of tables. The title of each table should clearly indicate the nature of the contents, and sufficient experimental detail should be included in footnotes to the entries to permit the reader to interpret the results.

Units must be clearly indicated for each of the entries in the table. To save space, repetition of similar experiments and columns which can be calculated from other entries in the table should be avoided wherever possible.
1. **Footnotes.** Footnotes in the text should be identified by superscripts consisting of Arabic numerals and shall be typed on separate sheet; footnotes in the tables should be identified with superscript lower-case letters a, b, etc., and placed at the bottom of the table.

2. a. **References.** Only essential citations should be submitted, and they should be arranged numerically at the end of the manuscript. References to the literature should be cited in the text by Arabic numerals in parentheses, set on the text line.

b. Abbreviations of journal titles should follow the style used in *Chemical Abstracts* (Vol. ACCESS, *Key to the Source Literature of the Chemical Sciences*, 1969 Edition). Please note the style of capitalization and punctuation for journal articles, books, and edited books in the following examples:

c. "Personal communication," "unpublished," "submitted" and numerous abstracts should be excluded from the reference list. If the manuscript has been accepted for publication, include it in the reference list, giving journal, year, etc. If not accepted do not include it in the reference list.

3. **Trade or popular name or abbreviation** of a chemical may be used only when preceded by the chemical or trivial name; thereafter, any of these names or abbreviations may be used. Trade names should begin with a capital letter.

4. **Structural formulas** of chemicals should be used only when absolutely necessary.

5. The proceedings of a symposium are covered by the Society for Experimental Biology and Medicine.

6. a. Authors are expected to discourage circulation of reprints for commercial purposes.

b. **Reprints** are limited to 1300.

7. Changes in galley proof should be absolutely minimal. Authors will be charged for excessive changes.

8. **Sponsor** is held responsible for non-member's manuscript. The sponsor should write stating (a) how familiar is with the author and his research, (b) whether the author is scientifically reliable, (c) that the manuscript conforms to the guidelines, (d) that he has critically examined the manuscript, (e) wherein the manuscript is a significant contribution to science, and (f) that he assumes financial responsibility involved. The sponsor should be the same laboratory as the author. Where not of the same or recent past laboratory, the author should specify why each letter comes from a member at another laboratory.

9. The authors are required to pay a part of the cost of publication in the form of a page charge of $20.00 per page. Notify the General Secretary at least one month before change of address.

0. Biochemistry, Endocrinology, Enzymology, Growth and Development, Hematology, Immunology, Microbiology, Nutrition, Oncology, Pathological Physiology, Pathology, Pharmacology, Physiology, Radiology, Tissue Culture, Virology.

1. **Abbreviations.** Contributors are requested to use the following abbreviations:

<table>
<thead>
<tr>
<th>Term</th>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>calorie</td>
<td>cal</td>
<td>millimeter</td>
<td>mm</td>
</tr>
<tr>
<td>centimeter</td>
<td>cm</td>
<td>milliosmole</td>
<td>mosl</td>
</tr>
<tr>
<td>counts per minute</td>
<td>cpm</td>
<td>minute</td>
<td>min</td>
</tr>
<tr>
<td>cubic centimeter</td>
<td>cm³</td>
<td>molal (concentration)</td>
<td>m</td>
</tr>
<tr>
<td>Curie</td>
<td>Ci</td>
<td>molar (concentration)</td>
<td>M</td>
</tr>
<tr>
<td>degree Celsius (Centigrade)</td>
<td>°C</td>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>°F</td>
<td>molecular weight</td>
<td>mol wt</td>
</tr>
<tr>
<td>diameter</td>
<td>diam</td>
<td>nanogram</td>
<td>ng</td>
</tr>
<tr>
<td>gram</td>
<td>g</td>
<td>nanometer</td>
<td>nm</td>
</tr>
<tr>
<td>hour</td>
<td>hr</td>
<td>normal (concentration)</td>
<td>N</td>
</tr>
<tr>
<td>inch</td>
<td>in.</td>
<td>osmole</td>
<td>Osm</td>
</tr>
<tr>
<td>inside diameter</td>
<td>i.d.</td>
<td>ounce</td>
<td>oz</td>
</tr>
<tr>
<td>intramuscular</td>
<td>im</td>
<td>outside diameter</td>
<td>O.d.</td>
</tr>
<tr>
<td>intraperitoneal</td>
<td>ip</td>
<td>parts per million</td>
<td>ppm</td>
</tr>
<tr>
<td>intravenous</td>
<td>iv</td>
<td>percent</td>
<td>%</td>
</tr>
<tr>
<td>kilocalorie</td>
<td>kcal</td>
<td>picogram</td>
<td>pg</td>
</tr>
<tr>
<td>kilogram</td>
<td>kg</td>
<td>revolutions per minute</td>
<td>rpm</td>
</tr>
<tr>
<td>liter</td>
<td>spell out</td>
<td>specific activity</td>
<td>sp act</td>
</tr>
<tr>
<td>meter</td>
<td>m</td>
<td>square centimeter</td>
<td>cm²</td>
</tr>
<tr>
<td>microliter</td>
<td>µl</td>
<td>square meter</td>
<td>m³</td>
</tr>
<tr>
<td>micrometer</td>
<td>µm</td>
<td>subcutaneous</td>
<td>sc</td>
</tr>
<tr>
<td>milligram</td>
<td>mg</td>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>milliliter</td>
<td>ml</td>
<td>volume</td>
<td>vol</td>
</tr>
</tbody>
</table>
Members can help considerably by mentioning our PROCEEDINGS when communicating with or ordering supplies from our advertisers.

NOW AVAILABLE FOR
IMMEDIATE DELIVERY

Sprague-Dawley
Osborne / Mendel
Wistar
RATS

Certified Pathogen Free

WITH DEFINED ASSOCIATED FLORA
Caesarean derived · Barrier reared

Aperative is the word that best describes the new CAMM Certified Pathogen Free Rats and you can now get them in Sprague-Dawley, Osborne, Mendel or Wistar strains.

Researchers and scientists from facilities all over the country have been writing to us telling us how pleased they are with these new CAMM rats. They are available now. Ready for shipment today by company trucks or Direct Route Air Express. Please contact us with your requirements. Ask for our price list.

WE SHIP EVERYWHERE
By Company Truck and
Direct Route Air Express

CAMM
RESEARCH LAB ANIMALS
414 Black Oak Ridge Road, Wayne, New Jersey 07470
201/694-0703
Council 1978–79

President, De Witt Stetten, Jr. '79
National Institutes of Health

President-Elect, Robert W. Berliner '79
Yale University

Past President, Dennis W. Watson '79
University of Minnesota

Treasurer, Gregory W. Siskind '79
Cornell Medical Center

Secretary and Asst' Treasurer, Mero R. Nocenti
Columbia University

D. L. Azarnoff '79
Univ. of Kansas

A. H. Briggs '81
University of Texas

J. J. Fox '81
Univ. of Minnesota

R. J. Peanasky '79
Univ. of South Dakota

H. F. DeLuca '81
University of Wisconsin

J. P. Gilmore '81
Univ. of Nebraska

E. E. Selkurt '81
Univ. of Indiana

P. P. Foa '79
Sinai Hosp. of Detroit

M. Orsini '81
Univ. of Wisconsin

M. D. Siperstein '79
Univ. of California

D. B. Zilversmit '81
Cornell Univ.

MEMBERSHIP APPLICATION

Membership in the Society for Experimental Biology and Medicine is open to all individuals who have independently published original meritorious investigations in experimental biology or experimental medicine and who are actively engaged in experimental research. In general, applicants should be beyond a supervised post-doctoral experience in order to be able to demonstrate the ability to conduct independent investigations.

Application forms may be obtained from the Office of the Secretary, Society for Experimental Biology and Medicine, 630 W. 168th St., N.Y., N.Y. 10032. In addition, a tear-out application form is printed quarterly in the PSEBM.
Board of Editors

M. R. NOCENTI
Managing Editor
630 W. 168th Street
New York, N. Y. 10032
212 WA-7-6914

AHLQUIST R. C. GALLO C. W. LLOYD R. B. ROBERTS
J. N. GAUT P. D. LOTLIKAR
JEN G. L. GEBBER C. C. LUSHBAUGH
ALTURA J. GENEST G. J. MACDONALD
SMITSONG D. G. GILMOUR D. F. MALAMUD
N. BACH E. C. GOTSCHLICH I. MANDL
BAEHNER M. GREENWOOD A. J. MARCUS
BARRACLOUGH G. GYROFF A. MAZUR
BARRON N. S. HALMI S. M. MCCAANN
BECK C. G. HARFORD L. C. MCCLAREN
BERG P. C. HARPEL J. MEITES
BGS M. R. HILLEMAN T. C. MERRIGAN, JR.
BOHR F. G. HOFMANN F. H. MEYERS
JOYD J. J. HOLLAND F. N. MILLER
BRAND J. A. HOLOWCZAK S. MIRVISH
ANSOME D. HORROBIN C. R. MORGAN
BRICKER C. HOWE S. I. MORSE
BROOKS E. D. JACOBSON P. J. MULROW
CAIN H. D. JANOWITZ L. H. MUSCHEL
CHIGNELL D. C. JOHNSON D. NATHAN
CLARK R. C. JOHNSON G. D. NISWENDER
R T. J. KINDT S. OPARILL
CLIFTON S. KLH R. OSWALD
COHEN S. KOLETSKY P. Y. PATERSOHN
COOPER C. A. KRAKOWER P. N. PATMAH
CORRADINO L. C. KREY W. E. PAUL
CREMER M. KUSCHNER M. J. PEACH
NOYAN P. L. LACELLETTE V. A. PEDRINI
BACH B. N. LAHU G. L. PLAG
INKELSTEIN M. E. LAMM S. A. PLOTKIN
FISHER C. A. LAGGE D. D. PORTER
FIA J. H. LARAGH A. S. RABSON
ORKER C. LENFANT J. A. RAMALE
FRANKEL C. E. LEROY M. M. RAPPORT
FRANKLIN R. LEVERE W. D. REID
GALA J. V. LEVY J. A. RESKO
C. S. LIEBER J. A. RILEMA
M. B. ZUCKER

Editorial and Publications Committee

M. ZUCKER, '82, Chairperson; I. CLARK, '80; M. HILLEMEN, '82;
S. I. MORSE, '78; S. SEIFTER, '82.
The President, President-Elect and Secretary
Proceedings
of the
Society
for
Experimental Biology and Medicine

INCLUDING THE FOLLOWING SECTIONS

CHAMPLAIN
DISTRICT OF COLUMBIA
NORTHWEST

OHIO VALLEY
SOUTHERN
SOUTHEASTERN
SOUTHWESTERN

October–December 1978 (inclusive)

VOLUME 159

New York
INDEX TO ADVERTISERS

Members and subscribers are requested to cooperate with our advertisers

Camm Research .. i

Charles River ... Cover 4

Collaborative Research ... viii

Gilson Medical Electronics ix
CONTENTS

SCIENTIFIC PROCEEDINGS, VOLUME 159

Six hundred eighty-sixth issue, October 1978 .. 1

Six hundred eighty-seventh issue, November 1978 .. 165

Six hundred eighty-eighth issue, December 1978 .. 321

Author Index ... 488
ARE YOUR CELLS DYING FOR OUR GROWTH FACTORS?

Is serum a problem in growing your cells in tissue culture? Is your serum toxic or deficient in essential factors. Our Growth Factors lower the requirement for serum and may solve your problems. Our stocks now include:

- Epidermal Growth Factor (CR-EGF)
- Fibroblast Growth Factor (CR-FGF)
- Multiplication Stimulating Activity (CR-MSA)
- Nerve Growth Factor (CR-NGF)
- Endothelial Cell Growth Supplement (CR-ECGS)
- Human Thrombin (CR-HT)

In addition, we have [125I] labelled derivatives and antisera for EGF, FGF, MSA and NGF.

To find out more about our Growth Factors and what they can mean to your research, call or write for our free technical bulletins. Or for immediate delivery of these products call our Order Department 617-899-1133.

For Research Use Only

Research Products Division
Collaborative Research, Inc.
1365 Main Street, Waltham, Mass. 02154
Tel. (617) 899-1133 TWX 710-324-7609
Translated, that means you can buy this High-Quality Fractionator (GILSON's FC-220) PREFERRED FOR ITS PERFORMANCE—with the 10 important features listed below. Why pay more when you can get the best for less?

THE GILSON RACE TRACK FRACTIONATOR
FOR LIQUID CHROMATOGRAPHY

Here are the COLD ROOM facts:

1. Reliable cold-room operation down to 0 degree Celsius. Includes self-contained heater, eliminating condensation problems. Components are selected to EXCEED requirements and will withstand hostile cold-room environment over extended use.

2. 220 test tubes (18x150 mm or 13x100 mm). Twenty-tube rack; block shape eliminates tipping of racks (separate rack carriers are not required).

3. Drop counting or time method of collection. Can be set from 0.1 minute to 100 minutes per tube, in 0.1-minute increments; or from one drop per tube to the liquid capacity, in one-drop increments.

4. Three-digit electronic display.

5. Optional flow-stop valve available.

6. Auxiliary power outlet is included for turning off accessory equipment after the last tube is filled.

7. Multiple-column collection available for 2, 3, 4 or 5 columns (with separate adapter).

8. Remote use of control unit is possible.

9. 220 tubes can be collected during unattended operation, or collection can be continued indefinitely without interruption by periodically removing filled racks and adding empty racks.

10. 21 U.S.A. Gilson sales and service locations—One-year warranty.

Size of the FC-220: 38 cm wide and 69 cm deep (14"x27"). Weight: 13 kg (28 lbs.)
TABLE OF CONTENTS

MEMBERS DIRECTORY .. D-1

BIOCHEMISTRY

- Electrocardiographical, Biochemical and Morphological Effects of Chronic Low Level Cadmium Feeding on the Rat Heart

 S. J. Kopp, V. W. Fischer, M. Erlanger, E. F. Perry, H. M. Perry, Jr. .. 339

- Inhibition of \(\beta \)-Glucuronidase Activity by Albumin of Human Synovial Fluid

 L. Moro, B. De Bernard, P. Inaudi, F. Gonano .. 403

ENDOCRINOLOGY

- Central Effect of Somatostatin on the Secretion of Growth Hormone in the Anesthetized Rat

 H. Abe, Y. Kato, Y. Iwasaki, K. Chihara, H. Imura .. 346

- The Effect of Glucocorticoid Antagonizing Factor on Hepatoma Cells

 K. J. Goodrum, L. J. Berry .. 359

- Effects of Adrenalectomy on Thyroid Function and Insulin Levels in Obese (ob/ob) Mice

 Y. Yukimura, G. A. Bray .. 364

- The Long Term Effect of Estrogen Administration on the Metabolism of Male Rat Bone

 R. L. Cruess, K. C. Hong .. 368

- Mammary Arterial and Venous Concentrations of Serum Insulin in Lactating Dairy Cows

 N. F. G. Beck, H. A. Tucker .. 394

- Pituitary Response to TRH and LHRH in Spontaneously Hypertensive Rats

 J. R. Sowers, G. Tempel, G. Resch, M. Colantino .. 397

- Pituitary Cell Transplants to the Cerebral Ventricles Promote Growth of Hypophysectomized Rats

 S. Weiss, R. Bergland, R. Page, C. Turpen, W. C. Hymer .. 409

- High Dosage of Testosterone Propionate Increases Litter Production of the Genetically Obese Male Zucker Rat

 R. B. Hemmes, S. Hubsch, H. M. Pack .. 424

- Maintenance of Pregnancy in the Rat in the Absence of LH

 G. J. MacDonald .. 441

- In Vitro Analysis of the Participation of Oxytocin and Vasopressin in the Gonadotropin Releasing Hormone-Induced Release of LH

 M. H. Caffrey, T. M. Nettt, G. P. Kozlowski .. 444

- Temporal Changes in Ovarian Steroid-17α-hydroxylase in Immature Rats Treated with Pregnant Mare's Serum Gonadotropin

 D. C. Johnson .. 484

HEMATOLOGY

- Secretion of Primary Granules from Developing Human Eosinophilic Promyelocytes

 P. M. Hyman, S. Teichberg, S. Starrett, V. Vinciguerra, T. J. Degnan .. 380

NUTRITION

- Body Iron Loss in Animals

 C. A. Finch, H. A. Ragan, I. A. Dyer, J. D. Cook .. 335

PATHOLOGICAL PHYSIOLOGY

- Effect of Hemolyzed Blood on Reticuloendothelial Function and Susceptibility to Hemorrhagic Shock

 M. J. Schniedkraut, D. J. Loegering .. 418

- Blood Pressure Responses to Extremes of Sodium Intake in Normal Man

 R. H. Murray, F. C. Luft, R. Bloch, A. E. Weyman .. 432

- Red Cell Oxygen Affinity in Severe Hypertriglyceridemia

 H. T. Robertson, A. Chait, M. P. Hlastala, J. D. Brunzell .. 437
TABLE OF CONTENTS

Decrease in Renal Perfusion, Glomerular Filtration and Sodium Excretion by Hypoxia in the Dog F. J. BRUNS .. 468

PATHOLOGY

Proteinuria and the Fragility of Normal and Diseased Glomerular Basement Membrane C. A. KraKower, B. K. Nicholas, S. A. Greenspan .. 324
Response of the Arterial Wall to Endothelial Removal: An Autoradiographic Study E. R. Burns, T. H. Spaeth, M. B. Stemerman .. 473

PHARMACOLOGY

Effect of the Ionophore, A23187, on Contraction and Relaxation of Rat Arteries and Veins M. L. Cohen, K. S. Wiley, R. H. Tust .. 353
Mechanism of the Cardiovascular Actions of Cyclopyridine T. F. Burks, T. L. Loo, M. N. Grubb .. 374
The Isoproterenol Stress Test in Unanesthetized Atherosclerotic Rabbits R. J. Lee, S. H. Baky .. 458

PHYSIOLOGY

Apparent Competition between Myoglobin and Metallothionein for Renal Reabsorption E. C. Foulkes .. 321
Transmembrane Potentials in Bovine Lymphatic Smooth Muscle T. Ohhashi, T. Azuma, M. Sakaguchi .. 350
Renal Tubular Secretion of Urate in Sheep L. C. Chereley, L. W. Holm, H. R. Parker, N. S. Assali .. 386
Effects of Tetraethylammonium and Manganese on Mesenteric Vasoconstrictor Escape G. Ross, J. Belsky .. 390
Effect of Kidney Surface Temperature on Single Nephron Filtration Rate T. J. Burke, L. N. Peterson, K. L. Duchin .. 428
Oxygen Consumption in the Spontaneously Hypertensive Rat G. L. Wright, E. Knecht, D. Badger, S. SamueLOFF, M. TorAason, F. Dukes-Dobos .. 449
Further Characterization and Evidence for a Precursor in the Formation of Plasma Antinatrieretic Factor K. A. Gruber, V. M. Buckalew, Jr .. 463
Total Salivary Calcium and Amylase Output of Rat Parotid with Electrical Stimulation of Autonomic Innervation C. A. Schneyer, C. SucanThafree, L. H. Schneyer, D. Jirakulsomchok .. 478

VIROLOGY

Serologic Response of Primates to Influenza Viruses S. S. Kalter, R. L. Heberling .. 414
Regulation of Interferon-Impaired Initiation Factor Activity in Viro by cAMP and dRNA K. Ohtsuki, S. Baron .. 453
Author Index for Volume 159 .. 488
Cumulative Subject Index for Volumes 157-159 .. 491
Competition between Myoglobin and Metallothionein for Renal Reabsorption (40341)

E. C. FOULKES

Departments of Environmental Health and Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267

function of the metallothioneins (MT), metal-binding low molecular weight protein, synthesis is induced by cadmium or other heavy metals, remains in question. Work described here was initiated in order to evaluate a possible excretry function of CdMT, and to study the mechanism of tubular reabsorption. Earlier reports that evidence for the high capacity of kidneys to transport filtered CdMT out of the tubular lumen (1, 2). Reabsorption of CdMT proved sensitive to Cd intoxication but not to high filtered loads; it also was reversibly depressed by myoglobin, whereas serum albumin and ovalbumin remained without Saturability, sensitivity to inhibition of ativity specificity all support the conclusion that CdMT reabsorption represents a novel process. The present paper explores detail the interaction between myoglobin, and leads to the conclusion that these two proteins contribute to the transport of Cd by the same system.

Preparation of MT, and the measurement of its renal characteristics and fractional reabsorption in rabbits have been described in a previous publication (2). Similar samples of horse myoglobin were used by a standard procedure (3), and average final specific activity of 10^8 M/kg protein, as determined on a well-scintillation counter (Packard Auto-gamma). The red protein, together with 3H-methoxyglucuronide, was administered as bolus injection into the renal vein and catheter advanced into the thoracic duct. Radioactivity determinations were made of 109Cd and 3H in a Packard Tricarb liquid scintillation spectrometer with automatic external standardization. Alternatively, for 125I and 3H, total counts were determined, followed by subtraction of 125I activity as calculated from the results of 3H counting and the ratio of 3H to 125I. Recoveries were estimated as before (2) by summation of radioactivities of sequential urine or plasma fractions up to that fraction whose extrapolated tracer concentration fell below 2% of the cumulative total; extrapolation of the descending slope from peak values served to correct for recirculation of tracer (see e.g. Fig. 2). Mean transit time (t) is defined as

\[\frac{\Sigma (C_i - t)}{\Sigma C_i} \]

where \(C_i \) represents the concentration of tracer in a fraction collected after elapsed time \(t \) (4). The male New Zealand white rabbits used in these studies weighed on the average 2.5 kg, and had been maintained on commercial pellets. Experimental procedures were carried out under pentobarbital anesthesia. In animals with two intact kidneys diuresis was induced by continuous infusion of 5% mannitol in saline at a rate of 2 ml/kg/min. Rabbits whose left renal vein had been cannulated for measurement of A-V transit times, and whose contralateral kidney as well as mesenteric artery had been tied off, received 0.4 ml 15% mannitol in saline/kg/min.

Results. The low permeability of muscle capillaries to myoglobin is well documented (5), as is its relatively low glomerular sieving coefficient (6). It is not surprising, therefore, that in its artery-to-vein transit characteristics across the kidney myoglobin resembles plasma protein (Evans Blue) rather than insulin. This is illustrated in Fig. 1 by the results of one of four similar experiments; the mean transit time for Evans Blue was calculated from the ratio \(I_{EB}/I_{IN} \) as measured in earlier work (7). In contrast, the mean vascular transit time of CdMT resembles that of insulin (2). If the rapid renal transit of myoglobin reflected primarily its binding to e.g. haptoglobin, then it should be possible to prolong \(I_{MO} \) by saturating and exceeding the capacity
of such ligands. However, in each of the above four studies a second bolus of myoglobin was injected, containing 1000 times the concentration used in Fig. 1 (2 mg versus 2 μg): no significant shift in t_{myo} relative to t_{in} was observed (t_{myo}/t_{in} vs t_{myo}/t_{in}) $= 1.03$, range 0.89 – 1.10. In the rabbit kidney, as in other tissues studied, free myoglobin is therefore clearly much less diffusible, and presumably less filterable, than is inulin.

It follows from the restricted diffusibility of myoglobin that the precise filtered load and, therefore, the fractional reabsorption of the protein cannot be accurately defined under present conditions. Accordingly, the following experiments on factors influencing tubular handling of myoglobin compare absolute excretion of 125I-myoglobin under various conditions, rather than its fractional reabsorption. Figure 2 shows the urinary transit characteristics of myoglobin at low and high concentrations. Clearly, using inulin excretion as reference point, the excretion of 125I-myoglobin was increased in presence of excess unlabelled myoglobin. Results of 12 similar studies are collected in Table I and show that, on the average, excretion of label rose by 43% above control values at the high myoglobin concentrations. Attention is further drawn to the fact that the same result was achieved by addition of 1.1 mg CdMT. Such a concentration of CdMT was previously shown to exert no acute toxic effect on the kidney (2); similarly, in the present study, 1.1 mg CdMT caused no inhibition of tubular PAH transport. An additional observation illustrated in Fig. 2 is the tubular transit delay of myoglobin: such a delay was consistently observed in every study and resembles that reported for CdMT (2).

Interaction between CdMT and myoglobin

![Figure 1: A-V transit time of myoglobin. Rabbit Myo 10. Renal venous blood flow 40 ml/min, hematocrit 25%. The bolus contained 2 μg 125I-myoglobin and 10 μCi 3H inulin in a final volume of 0.3 ml. Venous recoveries are shown for 125I (O) and 3H (X); mean transit times (l) are indicated, and were calculated for Evans Blue (EB) from the ratio of t_{EB}/t_{in} obtained in earlier studies (7).](image1)

![Figure 2: Tubular transit of myoglobin. Rabbit Myo 16L. Urine flow period I: 2.6 ml/min, II: 2.8 ml/min. Urinary tracer recoveries are shown for 125I (O) and 3H (X). Each bolus contained (in 0.5 ml) 2 μg 125I-myoglobin + 4 μCi 3H-inulin; bolus #2 contained in addition 2 mg unlabelled myoglobin, and was injected 15 minutes after bolus I.](image2)
characteristic only of low molecular weight proteins. Thus, in experiments on four rabbits (8 kidneys), in which 150–300 mg of globin were injected intravenously 60 min before the usual arterial bolus containing 125I-labeled CdMT, the fractional reabsorption of T fell from a mean of 57% (SD, 11 ± 10%).

Table I shows that an excess of unlabeled myoglobin increases excretion of labeled myoglobin, a result which could reflect displacement of the labeled compound from plasma ligands with subsequent increase in its filterability, or saturation of a transport mechanism. Attention may be focused on the action of excess T: this protein does not react with high molecular weight plasma constituents under these conditions (2). Although CdMT does, therefore, not compete with myoglobin for a given plasma protein ligand, it exerted the effect on 125I-myoglobin reabsorption as excess myoglobin (Table I). It seems, therefore, that after injection of excess globin we are dealing with saturation of absorption, not with increased fractional reabsorption. In other words, like CdMT, myoglobin appears to be reabsorbed from the tubule by a saturable process. Further, the process is inhibited by CdMT, just as in other experiments had shown an affinity myoglobin for the system mediating T reabsorption (2). Both proteins undergo similar tubular transit delays during reabsorption. We also recall the ready reversibility of the myoglobin inhibition of CdMT reabsorption (2). A plausible explanation for these similarities in the renal handling of T and of myoglobin, and for the mutual reabsorption of their respective reabsorption, invokes common for a common reabsorptive system.

Such competition is unlikely to reflect only similarity in size of the two proteins, as hemoglobin also inhibits CdMT reabsorption; on the other hand, lysozyme and immunoglobulin L-chain did not affect CdMT transport (2). Whether the apparent competition between myoglobin and CdMT, and the saturation of their respective reabsorption, are events primarily associated with the first step in protein reabsorption at the brush border membrane (8) cannot be decided on the basis of the results described here.

Summary. Artery-to-vein and artery-to-urine transit characteristics of 125I-myoglobin across the rabbit kidney were compared to those of cadmium-metallothionein (CdMT) labelled with 108Cd, and their interaction during tubular reabsorption was determined. Both proteins are reabsorbed by a saturable system, mutually inhibit each other’s reabsorption, and suffer similar tubular transport delays. On the basis of these results, and of the previous observation that myoglobin inhibition of CdMT reabsorption is fully reversible, we may tentatively conclude that the two proteins compete for reabsorption by a common transport system. This system also reacts with hemoglobin, indicating that its affinity for substrates is determined by factors other than purely size of the protein molecule.

I gratefully acknowledge the skilled assistance of Sheila Blanck and Cathleen Vones in these experiments. Dr. A. Pesce kindly made available iodinated myoglobin, and offered valuable advice throughout the work. The research was supported by NIH Grant Nos. ES-01462 and ES-00159. A preliminary report of this material was presented to the American Physiological Society, April 1978.

Proteinuria and the Fragility of Normal and Diseased Glomerular Basement Membrane

(40342)

C. A. KRAKOWER, B. K. NICHOLSW, AND S. A. GREENSPON

Department of Pathology, Abraham Lincoln School of Medicine, University of Illinois, Chicago, Illinois 60612

There is a considerable body of knowledge with respect to the physical properties of interstitial collagen (1). It has been only recently, however, that studies have appeared dealing with some of these properties in related basement membranes (BM). These are made up of collagen-like units bonded with sialoglycopeptides (2). The studies have been performed on two normal epithelial BM. Welling and Grantham dealt with the hydrostatic and osmotic conductance of isolated closed and perfused intact renal tubular segments and of such segments with the inner epithelial lining removed by the use of sodium deoxycholate. Tubular BM was found to be a relatively tough elastic structure (3). Likewise, Fisher and Wakely found the anterior lens capsule to be elastic and in fact at low stress values comparable to that of lightly vulcanizated rubber (4). In both studies the authors found that the modulus of elasticity of BM was similar to that of interstitial collagen. Gelman and coworkers determined the melting temperature of collagen isolated from lens capsule by peptic digestion and found it to be significantly higher than that for interstitial collagen. They related this difference to the higher hydroxyproline content of BM collagen (5).

Direct measurements of the physical properties of vascular BM have not been reported. Access to vascular BM has to be at a capillary level. Only the capillaries of the renal glomerulus in their peripheral portions form free loops uncumbered by additional surrounding tissues. These loops are made up of a thick BM lined by a thin fenestrated endothelium on one surface and an epithelium with podocytic attachments on the opposite surface. The loops are held in place by inner attachment to a delicate mesangium. The closest approximation to an isolate of glomerular basement membrane (GBM) unaltered by the harsh methods necessary to obtain it in pure form, was to cut-off the outermost portions of the tufts with their free loops from freshly obtained glomeruli and then by micromanipulative techniques to detach portions of the loops from their mesangial connections. In so doing, we were able to convert a portion of a loop into a single straight strand 60–100 \(\mu \)m in length.

GBM has been compared to a thixotropic gel. It has been conjectured that in glomerular disease where there is increased permeability of the glomerular filter, this gel undergoes a physical change and becomes more sol-like. In fact Huang and coworkers (6) found that GBM from normal kidneys packed into a chromatographic column behaved like a highly cross-linked gel such as sephadex. GBM obtained from kidneys with nephrotoxic serum nephritis on the other hand appeared to be a more porous or less cross-linked gel. Somewhat similar results were obtained by Igarashi and coworkers (7).

It was of interest therefore to determine some of the physical properties of normal glomerular stands and to compare these values with those obtained from diseased glomeruli. Owing to technical limitations, the findings we are reporting deal with the effects of strain on the strands in terms of elasticity and fragility.

 Procedures and methods. Male Lewis rats obtained from Microbiological Associates were used in all the experiments. However the GBM for the production of rabbit anti-rat GBM serum (NTS) was obtained from Holtzman rats. NTS was prepared in the manner described previously (8). In brief, male albino rabbits weighing 2.5 k were injected im with 100 mg GBM suspended in aluminum hydroxide gel. One-and-a half mil-
s of the mixture were injected into each leg. The injections were repeated twice weekly intervals. The rabbits were bled 21 after the first injection. The serum was vated at 56° for 30 min and adsorbed times for one hour each, with washed blood cells from Holtzman rats. Normal t serum (NRS) used for controls was vated and adsorbed in the same way.

\[\text{Reaction of nephrotoxic serum nephritis} \]

The rats weighed 150 g. They were ed iv with 2.0 ml NTS/100 g body wt. rol rats were injected with 2.0 ml NRS/ body wt. Urinary proteins were deter- determined 6 and 18 hr after injection and on a basis thereafter. Renal biopsies were 6 and 24 hr and 10–15 days as well as ys after injection.

\[\text{Reaction of aminonucleoside nephrosis} \]

The rats weighed 90–120 g. They injected SC daily for 7–10 days with 1.5 00 g body wt of the aminonucleoside of nycin as a 0.5% saline solution. Control were injected daily with an equivalent of saline. Urinary protein values were recorded daily. The food intake of the con- was adjusted to that of the nephrolymps on a day-by-day basis. Renal biops- were taken 8–11, 12–15, 25–28, and 33–39 following the first injection.

\[\text{Urinary proteins} \]

The rats were placed in ollic cages with access to rat chow and water. Urinary proteins were determined by dided biuret assay (9). Baseline values obtained prior to any experimental pro- cesses were expressed as mg in/24 hrs/100 g body wt.

\[\text{Preparation of microprobes} \]

The microprobes were prepared by electrolysis of stain- less steel wire, using a solution made up of parts of 3 M KCl and conc. HCl over- vith a thin layer of xylene to prevent ringing. The finely tipped probes were d serially with 10% sodium bicarbonate, absolute ethanol and xylene. The s were examined microscopically for an table degree of fineness. By bending the before electrolysis, the tips could be either curved or hooked (Fig. 1). Some tips of the probes were lightly dipped vulcanized rubber. Such rubber tipped s could be used for holding or anchor- ecimens.

![Fig. 1. Curved and hooked microprobes which were used to pluck capillary strands from the peripheral glomerular tufts. × 2.](image)

\[\text{Preparation of microdissection needles} \]

The ends of No. 11 surgical blades were attached to applicator sticks with pyseal (Fisher Scientific).

\[\text{Preparation of the renal specimens and determination of physical properties} \]

The renal specimens were obtained by open biopsy. They were at once placed in ice-packed tubes containing 0.15 M NaCl. They were then lightly pressed between two glass slides and rinsed with saline into a small glass dish. Glomeruli were isolated from the suspension with dissection forceps and the use of a Bausch and Lomb stereoscope provided with 25X ocular, a 0.7 to 3.0X zoom lens and a 2X auxiliary lens. The isolated glomeruli were transferred to a slide-well containing fresh saline. With microdissection needles one was able to cut off the outermost portions of the tufts of the glomeruli with their peripheral loops. These tufts with their free loops were in turn transferred to the immersion well of a slide adjusted to the stage of a Bausch and Lomb microscope. The latter was equipped with 15X ocular and Leitz 20X and 32X objectives to provide an extra working distance between the objective lens and the immersion well on the stage of the microscope. Indirect lighting was used. The microprobes were attached to two Sensaur pneumatic de Fonbrune micromanipulators. The latter were arranged in relation to the microscope so that the microprobes could be immersed and manipulated within the saline of the well of the slide. A tuft was held taut at one end with one of the probes. One of the loops of the tuft was then grasped with a curved or hooked probe. By a quick pull on the appropriate micromanipulator a portion of the loop
Fragility of glomerular basement membrane

tached from its mesangial attachment as a single straight strand retaining the hold on the strand, stretched further either to a point or could recoil to its original length; the strain upon it or it could be the point of rupture. The strand these maneuvers remained single, since where more than one loop was added the extra ones slipped away from the strand as it was being pulled. Measurements of the initial strand and the extent to which it was stretched beyond the initial length with an ocular micrometer which calibrated with a stage micrometer. Pieces of rat tail tendon were used to keep the same. Shaved fragments were easily to single strands using the microstrands were treated in the same glomerular ones.

Preparations were made on glomerular in the experimental animals with NMN and their appropriate control normal untreated rats of various instance four or five strands from each glomerulus of the biopsy were tested. In addition we the effects of strain on normal glomerular strands exposed to a variety of agents which are listed in Tables III and IV. Some of these agents were selected to simulate the biologic ones thought to be effective in producing the altered changes in the physical qualities of the glomeruli derived from the experimental and aged animals.

To verify that the alterations in the physical qualities of the glomerular strands from the experimental animals were not in vitro artifacts, the intact kidneys were perfused at normal and heightened pressures. The external surfaces of the perfused glomeruli were studied by scanning electron microscopy. The frequency of perforations as an index of increased fragility was sought for and compared with the perfused glomeruli from control kidneys.

Renal perfusion. Renal perfusion was performed on animals 24 hr after injection of NTS and on the 10th to the 12th day after the first injection of aminonucleoside. The animals were prepared by the iv injection of 200 units of heparin. Thirty minutes later they were perfused via the ascending thoracic aorta with 600 ml warm Ringer-Locke’s solution pH 7.4, 288 mOsm/kg at 120 mm Hg. Subsequent perfusion was confined to the kidneys through the narrow sector of the abdominal aorta above and below the renal arteries. Branches of these arteries were tied as were the lumbar and spermatic arteries. The perfusion fluid was pooled human serum which had been kept chilled at all times. It was filtered through glass wool and centrifuged at 1800g. Cryoglobulins, if present were removed in a refrigerated ultracentrifuge at 30,000g. The serum prior to use was passed through a Seitz filter using a sterilizing pad with 0.4 μm pores. Both kidneys were perfused at 120 mm Hg for 7 min. The left renal pedicle was clamped and the right kidney perfused at 300 mm Hg for an additional 7 min. By judicious clamping of the renal pedicles the pressures could be maintained in these kidneys even when followed by reperfusion with Ringer-Locke’s solution and subsequently with 2.5% glutaraldehyde in Sorenson’s phosphate buffer pH 7.4, 395 mOsm/kg.

Light microscopy (LM) transmission (TEM) and scanning (SEM) electron microscopy. Tissues were fixed in Zenker’s solution for LM. Sections were stained with hematoxylin and
eosin, periodic acid Schiff, Masson’s tri-

crome and Lendrum’s for fibrin. For TEM

the material was fixed in 4% glutaraldehyde,

post fixed in buffered 2% osmium tetroxide,

dehydrated and embedded in Epon. Sorval

“Porter-Blum” ultramicrotomes models MT-

2 and MT-2B equipped with glass or dia-

mond knives were used for sectioning. Sec-

tions were placed on parlodion and carbon

coated 75 or 200 mesh copper grids or on

uncoated 300 mesh copper grids. Grids were

stained with uranyl acetate and lead citrate

and examined with a Hitachi HS-7S or RCA

EMU-4 electron microscope. Pieces of kidney

perfused with glutaraldehyde were further

fixed in this solution for 2 days and then

dehydrated with acetone when being pre-

pared for SEM. The specimens were then

dried in a Bomar critical point dryer with

CO₂. They were gold coated with a DC sput-

tering device to a thickness of approximately

25Å. The specimens were examined with a

Cambridge stereoscan Mark 11A scanning

electron microscope at an accelerating volt-

age of 20 kV.

Results. The terms used to describe the

physical properties of the glomerular capil-

lary strands are defined as follows. Stress is

a resisting force set up in the strand by the

externally applied force transmitted through

the micromanipulators. However, this trans-

mitted force was so small that it could not be

detected by the most sensitive guages availa-

table to us. Strain is the change in shape that

the strand underwent on applying stress. It

was best expressed by the extent to which the

strands could be stretched beyond its initial

length. The percentage of the initial length

beyond which the strand could be stretched

and still retract to its original length was

regarded as a measure of its elasticity. The

percentage of the initial length beyond which

the strand could be stretched to the point of

rupture was regarded as a measure of its

fragility. Hence a normal capillary strand

could for example tolerate 60% strain before

rupturing, that is a strand 60 µm in length

could be stretched 36 µm for a total length of

96 µm. By contrast, a capillary strand from a

diseased glomerulus ruptured as soon as it

was stretched beyond its initial length and

hence its tolerance was 0% strain. Between

these two extremes one could use such terms

as slight to marked increase in fragility. The

elasticity and fragility of the strands could

therefore be expressed in quantitative and

qualitative terms without reference to the

undetermined amount of stress. Valid com-

parisons could therefore be made between

strands from normal and from diseased glom-

eruli.

The glomerular strands from untreated and

treated control animals measured 60–100 µm

in length. They were considerably elastic.

They could be stretched up to 40% beyond

their initial length with good recoil. However

the strands would break if stretched from

60.2% to 77.1% beyond their initial length

(Tables I–IV). By contrast single strands of

rat tail tendon had little elasticity and broke

when stretched to 12% beyond their initial

length.

The elastic properties and the degree of

fragility of the glomerular strands from the

experimental animals were strikingly differ-

ent. It was easier to isolate the glomerular

strands from the animals with NTN and

AMN than from the controls. There were

TABLE I. Relation of Fragility of Glomerular Strands to Proteinuria in Nephritic Rats.

| Days after injec-

<table>
<thead>
<tr>
<th>tion</th>
<th>With rabbit anti-rat GBM serum</th>
<th>With normal rabbit serum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strain*</td>
<td>Urinary protein*</td>
</tr>
<tr>
<td>0.25</td>
<td>4.4 ± 1.1</td>
<td>70.7 ± 9.4</td>
</tr>
<tr>
<td>1.0</td>
<td>2.2 ± 2.7</td>
<td>55.5 ± 11.7</td>
</tr>
<tr>
<td>10–15</td>
<td>5.2 ± 6.4</td>
<td>40.0 ± 6.2</td>
</tr>
<tr>
<td>60</td>
<td>51.4 ± 10.2</td>
<td>1.5 ± 1.0</td>
</tr>
</tbody>
</table>

* The percentage of the initial length beyond which a glomerular strand could be stretched before breaking. The
values are the mean ± SD of the measurements made on four or five strands from each of three rats. Medians are

given for the rats treated with rabbit anti-rat GBM serum because of a skewed distribution of the values.

* Urinary protein is expressed as mg/24 hr/100 g body wt.
mucoid threads associated with the isolation of the glomerular strands most prominently from animals with NTN 6 hr after injection of NTS. Eighty-seven percent of the strands from the animals with NTN from 6 hr through the 10–15th day failed to tolerate any strain and broke immediately on stretching. Again this coincided with proteinuria as recorded 8–11, 12–15 and 23–28 days following the initial injection of the aminonucleoside (Table II). The glomerular strands both with NTN and AMN were so fragile that it was not possible to determine their elasticity. These changes were however reversible. With the diminution of proteinuria to normal values as observed 60 days after injection of NTS (Table I) and 33–39 days after administration of the aminonucleoside (Table II), the elasticity and fragility of the glomerular strands reverted to near normal values. However prior to the return to a normal urinary protein output random tests between the 15th and 60th day for NTN and the 28th and 33rd day for AMN indicated persistence of the high degree of fragility.

The alteration in fragility of the glomerular strands was monitored by LM and EM studies of the glomeruli of the renal biopsies. At 6 hr with NTN there was some loosening of the mesangium and the deposition of electrulcent material beneath the endothelium. There was also desiccation of the endothelium. Polymorphonuclear leukocytes and platelets were present in the capillary lumens. They were closely applied to the capillary walls. The foot-processes of the somewhat swollen visceral epithelial cells were still largely discrete. At 24 hr many of the glomerular capillary loops were thrombosed. In

TABLE II. RELATION OF FRAGILITY OF GLOMERULAR STRANDS TO PROTEINURIA IN NEPHROTIC RATS.

<table>
<thead>
<tr>
<th>Days after the first injection</th>
<th>Strain*</th>
<th>Urinary protein*</th>
<th>Strain*</th>
<th>Urinary protein*</th>
</tr>
</thead>
<tbody>
<tr>
<td>8–11</td>
<td>0.0</td>
<td>20.2 ± 1.6</td>
<td>69.9 ± 1.2</td>
<td>3.3 ± 2.1</td>
</tr>
<tr>
<td>12–15</td>
<td>0.0</td>
<td>85.3 ± 4.1</td>
<td>66.0 ± 4.5</td>
<td>3.7 ± 1.1</td>
</tr>
<tr>
<td>25–28</td>
<td>0.0</td>
<td>18.5 ± 2.2</td>
<td>61.6 ± 0.8</td>
<td>2.8 ± 2.1</td>
</tr>
<tr>
<td>33–39</td>
<td>59.4 ± 3.2</td>
<td>5.3 ± 0.8</td>
<td>64.1 ± 5.3</td>
<td>3.5 ± 0.4</td>
</tr>
</tbody>
</table>

* The percentage of the initial length beyond which a glomerular strain could be stretched before breaking. The values are the mean ± SD of the measurements made on four or five strains for each of four rats.

* Urinary protein is expressed as mg/24 hr/100 g body wt.

TABLE III. THE FRAGILITY OF GLOMERULAR STRANDS EXPOSED TO A VARIETY OF AGENTS.

<table>
<thead>
<tr>
<th>Agent*</th>
<th>Strain*</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% potassium iodide in buffered saline pH 7.4.</td>
<td>35.9 ± 1.2 (70.2 ± 2.5)</td>
</tr>
<tr>
<td>10% formalin in buffered saline pH 7.4.</td>
<td>5.0 ± 3.5 (69.7 ± 3.4)</td>
</tr>
<tr>
<td>0.1 mg/ml papain in EDTA pH 7.4.</td>
<td>7.6 ± 4.7 (72.1 ± 3.2)</td>
</tr>
<tr>
<td>0.1 mg/ml pronase in % M Sorenson’s phosphate buffer pH 7.4.</td>
<td>0.0 (76.5 ± 4.1)</td>
</tr>
<tr>
<td>0.1 mg/ml collagenase in Tris buffer pH 7.5 or in % M phosphate buffer with 0.45% NaCl pH 7.4.</td>
<td>5.8 ± 3.6 (77.1 ± 3.7)</td>
</tr>
<tr>
<td>0.1 mg/ml Neuraminidase in Ringer-Locke with 1% bovine serum albumin pH 7.4.</td>
<td>25.9 ± 11.5 (66.7 ± 2.2)</td>
</tr>
<tr>
<td>0.1 mg/ml β-N-acetyl-d-glucosaminidase with 0.1 mg/ml bovine serum albumin and 0.01 M NaCl pH 7.4.</td>
<td>0.0 (75.0 ± 6.0)</td>
</tr>
<tr>
<td>0.1 mg/ml poly-l-lysine in Ringer-Locke pH 7.4.</td>
<td>0.0 (69.4 ± 3.2)</td>
</tr>
<tr>
<td>0.1 mg/ml protamine sulfate in Ringer-Locke pH 7.4.</td>
<td>1.3 ± 1.3 (69.4 ± 3.2)</td>
</tr>
<tr>
<td>0.1 mg/ml poly-l-glutamic acid in Ringer-Locke pH 7.4.</td>
<td>62.3 ± 8.7 (69.4 ± 3.2)</td>
</tr>
<tr>
<td>0.1 mg/ml heparin in Ringer-Locke pH 7.4.</td>
<td>66.4 ± 7.2 (69.4 ± 3.2)</td>
</tr>
</tbody>
</table>

* Twice crystallized papain, collagenase with <40 caseinase units/mg and neuraminidase with <0.1% proteolytic activity were obtained from Worthington Biochemical Corp. Pronase was obtained from Calbiochem. Poly-l-lysine, poly-l-glutamic acid and protamine sulfate were obtained from Sigma.

* The percentage of the initial length beyond which a glomerular strand could be stretched before breaking. The values are the mean ± SD of the measurements made on four or five strains. The figures in parenthesis are the mean ± SD of the values obtained by treating the glomerular strands with the buffer alone adjusted to the pH of the buffer plus agent.
patent capillaries polymorphonuclears and platelets were still present and often assayed to bared BM. Foot processes were now irregularly approximated. The mesangial and BM changes were the same as at 6 hr but better defined. There might be some swelling of the lamina densa of the BM. Subsequent periods revealed subsidence of the inflammatory reaction, regeneration of the endothelium approximated foot processes and some GBM and mesangial thickening. There was a return to a more normal appearing glomerulus at 60 days at a time when urinary protein output and the physical properties of the capillary strands had returned to near normal. With AMN the changes during the period of proteinuria consisted of total approximation of foot processes. Occasionally there was disappearance of these and their vacuolated visceral epithelial cells. There was no more than some thickening of GBM and an increase in mesangial matrix. At no time was there evidence for an inflammatory component comparable to that seen with NTN. With reversion to a normal urinary protein output, the glomeruli assumed a more normal appearance with largely discrete foot processes and the capillary strands derived from them resumed near normal physical properties.

The glomerular strands of untreated rats were examined periodically as they aged. These invariably gave normal values for fragility and elasticity. With beginning proteinuria at 2.5 years of age the values of strain in two survivors decreased from normal values to a mean of 40.6 and 43.8%. At this time 12–15% of the glomeruli by LM had segmental or rarely total sclerotic changes. In the ensuing 4 weeks the values of strain dropped to a mean of 15.3%. There was a distinct decrease in elasticity. The glomerular strands failed to return to their original length or did not recoil at all, when stretched below their breaking point. Thirty percent of the glomeruli now showed marked sclerosis. These latter when isolated had yellow patches presumably representing the sclerotic loops. Strands from these loops were highly fragile and broke immediately. Less involved glomeruli had GBM and mesangial thickening and by EM fusion of foot processes over thickened loops.

The increased fragility of the diseased glomerular capillaries could be corroborated by perfusion of the kidneys and the examination of their glomeruli by SEM. Ninety-three glomeruli from 9 control kidneys perfused at 120 or 300 mm Hg showed no perforations except in one kidney perfused at 300 mm where three out of ten presented single perforations. In the case of NTN of 43 glomeruli from four kidneys perfused at 120 mm 13 or 30% showed one or more perforations. Of 63 glo-

TABLE IV. THE FRAGILITY OF GLomerULAR STRANDS EXPOSED TO HISTAMINE AND 5-OH Tryptamine.

<table>
<thead>
<tr>
<th>Agent</th>
<th>µg/ml</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histamine base in Saline pH 7.0</td>
<td>1</td>
<td>51.8 ± 2.7 (64.6 ± 2.5)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 7.4</td>
<td>1</td>
<td>48.2 ± 5.7 (66.7 ± 2.1)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 7.4</td>
<td>3</td>
<td>42.0 ± 3.1 (66.7 ± 2.1)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 7.4</td>
<td>5</td>
<td>37.3 ± 2.2 (66.7 ± 2.1)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 7.8</td>
<td>7</td>
<td>34.6 ± 1.4 (67.3 ± 6.0)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 8.0</td>
<td>50</td>
<td>39.4 ± 2.7 (64.7 ± 3.1)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 8.0</td>
<td>100</td>
<td>23.2 ± 1.8 (64.7 ± 3.1)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 8.1</td>
<td>150</td>
<td>0.0 (66.2 ± 3.3)</td>
</tr>
<tr>
<td>Histamine base in Ringer Locke pH 8.1</td>
<td>200</td>
<td>0.0 (66.2 ± 3.3)</td>
</tr>
<tr>
<td>Histamine Acid Phosphate in Tris buffer pH 7.5</td>
<td>7</td>
<td>48.3 ± 4.1 (67.2 ± 1.7)</td>
</tr>
<tr>
<td>Histamine Acid Phosphate in Tris buffer pH 7.4</td>
<td>50</td>
<td>32.3 ± 4.4 (71.0 ± 1.9)</td>
</tr>
<tr>
<td>Histamine Acid Phosphate in Tris buffer pH 7.3</td>
<td>140</td>
<td>18.8 ± 3.3 (68.8 ± 2.1)</td>
</tr>
<tr>
<td>5-OH tryptamine Creatinine Sulfate in Tris buffer pH 7.4</td>
<td>7</td>
<td>54.3 ± 4.3 (71.0 ± 1.9)</td>
</tr>
<tr>
<td>5-OH tryptamine Creatinine Sulfate in Tris buffer pH 7.3</td>
<td>50</td>
<td>44.6 ± 2.7 (68.8 ± 2.1)</td>
</tr>
<tr>
<td>5-OH tryptamine Creatinine Sulfate in Tris buffer pH 7.3</td>
<td>150</td>
<td>36.7 ± 2.9 (68.8 ± 2.1)</td>
</tr>
<tr>
<td>5-OH tryptamine Creatinine Sulfate in Tris buffer pH 7.3</td>
<td>200</td>
<td>27.2 ± 4.4 (68.8 ± 2.1)</td>
</tr>
</tbody>
</table>

* The histamine base was obtained from Pfannstiehl Chemical Co., Histamine acid phosphate from Eli Lilly Co. and 5-OH tryptamine Creatinine Sulfate from Sigma.

* The same as the footnote in Table III.
meruli from five kidneys perfused at 300 mm Hg or 30% showed one or more perforations. With AMN of 33 glomeruli from three kidneys perfused at 120 mm Hg or 57% showed one or more perforations. At 300 mm Hg of 45 glomeruli from four kidneys 32 or 71% showed perforations (Figs. 3–5).

The effects of a variety of agents on glomerular strands isolated from normal glomeruli are presented in Tables III and IV. It is to be emphasized that these results represent changes in fragility which occurred at room temperature and often within minutes following exposure to the agent. The buffers used as controls were adjusted to the same pH as the buffer plus the agent. Forty percent KI which causes chemical contraction of collagen comparable to heat contraction increased the fragility of the glomerular strands. There is an even greater increase in fragility following fixation of the strands in 10% formalin. The proteolytic enzymes, papain, pronase and collagenase all sharply and markedly increased fragility. Neuraminidase and β-N-acetyl-d-glucosaminidase both increased fragility. Neuraminic acid and N-acetyl glucosamine are components of the noncollagenous glycopeptides of GBM. However the striking effects of the glucosaminidase might have been due to a possible minor contaminant with a proteolytic enzyme. It is of extreme interest that by contrast with the polyanions, poly-l-glutamic acid and heparin which had no effect on the glomerular strands, the polycations, poly-l-lysine and protamine sulfate produced marked increases in fragility. Histamine and 5-OH-tryptamine both highly vasoactive substances, likewise increased the fragility of the glomerular strands. The increase was a graded one commensurate with the increasing concentration of the agent.

Discussion. Of the components of the wall of the glomerular capillary it is the BM which forms the structural backbone and serves as its support. In fact Murphy and Johnson (10) have submitted the data of Welling and Grantham (3) on renal tubular BM to mathematical analysis and have drawn the inference that capillary BM and particularly GBM are responsible for the rigidity and self support of these vessels. The results obtained

Fig. 3. Scanning electronmicroscopic view of a glomerulus from a normal kidney perfused with serum at 300 mm Hg. Details of the visceral epithelial cells and their processes can readily be made out. There are scattered microvilli. There are no perforations. × 1000.
Fig. 4. Scanning electronmicroscopic view of a glomerulus from a kidney with aminonucleoside nephrosis used with serum at 300 mm Hg. The loops are irregular and distorted. Cells and their processes are largely terated. The surfaces tend to be smooth with some microvilli and some blebs. There are multiple perforations cated by the arrow head and arrows. × 1000.

Fig. 5. As in Fig. 4. The perforation indicated by the arrow head in Fig. 4 is shown in an enlargement of the × 10,000.
with the isolated single strands from peripheral glomerular capillaries can therefore be considered as representative of the physical properties of GBM.

Normal glomerular strands are very elastic and are resistant to rupture when stressed not unlike that reported for renal tubular BM (3) and anterior lens capsule (4). By contrast there is a marked increase in the fragility of the strands from the glomeruli of rats with NTN and AMN and from the affected glomeruli in spontaneous glomerulosclerosis. The degree of increase in fragility was such that elasticity could no longer be measured since the strands broke immediately on being stretched beyond their initial lengths. The strands from very aged rats were less elastic then normal. The changes in fragility occurred in all instances simultaneously with the onset and persistence of proteinuria. They reverted however to near normal during the recovery phase of NTN and AMN with the resumption of a normal output of urinary protein. Comparable degrees of increased fragility were observed in vitro by brief exposure of normal glomerular strands to proteolytic and collagenolytic enzymes, to neuraminidase and to polycations. Polyanions by contrast were without effect as were the various buffers that were used as vehicles for all these agents.

The degree of increase in fragility of the glomerular strands in NTN appeared to be somewhat variable. Not all strands broke immediately on stretching, suggesting that the damage to the capillary wall was not uniform and that the immune inflammatory response was more intense in focal glomeruli and in segmental sectors. This seemed to be borne out by the perfusion studies where a fixed 30% of the glomeruli showed perforations independent of the pressure employed whether at 120 or 300 mm Hg. The damage to GBM is assumed to occur through the release of lysosomal enzymes particularly from the polymorphonuclear neutrophils of the inflammatory exudate (11). As indicated in the in vitro experiments even brief exposure of the glomerular capillary strands to somewhat similar enzymes could bring about a sharp increase in their fragility. In addition to enzymatic action there is a change in the staining pattern for the anionically charged sialoglycoproteins of the glomerular capillary wall shortly after the onset of NTN followed by a quantitative decrease in sialic acid (12). Considerable emphasis has been placed recently on the reduction of the normal anionic charge of the glomerular capillary wall with reference to increased permeability of anionically charged serum proteins such as albumin (13). In fact perfusion of the kidney with polycations can lead to proteinuria (14) and as shown here exposure of normal glomerular strands to polycations can increase their fragility promptly and markedly. In effect therefore both reduction in net negative charge and enzymatic action appear to account for the increased permeability and fragility of the glomerular capillary wall in NTN.

The increased fragility of the glomerular strands with AMN was more uniform. All strands broke immediately on being stretched beyond their initial length. Also the number of glomeruli with ruptures following perfusion was greater than with NTN and increased from 57% at 120 mm Hg to 71% at 300 mm. There is no significant inflammatory component with AMN. However, there is loss of net negative charge associated with decrease in sialic acid (15). There is also a change in the composition of the GBM with a decrease in hydroxylsine and hydroxyproline, a corresponding increase in lysine and proline and an altered glucose-galactose-hydroxylsine ratio of 2:1:1 as compared with 1:1:1 for normal GBM (16). Altered synthesis of GBM as well as reduction in negative charge may be the basis for increased permeability and fragility in AMN.

Morphologic changes in GBM with NTN and AMN have been said to vary from none to some edematous swelling in the earlier stages and to some thickening in the later stages. This is borne out by our own observations. It is not clear to what extent such changes in and of themselves contributed to increased permeability and fragility. However with spontaneous glomerulosclerosis there is variable and in the most affected loops marked GBM thickening. There are no data to indicate whether such thickened BM are associated with loss of net negative charge or with distinctive changes in chemical composition. It is known that with aging there is increased hydroxylation of lysine of the GBM.
ased glycosylation of hydroxylysine there is also a decrease in sialic acid. Nonetheless morphologically altered glomerulosclerosis is associated with fragility and presumably with increased permeability.

Could appear therefore that besides di-regular action, alterations in the composition and molecular config-ure of GBM including a reduction in its tive charge can bring about striking in its fragility. These changes appear intimately associated with increased lility to plasma proteins. With pro-terare is commonly approximation or of foot processes with displacement t diaphragms. This is almost univer-AMN, more irregular with NTN and AMM, thickened loops in glomeruloscle has been suggested by Seiter and ̄'s (19, 20) that the mobility of the ccesses may be primarily dependent ered charge relationships between l foot processes and between foot foot and BM. With the movement of the ccesses the slit diaphragms would then ace. One wonders however to what an increasingly fragile GBM whether by altered charge or not would lead uing and displacement not so much ot processes as of the film-like slit ms. One would then be dealing, in ith the same attempt on the part of ral epithelial cell to cover the de-BM as in the case of the elongation sion of a regenerating epithelial cell scerated surface. The movement of processes is associated with the dist of the glycocalycelial coat from the cular surface and the slit dia-
. It is entirely possible that the strings d material encountered in the prep-of glomerular strands particularly 6 hr after the injection of NTS may f from such displaced glycocalycy rendered more mucoid by the action es which have permeated through f or by reduction in its negative es in the fragility of the glomerular n be brought about not only with polyamines but with simpler basic uch as histamine and 5-OH-trypt-amine. This is of interest since it is possible that these vasoactive substances can be released from mast cells and/or platelets in sufficient concentration so as to bring about comparable changes in fragility of capillary and venular BM. The increased permeability observed with these amines would be due therefore not only to disjunction of the endothelial cells allowing the vascular contents to come in contact with the BM but would also be due to the altered physical property and presumably permeability of the BM itself. The vasoactive cationic polypeptides released from the lysosomes of polymorphonuclears and the basic kinins may act on the BM in the same way.

Summary. Single straight capillary strands measuring 60–100 μm were secured by micromanipulators and microprobes from excised peripheral portions of the tufts of isolated glomeruli. The physical properties of these strands were considered to represent those of GBM. Normal glomerular strands could be stretched up to 40% beyond their initial length with good recoil but broke when they were stretched from 60 to 77% beyond their initial length. By contrast 100% of the glomerular strands from the kidneys with AMN, 87% of those from kidneys with NTN and the most affected glomeruli from aged rats with glomerulosclerosis broke immediately when stretched beyond their initial length. Elasticity could not be determined under these circumstances. Normal glomerular strands showed marked increases in fragility when briefly exposed to proteolytic enzymes, neuraminidase, to polycations and to basic amines. It seems that direct enzymatic action on GBM or alterations in its chemical composition and molecular configuration as well as a reduction in its net negative charge can bring about striking changes in its fragility. These changes appear to be intimately associated with increased permeability. They appear with the onset of proteinuria in AMN and NTN and they return to near normal when the output of urinary protein returns to normal. It is suggested that the approximation of foot processes which commonly accompanies proteinuric states is a response on the part of the visceral epithelial cell to the instability and displacement of the foot processes and in particular of the delicate slit
diaphragms occasioned by an underlying increasingly fragile BM. It is also suggested that the vasoactive amines not only lead to disjunction of endothelial cells but render the capillary or venular BM increasingly fragile and permeable.

The authors are greatly indebted to Dr. B. Weissman for the supply of \(\beta \)-N-acetyl-\(\beta \)-glucosaminidase and to Dr. E. H. Polley for his advice on how to prepare the microprobes.

Body Iron Loss in Animals (40343)

C. A. FINCH, H. A. RAGAN, I. A. DYER, AND J. D. COOK

of Hematology and the Regional Primate Research Center, University of Washington; Department of Animals Sciences, Washington State University; and Battelle, Pacific Northwest Laboratories

ative information concerning body ver in mammalian species is limited its that turnover rates may differ by of magnitude (1, 2). Man appears most restricted exchange, about !, and this may be important in both the high prevalence of iron (limited absorption) and the oc of parenchymal iron overload (lim). The present study was under examine body iron turnover in a of animal species, since with the of the mouse (1) and rat (3), little about iron exchange in these other was hoped that these studies would be of general biologic interest but to serve to guide efforts in establish model of parenchymal iron

als and methods. The species studied he rat, guinea pig, rabbit, dog, mon p, and cow. The first three were the University of Washington, dogs at the Battelle Northwest facility at monkeys were kept in the Primate ion at Medical Lake, and the sheep populations were kept at Washington University. All animals were male sheep and cows. Weights of ani recorded during the experimental ew Zealand white rabbits were fed ibbit Breeder Pak which contained s 219 mg of iron/kg; Hartley guinea fed on Guinea Pig Chow by Purina, ent of which was 449 mg/kg and given 1 mg of ascorbic acid/100 g /day in their drinking water. Owley rats were fed Laboratory Purina with an iron content of 373 dogs were fed Wayne's Dog Chow iron content of 289 mg iron/kg. id Fuscicularis monkeys were fed monkey Chow containing 237 mg sheep (Columbia ewes) of about 8 Hereford cows of about 12 years alfalfa hay which had an iron con tent of 490 mg/kg and a salt mixture which together had an iron content of 512 mg/kg. Weekly food consumption was estimated and its iron content determined by wet ashing (4) and colorimetric analysis. Hematologic measuremen including hemoglobin by the cyan methemoglobin method and hematocrit by the micro technique were made at the beginning and termination of the study. Blood volumes of animals corresponding in weight to those studied were carried out at the beginning of the experiment and at the end in the rat, guinea pig, and rabbit, employing the Evan's blue dye method (5); the blood volume of other species was taken from previous reports in the literature (6–9).

Radioiron (59Fe) in dosage of 1 µCi/kg (specific activity about 15 µCi/µg) was injected intravenously as the citrate salt (20 moles citrate/mole iron) at the beginning of the study, and blood samples were drawn at intervals until the radioactivity had fallen to <30% of the initial level. The interval of sampling was so adjusted that there would be about six samples before this level was reached. At that time an aliquot of all samples was wet ashed, prepared as described by Eakins and Brown (10) and counted in a liquid scintillation counter.

In previous studies in man there had been a rapid initial fall, presumably reflecting the mixing of radioiron with nonerythron iron (2, 11). In rats, guinea pigs, and rabbits the eleventh day sample was used as the first point in the turnover curve since that point and those following appear to fall on a single exponential clearance line. In the other species there was a more rapid initial fall, presumably related to mixing with nonerythron body iron. To avoid this mixing phase the start of the turnover slope (called 0 day) was taken after a single exponential rate of decrease in radioactivity was established. In dogs this began at 224 days, in Pigtail and Fuscicularis monkeys 196 days, and in sheep and cows 168 days. Initial and subsequent values for
each animal were plotted, and the best exponential rate of decrease in specific activity was derived by analysis of least squares. The point of intersection with the zero ordinate at the time of the first sample was taken at 100%. Mean $t_{1/2}$ was established by averaging the individual $t_{1/2}$ values (Table I) and also by employing the average values at each time interval for each species so as to give a composite turnover curve (Fig. 1). The mean $t_{1/2}$ was corrected for blood volume changes which occurred as a result of growth, and a further correction was made for blood withdrawn during the experimental period. Total blood removed from rat, guinea pig, rabbit, dog, monkeys, sheep, and cow was 1.2, 2.2, 10, 50, 30, 100, 100 ml, respectively. None of the female sheep or cows became pregnant during the study.

Estimated total body iron (TBI) was calculated from the following formula:

$$\text{TBI (mg)} = (\text{mg Fe/ml whole blood}) \times (\text{ml whole blood}) \times 3/2$$

where the factor 3/2 represents an estimate of the relation of total body iron to red cell iron.

The turnover of body iron (BIT) was calculated according to the formula:

$$\text{BIT (%/d) = 0.693 \times 100/t_{1/2}}$$

$$\text{BIT (mg/kg/d) = mg Fe/kg} \times \text{turnover (%/d)}$$

The daily iron intake was calculated from the amount of food consumed and its iron content, as determined by wet ashing and colorimetric analysis. In small animals food intake was monitored over a week; in large animals the food supply over a month's period was estimated. It was assumed that food iron intake/kg remained constant through the study. The % absorption was calculated from the daily turnover of iron plus growth requirements divided by iron uptake.

Results. Results of this study are summarized in Table I. The rate of isotope disappearance from circulating red cells in rats, guinea pigs, and rabbits required considerable correction for growth, whereas in the other five species blood volume change was relatively small. Average data points for the corrected rates of isotope turnover in the circulating erythrocytes are shown in Fig. 1. The half-time turnover varied from 138 days in the guinea pig to 761 days in the cow. Corrections were made for weight changes in all species showing increases (dog and cow excluded). Based on estimates of body iron content which varied in different species between 32 and 58 mg/kg, the actual turnover of body iron/kg varied from 220 μg/kg/d in the guinea pig to 41 μg/kg/d in the cow.

The balance sheet for iron requirements in each species, based on change in estimated body iron associated with growth and iron losses is displayed in Table II. These requirements are matched against food iron ingested which varied from about 3 mg/kg/d in the

TABLE I. Measurements of Body Iron Loss. (a)

<table>
<thead>
<tr>
<th>Species</th>
<th>Rat (14)</th>
<th>Guinea pig (7)</th>
<th>Rabbit (7)</th>
<th>Dog (6)</th>
<th>Ptarmail (7)</th>
<th>Fusciculus (3)</th>
<th>Sheep (7)</th>
<th>Cow (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Beginning days*</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>92</td>
<td>9</td>
<td>9</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>16 ± 0.8**</td>
<td>15 ± 0.3</td>
<td>13 ± 0.7</td>
<td>17 ± 0.5</td>
<td>13 ± 1.6</td>
<td>12 ± 1.1</td>
<td>11 ± 1.7</td>
<td>14 ± 1.5</td>
</tr>
<tr>
<td>Wt (kg)</td>
<td>0.40 ± 0.02</td>
<td>0.37 ± 0.01</td>
<td>3.2 ± 0.08</td>
<td>3.2 ± 0.8</td>
<td>9 ± 1.0</td>
<td>6 ± 1.1</td>
<td>80 ± 12.4</td>
<td>476 ± 65</td>
</tr>
<tr>
<td>BV (ml/kg)</td>
<td>60 ± 1</td>
<td>60 ± 4</td>
<td>52 ± 8</td>
<td>66</td>
<td>61</td>
<td>61</td>
<td>58</td>
<td>57</td>
</tr>
<tr>
<td>Ending days*</td>
<td>234</td>
<td>234</td>
<td>459</td>
<td>826</td>
<td>812</td>
<td>812</td>
<td>966</td>
<td>966</td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>16 ± 0.7</td>
<td>15 ± 0.5</td>
<td>14 ± 1.1</td>
<td>17 ± 1.0</td>
<td>13 ± 1.6</td>
<td>13 ± 0.4</td>
<td>14 ± 1.7</td>
<td>16 ± 1.8</td>
</tr>
<tr>
<td>Wt (kg)</td>
<td>0.67 ± 0.08</td>
<td>1.2 ± 0.15</td>
<td>4.5 ± 0.3</td>
<td>13 ± 1</td>
<td>11 ± 2</td>
<td>7 ± 0.7</td>
<td>85 ± 11.9</td>
<td>460 ± 64</td>
</tr>
<tr>
<td>BV (ml/kg)</td>
<td>51 ± 3</td>
<td>54 ± 3</td>
<td>40 ± 3</td>
<td>66</td>
<td>61</td>
<td>61</td>
<td>58</td>
<td>57</td>
</tr>
</tbody>
</table>

Fe loss (%)

| days (uncorr.) | 129 ± 15 | 91 ± 8 | 273 ± 32 | 552 ± 92 | 383 ± 146 | 483 ± 131 | 663 ± 127 | 761 ± 205 |
| days (corr.)*** | 183 ± 23 | 138 ± 15 | 288 ± 33 | 404 ± 174 | 432 ± 246 | 681 ± 171 |

Estimated mucosal body iron (mg/kg)

<table>
<thead>
<tr>
<th>(%)</th>
<th>0.38</th>
<th>0.50</th>
<th>0.24</th>
<th>0.13</th>
<th>0.17</th>
<th>0.15</th>
<th>0.10</th>
<th>0.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>(μg/kg/d)</td>
<td>171</td>
<td>220</td>
<td>77</td>
<td>75</td>
<td>71</td>
<td>63</td>
<td>42</td>
<td>41</td>
</tr>
</tbody>
</table>

* Number of animals studied. **SD.*** corrected for blood volume and hemoglobin change (the underlined value has been used for calculating iron turnover rate); * days after injection of radiotin.
TABLE II. CALCULATIONS OF IRON ABSORPTION.

<table>
<thead>
<tr>
<th>Species</th>
<th>Guinea pig</th>
<th>Rabbit</th>
<th>Dog</th>
<th>Pigtail</th>
<th>Fusciularis</th>
<th>Sheep</th>
<th>Cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>requirements (mg/d)</td>
<td>0.06</td>
<td>0.19</td>
<td>0.14</td>
<td>0.11</td>
<td>0.06</td>
<td>0.31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.19</td>
<td>0.29</td>
<td>0.94</td>
<td>0.72</td>
<td>0.43</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>0.38</td>
<td>0.43</td>
<td>0.94</td>
<td>0.83</td>
<td>0.49</td>
<td>3.8</td>
</tr>
<tr>
<td>1 intake (g/d)</td>
<td>15</td>
<td>100</td>
<td>170</td>
<td>345</td>
<td>150</td>
<td>150</td>
<td>3200</td>
</tr>
<tr>
<td>stake (mg/d)</td>
<td>5.6</td>
<td>44</td>
<td>37</td>
<td>99</td>
<td>36</td>
<td>36</td>
<td>1600</td>
</tr>
<tr>
<td>1 iron Absorption (%)</td>
<td>2.5</td>
<td>0.9</td>
<td>1.2</td>
<td>0.9</td>
<td>0.2</td>
<td>1.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Medium weights used in calculation.

Key to as much as 50 mg/kg/d in the sea pig. Iron intake by all species was far in excess of iron requirements, so that estimated absorption of food iron ranged between 0.2 to 2.5%.

Discussion. In these studies body iron turnover was estimated from the specific activity of adioiron in circulating red cells. Previous studies involving the injection of radiolabeled iron have shown an initial excessive loss of radiolabeled iron through the gastrointestinal tract. In man a rapid initial fall in red cell activity is observed over the first 300 days due to mixing of body iron stores (2, 11). In order to determine both of these, turnover was estimated after a single exponential decrease in red cell activity was observed. At this time a steady state of iron exchange within the animal and the environment was presumed to exist. It was also necessary when following red cell activity to make some assumption concerning the miscible pool in which the isotope was diluted. Studies of iron distribution (12) and studies (3, 13) in the rat and of the miscible pool in man (2, 11) suggest the nonerythron portion to be about one-third of the total. Thus, values for red cell iron were increased by 50% to reflect total body turnover. In addition, adjustments were made for changes in blood volume and total body mass and also for the amount of blood removed for isotope measurements.

In the smaller animals, turnover rates ranged from 0.24 to 0.61%/day. In dogs and monkeys fractional turnover was from 0.15 to 0.19%/day. Sheep and cows showed rates of 0.10 and 0.08%/day. These differences appear to have an inverse relationship to food intake.
body weight. Man, however, falls outside of this relationship since daily excretion is 0.03%/day (2, 11). The major difference between man and small animals appears to be in the much greater capacity for excretion of iron through the intestinal mucosal cells in the latter (3, 12, 13). Possibly a variation in this degree of intestinal excretion explains the difference observed in other species.

The data on iron losses also permit estimates of iron absorption. While it might seem more direct to measure absorption itself, this is not practical. Balance studies (food iron ingested minus fecal loss) are not meaningful since the amount of iron ingested is within 1 or 2% fecal iron and contains most of the iron excreted as well as that not absorbed. Isotope studies of absorption must assume similar absorption of isotope and of food iron and are affected by a number of factors which make results highly variable (14). An alternate means of calculating absorption is from the sum of iron requirements for growth and iron losses. The highly favorable ratio between dietary iron and absorption required to maintain iron balance is evident. The estimated absorption range from 0.2 to 2.3% may be contrasted with iron balance in the human. While iron intake in this country is about 150 to 200 µg/kg/d, absorption in man is about 12 µg/kg and in menstruating women about 24 µg/kg (15, 16). This represents an absorption in the male of about 7% and in the female of about 14% of dietary iron. Obviously, requirements will vary depending on the amount of growth during the period of study. There is also some adjustment of loss in relation to the amount of iron in the diet (1). Thus, both absorption and excretion may be modified somewhat depending on the amount of iron provided. However, the much greater iron intake of all animal species is evident.

Summary: Measurements have been made of the decrease in specific activity of radioiron in circulating red cells of eight animal species. From these data calculations of body iron turnover have been made and establish a general inverse relationship between body size and rate of external iron exchange. A comparison of iron requirements and iron intake in these animals indicate extremely low absorption requirements, ranging from 0.2 to 2.3% of their dietary iron intake.

The authors gratefully acknowledge the technical assistance of Sunday Stray, Eva Caiba, and Mary Eng as well as the professional assistance of Dr. Gerald Blakley and staff of the Field Station at Medical Lake in Washington. This work was supported in part by National Institutes of Health Grant Nos. HL-06242 and RR-00166. Portions of this work were performed under contract EY-76-C-06-1830 between U. S. Department of Energy and Battelle Memorial Institute.

Ctrocardiographical, Biochemical and Morphological Effects of Chronic Low Level
Cadmium Feeding on the Rat Heart (40344)

STEPHEN J. KOPP, VERNON W. FISCHER, MARGARET ERLANGER, ELIZABETH F. PERRY, AND H. MITCHELL PERRY, JR.

Department of Physiology and Department of Anatomy, St. Louis University, St. Louis, Missouri 63104; Medical Administration Hospital and Hypertension Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63106

Cadmium is known to dissociate myocardial-excitation-contraction coupling and to depress the excitability of the cardiac conduction system in vitro (1-7). Short-term feeding experiments concluding that cadmium as a cause of heart disease have been extended these in vitro observations. Although the cadmium content of the heart increases with age exposure (10-14), the effects of cadmium have not been systematically analyzed for their significance as a contributing factor in the development of heart disease. This preliminary study was undertaken to investigate (1) the possible biochemical and molecular changes in mammalian hearts associated with long-term, low-level cadmium feeding.

Methods. Eighteen weaning female rats of Long-Evans strain were obtained and fed as described (15). They received a diet (1) high in cadmium diet and fortified with Mn, Co, Cu, and Mo as described by Schroeder and (16), for a total of 24 months when all sacrificed. For half of them, cadmium was added to the water to provide a concentration of 50 parts per million cadmium; for the remaining 8, no cadmium was added; however, were otherwise treated identically (16). Eighteeneight sixteen rats (4 cadmium-fed and 4 control) rats (4 cadmium-fed and 4 control) were assayed for cadmium content and tissue cadmium-zinc ratios. The phosphate specific activities of hearts from the eight remaining rats (4 cadmium-fed and 4 control) were analyzed by phosphorus magnetic resonance spectroscopy (31P NMR). In addition hearts from a pair of rats not otherwise studied (1 cadmium-fed and 1 control) were examined by electron microscopy.

I. Indirect systolic pressure determinations. At 12, 18, and 21 months after weaning systolic pressure was measured indirectly, as described (17), in rats minimally anesthetized with intraperitoneal sodium pentobarbital, 25 mg/kg of body weight. A tail cuff was slowly inflated to a pressure above systolic and then allowed to deflate slowly until the pulse distal to the cuff reappeared; both the distal pulse and the pressure in the tail cuff were simultaneously recorded on the same graph. A rat's systolic pressure was taken as the median of three measurements made within a period of about a minute.

II. Electrocardiography. Eight rats, randomly selected for this stage of the study, were anesthetized with intraperitoneally administered sodium pentobarbital, 35 mg/kg. Lead II of the electrocardiogram (ECG) was monitored during surgery from needle electrodes with a Grass model 7 polygraph. Right femoral artery blood pressures were continuously recorded using a Statham P23 pressure transducer connected to the Grass model 7 polygraph. Systolic pressures recorded with this catheterization technique are reported as the 24-month pressures. The left carotid artery was isolated and catheterized with an insulated silver electrode which served as the active electrode for the His bundle electrogram (HBE) recordings. A reference electrode was placed in the right jugular vein to minimize background noise in the HBE. The active electrode was then positioned to achieve optimal His wave amplitude. The HBE was monitored with an Electronics for
CD FEEDING: ADVERSE CARDIAC EFFECTS

Medicine variable filter amplifier and oscilloscope, model PR6, using standard low and high filter settings, 40 and 500 cycles per sec (cps), respectively (18). Simultaneously, the ECG signal was filtered between 0.1 and 200 cps on a separate channel of the monitor. The electrical events of the heart were recorded with a Tandberg-Honeywell Series 100 FM tape recorder for later replay at one-half speed when they were photographed for analysis on light sensitive paper.

III. Assay of cadmium and zinc by atomic absorption spectrophotometry. Following surgery, the hearts from these eight rats were removed, washed in saline, and weighed. The left and right ventricles, upper and lower septum, and atrium were taken. These samples were rinsed in saline, weighed, frozen, and stored in acid-washed plastic containers for later cadmium and zinc assay by atomic absorption spectrophotometry (AAS). Samples were also taken from the left kidney and the liver; these too were weighed, frozen, and stored for metal assay. For the actual assay, aliquots of the heart weighing 0.013–0.770 g, and of kidney and liver, weighing 0.036–0.249 g, were “wet-ashed” by standard techniques, as described (15). The cardiac aliquots were adjusted to final volumes of 2 ml and were then assayed by AAS, using the graphite furnace (19). The renal and hepatic aliquots were adjusted to final vol of 5 ml and were assayed by AAS, using the burner method (15, 19).

IV. 31 Phosphorus nuclear magnetic resonance spectroscopy (31P NMR). The eight remaining rats with indirect systolic pressure measurements were heparinized prior to cervical dislocation. The heart from each was then rapidly excised in the cold (0–4°C) and immediately immersed in cold Hartmann’s modified Ringer solution (4) at pH 7.2. Two 10 ml bolus infusions of this solution, injected through the aorta, washed the remaining blood from the coronary vasculature. After careful dissection to remove connective and adipose tissue from the heart, a sample from the apical region of the left ventricle, was taken for cadmium and zinc assay as described above; samples of the left kidney and the liver were also taken for similar assay. The remaining heart tissue from these rats was weighed and minced while in the cold for 31P NMR analysis.

Since perchloric acid (PCA) extraction increases the resolution of small tissue samples without altering the phosphate spectra (20, 21), this minced tissue was treated with 1/10 w/v of 60% PCA and homogenized in a Virtis “S” 45 homogenizer for 5 min. The resulting suspension was centrifuged at 10,000 rpm (12100g) for 10 min in a Sorvall superspeed centrifuge, model RC2-B. The pellet was saved for Biuret protein determination, and the supernatant was neutralized to a pH between 7.0 and 7.5, using 10 N KOH in the presence of EDTA.

The neutralized PCA extract was centrifuged at 10,000 rpm (12100g) for 5 min after a 30-min refrigeration period. The supernatant was saved, while the pellet was washed once with 2 ml and thrice with 1 ml of water. The resulting supernatants were combined with the original one and evaporated on a rotary evaporator. Samples were lyophilized overnight and then resuspended in 2 ml of 20% D2O.

Spectronic analysis of these PCA extracts was undertaken using a Bruker HFX-5 nuclear magnetic resonance spectrometer with 31P-stabilization operating at 36.43 MHz for 31P (21 kG magnetic field, 1H frequency 90.000 MHz). This instrument is equipped with facilities needed for all modes of Fourier transform signal averaging and broad band and continuous wave heteronuclear 1H decoupling. Details of the actual conditions and analytical parameters of 31P NMR spectroscopy have been described (20). Samples were scanned for 2.5 hr.

V. Electron microscopy. Representative tissue cubes, 1 mm on a side, of sinoatrial and atrioventricular nodes, left ventricle, right atrium, and septum from nembutal anesthetized, 35 mg/kg, animals were fixed by perfusion with 3% glutaraldehyde in Sorensen’s phosphate buffer at pH 7.2. This treatment was followed by osmication in Millonig’s fluid, dehydration and embedment in Epon-Araldite. After establishing the morphological orientation with semi-thin sections (1.5 μm) stained with methylene blue, ultra-thin sections were prepared for electron microscopic viewing. Electron photomicrographs of the several cardiac regions from control and cadmium-fed rats were compared in search of significant anatomical differences.

VI. Data analysis. For all ECG and HBE
ngs, a mean was calculated from ten
Is measured with a Bausch and Lomb
micrometer scaled at 0.1 mm gradu-
The paper speed of 150 mm/sec per-
resolution to 1 msec. Heart rates were
ed from A-A wave interval measure-
standard analytical techniques for the
cation of compounds and determina-
their concentrations were used (20, 21)
yze the \(^{31}\)P NMR spectra.
ly, concentrations of each phosphate
und studied were computed from the
the compound peak area to the phos-
primary standard (1.5 mM inorganic
osphate, Na form) peak area. Stu-
t test was applied to the statistical
and variances of each phosphate com-
analyzed in the control and cadmium
to determine the significance of the
ed differences in their concentrations.
 of \(P < 0.05\) was accepted as signifi-

electrocardiographical, tissue cad-
and zinc concentrations and blood
data were similarly analyzed for sta-
significance. Student’s \(t\) test was ap-
c the means and variances of control
dium data and a value of \(P < 0.05\)
xcepted as significant.
its 1. Systolic blood pressures. The av-
of the indirectly measured systolic
es for the eight rats fed 5 ppm cad-
exceeded the averages of the control
rs at 12, 18, and 21 months (Table I).
ferences at 18 and 21 months were
ally significant (\(P < 0.05\)); at 12 and
ths they were not significant but the
rs of rats were smaller than we usually
ve control average at 12 months was
Hg, while our usual average for such
, approximates 100 mm Hg. The dif-
s at 18 and 21 months were in the 15
Hg range which 5 ppm cadmium
uduces under our standard condi-
Table I. Systolic Blood Pressures (mm Hg)."

<table>
<thead>
<tr>
<th>Time (mos)</th>
<th>N</th>
<th>Control</th>
<th>N</th>
<th>5 ppm Cd fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
<td>108 ± 3</td>
<td>8</td>
<td>117 ± 5 (ns)</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>99 ± 4</td>
<td>8</td>
<td>117 ± 7*</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>102 ± 5</td>
<td>8</td>
<td>119 ± 5*</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>116 ± 6</td>
<td>4</td>
<td>129 ± 8 (ns)</td>
</tr>
</tbody>
</table>

* The first three lines cite indirectly measured systolic pressures (mean ± SEM) for eight control and eight cadmium (5 ppm since weaning) rats at 12, 18, and 21 months. The last line cites directly measured systolic pressures (mean ± SEM) for the animals in which electrophysiographic measurements were made at 24 months.
* Significantly different from control, \(P < 0.05\).

throughout the entire 24 months of follow-
up.
II. Electrocardiology. A significant
lengthening of the PR interval, despite a more
rapid mean heart rate was evident in the
ECGs of the cadmium-fed animals (Table II).
This depressed excitability was accom-
panied by a pronounced increase (30%) in the
A-H interval of the HBE. Ventricular depo-
larization time (QS interval) was prolonged
(33%) as well, in the treated animals (Table II).
Representative ECG and HBE recordings are
shown in Fig. 1. These observations sug-
gest that cadmium may potentially depress
the excitability of atrioventricular nodal cells
(A-H interval prolongation) and may also
interfere with ventricular cell to cell conduc-
tion (QS interval increase).

Control ECG intervals in this study were
comparable to those reported elsewhere (9,
22). Since the HBE intervals are the first
reported from rats to our knowledge, valid
comparisons with literature values are not
possible.
III. Tissue cadmium and zinc. The hearts
from control rats had cadmium concentra-
tions that approached the minimum measur-
able levels; while those from cadmium-fed
rats had easily measurable levels (Table III).
The average cardiac concentrations of the
cadmium-fed group ranged from a minimum
of 50 (atrial) to a maximum of 900 (lower
septal) times the concentrations found in the
comparable control samples. Although the
absolute cardiac concentrations were small in
comparison with those present in renal and
hepatic tissues (with the maximum cardiac
concentration being about 3% and 10% of the
renal and hepatic concentrations, respec-
tively), it is evident that cadmium accumu-
TABLE II. ELECTROCARDIOLOGY.

<table>
<thead>
<tr>
<th></th>
<th>ECG</th>
<th>HBE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate (complexes/min)</td>
<td>PR (sec)</td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>234 ± 23*</td>
</tr>
<tr>
<td>5 ppm Cd</td>
<td>4</td>
<td>294 ± 23</td>
</tr>
</tbody>
</table>

* Mean ± SEM.
Significantly different from control. \(P < 0.05 \).

Fig. 1. Representative of ECG and His Bundle electrogram recordings from control and cadmium-fed rats.

lates in the heart. Moreover these data suggest differences in regional uptake within the myocardium.

Zinc was apparently uniformly distributed within the heart and was not affected by cadmium feeding; thus the heart, unlike kidney or liver (11, 15), did not sequester zinc in response to cadmium feeding. Cardiac cadmium-to-zinc ratios were obviously greatly increased by cadmium-feeding.

IV. \(^{31}P \) NMR. The integrals of the phosphate spectra for paired heart PCA extracts were analyzed with standard techniques to determine the identity and concentration of compounds present (20, 21) (Table IV). Significant decreases in ATP and total adenine nucleotide contents were detected in hearts from cadmium-fed animals. Control heart ATP and total adenine nucleotide contents were comparable to those reported elsewhere for rat heart (23, 24). Since the sample for each group \((N = 4) \) is small, a detailed interpretation of these observations would be inappropriate at this time.

V. Electron microscopy. A preliminary survey of all segments of cardiac tissue removed for microscopic examination revealed that ultrastructural alterations resulting from cad-
TABLE III. Tissue Cadmium and Zinc Concentrations.*

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Control</th>
<th>5 ppm Cd Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd (μg/g wet wt)</td>
<td>Zn (μg/g wet wt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(animals studied by cardiography)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epiglottis</td>
<td>0.007 ± 0.007</td>
<td>10.5 ± 0.6</td>
</tr>
<tr>
<td>epiglottis</td>
<td>0.004 ± 0.004</td>
<td>13.7 ± 3.0</td>
</tr>
<tr>
<td>trachea</td>
<td>0.002 ± 0.002</td>
<td>11.2 ± 0.8</td>
</tr>
<tr>
<td>uterine</td>
<td>0.010 ± 0.006</td>
<td>12.2 ± 0.6</td>
</tr>
<tr>
<td>heart</td>
<td>0.008 ± 0.004</td>
<td>11.2 ± 0.3</td>
</tr>
</tbody>
</table>

In concentrations ± standard error of the mean for four control and four cadmium exposed animals in the cardiac samples and eight of each in the case of kidney and liver samples. Significantly different from control, *P < 0.05.*

IV. SELECTED COMPOUNDS DETERMINED BY 31P NMR.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(μmoles/g Heart wet wt)</th>
<th>Control</th>
<th>5 ppm Cd-fed*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>13.6 ± 0.6</td>
<td>14.2 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>NAD</td>
<td>16.6 ± 2.2</td>
<td>15.4 ± 0.9</td>
<td></td>
</tr>
<tr>
<td>Phosphocreatine</td>
<td>4.4 ± 0.8</td>
<td>2.0 ± 0.7**</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>2.4 ± 0.5</td>
<td>1.4 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Lactate</td>
<td>2.0 ± 0.4</td>
<td>1.2 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>Enosinominde</td>
<td>8.8 ± 0.1</td>
<td>4.6 ± 1.0**</td>
<td></td>
</tr>
<tr>
<td>Heart phosphates</td>
<td>40.0 ± 2.0</td>
<td>32.4 ± 4.0</td>
<td></td>
</tr>
</tbody>
</table>

Test of two groups of two pooled hearts ± SEM. Significantly different from control, *P < 0.05.*

Feeding was limited to foci of degeneration within cells of the atrio-ventricular region and apparent increases in electric activity of intercalated disc membranes in tissue (Fig. 2). Sections of sino-atrial atrial and ventricular tissue showed no apparent abnormalities relative to control. These findings indicate tentatively that ultrastructural changes within atrial nodal and septal tissue exist at low levels (5 ppm) of cadmium in vivo.

**Previous in vivo and in vitro studies (1, 4, 9) have described the ionic action of cadmium on the excitation of the myocardial conduction system. This preliminary study provides additional support for these cadmium-induced changes while extending them to include other electrocardiographic changes and changes in cardiac metabolism and morphology. Long-term (24 months) exposure to low-level dietary cadmium (5 ppm in all drinking water) was found to depress electrical events of the heart characterized by a lengthening of mean PR and QS intervals of the ECG, despite a more rapid but comparable mean heart rate. His bundle electrogram analysis suggests that the prolonged PR interval resulted primarily from a lengthened A-H interval (30%), indicating impaired conduction through the atrioventricular node, rather than His-Purkinje cell depression. Although still tentative, the concept of selective distribution of trace elements in cardiac tissue (25) would provide a partial explanation for the apparent specificity of cadmium depression for the atrioventricular node of the cardiac conduction system. This hypothesis is further supported by electron microscope evidence showing apparent degenerative change in the atrioventricular node.

The extended QS interval (33%), representative of increased ventricular depolarization time, is consistent with the hypothesis that cadmium also may alter ventricular cell excitability and/or obstruct cell to cell conduction. Septal tissue electron micrographs showed apparent marked increases in mem-
brane density in the intercalated discs. Since the rapid conductivity of ventricular depolarization is attributed to the intercalated discs, the possibility exists that cadmium may be present in this region bound to membrane structural and/or enzymatic proteins, thereby altering cell to cell conductivity and possibly creating the increases in intercalated disc electron density and mean QS interval of the ECG.

Although the application of 31P NMR spectroscopy to biomedical research has been a recent development, it has provided an analytical method for rapid characterization of the entire phosphate profile of a given tissue. Such analyses of biopsy samples by other investigators have enabled the detection of subtle metabolic disorders (20, 21). 31P NMR spectroscopic analysis of heart tissue from animals treated with dietary cadmium revealed metabolic changes consisting most notably of decreases amounting to 57%, 41% and 43% in ATP, ADP and AMP concentrations, respectively. Speculation regarding the mechanism(s) of the altered high energy phosphate metabolism shown to be associated with cadmium treatment in this study, is premature at this time; however, the functional significance may be related to a reduced excitability associated with a decrease in high energy nucleotide content of myocardial tissue, as reported by Opie (24).

In summary, long term exposure to small concentrations of cadmium is associated with depressed myocardial excitability, decreased high energy phosphate content, and morphological changes. The apparent interconsistency between the electrocardiological, biochemical and morphological findings in this study adds credence to the concept that cadmium exposure, either directly or indirectly, compromises the functional integrity of the
heart. Currently, a more detailed study is in progress which will investigate electrical, mechanical, metabolic and morphological changes in mammalian hearts associated with long term, low level cadmium feeding.

The authors wish to thank Dr. Michael Bárány whose expertise and assistance made possible the 31P NMR study. We acknowledge Mr. Mark Voulo's significant contributions to the preparation and subsequent NMR cans of the heart samples. The expert advise of Drs. Thomas Glonek and C. Tyler Burt in the analysis and interpretation of the 31P NMR spectra is gratefully appreciated.

Central Effect of Somatostatin on the Secretion of Growth Hormone in the Anesthetized Rat¹ (40345)

HIROMI ABE, YUZURU KATO, YOSHIKO IWASAKI, KAZUO CHIHARA, AND HIROO IMURA

Third Division, Department of Medicine, Kobe University School of Medicine, Kobe 650, Japan; and Second Medical Clinic, Department of Medicine, Kyoto University Faculty of Medicine, Kyoto 606, Japan

Somatostatin was isolated and characterized by Brazeau et al. (1) as a hypothalamic tetradecapeptide that inhibits the secretion of growth hormone (GH) from the anterior pituitary. Subsequent studies have revealed that somatostatin is widely distributed in the central nervous system (CNS) (2) and localized subcellularly in nerve ending, synaptosome, in the rat (3). Recently it was also demonstrated in the cerebrospinal fluid in man (4).

Somatostatin has been reported to prolong pentobarbital anesthesia time (5), decrease spontaneous motor activity (6), lower the LD50 of barbiturates and increase strychnine LD50 (7). These results are in contrast to those obtained with thyrotropin releasing hormone (TRH) (5-7). It is possible, therefore, that somatostatin might have a role in the CNS opposite to that of TRH.

We have previously reported that TRH has a dual effects on GH secretion in the anesthetized rat; one is stimulating effect acting directly on anterior pituitary, and another is inhibitory action through the CNS (8). The present study was performed to examine the central effect of somatostatin on GH secretion in the rat.

Materials and methods. Male Wistar rats (Japan Animal Co., Osaka) weighing 200-250 g were used throughout the experiment. The animals were maintained in a light (14 hr light and 10 hr dark) and temperature (25 ± 1°) controlled room and fed Oriental Laboratory Chow (Oriental Yeast Co., Tokyo) and water ad lib.

After overnight fasting, they were anesthetized with urethane (150 mg/100 g body wt) in the morning on the experimental day. Synthetic somatostatin (supplied by Dr. N. Yanaihara) was dissolved in physiological saline containing 0.24% Fast Green FCF (Chroma Co., Stuttgart) as a dye marker and injected into a lateral ventricle or a pituitary portal vessel of the rat.

In the first experiment, somatostatin (0.5 μg and 5 μg/rat) was injected into the right lateral ventricle in a volume of 10 μl per rat as described previously (9). The same volume of saline solution alone was injected in control animals.

In the second experiment, somatostatin (5 μg/rat) of vehicle solution was injected into the lateral ventricle in rats with or without extensive hypothalamic destruction, which was performed two weeks before the experiment with a special knife (stirrup shaped, vertical 2.0 mm, diameter 3.0 mm) as described previously (10) using a modification of the method of Arimura et al. (11). The basal medial hypothalamus including the arcuate nuclei and the ventromedial nuclei were necrotically destroyed by interrupting the vascular supply from the ventral surface of the brain.

In the third experiment, somatostatin was injected into a single portal vessel using a modification of the method described by Porter et al. (12). Median eminence and pituitary stalk was exposed by the parapharyngeal approach, and fine curved glass cannula was inserted into one of main portal vessels using a micromanipulator. Through the cannula, somatostatin was perfused for 20 min at a flow rate of 25 ng/2 μl/min.

In each experiment, immediately before the injection of test materials and at 10-40 min intervals thereafter blood samples of 0.6 ml were withdrawn from the jugular vein using a heparinized syringe as described previously (12).

Plasma GH levels were determined by a specific radioimmunoassay (14) with the ma-
Discussion. In the present study, we observed that intraventricular injection of somatostatin resulted in a significant and dose-related increase of plasma GH in urethane-anesthetized rats. GH release induced by intraventricular injection of somatostatin is not restricted to rats anesthetized with urethane, since stimulating effect of somatostatin in-
jected centrally was also observed in rats anesthetized with pentobarbital or chloral hydrate (unpublished observation). In contrast, injection of somatostatin into a stalk-portal vessel failed to induce GH release. Initial decrease of plasma GH was observed following the administration of somatostatin either intraventricularly or into the portal vessel. The rise in plasma GH following the intraventricular injection of somatostatin cannot be accounted for by a rebound phenomenon following the initial suppression, because the infusion of the peptide into the pituitary portal vessels caused only a slight rebound phenomenon. It appears, therefore, that somatostatin inhibits GH secretion at the pituitary but rather stimulates GH release through the CNS.

These observations are in contrast to the results obtained with TRH (8). TRH stimulated GH release at the pituitary in rats, whereas it has an inhibitory action on GH secretion probably in the CNS. Different CNS effects of these peptides were also previously demonstrated in studies on behavior (7).

The exact mechanism by which intraventricular injection of somatostatin stimulates GH release remains to be investigated. The fact that hypothalamic ablation blunted GH release induced by intraventricular injection of somatostatin suggest that the hypothalamus may play a role, at least in part, in the central effect of somatostatin.

The ventromedial nucleus, which was destroyed by the ablative procedure used in the present experiment, is known to be closely related to GH releasing activity (15). Delayed and long duration of GH response to intraventricular injection of somatostatin is quite compatible to that of various behavioral response which was induced by somatostatin injected into the CNS (16). Cohn et al. (17) reported that intraventricular injection of somatostatin induced deep sedation or unusual rotation, which was blocked by atropine. Rezek et al. (16, 18) showed that administration of somatostatin into rat amygdaloid or hippocampal formation caused the various behavioral and electrophysiological change. Somatostatin applied by microiontophoresis caused a depressant effect on some central neurons and influenced calcium transport of cortical synaptosomes (19). These results suggest that somatostatin like other hypothalamic peptides, have a variety of effects on the CNS probably as a neurotransmitter.

It is concluded, therefore, that somatostatin may act somewhere in the CNS as a neurotransmitter to elicit GH release possibly encing GH releasing activity in the hypothalamus, although physiological significance of this central effect of somatostatin must further clarification.

Summary. Injection of somatostatin in the lateral ventricle caused a significant dose-dependent increase in plasma C-urethane-anesthetized rats. Increase in plasma GH induced by intraventricular injection of somatostatin were significantly blunted in rats with hypothalamic destruction. Somatostatin infusion into the pituitary portal vessel significantly lowered plasma GH. These results suggest that somatostatin has dual effects on GH secretion: one inhibitory effect on the pituitary and another stimulating action possibly through where in the CNS.

We are indebted to the National Institute of A Metabolism and Digestive Diseases, Rat Pituitary Hormone program, for supplying the rat GH radioimmunoassay kit. We would like to thank Dr. Nobuo Aihara, Shizuoka Pharmaceutical College, Shizuoka for the gift of synthetic somatostatin.

17. Cohn, M. L., and Cohn, M., Brain Res. 96, 138 (1975).

Transmembrane Potentials in Bovine Lymphatic Smooth Muscle (40346)

TOSHIRO OHASHI,¹ TAKEHIKO AZUMA,¹ AND MASAO SAKAGUCHI²

¹ Department of Physiology, Shinshu University Medical School, Matsumoto, Japan 390; ² Department of Electrical Engineering, Nagano Technical College, Nagano, Japan 380

The use of intracellular electrodes for smooth muscle was introduced by Bülbbring and Hooton (1), and this method of recording has since been applied to a variety of smooth muscles. Specifically, intracellular studies of the electrical activity of vascular smooth muscle in the frog have been reported by Funaki (2), in turtle arteries and veins by Roddie (3), and in rat and guinea pig small mesenteric arteries and veins by Trail (4), Spedden (5), Nakajima and Horn (6), and Ito and Kuriyama (7). Recently, by means of the sucrose gap method, the present authors have successfully recorded membrane action potentials of bovine mesenteric lymphatics simultaneously with phasic contraction waves which had one-to-one correspondence to the action potentials, and the authors suggested that calcium current may probably play a major role in producing spike discharge in bovine lymphatic smooth muscles (8). The lymphatics exhibited, even in vitro, vigorous spontaneous contractile activity. Contractions of the lymphatic smooth muscles were also induced by 5-hydroxytryptamine (5-HT), prostaglandin F₂α, noradrenaline, histamine, dopamine and acetylcholine. The smooth muscles were particularly sensitive to 5-HT (9). In the following experiments we have studied the membrane activity of single cells of bovine mesenteric lymphatics with intracellular microelectrodes.

Materials and methods. Segments of mesenteric lymphatics, between 0.5 and 3 mm in outer diameter, were dissected from the fresh mesenterics of recently slaughtered cattle. Longitudinal strips, about 5 mm long and 1 mm wide, were cut from these segments and kept in a chamber containing a modified Locke's solution of the following composition in mmol/liter: NaCl 154.0, KCl 5.6, CaCl₂ 2.2, NaHCO₃ 1.8, glucose 5.5. The solution was maintained at 37° and continuously bubbled with 100% O₂. It was revealed by repetitive direct measurements with a pH meter (F3, HORIBA) that the solution was kept at an approximately constant pH of 7.4 for more than 6 hr. The strip was mounted with the outer surface upward on a thin silicon rubber plate consisting of the bottom of the chamber. Connective and adipose tissues covering the outermost longitudinal smooth muscle layer were gently removed. A microelectrode filled with 3 M potassium chloride, with tip resistances of about 50–80 MΩ and diameter less than 0.5 μm, was inserted into the wall of the specimen with a micromanipulator under the binocular microscope with incident illumination. A nonpolarizing Ag–AgCl wire was used as a reference electrode. These two electrodes were connected to a high input resistance preamplifier (Nihon Koden MEZ-8101), the output from which was displayed on a dual beam synchroscope (Iwatsu DS-5015) and recorded by a data recorder (TEAC R-351F).

Results and discussion. Spontaneous contractile activity was observed with most of the lymphatic strips under the binocular microscope when incubated in the warm modified Locke's solution. The rhythm of the contractions was regular and highly sensitive to environmental temperature. The beating rate was 4–6/min at 37°. It was almost doubled by the elevation of temperature up to 40°, keeping the specimen length unchanged. Figure 1 shows typical patterns of spontaneous electrical activity in lymphatic smooth muscle. A burst of spike discharges was frequently observed in association with a contraction wave and lasted for several seconds or longer. In this record the resting potential measured at maximum polarization between one spike and another was about −50 mV. The average value of the resting membrane potential was −49 ± 2.4 mV in 10 experiments. The resting potential sometimes showed slight rhythmic fluctuations or slow waves at various intervals, rarely with an after-hyperpolarization which resembled that in visceral smooth mus.
1. Spontaneous electrical activity in lymphatic muscle.

The resting potentials seemed lower lymphatic smooth muscle with spontaneous activity than in that without the activity. The firing of lymphatic action potentials could be classified into two patterns, i.e. 1) short trains consisting of several spikes, 2) single spikes or irregular spike discharges. The amplitude of the action potential ranged from 39 to 57 mV (mean 47 ± 1 V). Occasionally the action potentials showed a slight overshoot of less than 5–7 mV; in some cases, as shown in Fig. 2, many action potentials were superimposed upon the rising phase of the slow fluctuations. The amplitude of the slow waves was about 100 mV and was considerably smaller than the other smooth muscle cells (10). The on of the fluctuations was about 200 msec. Frequently, the discharge of electrical activity appeared to be triggered by the slow fluctuations. Figure 3 represents a typical potential of lymphatic smooth muscle. The configuration of the action potential is similar to that of smooth muscles in the taenia coli or portal vein (7) of the guinea pig. The action potential usually consisted of phases, i.e. rapid depolarization, fast repolarization phase of the action potentials. The duration of the potentials was about 40–50 msec at room temperature down to 35°C. The prolongation was usually attributed to the extension of the repolarization phase of the action potentials. In the previous paper (8), it was suggested that the rhythmicity and amplitude of spontaneous contractions in bovine mesenteric lymphatics could be affected by tetradotoxin, which is known to be a selective blocking agent for sodium rapid carrier transport. In the present experiments, it is recognized that the level of spontaneous contractions and the configuration of action potentials were not affected by tetrodotoxin.

The average of resting membrane potentials in lymphatic smooth muscles were lower than the resting membrane potentials in visceral smooth muscles (12) but somewhat higher than those in vascular smooth muscles (4, 5). The lymphatic smooth muscle cell is so small that it may easily be damaged during impalement with a microelectrode. It should be noted, however, that when successful impalement was maintained over a long period of time no change was observed in the value of the resting potential. In the taenia coli, Bülbring (13) noticed that the extension of the smooth muscle, within certain limits, led to an increased tension accompanied by an increased oxygen consumption, and the membrane potential was found to depend upon the degree of stretch. It might be possible that the level of transmembrane potentials could also be influenced by the degree of stretch in lymphatic preparations. In the previous paper (8) it was reported that by means of the sucrose gap technique the average value of resting potentials in lymphatic smooth muscles was estimated to be 32.7 ± 4.2 mV. In the sucrose gap technique, in principle, there are the following controversial points in regard to the estimation of transmembrane potentials: 1) short-circuiting between the electrodes exists in appreciable quantities and 2) the sucrose solution fails to replace all the ions lying in the interstitial spaces. Artifacts due to junction potentials should not be overlooked in
sucrose gap experiments. These may offer an explanation for the differences between the values of resting potentials in lymphatic smooth muscles recorded by the intracellular microelectrode and those by the sucrose gap technique. As represented in Fig. 2, the lymphatic action potentials were frequently superimposed upon the slow fluctuations. When the depolarization due to the fluctuations reaches a critical level, the firing of a single action potential or a burst of spikes may take place. Spontaneous subthreshold fluctuations in membrane potential have been recorded in various muscular and nervous tissues of both vertebrate and invertebrate animals (14, 15). These fluctuations are generally considered to be the basis of rhythmical firing of action potentials and hence of spontaneous mechanical activity. In smooth muscle, subthreshold activity appears to be at least of two kinds. In some cases it is nearly sinusoidal in appearance and is referred to as "slow waves". In other cases the membrane potential depolarizes slowly to a point where threshold is reached and an action potential is initiated. The configurations of the slow fluctuations in lymphatic smooth muscles are similar to those in the rabbit colon (16) or in the guinea pig jejunum (17). It has been reported that spontaneous contractions of visceral smooth muscles are caused by repetitive firing of action potentials. Each burst of spike discharges in lymphatic smooth muscle is well coordinated with the mechanical event amounting to a spontaneous contraction wave under the binocular microscope. The amplitude and duration (47.8 ± 9.4 msec) of action potentials in lymphatic smooth muscles were lower than those in visceral smooth muscles (12) but somewhat higher than in vascular smooth muscle (4, 5). By use of the sucrose gap technique, the present authors (8) reported that the lymphatic action potentials were similar in appearance to the pacemaker potentials recorded from some other smooth muscles. As a matter of course, the recordings by the sucrose gap technique are extracellular ones and represent compound potentials of a lot of cells present in the preparations. In the present experiments, on the other hand, the transmembrane activities of lymphatic smooth muscles were recorded from the effector cells located in the margin of the preparations in order to avoid the influence of vigorous spontaneous contractions. The activities were not recorded from the pacemaker sites. This may explain the difference in the configurations of lymphatic action potentials in the present and previous reports.

Summary. Transmembrane potentials in smooth muscle fiber of bovine mesenteric lymphatics have been studied with the aid of an intracellular microelectrode technique. Resting potentials ranged from −41 to −57 mV. In most of the preparations, the slow fluctuations in the resting potentials were recognized, amplitude and duration of which were about 10 mV and 400–1200 msec, respectively. A burst of action potentials was associated with a spontaneous contraction wave. The amplitude of the action potentials ranged from 39 to 57 mV. The duration of the action potentials was 47.8 ± 9.4 msec in 10 experiments. The magnitude of occasional overshoot was a few millivolts. The level of the resting potentials and the configuration of the action potentials were not affected by tetrodotoxin.

3. Rodrigo, I. C., J. Physiol. 163, 138 (1962)
4. Trail, W., J. Physiol. 167, P17 (1963)
11. Holman, M. E., J. Physiol. 141, 464 (1958)

calcium ion plays a crucial role in contraction and relaxation of rat arteries and veins. Many approaches have been used to evaluate the role of calcium in the contractile process. The discovery of ionophores capable of transporting ions such as calcium across membranes has led to a novel approach to improve our understanding of the importance of calcium in the contractile process. The action of the ionophore, A23187, on contraction of rat blood vessels coupled with data on the extracellular calcium in this procedure is discussed in this paper.

Furthermore, use of A23187 may aid in understanding the mechanism by which norepinephrine relaxes the rat jugular vein. We have proposed that beta adrenergic receptor stimulation by norepinephrine may lead to the release of calcium from intracellular stores.

Changes in calcium availability in this system must be examined as a potential explanation for the inability of norepinephrine to act on the rat jugular vein. Therefore, in this study, we compared ionophore-induced changes in responses of the rat jugular vein to those of the femoral vein. If A23187 contracts or dilates the femoral vein, the effects of A23187 on the responses of these veins were then compared with those of two rat arteries, the aorta and carotid.

Methods. Isolation of vascular tissue. Male Sprague-Dawley rats (150–300 g) (Harlan Industries, Cumberland, IN) were killed by a blow to the head. External jugular veins, femoral veins, aortas or carotid arteries were dissected from connective tissue, cannulated in situ, and placed in Petri dishes containing Krebs' bicarbonate buffer (see below). The tips of two 30 gauge stainless steel hypodermic needles were inserted into the polyethylene tubing. Vessels were gently pushed from the cannula onto the needles. The needles were then separated so that the lower one was attached with thread to a stationary glass rod and the upper one was tied with thread to the transducer. This is the procedure for ring preparations (circular smooth muscle) of blood vessels described by Hooker et al. (6).

Veins were placed in organ baths containing 10 ml of modified Krebs' solution of the following composition (mM concentrations) except when calcium concentration was varied: NaCl, 118.2; KCl, 4.6; CaCl₂, 2H₂O, 2.5; KH₂PO₄, 1.2; MgSO₄, 1.2; dextrose, 10.0 and NaHCO₃, 24.8. This solution was maintained at 37° and aerated with 95% O₂ and 5% CO₂. Initial optimum resting force was 4 g for the arteries and 1 g for the veins (3, 5). Isometric contractions were recorded as changes in grams of force on a Beckman Dynograph with Statham UC-3 transducers and microscale accessory attachments. Tissues were allowed to equilibrate 1–2 hr before exposure to drugs.

Effect of A23187 on contractile responses to norepinephrine, serotonin and potassium chloride. Cumulative concentration-response curves were obtained from baseline tension by a stepwise increase in concentration after a steady response occurred to the preceding dose. Tissues were then exposed to either A23187 or a solvent control for one hour and then rechallenged with the contractile agonist. Contractile responses were calculated as the change in grams of force for each concentration of agonist. To minimize variability among preparations, maximum response to each agonist before A23187 was considered 100% and contractile responses after A23187 or a solvent control were calculated as a percent of the initial maximum concentration.
in each tissue. In each experiment, the effect of A23187 was compared with a solvent control.

Effect of A23187 on relaxation responses to norepinephrine, papaverine and nitroglycerin. Jugal veins were contracted to a moderate degree of tone with serotonin (1.78 × 10⁻⁷ M) or potassium chloride (17–50 mM). Once the contraction reached a plateau, relaxant agonists were added and maximum tissue relaxation for each dose was measured. Relaxation of the contracted tissue back to baseline tension represented 100% relaxation. These studies were then repeated after one hour exposure to A23187 or a solvent control.

Effect of extracellular calcium on contraction in the rat jugular and femoral veins. Initial contractile responses were determined as detailed above in 2.5 mM CaCl₂ in all tissues. Buffer was then changed to Krebs’ solution containing 0.825 mM calcium, 0.250 mM calcium and finally no added calcium in the presence of 0.1 mM Na₂EDTA. The calcium concentration of this solution was estimated to be less than 10⁻⁶ M calcium. In other experiments, buffer was changed to contain 3.75 and 5.0 mM calcium. Contractile responses were repeated after approximately 20 min exposure to each calcium concentration. Maximum contraction at each calcium concentration was expressed as a percent of the response in 2.5 mM calcium.

Calcium determination. Total tissue calcium was determined in HNO₂-H₂O₂ digests (7) with a Perkin-Elmer Model 303 Atomic Absorption Spectrophotometer.

Drugs used. All drugs were prepared daily in saline except A23187 and kept on ice during the course of the experiments. A23187 was prepared as an opalescent aqueous solution (8) by dissolving A23187 in 0.5 ml dimethylsulfoxide (DMSO) and diluting with deionized distilled water. The solvent control was prepared in the same way by omitting the A23187. By this technique, the maximum volume of DMSO added to the 10 ml bath was 5 µl. The source of the drugs used was as follows: l-arterenol bitartrate (norepinephrine), l-isoproterenol-d-bitartrate dihydrate, Sterling Chemical Co.; 5-hydroxytryptamine creatinine sulfate complex (serotonin), Sigma Chemical Co.; potassium chloride, Baker Chemical Co.; nitroglycerin U.S.P., papaverine hydrochloride, A23187, Eli Lilly and Co.

Results. **Effect in arteries.** The ionophore, A23187 (1.5 × 10⁻⁶ M) did not have a marked effect on the baseline force of either the aorta or carotid artery. In six out of eight aortas, A23187 (1.5 × 10⁻⁶ M) produced a small slow contraction over 1 hr that was 14.8 ± 5.8% of the maximum force generated by the tissue. Three out of seven carotid arteries developed a similar slow contraction over one hour that was 21.9 ± 2.0% of the maximum force. The force developed in the presence of the ionophore was dose-dependent. No increase in force was observed in any solvent treated tissues (aorta n = 8; carotid artery n = 6). Except for this increase in baseline force, responses of aortas and carotid arteries to serotonin, norepinephrine or potassium chloride (Figs. 1 and 2) did not change after A23187 (1.5 × 10⁻⁶ M).

Effect in veins. In some jugular veins, A23187 (1.5 × 10⁻⁶ M) produced a slow small contraction over 1 hr but this was not observed in any of the femoral veins examined (n = 8). In the femoral vein, A23187 (1.5 × 10⁻⁶ M) exposure for 1 hr decreased the contractile response to norepinephrine and serotonin with a marked reduction in maximum force (Fig. 3). Contraction to potassium chloride, however, was not altered.

Similarly, in the jugular vein, there was a reduction in the maximum force produced by serotonin after A23187 (1.5 × 10⁻⁶ M) (Fig. 4). A23187 did not inhibit contraction to potassium chloride and if anything, produced an enhanced sensitivity to potassium chloride.

Because the rat jugular vein relaxes to many agonists including norepinephrine (3), we examined the effect of the ionophore on vascular relaxation in this issue. After one hour exposure to the ionophore, tissues contracted with low doses of serotonin did not relax completely back to baseline after washing. This was most obvious with 3 × 10⁻⁶ M but was observed with concentrations as low as 0.75 × 10⁻⁶ M. Even addition of isoproterenol (10⁻⁷ M) did not reduce force in such tissues although 10⁻⁶ M isoproterenol produced a 55% reduction in serotonin-induced force prior to A23187.

After the ionophore, serotonin-contracted
veins relaxed significantly less to all the relaxant agonists examined; i.e., norepinephrine, papaverine and nitroglycerin (Table I). When jugular veins were contracted with potassium chloride, no difference occurred in relaxation to norepinephrine (10^{-5}M) ($n = 6$) or papaverine ($5 \times 10^{-5} \text{M}$) ($n = 7$) after A23187 ($1.5 \times 10^{-6} \text{M}$). Thus, in the jugular vein, the defective relaxation demonstrated with norepinephrine, papaverine and nitroglycerin may be related to the inhibitory effect of A23187 on serotonin-induced contractions. It is of interest that norepinephrine in concentrations up to $2 \times 10^{-4} \text{M}$ even after A23187 did not contract the rat jugular vein.

Role of extracellular calcium in venous responses to serotonin and potassium chloride. Since A23187 differentially affected serotonin and potassium chloride-induced contractions in the jugular and femoral veins, we investigated the role of extracellular calcium in the contraction to these agonists. For comparison, a similar analysis has previously been reported for both serotonin and potassium chloride in the rat aorta (9).

As extracellular calcium concentration was reduced, maximum force developed to both serotonin and potassium chloride declined in jugular and femoral veins (Table II). Decline in maximum response was similar for sero-
FEMORAL VEIN

FIG. 3. Effect of A23187 (1.5 × 10^{-9} M) and solvent treatment (see Methods) on contraction of rat femoral veins to serotonin, norepinephrine and potassium chloride. Points are means ± SE for the number of tissues in parentheses.

JUGULAR VEIN

FIG. 4. Effect of A23187 (1.5 × 10^{-9} M) and solvent treatment (see Methods) on contraction of rat jugular veins to serotonin and potassium chloride. Points are means ± SE for the number of tissues in parentheses.

Tissue calcium. Total calcium did not differ between jugular veins (0.055 ± 0.004 μeq Ca^{2+}/mg dry tissue; n = 11) and femoral veins (0.058 ± 0.007 μeq Ca^{2+}/mg dry tissue; n = 7).

Discussion. The effect of the calcium ionophore, A23187, on vascular smooth muscle has not been widely studied. The present investigation in both rat arteries and veins confirms the slow and minimal direct contractile effect of A23187 shown on aortic tissue (10). The lack of a marked contraction of rat blood vessels to A23187 is in contrast to its reported contractile effectiveness in guinea pig fundus, taenia coli (11), ileum (12), bronchi (13), atrium (8) and the stomach muscularis from Bufo marinus (14). Other smooth muscle preparations such as the vas deferens (12) have been reported not to contract to A23187. Differences in the contractile effectiveness of A23187 in various smooth muscles is consistent with the concept of differences in the calcium availability or utilization among such tissues.

Another way to evaluate an action of A23187 in vascular tissue is to determine its effect on contractile responses to other agonists. No enhancement of maximum contraction to serotonin, norepinephrine or potassium chloride occurred in any vessel examined. The use of A23187 in vascular tissue revealed two major findings: (1) A23187 rather than enhancing contractile responses.
Table 1. Effect of A23187 on Relaxant Responses in Rat Jugular Vein.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>After solvent*</th>
<th>After A23187 (1.5 x 10^-6 M)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norepinephrine (10^-6 M)</td>
<td>51.9 ± 6.8 (6)</td>
<td>64.5 ± 7.3 (6)</td>
<td>21.2 ± 6.4 (6)*</td>
</tr>
<tr>
<td>Papaverine (10^-5 M)</td>
<td>46.1 ± 6.8 (6)</td>
<td>65.8 ± 8.8 (5)</td>
<td>-4.0 ± 7.7 (3)*</td>
</tr>
<tr>
<td>Nitroglycerin (10^-7 M)</td>
<td>44.2 ± 5.0 (6)</td>
<td>39.6 ± 3.2 (5)</td>
<td>18.9 ± 5.2 (3)*</td>
</tr>
</tbody>
</table>

* Solvent (see Methods) or A23187 were in contact with the tissue for 1 hr.
* Tissues were contracted to a moderate tone with serotonin (1.8 x 10^-7 M) and when contraction reached a plateau, relaxant agonist was added. Relaxation was measured three min later. Values are means ± SE for the number of tissues in parentheses.
* Relaxation was significantly less (P < .05) than control relaxation as determined with Student’s t test.

Table II. Effect of Extracellular Calcium Concentration on the Contractile Responses of Rat Jugular and Femoral Veins to Potassium Chloride, Serotonin and Norepinephrine.

<table>
<thead>
<tr>
<th>Extracellular calcium concentration (mM)</th>
<th>0*</th>
<th>0.25</th>
<th>0.825</th>
<th>2.5</th>
<th>3.75</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jugular vein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium chloride (4) (130 mM)</td>
<td>27.6 ± 6.5</td>
<td>49.3 ± 2.7</td>
<td>58.8 ± 3.6</td>
<td>100</td>
<td>93.3 ± 6.2</td>
<td>99.4 ± 6.8</td>
</tr>
<tr>
<td>Serotonin (4) (9 x 10^-6 M)</td>
<td>0.6 ± 0.2</td>
<td>23.7 ± 3.1</td>
<td>54.8 ± 8.1</td>
<td>100</td>
<td>81.7 ± 4.8</td>
<td>81.8 ± 2.4</td>
</tr>
<tr>
<td>Femoral vein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium chloride (7) (130 mM)</td>
<td>15.2 ± 1.6</td>
<td>19.1 ± 1.4</td>
<td>45.7 ± 3.9</td>
<td>100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Serotonin (7) (9 x 10^-6 M)</td>
<td>1.6 ± 0.9</td>
<td>33.0 ± 3.2</td>
<td>49.9 ± 3.6</td>
<td>100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Norepinephrine (5) (10^-5 M)</td>
<td>5.3 ± 2.7</td>
<td>51.0 ± 11.8</td>
<td>72.1 ± 10.2</td>
<td>100</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* Buffer contains no added calcium in the presence of 0.1 mM Na2EDTA.
* Values are means ± SE for the number of tissues in parentheses.

selectively inhibited the maximum force developed to serotonin and norepinephrine but not to potassium chloride, and (2) this effect only occurred in the two rat veins examined and not in the aorta or carotid artery.

We considered the possibility that in veins, contractile responses to serotonin and norepinephrine might utilize tissue calcium stores that differ from those utilized or mobilized during contractile responses to potassium chloride and that dependence on extracellular calcium in veins differed from arteries. However, our data indicate that serotonin and potassium chloride both rely on extracellular sources of calcium in veins, yet only the response to serotonin was reduced after A23187. Additionally, norepinephrine dependence on extracellular calcium in the femoral vein was similar to the aorta (9, 15–17), yet A23187 did not affect aortic responses. Thus, there was no correlation between dependence on extracellular calcium and the inhibitory effect of A23187 in veins. The possibility that in veins, A23187 produced a large increase in intracellular calcium, that actually inhibited the response to serotonin or norepinephrine is also unlikely. When extracellular calcium was raised in the jugular vein, response to serotonin was not markedly inhibited as occurred with A23187.

Differences in calcium utilization between jugular and femoral veins have been proposed to explain the opposite effects of norepinephrine in these tissues, i.e., norepinephrine relaxed the rat jugular vein (3) and contracted the femoral vein (5). Since both veins responded similarly to A23187 and to manipulation of extracellular calcium, calcium uti-
Utilization does not appear to differ between the jugular and femoral veins. Furthermore, we considered the possibility that total calcium levels may be lower in the jugular vein than in the femoral vein. However, there was no difference in calcium levels between these veins. Thus, although based on indirect evidence, we propose that differences in calcium handling do not provide a satisfactory explanation for the unusual responsiveness of the rat jugular vein.

Summary. The present study describes differences in the effect of the ionophore, A23187, on contraction and relaxation in certain rat arteries and veins. A23187 selectively inhibited maximal contraction to receptor agonists such as serotonin and norepinephrine in veins but not arteries. Furthermore, based on the role of extracellular calcium, the action of A23187 and measurement of total calcium levels, no difference in calcium handling was apparent between the rat jugular and femoral veins. Therefore, relaxation of the rat jugular vein to norepinephrine is probably unrelated to any uniqueness in calcium utilization.

The Effect of Glucocorticoid Antagonizing Factor on Hepatoma Cells (40348)

K. J. GOODRUM1 AND L. J. BERRY

Department of Microbiology, The University of Texas, Austin, Texas 78712

Glucocorticoid poisoned animals are refractory to dicrotisone induced glucose synthesis of glycogen deposition in the liver (1). Glucocorticoid also inhibits the hydrocortisone synthesis of several hepatic enzymes, including phosphoenolpyruvate carboxykinase (PEPCK), one of the key enzymes in neogenesis (2). The cortisol antagonist dicrotisone-poisoned animals, glucocorticoid-antagonizing factor (GAF), is a heat and non sensitive serum borne factor believed released by the poisoned host's macrophages (3).

In vivo studies of GAF are difficult, and its quantitation has not been possible. Overcome problems inherent in animal tests, an in vitro system involving cultured cells has been adapted for study of the endogenous cortisol antagonists. These cells are relatively corticosteroid sensitive and contain a functional PEPCK activity (4) even when cortisol is added directly to the culture. However, when serum from endotoxemic, or the supernatant fluid from a primary macrophage culture is added to the cells, sufficient GAF is present to induce cortisol induced PEPCK synthesis.

Hepatoma cells are suitable for the study of the endotoxin induced cortisol antagonist, GAF. The present report makes the first of these cells evident.

Material and methods. Animals: Specific pathogen free CD1 mice of both sexes 8-10 weeks old were employed. They were given water ad libitum.

Enzyme induction: PEPCK induction was achieved in mice by injecting subcutaneously into the interscapular region one mg of cortisone acetate (cortisone, Sigma Chemical Co., St. Louis, MO) suspended in ml of sterile saline containing 0.0025% n-80 (Sigma). PEPCK synthesis was assayed by incubation of a homogenate of the liver with [14C]glycogen and measuring the incorporation of [14C]glycogen into liver glycogen.

Enzyme assays: Enzyme activity was measured in the cytosol fraction of H35 cells. Hepatoma monolayers were washed with saline.
line and suspended in 1.0 ml of 0.15 M KCl, 0.001 M EDTA, pH 7.6. Cells were fractured by three cycles of freeze-thawing in a dry ice-acetone bath and the cytosol fraction was isolated by centrifugation for 20 min at 20,000g at 4°C. PEPCK activity was measured by the NaH14CO\textsubscript{3} fixation assay as described by Ballard and Hanson (8). The cytosol activity of tyrosine aminotransferase (TAT) was determined by the method of Diamondstone (9). Protein concentration was determined by the method of Lowry et al. (10). Hepatic PEPCK activity was determined by the method of Phillips and Berry (11).

Collection of serum. Serum from endotoxin treated mice was collected 2 hr after iv injection of 50 µg endotoxin, then filtered through 0.45 µm filters (Millipore Corp., Bedford, MA) and stored at -20°C.

Reticuloendothelial system activation. Mice were primed for serum GAF production by pretreatment with Zymosan-A (Sigma). Priming of mice consisted of 3 iv injections, the first of 0.5 mg and the others of 1.0 mg zymosan given on consecutive days. Serum was collected 48 hr after the last zymosan dose.

Leucocyte preparations. Peritoneal exudate cells (PEC) were collected four days after ip injection of 3 ml of NIH thioglycollate broth (Difco Lab, Detroit, MI) by peritoneal washing with 3 ml of Ca2+ and Mg2+ free phosphate buffered saline (PBS), pH 7.4. Cells were centrifuged (500g, 15 min) and resuspended in serumless Dulbecco’s medium for culture at 37°C in 5% CO\textsubscript{2}-95% air. Nonadherent cells were removed by washing after 2 hr incubation. Adherent cells were incubated further in fresh media. Cell viability was determined by dye exclusion of the vital dye, trypan blue. Cell numbers were determined by direct count in a hemacytometer (American Optical Corp., Buffalo, NY).

Collection of conditioned medium from macrophage cultures. Adherent cells from mouse PEC were cultured in serumless media with or without 10 µg/ml endotoxin for 24 hr. The supernatant fluid was collected and concentrated 10x by ultrafiltration (Millipore Immersible Molecular Separator). Remaining salts and small molecules were removed by elution of the concentrate through Bio-gel P-6 (Bio-Rad Lab., Richmond, CA). Protein rich fractions were pooled and reconstituted to the original concentrate volume. Concentrates were filter sterilized through 0.45 µm filters and stored at -20°C.

Statistics. Statistical significance between means was determined by the rank-sum test of White (12).

Results. The inhibition by endotoxin of cortisol induced PEPCK synthesis is believed to be a mediated effect (1, 3). Direct evidence for this hypothesis is presented in Table I which shows that endotoxin has no inhibitory effect on induced PEPCK synthesis in cultured hepatoma cells exposed to either hydrocortisone or to dibutylryl cyclic AMP.

GAF-rich serum from zymosan treated endotoxin-challenged mice (ZES) when injected into endotoxin tolerant mice inhibits PEPCK induction (13). A similar response is seen in hepatoma cells (Table II). Addition of this serum to a final concentration of 2% in the culture medium totally blocks cortisol induced PEPCK synthesis but has no effect on induction of the enzyme by dibutylryl cyclic AMP. Similar results were obtained with hepatoma cells when rat serum was the source of GAF. ZES does not significantly inhibit TAT synthesis in vitro (Table II) nor does endotoxin inhibit cortisol induced TAT synthesis in vivo.

Normal mouse serum possesses some background inhibitory activity and produces a small reduction in cortisol induced enzyme synthesis. This is seen from the data in Table III. Serum from normal mice given endotoxin

<table>
<thead>
<tr>
<th>Treatment</th>
<th>None</th>
<th>1 µM Hydrocortisone</th>
<th>0.5 mM Dibutylryl cyclic AMP</th>
<th>1.0 mM Theophylline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inducer added to medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endotoxin</td>
<td>96 ± 2 (6)</td>
<td>90 ± 2 (6)</td>
<td>88 ± 2 (6)</td>
<td></td>
</tr>
<tr>
<td>10 µg/ml</td>
<td>41 ± 2 (6)</td>
<td>94 ± 2 (6)</td>
<td>90 ± 2 (6)</td>
<td></td>
</tr>
</tbody>
</table>

*Mean activity as units (nmole NaH14CO\textsubscript{3} fixed/min) per mg protein ± SE of the mean for 8-hr induction period.

* Number of samples.
E II. INDUCTION OF PEPCK AND TAT IN HEPATOMA CELLS EXPOSED TO SERUM WITH GAF ACTIVITY.

<table>
<thead>
<tr>
<th>. added to medium</th>
<th>PEPCK activity(^a)</th>
<th>TAT activity(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control cells</td>
<td>ZES treated(^c) cells</td>
</tr>
<tr>
<td>rtisone 1</td>
<td>39 ± 2 (6)(^d)</td>
<td>41 ± 1 (6)</td>
</tr>
<tr>
<td>1 mM cyclic 0.5 mM tyramine</td>
<td>71 ± 5 (6)</td>
<td>39 ± 1 (6)</td>
</tr>
</tbody>
</table>

\(^n\) activity as units (nmole NaH\(^14\)CO\(_3\) fixed/min) per mg protein ± SE of the mean for 8-hr induction period.

\(^n\) activity as units (µg p-hydroxyphenylpyruvate formed/10 min) per mg protein ± SE of the mean for 8-hr incubation period.

\(^n\)an primed mice challenged with endotoxin, 2 hr serum added to 2% (v/v) in medium.

\(^n\)umber of samples.

E III. INDUCTION OF PEPCK IN HEPATOMA CELLS EXPOSED TO NORMAL SERUM AND SERUM FROM ENDOTOXIN POISONED MICE.

<table>
<thead>
<tr>
<th>. added to medium</th>
<th>PEPCK activity(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>ons to medium</td>
<td>57 ± 8 (6)(^d)</td>
</tr>
<tr>
<td>mouse serum</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>in serum(^e) (0.1)</td>
</tr>
<tr>
<td>70 ± 9 (6)</td>
<td></td>
</tr>
</tbody>
</table>

\(^n\) activity as units (nmole NaH\(^14\)CO\(_3\) fixed/mg protein ± SE of the mean for 8 hr incubation period.

\(^n\)umber of samples.

\(^n\)m collected 2 hr post 50 µg endotoxin iv.

LE IV. PEPCK INDUCTION BY DIBUTYRYL AMP IN ENDOTOXIN POISONED MICE.

<table>
<thead>
<tr>
<th>. added to medium</th>
<th>PEPCK activity(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cortisol treated(^b)</td>
</tr>
<tr>
<td>224 ± 7 (7)(^f)</td>
<td>206 ± 12 (6)</td>
</tr>
<tr>
<td>207 ± 15 (6)</td>
<td></td>
</tr>
</tbody>
</table>

\(^n\) activity expressed as µmoles PEP/g dry wt liver/6 SE of the mean. Assays performed 4 hr after injection.

\(^n\)sc.

\(^n\)es of 500 µg ip dibutyryl cyclic AMP + 1 mg line.

\(^n\)ip 6 hr prior to enzyme induction.

\(^n\)umber of mice.

\(^n\)edly more inhibitory than normal serum, but less inhibitory than ZES (Tables III). Base levels of PEPCK are not signifi cantly affected by endotoxin or serum addition over the 8-hr incubation period. Basal TAT activity was elevated after addition of serum from endotoxin poisoned mice. Altered serum insulin levels may account for this effect (4). Neither endotoxin nor serum samples were cytotoxic for the hepatoma cells for the duration of the experiments.

Dibutyryl cyclic AMP induced PEPCK synthesis is unaltered in both hepatoma cells exposed to ZES and in mice poisoned with endotoxin (Table IV).

Figure 1 demonstrates that GAF-rich serum (ZES) diluted step-wise produces progressively less inhibition of PEPCK in H35 cells. Thus a 50% inhibitory dose (ID\(_{50}\)) of serum can be determined as the amount that produces 50% inhibition of control PEPCK induction by hydrocortisone. Serum pools were titrated accordingly for GAF activity with the results shown in Table V. Normal mouse serum contains a titer of from 2–8 ID\(_{50}\)’s. Endotoxin challenge increases the titer to 13, while serum from zymosan primed mice has an average titer of 28.

As little as 0.025 ml (0.5%) of GAF-rich serum consistently produced a significant inhibition of PEPCK induction in hepatoma cells. Injection of at least 10 times this much serum is required to detect enzyme inhibition in mice (13).

Hepatoma cells were used to confirm in vivo experiments (3) showing production of GAF by macrophages. Supernatant fluids from adherent mouse PEC were collected 4 and 24 hr after the addition of endotoxin to macrophage cultures. Concentrated fluids
from both unpoisoned and poisoned macrophages significantly inhibited PEPCK induction in hepatoma cells (Table VI). Fluids from unpoisoned cells may inhibit induction because of GAF release as a result of physical manipulation of the cells or because endotoxin contaminated the glassware. It is significant that the inhibition seen with the macrophage product is specific for PEPCK since TAT remains inducible in hepatoma cells exposed to macrophage supernatant fluids.

Discussion. Endotoxin suppresses cortisol induced enzyme synthesis by stimulating a secondary inhibitor, GAF. Cortisol induced PEPCK synthesis in cultured hepatoma cells has now been found to be a valuable assay for GAF activity. Particular advantages of this in vitro assay over in vivo assays include insensitivity to endotoxin and detection of 5–10 times less GAF than that detectable by hepatic enzyme responses in mice.

GAF as assayed in hepatoma cells is specific for cortisol induced PEPCK synthesis since it has no effect on dibutyryl cyclic AMP induced PEPCK synthesis. Cortisol is thought to induce PEPCK synthesis by stimulating DNA transcription and production of new messenger RNA, while dibutyryl cyclic AMP is believed to stimulate translational steps of PEPCK synthesis (4). GAF, therefore, must block production of new specific messenger RNA but not alter the translation of existing messenger RNA. GAF does not appear to block cellular entry of cortisol since TAT remains fully inducible by cortisol. Interaction of GAF with specific cortisol receptors or receptor sites for hormone-receptor complexes in the nucleus has not been examined. Results with the hepatoma system indicate that GAF lacks species specificity between mice and rats.

Until now, assays for GAF were possible
in vivo and no satisfactory dose response be achieved (13). Hence, precise quantum of GAF was impossible. The ability antiate serum GAF by titration in hep- a cells provides a valuable tool for ana-
g the responsiveness of various animals dotoxin. It is significant that zymosan
and other agents which produce splenomegaly sensitize to endotoxinality (14) and to rapid hypoglycemic response. If GAF reduces gluconeogenesis by altering PEPCK synthesis and possibly other enzymes in the gluconeogenic path-
then animals sensitized to the lethal s of endotoxin should have elevated responses as zymosan treated mice do. Detection of GAF activity in culture um from adherent mouse peritoneal con-
ns the proposed lymphoreticular e of GAF (3, 13).

e presence of GAF-like activity in nor-
erum may indicate a role for GAF as a metabolic and immunologic regula-
Adrenal cortical steroids are powerful itors of immune responses so that their alation could be advantageous under
tions of stress (i.e., infection) when en-
ous cortisol is released. Cultured hep-
a cells have potential uses for assay of production in animals following infec-
or endotoxin poisoning; quantitative as-
the purification of GAF; and qualita-
alysis of the mechanism of cortisol gnism.

Summary. Glucocorticoid antagonizing
GAF, from cultured macrophages and
um of endotoxemic mice blocks cortisol
ation of phosphoenolpyruvate carboxy-
e in Reuber H35 rat hepatoma cells.
t endotoxin treatment of hepatoma cells was not inhibitory. Dibutyryl cyclic AMP induced enzyme synthesis and cortisol induced synthesis of tyrosine aminotransferase were not affected by GAF. Phosphoenolpyruvate carboxykinase induction by cortisol in hepatoma cells could be used to quantitate levels of GAF in serum. This assay system is ten times more sensitive than in vivo assays for GAF and it can also be used to titrate samples for comparing GAF responses.

This work was supported in part by Grant No. AI-10087 from the National Institute of Allergy and Infectious Diseases.

5. Westphal, O., and Jann, K., in "Methods in Carbo-
ydrate Chemistry" (R. L. Whistler, J. N. Bennill,

Effects of Adrenalectomy on Thyroid Function and Insulin Levels in Obese (ob/ob) Mice (40349)

Y. YUKIMURA AND G. A. BRAY

Department of Medicine, UCLA School of Medicine, Harbor General Hospital Campus, Torrance, California 90509

The finding that hypophysectomy prevents the development of obesity in the genetically transmitted obese (ob/ob) mouse (1) and in the fatty (Zucker) rat (2) has focused attention on possible abnormalities of the hypothalamic–endocrine systems of these animals (3–7). Detailed evaluation of the pituitary-thyroid system has shown no significant abnormalities (8). The reproductive system, however, is immature and pituitary-gonadal feedback is abnormal (9–11). The pituitary-adrenal axis may also be impaired. The adrenal glands are larger (12, 13) and circulating concentrations of corticosterone are higher in ob/ob mice (14, 15). Adrenalectomy reduces the accelerated weight of the ob/ob mouse (16, 17) and improves glucose tolerance (16). Whether these effects are due primarily to adrenalectomy or to the associated reduction in food intake is not known since no pair-gained control mice were used. The present paper reports the effects on body weight, glucose, and insulin concentrations of adrenalectomy in ob/ob mice with that in pair-gained control mice.

Methods and materials. Animals. The 42 lean and 41 obese (C57BI/6J-ob) mice used in these experiments were purchased from the Jackson Laboratories, Bar Harbor, Maine. The lean animals included both heterozygotes (+/ob) and homozygotes (+/+). They were fed Purina Laboratory Chow (Ralston Purina Company, St. Louis, MI).

Experimental procedures. Experiment 1. Fourteen lean and 12 obese animals were bled at 14–15 weeks of age and adrenalectomized 10 days later through a flank incision under ether anesthesia. The experiment was terminated after 34 days. Following adrenalectomy, animals were maintained on 10 μg/day of hydrocortisone sodium succinate and 1% sodium chloride in their drinking water.

Experiment 2. Twenty-eight lean and 29 obese animals were adrenalectomized at 5–6 weeks of age. Hydrocortisone was only used during the early postoperative period. From the third day onward, adrenalectomized animals received 1% sodium chloride as their drinking water but no corticosteroids. Animals were maintained at 25 ± 1° with a 12-hr cycle of light and dark.

One group with sham-operated obese animals were pair-gained to the adrenalectomized obese animals and another group allowed to eat ad libitum. Pair-gaining was accomplished by giving each mouse 2.2 g/day food and with extra food added or withheld to adjust slightly upwards or downwards for differences in body weight. Blood samples were obtained from the retro-orbital sinus. Animals were fasted for 4 hr prior to sacrifice in exp. 1. In exp. 2 they were bled twice, initially after an overnight fast and 34 days later after a 4-hr fast which followed 1 hr of access to food following an overnight fast. Radioactive 131I (2 μCi) was given 4½ hr prior to sacrifice. Blood was obtained at autopsy and the thyroid, liver, stomach, and salivary glands were removed, weighed and radioactivity assayed by placing tissues in glass tubes and then into a well type scintillation counter. Insulin was assayed by a double antibody radioimmunoassay technique (18) using rat insulin as a standard and iodinated pork insulin as the competitive binder. Glucose was measured by the glucose oxidase method. Statistical comparisons used the Student’s “t” test for grouped data.

Results. Experiment 1. The 5 month old obese (ob/ob) mice lost weight following adrenalectomy. At the time of sacrifice, the body weights of adrenalectomized obese animals had declined from 47.9 ± 1.8 g to 38.1 ± 1.2 g. By matching the weight of a group of obese sham-operated controls to that of the adrenalectomized animals the effects of reduced food intake could be taken into account. The lean animals showed an initial dip in body weight after adrenalectomy but sub-
sequently regained it. At autopsy the uptake of 131I by the thyroid of the lean adrenalectomized animals was not significantly higher than in the lean sham-operated pair-gained group. In the adrenalectomized ob/ob mice 131I uptake was similar to that in the lean mice. Intact pair-gained ob/ob mice had lower (but not significantly different) uptake of 131I. Radioactivity in the blood as a percent of the injected dose was significantly higher in the obese adrenalectomized mice than in the obese pair-gained controls (Table I). Prior to surgery the insulin concentrations in the obese (ob/ob) mice were 955 ng/ml compared to 6.5 ng/ml for the lean animal. Adrenalectomy and pair-gaining of ob/ob mice reduced the concentration of insulin to levels that were comparable to those of the lean animals prior to surgery.

Experiment 2. The body weight of the sham-operated obese mice which were fed ad lib rose more rapidly than in the sham-operated lean animals (Fig. 1). Adrenalectomy reduced the rate of weight gain in the obese mouse to nearly parallel that of the lean adrenalectomized or sham-operated controls. During the 56 days from adrenalectomy to the time of the first bleeding the lean adrenalectomized animals gained 4.3 ± .6 g (Table II). The adrenalectomized obese mice gained 6 ± 1.1 g which was not significantly greater than the adrenalectomized lean mice. Sham-operated lean animals gained 5.5 ± 0.4 g whereas the sham-operated obese mice gained 19 ± 0.5 g. At the time of the first bleeding, pair-gained obese animals had been fasted overnight. When the radiiodine was given with the initiation of four hours fast (Table II) the uptake in the neck region in vivo of the adrenalectomized lean animals was significantly higher than in the neck of the sham-operated obese animals. When the experiment was repeated 34 days later the pair-gained animals had been fasted overnight but feeding was allowed for 1 hr prior to the injection of 131I. When the animals were allowed to eat ad libitum for 1 hr the uptake of radioactive iodine was significantly lower in the pair-fed than in the adrenalectomized animals. Animals with low uptake of 131I had higher urinary iodide excretion than

![Graph showing body weight changes over time](image)

Fig. 1. Weight gain after adrenalectomy. Weight gain over 56 days was measured in sham-operated and adrenalectomized lean or obese mice. A group of sham-operated obese mice were pair-gained to the adrenalectomized animals. The SE of the mean (SEM) is indicated by a line either above or below the point representing the mean.

| TABLE I. BODY WEIGHT, THYROID FUNCTION AND INSULIN LEVELS OF OBESE (ob/ob) AND LEAN MICE 6 WEEKS AFTER ADRENALECTOMY OR PAIR-GAINING. |
| --- | --- | --- | --- | --- |
| | Lean | | ob/ob | |
| | Sham | ADX | Sham Pair-gained | ADX | |
| Change in body wt (g) | 1.7 ± 0.3a | 0.2 ± 1.2 | -7.3 ± 3.9 | -9.8 ± 3.3 | <.01 |
| P | N.S. | | N.S. | | |
| Thyroid uptake 131I (%) of injected dose | 18.9 ± 3.5 | 23.5 ± 4.8 | 12.7 ± 3.3 | 25.1 ± 6.1 | N.S. |
| P | N.S. | | N.S. | | |
| Blood radioactivity (%) of injected dose | 0.41 ± 0.13 | 0.49 ± 0.17 | 0.27 ± 0.10 | 0.75 ± 0.11 | N.S. |
| P | N.S. | | N.S. | | |
| Insulin (ng/ml) | 2.8 | 1.0 | 5.7 | 4.0 | |

a Comparison of adrenalectomized groups which were 18-19 weeks old at the beginning of the study.

a Mean SEM.
animals with higher uptake. The sham-operated obese mice had insulin values that were nearly 50 times higher than the insulin levels of the lean sham-operated animal (Table III). Adrenalectomy reduced the level of insulin in the obese mice as did pair-feeding in sham-operated animals. This suggests that most of the hyperinsulinemia of the ob/ob mouse is secondary to the increased food intake and weight gain in the free-feeding animal. Hyperglycemia of the free-feeding sham-operated obese mouse was significantly higher than in the adrenalectomized or sham-operated pair-fed obese mouse and only slightly higher than that of the lean animals.

Discussion. Phenotypic expression of obesity and hyperphagia in the obese (ob/ob) mouse is profoundly influenced by the pituitary-adrenal axis. The reduction in weight gain and lowered blood glucose has been reported previously (14, 16) but our observations on thyroid function and insulin have not. The inclusion of a control group of ob/ob mice that were fed only enough food to produce changes in body weight similar to those of the adrenalectomized ob/ob mice allows us to distinguish between effects which are attributable to hyperphagia and those due to adrenalectomy. From the two experiments it appears that the reportedly lower uptake of radioactive iodine by the thyroid of the ob/ob mice (8) may result in part from hyperactivity

TABLE II. Weight Gain and Thyroid Function of Lean and Obese (ob/ob) Mice 9 Weeks After Adrenalectomy or Pair-Gaining.

<table>
<thead>
<tr>
<th></th>
<th>Lean</th>
<th>ob/ob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>ADX</td>
</tr>
<tr>
<td>Change in body wt (g)</td>
<td>5.5 ± 0.4<sup>a</sup></td>
<td>4.3 ± 0.6</td>
</tr>
<tr>
<td>P</td>
<td>N.S.</td>
<td><.01</td>
</tr>
<tr>
<td>Thyroid study I</td>
<td>8.4 ± 1.2</td>
<td>25.2 ± 1.4</td>
</tr>
<tr>
<td>(neck count)</td>
<td><.05</td>
<td>N.S.</td>
</tr>
<tr>
<td>Blood count (%)</td>
<td>0.26 ± 0.02</td>
<td>0.37 ± 0.03</td>
</tr>
<tr>
<td>P</td>
<td><.05</td>
<td>N.S.</td>
</tr>
<tr>
<td>Urine radioactivity (%)</td>
<td>65.0</td>
<td>46.0</td>
</tr>
<tr>
<td>P</td>
<td>N.S.</td>
<td><.01</td>
</tr>
<tr>
<td>Thyroid Study II</td>
<td>11.1 ± 0.9</td>
<td>9.9 ± 1.1</td>
</tr>
<tr>
<td>(dose)</td>
<td>N.S.</td>
<td><.05</td>
</tr>
<tr>
<td>Blood count (%)</td>
<td>0.26 ± 0.01</td>
<td>0.30 ± 0.03</td>
</tr>
<tr>
<td>P</td>
<td>N.S.</td>
<td><.01</td>
</tr>
<tr>
<td>Urine radioactivity (%)</td>
<td>39.5 ± 3.5</td>
<td>46.4 ± 2.2</td>
</tr>
<tr>
<td>P</td>
<td>N.S.</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

^a Comparison of lean and obese adrenalectomized animals which were 5–6 weeks old at the beginning of the experiment.

^b Mean ± SEM.

TABLE III. Insulin and Glucose of Obese (ob/ob) and Lean Mice Nine Weeks After Adrenalectomy or Pair-Gaining.

<table>
<thead>
<tr>
<th></th>
<th>Lean</th>
<th>Obese (ob/ob)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>ADX</td>
</tr>
<tr>
<td>Insulin (ng/ml)</td>
<td>4.1 ± 0.9<sup>a</sup></td>
<td>5.2 ± 1.5</td>
</tr>
<tr>
<td>P</td>
<td>N.S.</td>
<td><.01</td>
</tr>
<tr>
<td>Blood sugar (mg/dl)</td>
<td>50.5 ± 1.5</td>
<td>41.5 ± 0.8</td>
</tr>
<tr>
<td>P</td>
<td><.01</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

^a Comparison of adrenalectomized lean and obese animals which were 5–6 weeks old at the beginning of the experiment.

^b Mean ± SEM.
drenal glands with increased losses of n the urine.
changes in glucose and insulin were entirely the result of reduced food Starvation and food restriction are to restore responsiveness to insulin vivo (19) and in vitro (20). Our findings that the effects of adrenalectomy in glucose and insulin (17) toward nor- the result of reduced food intake. copoulos and Jeanrenaud (4) have ar- many of the metabolic changes in /ob mouse can be explained by the ed levels of insulin. Thus an expla- of the hyperinsulinenia is central to derstanding of the obese (ob/ob)
effects of adrenalectomy on hyper- and weight gain in the ob/ob mouse explained in two ways. Catechol- injected directly into the brain can te food intake (21). This effect is ily reduced after adrenalectomy and is over control levels by the injection (21). Lowering corticoste- y adrenalectomy might reduce the hy- gic effects of endogenous brain cate- ines which are known to be increased xcretion in the brain of the ob/ob (22). A second explanation is related posed enzymatic basis for the genetic in the ob/ob mouse (23). It has re- suggested that a deficiency of the inducible component of the sodium K-ATPase is involved in the reup- catecholamines in the brain, the step is involved in termination of action. ncy of this enzyme at this site might hance the action of catecholamines on y. The effects of adrenalectomy on use mouse were compared using ani- which were weight-matched by con- food intake. Adrenalectomy reduces gain of obese (ob/ob) mice. The re-
duced insulin and glucose after adrenalectomy are largely the result of reduced food intake. Changes in thyroid function are related to both the changes in food intake and to adrenalectomy itself.

The Long Term Effect of Estrogen Administration on the Metabolism of Male Rat Bone

R. L. CRUESS AND K. C. HONG

Orthopaedic Research Laboratories, Royal Victoria Hospital, McGill University, Montreal, Québec, Canada

There is considerable information about the effect of estrogen upon bone metabolism in the female including recent work (1) outlining in some detail the long-term effects of the hormone on various parameters of bone metabolism. Because of well known sex differences in the incidence of metabolic bone disease and because it became apparent that there were some differences in the response of bones of male and female animals, the following experiments were carried out in order to determine the long term effect of estrogen on the bones of male rats.

Materials and methods. Hundred and fifty-gram male rats were divided into four groups. The animals of the first group were left intact and served as the control group. Group 2 included intact animals treated with 400 µg per 100 g body wt of 17-β-estradiol in sesame oil twice a week. The hormone was introduced directly into the gastric lumen. The rats in group 3 were surgically castrated and those in group 4 were castrated and treated with the same dosage schedule of 17-β-estradiol. The animals in the control groups received similar amounts of sesame oil without hormone. Five rats in each group were sacrificed by decapitation for each set of chemical determinations at 1, 3, 6, 9 and 12 months following the institution of therapy. Serum was collected for chemical determinations. The femora and tibiae were removed immediately and dissected free of soft tissues and periosteum. The epiphyses were discarded and the bone marrow was removed by flushing with a cold saline solution. The metaphysis was separated from the diaphyseal portion of the bone in a standard fashion and only metaphyseal bone was used for chemical analysis. Body weights were recorded monthly. Serum calcium and phosphorous determinations were carried out in an autoanalyser.

The following determinations were carried out on bone: The pooled metaphyses of a single animal were lyophilized and used for each set of determinations. The lipids were extracted and washed according to the method of Folch et al. (2). The ash content was determined after ashing a sample of dried defatted bone powder in a furnace at 680° for 20 hr. The hydroxyproline content was measured in an aliquot of fluid from a sample which had been hydrolyzed in 6 N HCl at 100° for 17 hr according to the method of Stegemann (3). Hexosamine was estimated after hydrolysis in 3 N HCl at 100° for 17 hr by a modification of the method of Boas (4) with omission of the resin treatment. Incubation studies were carried out according to the method of Deiss et al. (5). Minced metaphyseal fragments were incubated in buffered Krebs-Ringer bicarbonate medium at pH 7.4 in a Dubnoff incubator under 95% oxygen, 5% CO₂ at 37° for 4 hr. The incubation medium contained either 10 µCi of L-proline ¹⁴C with a specific activity of 232 mc/mole or 10 µCi of D-glucose-[¹⁴C] with a specific activity of 4.06 mc/mole. After incubation, the bones were washed with saline and cold water several times and hydrolyzed at 100° for 17 hr with 6 N HCl for hydroxyproline or with 3 N HCl for hexosamine. The ¹⁴C hydroxyproline was isolated by paper chromatography and the specific activity of the hydroxyproline fraction determined according to methods previously described. In order to determine the specific activity of ¹⁴C hexosamine the hydrolysate was applied to an ion exchange resin (Dowex 50W) according to Boas (4). An aliquot was dissolved in 15 ml of aquasol (New England Nuclear, Boston, MA) and the radioactivity determined in a liquid scintillation counter. The degree of quenching was estimated by internal standardization and the data corrected.

Collagenolytic activity was determined according to the method of Kaufmann (3). 50 mg of metaphyseal bone was cut into four

1 Supported by Grant No. MA 1571, Medical Research Council of Canada.

0037-9727/78/1593-0368$01.00/0

©Copyright 1978 by the Society for Experimental Biology and Medicine. All rights reserved.
d placed in a tube containing 100
ified neutral soluble rat skin colla-
led with \(^3\)H proline and \(^3\)H hydrox-
(approximately 5,000 cpm) with 400
\(M\) Tris-HCl buffer at pH 7.5. They
bated at 35° for 3 days and the
lytic activity of the bone was deter-
counting the release of radio-activ-
the medium. Blank values were ob-
parallel incubation of metaphyseal-
ed at 100° for 3 min.
er to judge the uptake of mineral
, rats were injected intravenously
Ci of calcium-45 containing 2 \(\mu M\)
ive days after injection, the rats
icied by decapitation and the tibiae
ae were removed immediately. The
row was removed as before and the
al region of the tibia was separated
 in a furnace at 680° for 20
shed metaphysis was dissolved with
\(N\) and 100 \(\mu l\) of the solution was
th 10 ml of aquasol and counted in
cintillation counter.

Results. Estrogen administration to the in-
tact rat caused a consistent and sustained
decrease in body weight. Castration also
causa decrease in body weight and estro-
gen administration appeared to have no sig-
nificant effect upon this parameter, although
when administered to the castrated animal,
t was a suggestion of further decrease in
weight.

There was no influence of either castration
or estrogen administration on serum calcium
or phosphorous.

Estrogen administration to the intact ani-
mal caused a small but significant increase in
the bone ash content and this was sustained
over the entire 12 month period (Fig. 1).
Castration caused a small but significant de-
crease in the ash content which was still
present at 12 months and estrogen adminis-
tration returned this value to normal.

Estrogen administration to the intact ani-
mal caused a significant and sustained de-
crease in the total hydroxyproline content of
bone (Fig. 2). Castration caused an initial

Percent ash of dry bone. The bars represent the mean value and the SE are illustrated. Significant
tween all groups and the intact control animals are indicated by (a) \(P < 0.01\), or (b) \(P < 0.05\).
difference between the castrated animals and the estrogen treated castrated animals are indicated by (c)
(d) \(P < 0.05\). The same method of illustrating data is utilized in all figures.

Hydroxyproline content of bone. The bars represent the mean value and the SE are illustrated. Significant
tween all groups and the intact control animals are indicated by (a) \(P < 0.01\), or (b) \(P < 0.05\).
difference between the castrated animals and the estrogen treated castrated animals are indicated by (c)
(d) \(P < 0.05\). The same method of illustrating data is utilized in all figures.
increase in bone hydroxyproline content at 1 month but by 12 months there was no difference between the castrated and intact animals. Estrogen administration to the castrated animal did cause a sustained decrease in bone hydroxyproline. Hydroxyproline incorporation rates (Fig. 3) indicated that estrogen administration to the intact animal caused a decrease in the uptake of radioactive proline in bone. Castration caused no significant change and estrogen administration to the castrated animal also decreased the synthesis rates of bone collagen. Castration appeared to decrease the total bone hexosamine (Fig. 4) value at 6 months but at 12 months, the value had returned to normal. Estrogen administration to the intact animal appeared at 12 months to have increased the bone hexosamine content. The specific activity of bone hexosamine (Fig. 5) was decreased when estrogen was administered to the intact animal. Castration had no effect but estrogen administration to the castrated animal also caused a decrease in the value.

Estrogen administration to the intact animal caused a decrease in the uptake of radioactive calcium into bone (Fig. 6). Castration also appeared to cause a decrease and estrogen administration to the castrated animal caused a further decrease in this value.

There was no significant effect of estrogen administration on bone collagenolytic activity of male rat bone.

Discussion. There appear to be several significant differences when one compares this data with that derived from a similar study of the female rat (1). In the first place, removal of the ovaries in the female leads to a decrease in serum calcium and estrogen replacement returns this to normal. Secondly, data in the female indicated that removal of the ovaries causes an increase in bone turn-

Fig. 3. Hydroxyproline specific activity of bone. The bars represent the mean value and the SE are illustrated. Significant differences between all groups and the intact control animals are indicated by (a) $P < 0.01$, or (b) $P < 0.05$. Significant difference between the castrated animals and the estrogen treated castrated animals are indicated by (c) $P < 0.01$, or (d) $P < 0.05$. The same method of illustrating data is utilized in all figures.

Fig. 4. Hexosamine content of bone. The bars represent the mean value and the SE are illustrated. Significant differences between all groups and the intact control animals are indicated by (a) $P < 0.01$, or (b) $P < 0.05$. Significant difference between the castrated animals and the estrogen treated castrated animals are indicated by (c) $P < 0.01$, or (d) $P < 0.05$. The same method of illustrating data is utilized in all figures.
5. Hexosamine specific activity. The bars represent the mean value and the SE are illustrated. Significant differences between all groups and the intact control animals are indicated by (a) \(P < 0.01 \), or (b) \(P < 0.05 \). Significant difference between the castrated animals and the estrogen treated castrated animals are indicated by (c) \(P < 0.05 \), or (d) \(P < 0.05 \). The same method of illustrating data is utilized in all figures.

6. Uptake of calcium. The bars represent the mean value and the SE are illustrated. Significant differences between all groups and the intact control animals are indicated by (a) \(P < 0.01 \), or (b) \(P < 0.05 \). Significant difference between the castrated animals and the estrogen treated castrated animals are indicated by (c) \(P < 0.05 \). The same method of illustrating data is utilized in all figures.

Thus, there was an increase in the uptake of active calcium, an increase in the rates of collagen and glycosaminoglycan, and an increase in collagenolytic activity. Estrogen administration returned the rates to normal and decreased collagenolytic activity to somewhat below nondiabetic decreased resorption. Oophorectomy led to a decrease in ash content and a reduction in the intact animal, the oophorectomized animal returned normal.

Rat interpretations are possible to explain the data in the female. Decreased serum parathyroid hormone certainly is a possible explanation. The data could also be explained by postulating an estrogen mediated increase in calcium absorption from leading to a decreased need for calcium mobilization from bone. Further work sary before this problem will be fully understood.

The failure of estrogen to alter the serum calcium in the male rat either indicates that the homeostatic mechanisms function better in the male or that there is a basic difference in response. The incubation studies as well as the calcium uptake indicate that estrogen given to the intact or castrated male rat causes a decrease in formation which appears to increase in magnitude until about 6 months and is still present at 12 months. The collagenolytic data demonstrates no significant change in resorption rates. This then is another difference between the male and female rat.

That estrogen has an effect on the male has been known for some time (7). Igarashi (8) demonstrated that estrogen protects the male animal against the loss of bone mineral brought about by a low calcium diet. In short term studies, Shai and Wallach (9) demonstrated once more the retardation of body and skeletal growth with an increase in skeletal mass relative to body weight brought about in male rats by estrogen. They also demonstrated a decrease in resorption and in mineral deposition as indicated by \(^{48}\)Sr studies. Finally, they demonstrated an estrogen mediated decrease in the sensitivity of male animals to the effect of exogenous calcitonin. The sex of the animal as well as its age are apparently important in determining the effect of estrogen in mediating the effect of calcitonin. Kaplan (10) showed that before puberty, the response of the two sexes was equal. Following puberty, the male decreased in sensitivity only slightly with increasing age, while females diminished rapidly. In addition and perhaps more importantly, the castrated males treated with estrogens were much less...
sensitive than were the intact controls.

The end result of long term estrogen administration to the male rat is a slight but significant increase in ash content which appears to be associated with a decrease in collagen content on a per weight basis and a slight increase in hexosamine content. However, all parameters demonstrate a decrease in the rate of synthesis of bone matrix. In contrast to the data from the female rat, collagenolytic activity showed no change. These facts are difficult to reconcile because if in the face of decreased formation rate, there is an increase in bone mass, a decrease in resorption should have been measured. Perhaps the changes in collagenolytic activity which occurred were exceedingly small and resulted over a prolonged period in a decrease in resorption which could not be measured by the method utilized. It also is possible that there is a discrepancy between the mobilization rates of mineral and matrix in the estrogen treated male animal, and that in fact, the increase in ash content associated with a decrease in the organic components of matrix is reflecting this. Finally, it is possible that there is a decreased ability of the collagenolytic enzyme to actually resorb matrix, with a resultant change in resorption.

The data here do not allow one to determine the mode of action of estrogen in the male. It has been reported (11) that there is no receptor protein for estrogen in the female rat bone. It is recognized that male animals do possess receptor proteins to estrogens (12) in some tissues but up to date no reports in the literature have reported the presence of these substances in male bone cells. In addition, there is no information on a possible direct effect of estrogen on male rat bone utilizing tissue culture methods. It does, however, seem important to record the fact that male animals respond in a different fashion from females.

Summary. Hundred and fifty-gram male rats were divided into four groups with the first containing intact controls, the second intact animals treated with 400 μg per 100 g body wt of 17-β-estradiol twice a week. The animals in the third group were castrated and those in the fourth were castrated and treated with the same dosage of estrogen. Animals were sacrificed at varying periods of time from one to 12 months. Estrogen administration caused a sustained decrease in body weight in the intact animal but did not change the body weight in castrated animals. Estrogen had no effect on either serum calcium or serum phosphorus. Estrogen administration to the intact animal caused a small but significant increase in ash content of bone. Castration caused a small decrease in this value which was still present at 12 months and estrogen administration returned the value to normal. Estrogen administration caused a decrease in total hydroxyproline content of bones of intact animals. Castration did not alter this value but estrogen administration to the castrated animal decreased the bone hydroxyproline content. Hydroxyproline incorporation rates were decreased in bones of both the intact and castrated animals. Castration did not alter the total hexosamine content of bones but estrogen administration to both the intact and castrated animals caused an increase in bone hexosamine content. Estrogen administration caused a decrease in the synthesis rate of proteoglycans in bones of both the intact and castrated animals. Estrogen administration caused a decrease in the uptake of radioactive calcium into bones of both the intact and castrated animals. There was no significant effect of estrogen on collagenolytic activity in male rat bone. It is concluded that estrogen administration to the male rat, causes changes which are different from those found in the female. There appeared to be no change in serum calcium or phosphorus values. A decreased synthesis of bone matrix and decreased uptake of radioactive calcium brought about no measurable change in the resorption of bone matrix.

1. Crues, R. L., and Hong, K. C. Accepted by Endocrinology (with revision January 1978).

Mechanism of the Cardiovascular Actions of Cycloctydine (40351)

THOMAS F. BURKS, TI LI LOO, AND MARGARET N. GRUBB

Department of Pharmacology, The University of Arizona College of Medicine, Tucson, Arizona 85724
and Departments of Developmental Therapeutics and Diagnostic Radiology, M. D. Anderson Hospital
and Tumor Institute, Texas Medical Center, Houston, Texas 77030

02,2′-cycloctydine was synthesized to provide a useful depot form of the antineoplastic agent, arabinofuranosylcytosine (ara-C). Although one of the primary antileukemic drugs currently available (1), ara-C must be administered by frequent intermittent or continuous intravenous infusion to maintain effective plasma levels because it is rapidly inactivated by deamination in the body (2). Cycloctydine, an anhydride analogue of ara-C, is hydrolyzed to ara-C in vivo and requires only once daily intravenous administration to maintain adequate ara-C plasma levels (3). In doses of 300–600 mg/m², cycloctydine has shown promise in the treatment of acute myelogenous leukemia in man (4). Unfortunately, cycloctydine produces unusual side effects which limit its clinical use (5). The most pronounced undesirable side effects are sialorrhea, parotid pain and, especially, acute cardiovascular effects characterized by postural hypotension leading to syncope. Although cycloctydine is considered overall to afford a more favorable therapeutic index than ara-C, the postural hypotension and other side effects produce sufficient patient discomfort to hamper its acceptability. The present investigation was initiated to determine the mechanism by which cycloctydine affects function of the mammalian cardiovascular system.

Materials and methods. Experiments were conducted with anesthetized dogs, cats and rats. Beagle dogs of either sex (supplied by the Laboratory of Toxicology, National Cancer Institute), weighing 9–11 kg, were anesthetized with barbital sodium (250 mg/kg) and thiopental sodium (15 mg/kg) administered intravenously. Cats of either sex, weighing 2.3–3.5 kg, were anesthetized with the barbital–thiopental mixture given either intravenously or intraperitoneally. Male Sprague-Dawley rats, weighing 150–200 g, were anesthetized with pentobarbital sodium (45 mg/kg) given intraperitoneally. Animals were allowed to breathe spontaneously through endotracheal tubes (dogs and cats) or through polyethylene tracheal cannulae (rats). Femoral arteries (dogs and cats) or carotid arteries (dogs and rats) were cannulated with heparin–saline filled polyethylene catheters. Systemic arterial blood pressure was measured by a Statham P23Db pressure transducer connected to a Beckman type RM oscillographic recorder. Drugs, dissolved in 0.9% sodium chloride solution, were administered into a cannulated femoral vein (dogs and cats) or jugular vein (rats) in volumes of 0.1–1 ml/kg. Blood pressure responses were measured as maximum changes in systolic pressure.

Postural hypotension was evaluated by tolerance of dogs to head-up tilt. In the tilt studies, blood pressure was measured from carotid arteries. Dogs were fastened securely to a conventional metal surgical board and one end of the board was elevated to a predetermined height for 60 sec; the angle of tilt was 20° from horizontal. The time required for restoration of systolic blood pressure to one-half of the change from pretilt values was taken as the index of tolerance to tilt.

Drugs used were cycloctydine HCl (Drug Development Branch, Division of Cancer Treatment, National Cancer Institute), 1-norepinephrine HCl (Leopbed, Winthrop), tyramine HCl (Aldrich), hexamethonium chloride (City Chemical Corp.), phenolamine HCl (Regitine, Ciba), propranolol HCl (Inderal, Ayerst), guanethidine HCl (Ismelin, Ciba), desethylmepipramine HCl (Desipramine, Geigy Pharmaceuticals), and 6-hydroxydopamine HBr (Regis). All dosages were calculated as the salt forms. Statistical analyses were performed by use of the Student’s t test, group comparisons or paired comparisons; values of P equal to or less than 0.05 were considered significant.
s. Cyclocytidine, in bolus doses of 150 mg/kg, increased blood pressure in mice and rats (Fig. 1). The pressor response, which consisted of increases in both systolic and diastolic pressures, was transient and could not be sustained on the dose of cyclocytidine. The pressure returned to preinjection values within 15–20 min. Responses to the highest dose of cyclocytidine often persisted for 30 min. The magnitude of the pressor response depended on dosage and onset. Responses to initial doses were dose-related in all three species; the largest dose tested, 8 mg/kg in the same animal, revealed varying degrees of tachypnea. The pressor effects of cyclocytidine in rats were more pronounced than those of 5 mg/kg of cyclocytidine produced equivalent increases in blood pressure (Fig. 2). After a cumulative dose of 80 mg/kg, bolus injections of 80 mg/kg caused less increase in blood pressure than initial 100 mg/kg injection in mice. In the same animal, the increase was reduced in comparison to the previous injection of 60 mg/kg. In each species, doses of 25 mg/kg caused less increase in blood pressure than initial 5 mg/kg dose (Fig. 2). After a cumulative dose of 100 mg/kg, bolus injections of 5 mg/kg of cyclocytidine elicited less pressor responses than initial doses of 5 mg/kg.

Results suggested that cyclocytidine causes pressor responses either directly by acting upon cardiac and vascular adrenergic receptors or indirectly by promoting release of endogenous adrenergic amines. Acute administration (10–30 min before cyclocytidine) of guanethidine (2 mg/kg) completely abolished pressor responses to cyclocytidine (Fig. 3). Desmethylimipramine (10 mg/kg) also blocked pressor responses to cyclocytidine in dogs and in rats (Fig. 3 and Table 1). To establish conclusively that pressor responses to cyclocytidine result from release of noradrenaline from adrenergic neurons, rats were injected with 6-hydroxydopamine (100 mg/kg) 24 hr in advance to disrupt function of adrenergic fibers. Pressor responses to cyclocytidine and to tyramine were compared in control and in 6-hydroxydopamine-treated animals. Prior treatment with 6-hydroxydopamine nearly abolished pressor responses to tyramine and to cyclocytidine (Table 1).

Pressor responses to norepinephrine and to tyramine were measured before and after acute administration of 100 mg/kg of cyclocytidine. Responses to norepinephrine were not altered by cyclocytidine treatment, but responses to tyramine were significantly reduced (Fig. 4). Pressor responses to tyramine and to cyclocytidine were not altered in animals injected 24 or 48 hr previously with 100 mg/kg of cyclocytidine.

Discussion. In humans, cyclocytidine causes profound changes in cardiovascular function in the usual therapeutic dose of 8–16 mg/kg (5). In this same general range of dosage, cyclocytidine causes increases in systemic blood pressure in dogs, cats and rats and, in dogs, induces cardiovascular intolerance to head-up tilt. Possible sites of cardiovascular action of cyclocytidine included baroreceptor and chemoreceptor reflex mechanisms, the central nervous system, sympathetic ganglia, adrenergic nerve terminals, adrenergic receptors and vascular smooth muscle.

The failure of hexamethonium to alter pressor responses to cyclocytidine eliminated the baroreceptor and chemoreceptor reflexes, the central nervous system, and sympathetic ganglia as potential sites of action. The pressor effects of cyclocytidine were blocked by phentolamine, indicating that it acts directly
Fig. 1. Blood pressure responses to cyclocytidine (CYC) in three species. DOG. As can be seen in panel A, cyclocytidine had little effect on heart rate in dogs. Panel B shows the response to a larger initial dosage of cyclocytidine in the dog; the chart speed was increased briefly to allow counting of heart rate. CAT. The blood pressure record from the cat shows reflex slowing of the heart during the height of the pressor response. RAT. In the rat, pressor responses to 10–100 mg/kg of cyclocytidine are equivalent to those induced by 250 μg/kg of tyramine (TYR) or 0.3 μg/kg of norepinephrine (NE). In the record in panel A, all pressor agents increased both diastolic and systolic pressure. In panel B, the three agents increased systolic pressure more than diastolic pressure. Blood pressure was recorded from femoral arteries in dogs and cats, from carotid arteries in rats.
or indirectly upon vascular alpha adrenergic receptors and not upon nonadrenergic vascular elements. The rapid tachyphylaxis to its pressor effects suggested that cycloctydine could act indirectly by promoting release of norepinephrine from labile neuronal sites. Blockade of the pressor effects of cycloctydine by guanethidine, which interferes with the adrenergic nerve uptake system and has norepinephrine antirelease properties, confirmed the adrenergic nerve as the site of cycloctydine pressor effects. Blockade of cycloctydine pressor effects by desmethyli- mpramine, which has little antirelease activity, could be explained by prevention of cycloctydine entry into the adrenergic neurons (6). Finally, depletion of neuronal norepinephrine by 6-hydroxydopamine (7) demonstrated that once cycloctydine enters adrenergic nerves, it acts by release of endogenous norepinephrine. Similar mechanisms may explain the actions of cycloctydine on rat salivary glands, where salivation is blocked by propranolol, but not by acute sympathetic ganglionectomy (8, 9).

Cycloctydine reduced cardiovascular tolerance to tilt, the correlate in dogs of postural hypotension in humans. The postural hypotension induced by cycloctydine does not result from blockade of adrenergic receptors, but rather from interference with adrenergic neurons. This was shown by loss of responsiveness to tyramine, but not to norepinephrine, after acute administration of cycloctydine. The effects of cycloctydine on adrener-

Fig. 2. Pressor responses to repeated doses of cycloctydine in dogs (N = 6) and rats (N = 6). Each bar is the mean ± SEM of the increases in systolic blood pressure.

Fig. 3. Blood pressure responses to cycloctydine (CYC) in dogs under control conditions and 10–20 min after administration of hexamethonium (20 mg/kg), propranolol (0.5 mg/kg), phentolamine (2 mg/kg), guanethidine (2 mg/kg) or desmethyli mpramine (10 mg/kg). Reflex cardiac slowing is evident during the height of the control pressor response to cycloctydine, but not in the animal treated with hexamethonium. Treatment with phentolamine, guanethidine or desmethyli mpramine virtually abolished pressor effects of cycloctydine. Blood pressure was recorded from femoral arteries.
378

ACTIONS OF CYCLOCYTIDINE

TABLE I. EFFECTS OF DESMETHYLLIMIPRAMINE (DMI) ON PRESSOR RESPONSES TO CYCLOCYTIDINE.

<table>
<thead>
<tr>
<th>Species</th>
<th>Control animals</th>
<th>Animals treated with DMI (10 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose of cyclo-</td>
<td>Increase in b.p. (mm Hg)*</td>
</tr>
<tr>
<td></td>
<td>cytidine</td>
<td>N</td>
</tr>
<tr>
<td>Dog</td>
<td>60 mg/kg</td>
<td>5 101 ± 12</td>
</tr>
<tr>
<td>Rat</td>
<td>100 mg/kg</td>
<td>6 45 ± 7</td>
</tr>
</tbody>
</table>

* Mean ± SEM.

TABLE II. EFFECTS OF 6-HYDROXYDOPAMINE (6-OHDA) ON PRESSOR RESPONSES TO TYRAMINE AND CYCLOCYTIDINE IN RATS.

<table>
<thead>
<tr>
<th>Control animals</th>
<th>Animals after 6-OHDA*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Tyramine 200 µg/kg</td>
<td>6</td>
</tr>
<tr>
<td>Cycloctidine 5 mg/kg</td>
<td>6</td>
</tr>
</tbody>
</table>

* 6-OHDA (100 mg/kg) administered 24 hr before experiment.

* Mean ± SEM.

![Graph showing pressor responses in rats to norepinephrine (NE) and tyramine (TYR) before (Control) and 10-30 min after administration of cycloctidine (CYC). * decreased significantly from control.](image)

Fig. 4. Pressor responses in rats to norepinephrine (NE) and to tyramine (TYR) before (Control) and 10-30 min after administration of cycloctidine (CYC). *, decreased significantly from control.

Adrenergic vasoconstrictor neurons are temporary and disappear within 24 hr.

Based on these observations, we propose that acutely administered cycloctidine enters adrenergic nerve terminals and initially promotes release of norepinephrine from a labile functional pool (10). This action causes a transient, dose-related increase in blood pressure. After the most labile pool of norepinephrine has been mobilized, the intraneuronal cycloctidine inhibits temporarily further secretion of norepinephrine from the nerves. Responses to subsequent doses of cycloctidine (or tyramine) are thereby inhibited. Postural hypotension could be explained by cycloctidine-induced temporary failure of the adrenergic neuronal elements which participate in the reflex adjustments of the cardiovascular system required for maintenance of blood pressure in response to gravitational stress.

Summary. The clinical usefulness of cycloctidine, an otherwise potentially valuable antineoplastic agent, is limited because it may cause acute postural hypotension in man. In the laboratory, cycloctidine (5–100 mg/kg) transiently increased blood pressure in anesthetized dogs, cats and rats. As the pressor responses to cycloctidine were prevented by previous treatment with 6-hydroxydopamine or acutely by phenolamine, guanethidine and desmethyllumipramine, but not by hexamethonium, adrenergic nerve terminals appear to be involved in its pressor actions. Cycloctidine also blocked pressor responses to tyramine and caused intolerance to tilt stress in anesthetized dogs. Cycloctidine thus appears to promote, then prevent, release of norepinephrine from adrenergic vasoconstrictor neurons.

This project was supported in part by USPHS Grant No. DA 00877 and NCI Contract NO1-CM-53773. The guanethidine and phenolamine employed in these experiments were gifts from Charles A. Brownley, Jr., Ciba Pharmaceutical Co., Summit, New Jersey. Desipramine was a gift from Edgar Grunwald, Geigy Pharmaceuticals, Airdsley, New York. Propranolol was a gift from G. R. Goetchius, Ayerst Laboratories, New York, New York.

Secretion of Primary Granules from Developing Human Eosinophilic Promyelocytes (40352)

PAUL M. HYMAN, SAUL TEICHERG, SHEREE STARRETT, VINCENT VINCIGUERRA, AND THOMAS J. DEGNAN

Department of Medicine, Pediatrics, and Laboratories, North Shore University Hospital, Manhasset, New York 11030 and Departments of Medicine and Pediatrics, Cornell University Medical College, New York, New York 10021

Mature eosinophils contain two types of membrane-delimited secretory granules. The primary granules are large (0.6–1.2 microns) in diameter, spherical, homogeneously dense, and are produced in the promyelocyte stage of development (1). The secondary granules produced in the myelocyte stage contain a crystalline core and represent the vast majority of the secretory granules of the mature eosinophil. Both granules stain strongly for peroxidase (1, 2). This developmental scheme has been most carefully studied in rats and rabbits (1) but is believed to occur in humans as well (2, 3).

Little is known concerning the functions of the eosinophilic promyelocyte. This is due, in part, to the very small number of these cells (less than 1%) present in normal marrow. In the present electron microscope cytochemical study we examined bone marrows of patients with disease states associated with increased numbers of eosinophilic promyelocytes along with other immature developing cells. Our evidence indicates that the contents of the primary granules of eosinophilic promyelocytes are secreted by exocytosis into the extracellular space of the marrow while the membrane surrounding the granules is retained within the cell. This secretion appears to occur simultaneously with the synthesis and production of new granules.

Materials and methods. Specimens consisted of bone marrow aspirates obtained from patients in the various stages of chronic myelocytic leukemia (initial diagnosis, remission, and blastic transformation) and nonleukemic states including metastatic adenocarcinoma and idiopathic thrombocytopenic purpura (ITP). These patients had increased numbers of promyelocytes and myelocytes as well as blasts in the case of CML with blastic transformation. One of the patients with CML was studied three times; during primary diagnosis, during remission while on busulfan, and in the blast phase. The second CML patient was studied at primary diagnosis, and the third CML patient was examined during chronic phase while under treatment with busulfan. The patient with adenocarcinoma, metastatic to bone, did not have demonstrable metastatic cells on the aspirate or biopsy of the specimen examined in this study. The ITP case was newly diagnosed and on no therapy at the time the bone marrow was obtained.

The bone marrow chips were prepared for cytochemical studies according to the methods of Bainton, et al. (4). In brief, the marrow chips were fixed for 10 minutes in cold cacydolate-buffered 1.5% glutaraldehyde with 1% sucrose and then rinsed in cold cacodylate-buffer with 7% sucrose for 24 hr. To demonstrate myeloperoxidase activity, tissue was first soaked in the medium of Graham and Karnovsky (5) (pH 7.6) without substrate (H₂O₂) for 10–15 min at room temperature and then incubated in the full cytochemical medium for 45 min at room temperature. Sucrose (5%) was added to all incubations. For these cytochemical studies controls consisted of H₂O₂-free media. All controls showed no demonstrable reaction product.

Following incubation, the cells were rinsed in cold 7.5% sucrose, post-fixed in cold cacodylate-buffered 1% OsO₄ for 1 hr, rinsed with cold 7.5% sucrose, and soaked en bloc with veronal acetate buffered uranyl acetate for 30 min at room temperature. They were then rinsed in cold 7.5% sucrose, dehydrated in a graded series of ethanol and propylene oxide and embedded in Epon.

Silver to grey thin sections were cut on a Porter Blum MT2-B ultramicrotome, lightly stained with lead citrate, and examined on a
EM-100 electron microscope operated. Electron micrographs were taken at magnifications of 4000–15,000.

As previously described in the pro- nouse stage of eosinophil development, secretory granules are large, homoge- and spherical, while the secondary s with their characteristic crystalline gin to appear during the myelocyte 2). The rough endoplasmic reticulum of the eosinophilic promyelocyte con- action product for myeloperoxidase (Figs. 1, 2) and is more saccular and than its PMN promyelocyte counter-und repeated evidence that develop- inophilic promyelocytes release the s of their MPO positive secretory s into the extracellular space of the arrow by exocytosis (Figs. 1–3). The lls that show this degranulation also a MPO positive RER and Golgi ap- (Figs. 1–3).

eosinophilic promyelocytes undergo- ranulation, there was a coalescence of individual membrane-bound secyre- nules into one or more larger mem- elimited structures each containing granules surrounded by a single mem- r Figs. 1, inset a, and 3). Many of these strutures were found to be in a conti- ith the extracellular space (Figs. 1–3). eoxidase was demonstrable within mbrane-delimited granules and was be released into the extracellular space 2). The luminal surface of the mem- surrounding these multiple secretory granules often also stain strongly for MPO (Figs. 3, 4). Several of these larger membrano-nous structures, either devoid of any granular content or containing only a single granule, were seen within the cell cytoplasm, appear- ing as if they were retained in the cell follow- ing degranulation (Figs. 3, 4). This degranulation was seen in patients with CML, ade-nocarcinoma and ITP. We did not observe such degranulation in the numerous PMN promyelocytes nor in developing monocytes, which also contain MPO positive RER and secretory granules. Later stage eosinophilic myelocytes containing characteristic crystalline granules also did not appear to degranulate in this manner.

Discussion. The present study indicates that the homogenous spherical primary granules formed in the eosinophilic promyelocyte can discharge their contents into the extracellular space of the marrow by a process of exocytosis, while the cell is synthesizing MPO and new granules. In a morphological study a similar phenomenon was noted in normal human marrow (6). These observations strongly suggest that secretion from eosino- philic promyelocytes consists of two steps: initial fusion of individual secretory granules to form a compound structure containing several granules surrounded by a single mem- brane, followed by exocytosis, the fusion of the membrane-delimited compound structure with the plasma membrane permitting access of the granule content into the extracellular space (7). This process resembles the exocytosis described as the secretory mechanism of mast cells (8).

. Eosinophilic promyelocyte incubated for the localization of peroxidase activity. Note the large, dense, peroxidase-reactive secretory granules (S), reactive saccular endoplasmic reticulum (ER) and Golgi (G). Inset a shows secretory granules that have fused to form large membrane delimited structure (L). Ger structures appear to release their contents into the marrow extracellular space (E) by exocytosis (arrows). Embrane is at P, mitochondria at M, nucleus at N. × 12,000; Inset a × 13,200.

. Higher magnification view of secretory granule release by exocytosis (arrow) from an eosinophilic cyto. Plasma membrane is at P, and marrow extracellular space at E. Cytoplasm contains secretory granules slasmic reticulum (ER) and mitochondria (M). Note the markedly smaller diameter of peroxidase-reactive A) in an adjacent polymorphonuclear leukocyte. × 24,000.

and 4. Eosinophilic promyelocytes reacted as in Fig. 1. The large vacular structures seen at V contain an granule or are entirely devoid of secretory granules (Fig. 4). Note that the inner surface of the membrane ructures is reactive for peroxidase (I). An example of exocytosis is seen at arrow in Fig. 3. Nuclei are at N. Iria at M. Fig. 3 × 10,500; Fig. 4 × 14,000.
In cells actively secreting materials by exocytosis, there is a considerable addition of membrane to the cell surface. A compensating endocytotic mechanism appears to retrieve surface membrane back into the cell to maintain a relatively constant surface area (9, 10). The precise nature of such retrieved membrane is not yet understood, particularly its relationship to the original secretory granule membrane. In the present study, the intraluminal surface of the large coalesced secretory granule membrane is labeled with MPO providing a potential membrane marker. It appears that this membrane delimited secretory granule only remains fused with the plasma membrane and patent to the extracellular space for a time sufficient to release the granular contents. We were able to find numerous examples of large MPO labeled cytoplasmic vacuolar structures either devoid of granules or containing very few granules. This evidence suggests that the same fragment of membrane that originally surrounded the secretory granule is retained within the cell. The subsequent fate of this membrane has not been resolved.

Developing promyelocytes of the neutrophil or monocyte series within our preparations, which also contain MPO-positive secretory granules do not show a similar exocytosis of their granules (see also 11). Therefore, we believe the events we observed in eosinophilic promyelocytes are physiological and not merely induced during aspiration of marrow or tissue preparation.

This degranulation of eosinophilic promyelocytes does not appear to be limited to any specific disease state or particular chemotherapeutic regimen. It was observed in several stages of chronic myelocytic leukemia, in adenocarcinoma and in ITP.

The significance of our observations of secretory granule release by eosinophilic promyelocytes is unclear. There is no available biochemical data on the content of these early eosinophil granules. Cytotoxic studies have shown that they contain MPO, but it is not clear that these granules are biochemically identical in other respects to the later crystalloidal-containing granules that are clearly a part of the lysosomal system (12–14). Previous work has demonstrated that in mature eosinophils phagocytosis is stimulated by antigen–antibody complexes and that granules are released into the phagocytic vacuoles (14–16) but not into the extracellular space. In vitro studies have demonstrated a substance in the eosinophil granule, thought to be associated with myeloperoxidase, which causes the disruption of mast cells (17, 18). These studies hint that we may be viewing a component of an inflammatory response. Further investigation of the chemical content of these granules is clearly indicated.

Summary. This study indicates that the primary large homogenous dense granules of eosinophilic promyelocytes are released into the extracellular space of the marrow by exocytosis while the cell is producing new secretory granules. This process appears to occur in two steps: Initial fusion of several individual granules to form one large myeloperoxidase positive membrane-delimited body, followed by exocytic release of the granule content. The membrane of this large secretory granule appears to be retained within the cell since empty, myeloperoxidase positive vacuolar structures remain following secretion.

The technical assistance of Ms. Dale Bloom is gratefully acknowledged.

Renal Tubular Secretion of Urate in Sheep¹ (40353)

LEON C. CHESLEY,² LOUIS W. HOLM, HAROLD R. PARKER, AND NICHOLAS S. ASSALI

Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, Brooklyn, N.Y. 11203, the Departments of Physiological Sciences and Surgery, University of California School of Veterinary Medicine, Davis, California 95616, and the Department of Obstetrics and Gynecology, University of California Medical School, Los Angeles, California 90024

Renal tubular secretion of urate appears to be the rule in amphibians (1, 2), reptiles (2, 3), and birds (2, 4), where the clearance of urate exceeds the rate of glomerular filtration. In most mammals the clearance of urate is but a fraction of the filtration rate. Although the issue has been controversial, the urate of plasma probably is freely filtrable (2, 5), and there must be a net reabsorption by the tubules. In man, the urate excreted normally is only from 5 to 10% of the quantity filtered by the glomeruli (2, 6), and for some time the erroneous interpretation was that the excretion is determined simply by the balance between filtration and reabsorption. Mere comparison of the urate clearance with that of inulin does not provide any evidence for renal tubular secretion of urate in most mammals.

The data in the present paper indicate that a net renal tubular secretion of urate normally occurs in sheep, as shown by the ratio of the clearances of urate and inulin.

Material and methods. Renal clearances of inulin and urate were measured in seven ewes; two were normal nonpregnant sheep, three were in the last weeks of normal pregnancies, and two, near term, were moribund with ovine toxemia of pregnancy. The five normal ewes stood during the procedure and the two toxemic sheep lay on their sides.

Inulin was injected as a priming dose and given by constant infusion in 5% dextrose at 4 ml/min, in amounts calculated to maintain the level in plasma at about 30 mg/100 ml. An hour was allowed for equilibration and the establishment of nearly constant rates of urinary flow before beginning the three clearance periods. Urine was obtained by Foley catheter, with two rinses of the bladder, each with 30 ml of water and about 30 ml of air. Venous blood samples were taken at the midpoint minus 5 min between collections of urine. Serum was used for the analysis. In the normal sheep the clearance periods were from 20 to 30 min; in the two oliguric sick animals the periods were from 1 to 2 hr.

In preliminary experiments, we found that the sera of blood samples from sheep (controls) had high blank readings in the method of Roe, Epstein, and Goldstein (7) for the measurement of inulin, presumably because of endogenous fructose. In each measurement of serum inulin we corrected for the blank for the particular animal, on the unproved assumption that the blank did not change significantly during the course of the observations.

We also found that urate in serum was indetectable by Folin's (8) indirect method, although urinary concentrations were so high as to necessitate dilutions of from 50 to 100 times for analysis. We considered the possibility that some complex of urate in serum is precipitated by tungstic acid, or that there is some inhibitor of the chromogenic reaction in serum. Folin's indirect method, however, gave readable levels of color in sera that did not react in the direct method. In two experiments the indirect method gave nearly identical values in ultrafiltrates and in tungstic acid filtrates of sera. We then used both the direct and indirect methods for: (a) Diluted urines and tungstic acid filtrates of sera; (b) the same, previously treated with uricase; (c) the same, to which known amounts of urate had been added, (d) analyzed as such, and (e) analyzed after treatment with uricase. Water and reagent blanks

¹ This study, made in 1960, was supported by grants from the National Institutes of Health, U.S. Public Health Service.
² Address requests for reprints to Leon C. Chesley, Ph.D., Box 24, 450 Clarkson Avenue, Brooklyn, NY 11203.
were carried through all procedures. When uricase was used, each of 2 ml of water, 2 ml of diluted urine, and 5 ml of serum were placed in 50 ml volumetric flasks and 5 ml of borate buffer at pH 9.2, 50 mg of uricase, and 10 ml of distilled water were added to each. After incubation at 45° for 2 hr, 1 ml of 10% sodium tungstate was added to each and then 8 ml of N/12 sulfuric acid, slowly and with constant mixing. The preparations were diluted to volume, mixed, and filtered after standing for 10 minutes. Folin's methods were then applied to the filtrates. All readings were made with a Coleman junior spectrophotometer.

Although Folin's indirect method always gave readable color in filtrates of serum, we modified the method by precipitating the silver salt of urate from five times the usual volume of filtrate. That is, in the analysis of human serum, Folin used 5 ml of filtrate, representing 0.5 ml of serum; for measurements in ovine serum we used 25 ml of filtrate, representing 2.5 ml of serum, because of the low concentrations that ranged from 0.1 to 0.2 mg/100 ml in the normal animals and were 0.32 and 0.74 in those with toxemia.

The urate clearances that we report are based upon serum urate as measured by the modified indirect method, and urinary urate as measured by the direct method.

Results. Chromogens in urine and serum. The urinary substance(s) that developed color in both direct and indirect methods for urate was really urate, as indicated by the destruction of from 96.4 to 100% of the chromogen by uricase. Uricase destroyed virtually all of the chromogen in serum. Moreover, the indirect method is alleged to be specific for urate (8), and the clearances were calculated from indirect measurements of urate in serum.

Recovery of urate added to urine and serum. Urinary and serum samples were mixed with equal volumes of an aqueous solution containing 0.02 mg/ml of uric acid. After standing, one aliquot was treated with uricase, as described above. The treated and untreated aliquots were then carried through the direct and indirect procedures. The recovery of urate varied from 93.5 to 108% (average, 99.6%) in the direct method and from 88 to 104% (average 96.0%) in the indirect method.

The amount of urate added to diluted urine was well within the range of the endogenous levels measured. Unfortunately, we added far too much to serum and the recoveries do not validate the estimates of endogenous levels, even though we used five times the usual volume of filtrate in the measurements.

Inulin clearances. As shown in Table I, the mean inulin clearances in the three normal pregnant ewes were 101.98, and 115 ml/min; in the two normal nonpregnant sheep they were 73 and 70 ml/min. The clearances are well within the range that Parry and Taylor (9) observed and collected from the literature. The apparent clearances in the two sick animals varied greatly from period to period, cannot be averaged, and clearly are unreliable, perhaps because of varying delivery of urine from the ureters to the bladder in the oliguric ewes. Nevertheless, the ratios of urate/inulin clearances seem valid; we report them because they are consistent with the findings in the normal sheep, despite the profound depression in renal function.

Ururate clearances. In every clearance period in every animal, pregnant or not, normal or sick, the urate clearance was greater than the simultaneous inulin clearance by from 52 to 290%, with consistent ratios from period to period in each animal. The ratio of urate clearance/inulin clearance averaged 2.46 for all observations.

Folin (8) wrote that the direct method,

<table>
<thead>
<tr>
<th>TABLE 1. RENAL CLEARANCES OF INULIN AND URATE IN SHEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Pregnant</td>
</tr>
<tr>
<td>Pregnant</td>
</tr>
<tr>
<td>Pregnant</td>
</tr>
<tr>
<td>Non pregnant</td>
</tr>
<tr>
<td>Non pregnant</td>
</tr>
<tr>
<td>Toxemic</td>
</tr>
<tr>
<td>Toxemic</td>
</tr>
</tbody>
</table>
which we used for urine, gives urinary values that "were nearly always from 5% to over 10% higher than those obtained by the indirect method applied to diluted urines." Thus, the clearances that we report are too high by that range of percentages, but it is obvious that the clearance of urate is so much greater than that of inulin that an error of 10% is of little significance.

Thus, on the average, more than half of the excreted urate must have been secreted by the tubules. Nearly all, or all, may have been if the filtered urate had been reabsorbed, as it is in man.

Discussion. Renal tubular secretion of urate appears to be a phylogenetically ancient process that may have persisted in many, if not all, higher animals despite the later superimposition of tubular reabsorption of the substance. The current concept (2, 10) is that there are four processes involved in the excretion of urate by man and probably by other mammals. (a) Glomerular filtration of urate, (b) tubular reabsorption of nearly all of the filtered urate, (c) tubular secretion of urate, and (d) tubular reabsorption of some of the secreted urate (postsecretory reabsorption).

Praetorius and Kirk (11) described an anomalous young man with marked hypouricemia whose renal clearance of urate exceeded that of inulin; he, therefore, must have had renal tubular secretion of urate. Gutman, Yü, and Berger (12) demonstrated ratios of excreted urate/filtered urate greater than 1.0 in gouty and normal men who were loaded with a potent uricosuric agent (sulfinpyrazone), thus clearly showing tubular secretion of urate in that circumstance. They suggested that in man perhaps all of the filtered urate normally is reabsorbed and whatever is excreted reaches the urine by tubular secretion.

The dalmatian coach hound is exception in that the renal clearances of urate and creatinine are virtually identical (13), or the urine clearance is the greater of the two (14).

Poulsen and Praetorius (15) observed that in the rabbit the ratio of endogenous urate to creatinine clearance averaged 0.40, with a single maximal value of 0.75. They infused urate to increase its concentrations in plasma of from 2 to 5 μg/ml up to from 10 to 30 μg/ml, and found that the ratio of \(C_{U/} / C_{Cr} \) increased to an average of 1.77 (range of 1.25–3.0 in 32 clearance periods). That is, the infusion of urate had stimulated a net tubular secretion of the substance.

Fanelli et al. (16) studied seven species of Old World monkeys and found that the urate clearance exceeded the inulin clearance in all but the bushbaby. In 12 species of New World monkeys, in the gibbon, and in the chimpanzee, the urate clearance was less than the inulin clearance in all but the red howler. Because of the low concentrations of urate in plasma, Fanelli et al. loaded the animals with urate "when indicated", and whether any animal showed a net tubular secretion of urate in the absence of loading is not specified. Net tubular secretion of urate has been observed in goats (2), calves (2), pigs (19), and guinea pigs (2, 18), but urate had been infused to raise its level in plasma. Mudge, McAlary, and Berndt (18), in their study of guinea pigs, usually infused urate but did find net tubular secretion of urate in four animals whose endogenous clearances were measured. Simmonds, Cameron, and Potter (19) recently reported that the renal clearance of endogenous urate exceeds that of inulin in pigs. Thus, the sheep is not unique in having a net tubular secretion of urate.

Summary. The simultaneous renal clearances of endogenous urate and of inulin were measured in five normal ewes, three pregnant and two not, and in two sheep moribund with ovine toxemia of pregnancy. The urate clearance exceeded the inulin clearance in every period in each sheep, with the ratio ranging from 1.7 to 3.2 and averaging 2.46.

3. Friedman, M., and Byers, S. O., J. Biol. Chem. 175, 727 (1948).

Effects of Tetraethylammonium and Manganese on Mesenteric Vasoconstrictor Escape

GORDON ROSS AND JOSHUA BELSKY

Department of Physiology, UCLA School of Medicine, Los Angeles, California 90024

The \textit{in vitro} contractile response of cat mesenteric arterial rings to norepinephrine (NE) is frequently a phasic contraction which reaches a peak in 1–2 min and then fades ("escapes") despite the continuing presence of NE. An earlier study from this laboratory (1) showed that the phasic contraction could be converted to a tonic (nonescaping) response by (a) reducing the external calcium concentration, (b) pretreating with verapamil or (c) depolarizing the vessel by increasing the external potassium–ion concentration. These observations suggested that the phasic response of the cat mesenteric artery might be associated with calcium-dependent action potentials ("calcium spikes"). If this were so, tetraethylammonium which augments calcium spikes should enhance the phasic contraction whereas manganese, which inhibits calcium-spikes, should diminish it (2).

\textbf{Methods.} Male cats weighing 3–5 kg were anesthetized with intraperitoneal sodium pentobarbital 40 mg/kg. The superior mesenteric artery was dissected free of connective tissue \textit{in situ} and then removed. Rings 2–5 mm long and about 1 mm in diameter were cut from the artery and placed in a physiological salt solution (PSS) containing (in mM): NaCl 123, KCl 5, CaCl$_2$ 1.6, MgCl$_2$ 1.2, NaHCO$_3$ 25, CaNa$_2$EDTA 0.026, ascorbic acid 0.01 and glucose 11.1. This solution, referred to as regular PSS, was aerated with 95% O$_2$, 5% CO$_2$; its pH was 7.4. The arterial ring was mounted between a stationary stainless steel rod and a Statham UC-2 strain gauge connected to a Hewlett-Packard 7700 recorder. The mounted ring was immersed in a 20 ml bath containing PSS solution at 37$^\circ$C and was stretched during the equilibration period to maintain a force of approximately 500 dynes. Every 20 min, NE (Levophed, Winthrop Laboratories) was added to the bath and washed out after 5 min. Two more washes were performed before the next NE dose was applied. Two to four hours were required to achieve stable responses. The effects of tetraethylammonium (TEA) 0.06–10.0 mM were studied by adding TEA chloride (J. T. Baker Chemical Company) to the bath 5 min before each NE test dose. The effects of higher TEA concentrations were studied by substituting equimolar amounts of NaCl by TEA Cl.

Some experiments were performed after depolarizing the vessel rings by substituting the regular PSS in the bath with a depolarizing solution containing (mM) KCl 3, KHCO$_3$ 25, K$_2$SO$_4$ 86, CaCl$_2$ 1.6, MgCl$_2$ 1.2, CaNa$_2$EDTA 0.026, ascorbic acid 0.01 and glucose 1.1.

Statistical significance was determined by Student's t test for paired comparisons.

\textbf{Results. Effects of TEA alone.} Concentrations of TEA below 40 mM had no effect on resting tension in any artery. Higher concentrations induced weak tonic contractions in arteries from six of seven animals. The threshold was between 40 to 80 mM in four arteries and between 80 to 120 mM in two. The TEA contractions never exceeded 15% of the maximum NE response.

\textbf{Effects of TEA on the NE response.} Figure 1 shows the responses of a mesenteric arterial ring to increasing doses of NE and the effects of 2 mM TEA. Note that before TEA, NE 10^{-7} g/ml, a dose close to threshold, produced a tonic contraction of 200 mg. The same NE dose, after pretreatment with TEA, caused a series of phasic contractions with a peak force of 2.8 g after 2 min. Force then declined, despite the continuing presence of NE, to a steady-state force of 300 mg. The figure also shows that TEA enhances the initial component of phasic contractions but not the steady-state response. Additionally, it is seen that the maximum phasic response to NE (3 \times 10^{-5} g/ml) was 4 g before TEA and was

---7-9727/78/1593-0390$01.00/0

\textcopyright 1978 by the Society for Experimental Biology and Medicine

\textit{sup}2 Supported by USPHS Grant No. HL 18199.
TEA AND Mn ON VASOCONSTRICTOR ESCAPE

![Graph](image)

1. Contractile responses of cat mesenteric artery to NE before and after TEA. Numbers indicate concentrations (g/ml). Upper traces: before TEA. Lower traces: after pretreatment with 2 mM TEA. Time bars 5 min. The black bar below each trace indicates period during which NE remained in contact with vessel.

494.0×765.0

were transferred to depolarizing PSS a substantial contracture developed. The addition of NE produced a tonic increase in this contracture. Pretreatment of the vessel with 2 mM TEA had no significant effect (P > 0.1) on the response either to depolarizing PSS or the subsequent addition of NE (n = 5). An example is shown in Fig. 4.

Effects of Manganese on the NE response (four cats). Segments which gave phasic responses to NE were exposed to MnCl₂ for 10 min prior to and during the addition of NE. Manganese concentrations in the range 0.04–0.1 mM reduced the phasic component of the NE response whereas manganese concentrations in the range 0.1–0.3 mM abolished them. An example is shown in Fig. 5.

Discussion. A number of investigators (2–6) presented to 5 g after TEA.

Thirty-eight percent of mesenteric rings did not contract at NE concentrations but showed sub- tonic responses to all doses of NE. These responses were not converted into phasic contractions; attained higher peaks but then escaped at levels of force lower than those seen in the absence of TEA.

differential effects of TEA on the contractile and steady-state components of the contractile response were examined quantitatively in rings from 12 cats. An approximately dose of NE was determined for each cat and the effects of pretreating the vessel with varying doses of TEA over range 0.06–12.5 mM were measured (Fig. 3A). A caused a dose-dependent potentiation of the initial component of the NE response. In contrast, TEA inhibited the steady-state component. These effects were maximal at a TEA concentration of 20 mM.

Effects of TEA on NE response in calcium-free solution. After 20 min exposure to calcium-free PSS solution, the response to NE was reduced and its phasic character altered. The response to a maximal NE dose 4 ± 0.4 g (n = 4) in regular PSS solution by 0.1 ± 0.05 g (n = 4) in calcium-free PSS. Treatment with TEA had no significant (P > 0.1) on the NE contractures of arterial rings in calcium-free PSS. An example is shown in Fig. 3.

Effects of TEA on NE response in depolarizing PSS. When mesenteric arterial rings

![Graph](image)

FIG. 2. Effect of pretreatment with various concentrations of TEA on peak (•—•) and steady-state (O—O) responses to approximately Emax NE doses. TEA concentrations between 0.06 and 2.0 mM were tested in five cats. TEA concentrations between 10 and 20 mM were tested in another group of seven cats. The abscissa scale is logarithmic. The effects are shown as percent changes from control. Values are means ± SE.

![Graph](image)

FIG. 3. Failure of TEA to alter NE response in calcium-free solution. A—before TEA, NE 3 × 10⁻⁷ g/ml produced a tonic contracture of only 100 mg. B—after 10 min pretreatment with 2 mM TEA the NE response was unchanged. Contrast this with the effect of TEA on the same dose of NE in regular PSS (Fig. 1). Time bar = 5 min.
have previously shown that TEA augments the responses of isolated arterial strips to a variety of agonists. Kalsner (5) suggested that the augmentation was due to enhanced calcium mobilization. Haessler and Thorens (6) obtained direct evidence for this by showing that 10 mM TEA enhanced calcium influx in isolated rabbit pulmonary arteries. They also showed that 10–100 mM TEA induced a dose-dependent depolarization of pulmonary arterial smooth muscle.

All previous studies of TEA potentiation of arterial vasoconstrictor responses have used preparations which show only tonic responses to agonists. The present investigation is the first to examine the effects of TEA and manganese on a vessel which commonly shows a striking "fade" or "escape" of the mechanical response during continuing NE exposure. The principal findings were that (a) TEA potentiated the initial component of the NE response but not the steady-state response; (b) TEA potentiation did not occur in completely depolarized vessels or in vessels exposed to calcium-free solution; (3) manganese inhibited the initial component but not the steady-state component of the NE response. These observations suggest that the steady-state response is dependent upon a different excitation or excitation-contraction coupling mechanism than the initial portion of the response. In a previous paper (1) it was reported that NE-induced phasic contractions of cat mesenteric arteries were blocked by pretreatment with calcium-free solution, verapamil or potassium-rich solutions and it was suggested that the phasic response might be associated with calcium-spikes. The present observations support this view. TEA augments calcium-spikes by blocking the late potential-dependent increase in potassium conductance which limits the degree of depolarization which can be induced by calcium influx (2). Thus, contractions dependent upon calcium spikes should be potentiated by TEA. This was clearly the case for the initial component of the mesenteric NE response (Figs. 1, 3). In contrast, the steady-state response was inhibited by TEA. The mechanism of this inhibitory effect is not revealed by these experiments, but the very absence of potentiation indicates that this part of the response is not based on calcium-spikes and may be dependent upon pharmacomechanical coupling. The fact that the mesenteric artery will respond to NE when completely depolarized and that TEA does not alter the response supports this view.

Manganese is known to block calcium-spikes in many tissues (2) and in the low concentrations used in our experiments, it blocked the phasic component of the NE response but not the steady-state response. The effects of TEA and manganese, therefore, appear to support the hypothesis that mesenteric vasoconstrictor escape may be due to the inability of mesenteric arterial smooth muscle to sustain action potentials for more than a minute or two following NE administration.

Summary. Norepinephrine (NE) induced either phasic or tonic contractions in isolated rings of cat mesenteric arteries. Tetraethylammonium (TEA), 0.6–120 mM enhanced the peak contractile response to NE but reduced the steady-state response. Manganese, 0.06–0.12 mM, inhibited the peak NE response with no effect on steady-state force development. TEA-potentiation was maximal at 2–20 mM. No potentiation occurred in calcium-free solutions or when the vessel was depolarized by high external potassium concentrations. These observations provide

Fig. 5. Effects of MnCl₂ (numbers indicate mM) on the mesenteric arterial response to NE.

Fig. 4. Effects of TEA on the NE response of a mesenteric arterial ring treated with depolarizing solution (DPSS). Note that DPSS produces a large tonic contraction which is augmented by NE. The response before TEA (A) does not differ significantly from the response after 10 min pretreatment with 2 mM TEA (B). Time bar = 5 min.
circumstantial evidence that mesenteric vasoconstriction may be associated with "calcium-spike" activity and that vasoconstrictor escape may be due to fading of this activity.

Mammary Arterial and Venous Concentrations of Serum Insulin in Lactating Dairy Cows (40355)

N. F. G. Beck and H. A. Tucker
Animal Reproduction Laboratory, Department of Dairy Science, Michigan State University, East Lansing, Michigan 48824

Insulin is essential for lactation (1). Concentrations of insulin in plasma increase with lactogenesis in rats (2) and increase in sera of cows as lactation progresses (3, 4). Furthermore, blood collected from cows immediately after milking contained greater concentrations of insulin than blood collected 2–4 hr before or 1 hr after milking (3). Presumably for insulin to affect mammary tissue it must be removed from blood and bound to mammary cells. Indeed in vitro studies of mammary epithelial cells from lactating mice showed that 125I-insulin binds to membrane receptors (5). The primary objective of the present study was to measure arteriovenous (A-V) differences in serum insulin across the mammary glands of cows around milking.

Materials and methods: Twelve Holstein cows, six lactating 5–12 weeks and six lactating 37–57 weeks were used. Cows were maintained in stanchions and fed a ration of 18 kg of corn silage, 4.5 kg alfalfa-grass hay and 1 kg of grain concentrate per 2.5 kg of milk produced. Water was provided ad libitum.

One cannula was implanted surgically into an external pudendal artery and another into a subcutaneous abdominal mammary vein as previously described (6). Experiments commenced 3–5 days after surgery when milk yields approximated pre-surgery quantities.

Cannulas were flushed approximately 2 hr before each experiment and blood was collected and discarded every 15 min to accustom cows to sampling. Arterial and venous samples of blood were collected simultaneously on three consecutive afternoons at 30, 25, 20, 15, 10, 8, 6, 4, 2 and 0 min before milking and at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, and 60 min after milking. At time 0 the mammary glands were washed for 20–30 sec and then milked for 3–5 min with a mechanical milking machine. Milking occurred at approximately 1500 hr each day. Blood was stored at $\approx 25^\circ$ for 2 hr, at 5° for 24–36 hr and then centrifuged at 2500g for 15 min. Sera were stored frozen at -20° prior to assay for insulin. Radioimmunoassay for insulin was as described previously (3, 7). Standard bovine insulin (Lot No. 795372: 24.2 units/mg) was provided by Eli Lilly and Co. (Indianapolis, IN). Hormone concentrations were determined in duplicate in each serum sample and accepted when agreement between duplicates was within $\pm 5\%$. Within each time of sampling insulin concentrations were averaged across the three experimental replicates (days) for each cow. These values were used in a split-plot analysis of variance (8).

Results. Insulin in arterial and venous sera of cows lactating 5–12 weeks averaged (±SE) overall throughout the experiment 2.7 ± 0.4 and 2.6 ± 0.4 ng/ml, respectively (Fig. 1). In cows lactating 37–57 weeks insulin averaged 3.6 ± 0.2 and 3.4 ± 0.1 ng/ml, respectively. Insulin was greater in arterial ($P = 0.08$) and venous ($P = 0.09$) sera of cows lactating 37–57 weeks as compared with insulin in cows lactating 5–12 weeks. Stimuli associated with milking did not affect concentrations of serum insulin in either early or late lactating cows.

For the 30 min before milking, mammary arterial concentrations of insulin were 0.13 ± 0.04 ng/ml greater ($P < 0.05$) than venous concentrations in cows 5–12 weeks postpartum. In cows lactating 37–57 weeks the A-V difference was 0.22 ± 0.08 ng/ml, but this difference was not significant ($P > 0.05$). During the 20 min beginning at milking arterial concentrations of insulin were greater ($P < 0.05$) than venous concentrations in

1. Michigan Agricultural Experimental Station Journal Article No. 8599. This research was supported in part by USPHS Grant No. AM-15899.

1. Insulin concentrations in serum samples from early (5–12 weeks postpartum) lactating (arterial \(\triangle \); venous \(-\)) and late (37 to 57 weeks postpartum) lactating (arterial \(\Delta \); venous \(-\)) cows during and after milking which began at 0 min and lasted 3–5 min. Each point is the mean serum insulin concentration from three replicates in each of six cows. Pooled SE among early lactating cows were 0.4 and 0.4 ng/ml arterial and venous samples, respectively. Among late lactating cows the pooled SE were 0.2 for arterial s and 0.1 ng/ml for venous samples, respectively.

\[0.12 \pm 0.03 \text{ ng/ml} \] and late \(0.17 \pm 0.14 \text{ ng/ml} \) lactating cows. Between 30 and in postmilking, the A-V differences in trations of insulin in cows 5–12 weeks artum \(0.20 \pm 0.09 \text{ ng/ml} \) or 37–57 t postpartum \(0.23 \pm 0.14 \text{ ng/ml} \) were gnificant \((P > 0.05) \). Stage of lactation ot affect \((P > 0.05) \) A-V differences in n.

investigate mammary uptake of insulin, nary blood flow (MBF) was calculated the equation of Kronfeld et al. (9) in MBF = 1.0 + 0.42 \(\times \), where \(\times \) is daily yield. Daily milk yields averaged 22.9 early lactating cows and 13 kg in late ors. Thus, MBF were estimated to be nd 6.5 liters/min. A-V differences avd 0.15 and 0.21 ng/ml for cows in early ate lactation, respectively. Theoretical nary uptakes of insulin (calculated by plying MBF by A-V differences) were id 1.4 \(\mu \text{g/min} \) in early and late lactating ym. The greater concentrations of serum insulin observed in late lactating cows producing 43% less milk per day compared with early lactating cows agrees with previous reports (3, 4). In dairy cows, serum insulin concentrations are negatively correlated with milk yield (3), and greater concentrations of serum insulin in beef cattle, compared with dairy cattle, may be associated with their lower rate of milk production (10). Also, administration of insulin suppresses milk yields in cattle unless exogenous glucose is supplied simultaneously (11). Since numbers of mammary
secretory cells decrease with advancing lactation or decreasing milk yields (12) while total uptake of insulin remained essentially constant, the uptake of insulin per mammary cell theoretically increases with advancing lactation. If and how the theoretically greater uptakes of insulin per mammary cell are associated with suppression of milk synthesis remains to be determined. On the other hand, serum insulin increases as feed intake increases relative to maintenance requirements (13). In our study early and late lactating cows were fed the same rations. Most likely the late lactating cows were fed in excess of requirements for milk yield. Thus, the increased serum insulin during late lactation may be related to diet and only coincidentally related to milk production.

Summary. Insulin averaged 2.6 ng/ml in mammary arterial and venous sera collected from 30 min before to 70 min after milking of cows lactating 5–12 weeks. During the same period in cows lactating 37–57 weeks insulin increased to 3.5 ng/ml. Milking did not affect insulin concentrations during early or late lactation. Arteriovenous (A-V) differences averaged 0.17, 0.14 and 0.22 ng/ml for 30 min before, 0–20 min after and 30–70 min after milking. Stage of lactation (and yield of milk) did not affect A-V differences. Mammary uptakes of insulin averaged 1.6 and 1.4 μg/min in early and late lactating cows, respectively. Maintenance of uptakes of insulin may be associated with uptake of metabolites essential for maintenance of lactation.

The authors gratefully acknowledge the assistance of Drs. W. D. Oxender, D. J. Krahwinkle and T. W. Riebold for developing surgical techniques, and Dr. Roger NeitzeI for statistical and computer programming help.

Urinary Response to TRH and LHRH in Spontaneously Hypertensive Rats (40356)

JAMES R. SOWERS, GEORGE TEMPEL, GARTH RESCH, AND MARTA COLANTINO

Sections of Endocrinology and Physiology, University of Missouri, Kansas City, Missouri

Isolation from Wistar rats of a strain of spontaneous hypertension has provided a model for studying essential hypertension in humans. In the early stages of this hyperactivity, the young, spontaneously hypertensive rat (SHR) responds to a variety of stimuli with exaggerated blood pressure and rate rises. It has been proposed that this activity of the SHR system is increased neurohormonal stimulation due to exaggerated hypothalamic defense activity. The SHR has been noted to have a larger pituitary, thyroid, and adrenal size and to have intensified activity of the actinocerebral and ACTH-corticotid axis compared to Wistar controls. In this study, we examined the luteinizing hormone (LH) response to luteinizing hormone-releasing hormone (LHRH) and the trophic (TSH) and prolactin (PRL) responses to thyrotropin releasing hormone (TRH) in SHR and normotensive control rats in an attempt to determine if the response to these releasing hormones is altered in the SHR.

Methods and results. Fourteen male and 14 normotensive Wistar Kyoto rats weighing 180–225 g were individually caged in a dark cycle. The animals were fed and ad libitum. A 20-cm polyethylene catheter (PE 50) was inserted into the right carotid artery adjacent to the eardrum. The catheters were subcutaneously and immediately posterior to the neck muscles. Catheters were filled with heparin saline (200 USP units/ml) and sealed with a patency maintained by daily injection with 200 USP units of heparin. A 23-gauge needle was inserted into the catheter 48 hr after surgery. Mean arterial blood pressure was measured from the same cannula with a physiograph pressure transducer and recorder.

Experimental protocol. A baseline sample of 400 µl of blood for measurement of thyroxine, LH, TSH, and PRL was withdrawn from 14 SHR and 14 control rats 60 min after the animals' cannulas were opened. During the sampling, they were allowed to move about fully in their cages and appeared calm. In all experiments the intravascular volume was maintained by replacement with normal saline. Six of the SHR and 6 controls received TRH (10 µg/kg) injected and flushed through the catheter. Blood samples (400 µl) for TSH and PRL determination were withdrawn from the catheter at 10, 15, 30, and 45 min after TRH injection.

Assays of T4, TSH, PRL, and LH. Measurement of T4 was performed by a radioimmunoassay technique employing dextran charcoal to separate bound from free T4, as previously described. Serum TSH was measured by a double antibody method using reagents provided by the NIAMDD. NIH Rat TSH-RP-1 was the reference preparation. Serum PRL was measured by a double antibody radioimmunoassay using reagents provided by the RIAMD. NIHγ PRL-RP-1 served as the reference preparation. Serum LH was measured by a double antibody radioimmunoassay using reagents provided by the NIAMDD, with NIH Rat LH-RP-1 serving as the reference preparation. All measurements of each hormone were performed in duplicate in the same assay to avoid interassay variation.

Statistical differences between the responses of SHR and controls were evaluated with Student's t test for unpaired data.

Results. The mean baseline serum T4 of the SHR group (3.1 ± 0.2 µg/dl) was similar to that of the controls (3.0 ± 0.2 µg/dl). Figure 1 shows that the mean baseline serum TSH levels were higher (P < 0.05) for the SHR group (1700 ± 325 ng/ml) than for the control...
group (718 ± 3.4 ng/ml). The maximal ΔTSH (difference between peak responses and baseline levels) in response to TRH was greater (P < 0.01) for the SHR (6362 ± 549 ng/ml) than for the controls (2760 ± 549 ng/ml).

Figure 2 shows that the mean baseline serum PRL levels were higher (P < 0.05) for the SHR (26.1 ± 2.1 ng/ml) than for the controls (16.3 ± 2.8 ng/ml). The ΔPRL response to TRH was greater (P < 0.025) for the SHR (12.0 ± 0.8 ng/ml) than for the controls (6.2 ± 1.9 ng/ml).

Figure 3 shows that the mean baseline serum LH for the SHR (45.6 ± 12.5 ng/ml) was not significantly different from that of the controls (41.5 ± 12.4 ng/ml). The ΔLH in response to LHRH was less (P < 0.001) for the SHR (126 ± 12.8 ng/ml) than for the controls (252 ± 24.8).

The mean arterial blood pressure for the SHR group (159 ± 8.6 mm Hg) was greater (P < 0.05) than for the Wistar control group (110 ± 6.1 mm Hg).

Discussion. The results of this study suggest that spontaneously hypertensive rats (SHR) display elevated basal serum levels of TSH and PRL exaggerated TSH and PRL responses to TRH. These data cannot be explained by differences in thyroid status since the serum T4 levels were similar to the SHR and control group, a finding in contrast with previous studies which reported significantly lower T4 levels in the SHR (8, 9).

Although the baseline serum LH levels were not significantly different in SHR, the LH response to LHRH was significantly less
in the SHR than the controls. The composite findings of greater pituitary basal and stimulated TSH and PRL and suppressed LH response to LHRH is consistent with altered central dopamine metabolism. Dopamine inhibits PRL and TSH release from the pituitary and has been reported to both stimulate and inhibit LH release under different experimental conditions (10–13). Thus, altered synthesis or turnover of dopamine in the hypothalamus of SHR could account for these observations. Although decreased levels of noradrenaline have been found in the hypothalamus of young SHR (14), there are no reports of hypothalamic dopamine levels nor dopamine turnover studies in the SHR.

Results of previous studies suggest that central dopaminergic activity may be involved in blood pressure regulation (15, 16). That the central dopaminergic system plays a direct role in blood pressure regulation is suggested by animal studies showing that the antihypertensive effect of L-dopa is associated with an accumulation of catecholamines in the cerebral parenchyma (15) and a decrease in central sympathetic outflow (16). It is thus possible that altered central dopaminergic activity in the SHR could contribute to the development of hypertension as well as the alterations in pituitary release of TSH, PRL, and LH observed in this study.

Summary. The LH response to LHRH and the TSH and PRL response to TRH were examined in spontaneously hypertensive rats and normotensive control Wistar rats to determine if the pituitary response to these releasing hormones is altered in the hypertensive rats. Although basal levels of LH were similar in the two groups of rats, the LH response to LHRH was significantly less in the hypertensive rats than in the normotensive controls. The spontaneously hypertensive rats had higher basal levels of TSH and PRL and significantly greater TSH and PRL responses to TRH. The results of this study suggest that the hypothalamo-pituitary axis is altered in the spontaneously hypertensive rat.

Epidermal Growth Factor Stimulates Ornithine Decarboxylase Activity in the Digestive Tract of Mouse (40357)

EDWARD J. FELDMAN, DOROTHEA AURES, AND MORTON I. GROSSMAN
VA Wadsworth Hospital Center and UCLA School of Medicine, Los Angeles, California

Urogastrone (UG), extracted from human urine, and epidermal growth factor (EGF), extracted from mouse salivary glands, are polypeptides that have the same biologic actions and are highly homologous in amino acid sequence (1). Both molecules have 53 amino acid residues of which 37 are identical. It is reasonable to assume that the differences in amino acid sequence between UG and EGF are species differences and that within any one species urinary UG and salivary EGF will probably be found to be identical.

In 1938, Sandweiss and colleagues, noting that pregnant women have a low incidence of duodenal ulcer disease, demonstrated that extracts from the urine of pregnant women promoted the healing of experimentally produced (Mann-Williamson) ulcers in dog (2). Soon afterwards, urine extracts from normal men and women as well as from pregnant women were shown to contain a potent inhibitor of gastric acid secretion to which the name urogastrone was given (uro-urine, gastr-stomach, one-inhibitor) (3).

In 1975, H. Gregory reported the amino acid sequence of purified urogastrone (1). He recognized that urogastrone was highly homologous with another polypeptide, epidermal growth factor, described by Savage and Cohen in 1972 (4).

Epidermal growth factor stimulates proliferation and keratinization of epidermal tissue and promotes precocious eye opening and tooth eruption in neonatal mice. In addition, EGF has been shown to stimulate epithelial cell proliferation in cultured chick, mouse and human cells (5). Finally, EGF has been shown to increase 1-ornithine carboxylase (EC 4.1.1.17) activity in mouse skin (6). This enzyme, ornithine decarboxylase, is an important step in the biosynthetic pathway of the polyamines—putrescine, spermidine and spermine (7). Polyamine production is an index of tissue growth since induction of these substances is closely related to the burst of intracellular activity preceding actual cell synthesis.

Mouse salivary gland EGF and human urinary UG share all of the biologic actions for which they have been tested. Thus, mEGF inhibits gastric acid secretion as effectively as hUG in rats and dogs. Conversely, hUG is equipotent with mEGF in causing precocious eye opening in newborn mice and in stimulating uptake of an amino acid and in displacing labeled UG or EGF from receptor sites in cultured human fibroblasts (8).

Since UG has certain gastrointestinal actions such as inhibition of gastric acid secretion and stimulation of healing of experimental ulcers, it seems reasonable to inquire whether UG and EGF stimulate epithelial growth of the gastrointestinal tract as they do in the epidermal structures.

To examine this question, Stastny and Cohen's model of induction of ornithine decarboxylase by mouse EGF in neonatal mice was employed (6).

Materials and methods. Eight day old mice paired by weight from the same litter were injected subcutaneously on the dorsal surface using a 27 gauge needle with either mEGF (6 µg g⁻¹ body wt in water given as a solution containing 220 µg ml⁻¹) or an equivalent volume of water for the control animals. The EGF used was generously provided by H. Gregory, ICI Pharmaceuticals, England. The mice were then returned to their mother where apparent normal feeding patterns continued.

Four hours later the animals were killed by cervical compression and 10–20 mg tissue samples were removed for study from the stomach (whole organ), duodenum (pylorus to 2 cm distal), midgut (from 7 to 10 cm distal to pylorus), colon (mid-cecum to rectum) and heart. The samples were homogenized in all glass tissue grinders (Ten Boeck type) in 50 mM sodium-potassium phosphate buffer (9 vol g⁻¹), pH 7.2, containing 1 mM EDTA.
enediamine-tetraacetic acid–disodium and 5 mM dithiothreitol, then centrifuged at 100,000g for 15 min. Samples from four different samples were added to incubation containing 0.2 mM pyridoxal-5-phosphate, 0.5 mM l-ornithine and 0.5 μCi of l-ornithine in a total volume of 0.5 ml of me buffer. “Blanks” were without tissue or with heat inactivated tissue extract. Released CO₂, a plastic cup containing II piece of cotton impregnated with 0.2 0.5 M Protosol (New England Nuclear), quickly alkaline tissue solubilizer was supplied above the incubate by a glass nail. System had an air tight seal and was ated at 37°C. To insure complete CO₂ e, the incubation mixture was acidified ding 0.5 ml of 0.5 N HClO₄ for 60 mm. ups were then transferred to liquid scint tion vials and counted. CPM’s were con to equivalent quantities of CO₂ and used as pmoles of CO₂ liberated from l -ornithine per mg protein or tissue wet t per hour incubation. Student’s paired was used for statistical analysis.

ultis Validation. Figure 1 demonstrates the relationship between quantity of various tissues studied and enzyme activity and shows a linear relationship between the on of incubation and enzyme activity. on demonstrated a non-linear activity after 20 min incubation time.

α-methyl-ornithine, a competitive inhibition under our incubation conditions, the α-methyl-ornithine concentrations required were: stomach, 4 × 10⁻³ M; duodenum and midgut, 1.8 × 10⁻³ M; heart, 1.5 × 10⁻³ M; and colon, 4 × 10⁻³ M.

Initial experiments using homogenates of ventral surface skin demonstrated a significant rise in ornithine decarboxylase (13.0 ± .61 nmoles CO₂ liberated from 1-[¹⁴C]l-ornithine per mg protein in the EGF group versus 9.2 ± .56 in the control group; N = 10, P < .01), confirming the results of Stasny and Cohen.

mEGF experiment. Results are shown in Fig. 3. In the animals pretreated with mEGF there was a significant elevation of ornithine decarboxylase activity in two tissues, the stomach and the duodenum. The increases in the midgut and the colon were not statistically significant. The control tissue, heart, demonstrated no difference.

Discussion. From these results it is concluded that EGF, and therefore probably also UG, stimulates an increase in ornithine decarboxylase activity in the stomach and duodenum of neonatal mice. This suggests a possible physiologic role for EGF in controlling mucosal growth in the proximal digestive tract.

It is of interest that in the control tissue, heart, ornithine decarboxylase can be induced by another stimulus, stress, in the form of aortic constriction (10).

A further hypothesis is suggested from this study. Human urogastrone has been identified by immunofluorescent techniques in the salivary glands and duodenal Brunner's
glands of man (11). This latter location is the most common site for peptic ulceration. Since an increase in secretion of acid and pepsin is not present in many ulcer patients, a decrease in a hypothetical "tissue resistance factor" is assumed to be involved. The nature of this factor is not clear but this study suggests that urogastrone should be considered as a candidate for this role.

Summary. This study examined the effect of EGF (6 μg g⁻¹ body wt, subcutaneously) on OD concentration in stomach, duodenum, midgut and colon, as well as a control tissue, heart, in 8-day-old mice. The animals were killed 4 hr after either EGF or control water injections. OD activity, expressed as picomoles of CO₂ liberated from 1-[¹⁴C]L-ornithine per mg wet weight tissue, was significantly higher in the animals given EGF than in controls in the stomach (EGF 29.9 ± 6.8; control 9.9 ± 3.6, P < .05) and the duodenum (EGF 51.7 ± 16.9; control 6.5 ± 4.3, P < .05) but not in the midgut, colon or heart. It is concluded that epidermal growth factor stimulated ornithine decarboxylase activity in the stomach and duodenum of neonatal mice suggesting a possible role for EGF (or urogastrone) in mucosal repair and defense in these tissues.

This study was supported by the National Institute of Arthritis, Metabolism and Digestive Disease Grant 17328 to CURE (Center for Ulcer Research and Education), and by a Veterans Administration Senior Medical Investigatorship (M. I. Grossman) and Research Associateship (E. J. Feldman). We thank Ruth Abercrombie and Kuwa Chou for assistance in preparation of the manuscript and illustrations.

The course of a study on the kinetic properties of β-glucuronidase (EC 3.2.3.1) of synovial fluid evidence was obtained for the presence of an endogenous factor of this enzyme. The interest for this enzyme is the fact that carcinogenic substances in inflammatory joint diseases are caused by the degradation of synovial fluid proteins on the connective tissue (2, 3). According to views on the extent of this digestion also depend on the level of specific inhibitory enzymes of the various degradative enzymes. An inhibitor of chondromucopolysaccharide has been found in synovial fluids of patients with inflammatory diseases (4). An inhibitor of collagenase, present in synovial fluids of rheumatoid arthritis patients (5, 6), has been found in synovial fluid and serum (7). More, two inhibitors of proteinases, presumably identical to serum α1-antitrypsin (α1-AT) and α2-macroglobulin (α2-M) have been detected in human synovial fluid.

Presence of an inhibitor of β-glucuronidase, which participates in the metabolism of glycosaminoglycans in a condition with hyaluronidase (9), suggests that the spectrum of enzyme activities are regulated in the extracellular compartments of the active tissue. This report describes the purification of the inhibitor present in the fluid and allows the identification of the compound.

Material and Methods. Synovial fluid collection. Human synovial fluids were obtained from the knee joint of patients with inflammatory and degenerative joint disease aseptically obtained and frozen at −80°C. The samples were thawed, freed of elements by centrifugation, and divided into fractions with bacterial hyaluronidase (Miles-Servac, USA) as previously reported (1). After dialysis, synovial fluids were fractionated by gel filtration through a column of Sephadex G-200 (90 × 2.5 cm). Proteins were eluted with 20 mM Tris-HCl buffer, pH 8, containing 0.17 M NaCl and 10 mM CaCl₂, at a flow rate of 6 ml/hr. Fractions of two ml were collected, pooled (as indicated in the Results section), concentrated by ultrafiltration and examined for inhibitory activity. Further purification of the proteins with the lowest molecular weight was achieved by ion exchange chromatography in a column of DEAE A 52 (14 × 2 cm), equilibrated with 50 mM Tris-HCl buffer, pH 8. Elution with this buffer was followed by a NaCl gradient elution, at a flow rate of 24 ml/hr. Fractions of two ml were collected, pooled (as indicated in the Results sections), concentrated by ultrafiltration and tested for their inhibitory capacity of β-glucuronidase activity.

Enzyme assay. The inhibition of the β-glucuronidase activity by the synovial fluid and by the fractions isolated therefrom was routinely assayed by using the Helix pomatia enzyme (glusulase, ENDO, USA). The following commercial human serum albumins have been used in the studies of the inhibition of the enzyme: Human Albumin (95–100%), from Immunon-Oesterreiches Institut fuer Haemodervative Ges.; Human Albumin (fatty acids free) from fraction V (SIGMA, USA). Occasionally, the extent of inhibition was also tested on a partially purified endogenous β-glucuronidase. The enzyme assay (0.2 ml) was carried out with phenolphthalein-β-D-glucuronide as substrate (1).

Analytical procedures. Dialysis was performed first against the buffer solutions and then exhaustively against deionized water. Ultrafiltration was performed using Amicon PM 30 membranes.

α2-M and α1-AT were quantitatively evaluated by single radial immunodiffusion using immunokits from Behringwerke. Proteins were determined by the method of Lowry et al.
electrophoresis on cellulose acetate strips was carried out at 1.5 mA/cm for 20 min in Tris–Barbital buffer (Gelman Instrument Co., MI) pH 8.8 (μ = 0.06). Staining was performed by soaking the strips in a 5% TCA solution containing 0.5% of Ponceau-S stain (Gelman) for 20 min. Destaining was performed by soaking the strips in 5% TCA.

Electrophoresis for the immunoassays (2% agar) were performed in Tris–Barbital buffer pH 8.4 (μ = 0.06) for 50 minutes at 50 V and 6 mA. Rabbit total antiserum (50 μl) was incubated in the troughs at room temperature for 18 hr. At the end of the electrophoresis, the plates were washed for 8 hr with several changes of physiological solution and then dried over a blotting paper under a gentle stream of air for 2 hr. Staining was performed in methanol/5% acetic acid (10:90, v/v) containing azo-carmin G (Geigy). Destaining was accomplished by soaking the plates in 5% acetic acid.

Preparative polyacrylamide gel electrophoresis was carried out according to Sottocasa et al. (11).

Results. Gel filtration through Sephadex G-200 of human synovial fluids digested with hyaluronidase resulted in the separation of three peaks. α2-M, synovial fluid β-glucuronidase and α1-AT were recovered in peaks I, II, III respectively (Fig. 1). Inhibition of snail juice β-glucuronidase activity was exhibited only by the pooled fractions of peak III.

After concentration by ultrafiltration and extensive dialysis these fractions were applied to a column of DEAE A 52. The elution profile of this column is shown in Fig. 2. The small amount of protein eluted with Tris buffer did not show any inhibitory activity. The NaCl gradient separated a single peak, which contained the β-glucuronidase inhibitor and was devoid of any α1-AT activity.

When compared to the synovial fluid and peak III of the gel filtration, the peak eluted from the DEAE column with the NaCl gradient (DEAE peak) exhibited a two-fold and four-fold increased inhibitory activity, respectively (Table I). It also showed a marked inhibition of the endogenous β-glucuronidase present in peak II of the gel filtration.

The DEAE peak was analyzed by electrophoresis on cellulose acetate. The electropherogram, stained for proteins, is shown in Fig. 3. A single protein band was observed.

Fig. 1. Gel filtration of human synovial fluid on Sephadex G-200. Peak I = fractions 50–60; peak II = fractions 75–90; peak III = fractions 100–105. (For details, see Experimental Procedures).
SYNOVIAL FLUID β-GLUCURONIDASE ALBUMIN

Fig. 2. Separation of the β-glucuronidase inhibitor by ion exchange chromatography on DEAE A 52. (For details, see Experimental Procedures).

<table>
<thead>
<tr>
<th>TABLE 1. INHIBITION OF β-GLUCURONIDASE BY PROTEIN FRACTIONS DERIVED FROM HUMAN SYNOVIAL FLUID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purification step</td>
</tr>
<tr>
<td>Synovial fluid</td>
</tr>
<tr>
<td>Peak III of Sephadex G-200</td>
</tr>
<tr>
<td>DEAE A 52 (NaCl gradient elution)</td>
</tr>
</tbody>
</table>

which migrated to a position corresponding to albumin of a serum sample analyzed in a parallel run.

By immunoelectrophoresis, the DEAE peak reacted as serum albumin (Fig. 4), giving a single symmetrical precipitin arc with rabbit antiserum to human serum.

By preparative polyacrylamide gel electrophoresis, the DEAE peak provided five subfractions (Fig. 5). Each subfraction inhibited the β-glucuronidase activity and reacted as serum albumin when tested by immunoelectrophoresis. In order to further demonstrate that albumin is the true inhibitor, we have tested also two commercial purified preparations of the compound as illustrated by Fig. 6. From the figure it appears that both preparations inhibit β-glucuronidase activity.

Discussion. Previous studies (1) have shown that the synovial fluid contains an inhibitor of β-glucuronidase, which exerts a competitive type of inhibition on the activity of both snail juice and rat liver enzyme. This inhibitor has now been purified and shown to be the albumin present in synovial fluid. The identification of albumin as the inhibitory substance is based on a comparison between the purified inhibitor and human serum albumin carried out by electrophoretic and immunologic techniques. Albumin is known for its capacity of binding a number of small molecules. Hence, the inhibition of β-glucuronidase could be due to one such molecule and not to the protein itself. This possibility seems, however, unlikely since we have previously shown that a protease treatment of synovial fluid completely abolishes the inhibitory activity (1). Furthermore, the results obtained by subjecting the inhibitor to the polyacrylamide gel electrophoresis indicate that the protein dissociate into five subfractions: each one, however, reacts with antibody to human serum albumin and inhibits β-glucuronidase. The fact that human albumin may be heterogeneous in purified preparations and in the serum itself has been already reported in literature (12). This microheterogeneity of hu-
human serum albumin may be directly transferred to the albumin of human synovial fluid, since plasma proteins reach the synovial space by diffusion (13). It appears therefore that inhibition of β-glucuronidase activity is shown also by the purest fractions of human albumin as those obtained by gel electrophoresis.

Preparations of β-glucuronidase of high specific activity are stabilized in the assay by additions of 0.01% bovine serum albumin (14). This protective effect of albumin is apparently in contrast with our finding. One has, however, to consider that albumin of synovial fluid exhibits a competitive inhibition, which might not be seen in the usual assay conditions. However, in our experimental conditions, also commercial preparations of human serum albumin have been shown to be inhibitors of the enzyme activity (Fig. 6). This fact is of special interest since it has been reported (15) that commercial serum albumin preparations, usually stored for various periods of time by the manufacturing supply houses, may undergo alterations during storage, which might affect the biological properties of albumin in metabolic studies.

The human blood serum contains a number of high-molecular weight components, which inhibit hydrolytic enzymes such as collagenase, proteinases and other degrading enzymes (16–18). The demonstration that albumin can inhibit synovial fluid β-glucuronidase...
SYNOVIAL FLUID \(\beta \)-GLUCURONIDASE ALBUMIN

![Graph](image)

Fig. 5. Preparative polyacrylamide gel electrophoresis of combined fractions of the peak eluted from DEAE column.

![Graph](image)

Fig. 6. Inhibition of snail juice \(\beta \)-glucuronidase by: \(\bigcirc \) = human albumin from SIGMA; \(\bullet \) = human albumin from Immuno Oesterreichs Institut.

\(\beta \)-glucuronidase suggests that the serum proteins released into the inflammatory fluid can modulate a wide spectrum of degenerative reactions.

Summary. From human synovial fluid a protein inhibiting \(\beta \)-glucuronidase activity has been extracted and purified. The inhibitor is shown to be the albumin present in the synovial fluid. The identification of albumin is based upon a comparison between the purified inhibitor and human serum albumin carried out by electrophoretic and immunologic techniques.

The authors gratefully acknowledge Professor A. Motta for his assistance in providing synovial fluids, and Professor D. Romeo for many helpful discussions.

SYNOVIAL FLUID β-GLUCURONIDASE ALBUMIN

Pituitary Cell Transplants to the Cerebral Ventricles Promote Growth of Hypophysectomized Rats

EN WEISS, RICHARD BERGLAND, ROBERT PAGE, CAROL TURPEN, AND W. C. HYMER

Department of Biochemistry and Biophysics, The Pennsylvania State University, University Park, Pennsylvania 6802; and Division of Neurosurgery, Department of Surgery, M. S. Hershey Medical Center, Hershey, Pennsylvania 17033

ical removal of the adenohypophysis in animals results in retarded growth as decline in peripheral endocrine function. Attempts at demonstrating growth by means of heterotopic transplants have met with only limited success (1–5). For example, Halasz and associates reported that transplantation of pituitary glands into the hypothalamic area of the brain resulted in some restoration of growth (3). Growth response of a single gland was observed transplanted into a chamber of the eye (1), as well as into the subcutaneous (4) and muscular (5) sites. Gittes and Kastin (5) observed a log relationship between growth and number of intramuscular glands, and by extrapolation concluded that 750 glands would be required for restoration to normal growth. In the present study, the ventricular system of the brain of hypophysectomized rats was therefore chosen as the implantation site for dispersed pituitary cells, and the restoration of body growth used as an index of functionality of the implanted cells.

There is increasing evidence that cerebrospinal fluid (CSF) contains (hypothalamic neurohormones (8) which may participate in the regulation of pituitary function (9). In the present study, the ventricular system of the brain of hypophysectomized rats was therefore chosen as the implantation site for dispersed pituitary cells, and the restoration of body growth was used as an index of functionality of the implanted cells.

Materials and methods. In the usual experiment, hypophysectomized rats weighing 80–100 g (~30 days old) were purchased from Charles River Breeding Laboratories, Inc., (CD Strain (Outbred Albino), Wilmington, MA) and permitted one week of postoperative recovery. In some cases, sham-hypophysectomized littermates were also used. Twenty-gauge hypodermic needles, filed to an unbevelled end 3.25 mm in length and filled with silastic, were stereotaxically implanted into the left ventricle and anchored with acrylic cement according to the procedures of Severs et al. (10). Animals were maintained one additional week prior to cell implantation. During this period, animals showing increases in body weight of >5% over initial postoperative levels, suggestive of incomplete hypophysectomy, were discarded from the experiment. Anterior pituitary glands from donor males of the same strain (CD, 250–400 g, >70 days) were dispersed in trypsin (11), counted, and resuspended in "mock CSF", consisting of 16 mg dextrose, 176 mg NaHCO3, 15 mg KCl, 14.0 mg CaCl2 (anhydrous), 8.1 mg Na2HPO4·H2O, 23.5 mg MgCl2·6H2O, 13 mg urea, 91 mg NaCl in 100 ml double-distilled water. Each animal received a single injection of 10–20 µl either "mock CSF" (control) or 1–3 × 106 cells prepared in CSF vehicle (experimental), delivered via the needle of a microliter syringe.
through the silastic plug of the indwelling cannula. The quantity of cells delivered was equivalent to approximately \(\frac{1}{4} - \frac{1}{2} \) of a whole pituitary gland. Three to 6 animals were used per group. The animals were maintained with 5% glucose in their drinking water and allowed lab chow \textit{ad libitum}, under a 12-hr light (0600–1800) cycle, for periods up to 3 months. They were weighed 3 times per week.

In one experimental series, body composition analysis was done according to the procedure of Hartsook and Hershberger (12). The experimental protocol involved analysis of 12 hypox rats (80–120 g) 2 weeks postsurgery (group A) and 12 hypox littermates which had received either "CSF" or \(2 \times 10^8 \) cells 2 weeks postsurgery followed by a 30-day growth period (group B). Regression analysis of the body composition data from group A gave the following equations for prediction of initial body compositions of animals in group B: Dry matter = 0.34 (BW) - 4.77 \([r^2 = .95] \); Lipid = 0.1 (BW) - 4.07 \([r^2 = .79] \); Ash = 0.04 (BW) - 0.31 \([r^2 = .90] \); Protein = 0.2 (BW) - 0.71 \([r^2 = .94] \). This protocol permitted evaluation of changes in body composition over the growth period.

Growth hormone (GH) was measured with a double antibody radioimmunoassay procedure (sensitivity, 3 ng/ml) using materials provided by the NIAMDD (Rat Pituitary Program). Protein content of brain homogenates was estimated by the Lowry procedure (13).

Growth curves were analyzed by the variance ratio test on double reciprocal plots of log weight gain vs. log time. This transformation yielded linear graphs and randomly scattered residual variance plots. Comparative growth responses at 30 days postimplantation, as well as other data (bone lengths, body composition and hormone levels) were analyzed by ANOVA or, when appropriate, Student's \(t \) test.

Results. Growth response. During the first 3-week postimplantation period, growth of hypox animals bearing \(1 \times 10^6 \) cells, expressed as % weight gain, was similar to that of sham-hypophysectomized littermates (Fig. 1). After this time growth tended to plateau (see Fig. 1, Exp. #1 and #2, \(1 \times 10^6 \) cells). The growth response was related to the number of cells implanted. At no time did total growth exceed that of the animal with an intact pituitary; however, animals receiving more cells tended to plateau later. A single injection of \(3 \times 10^6 \) cells resulted in a doubling of the animals' body weight over a period of 3 months (Fig. 1, insert). Implantation of \(1 \times 10^6 \) cells into the ventricles of nonhypophysectomized rats resulted in slightly but significantly \((P < .05)\) depressed growth curves.

There was an increase in tibial and femoral

![Figure 1](image_url)
lengths measured either radiographi-
or on bones dissected from the rats at
sy (see Fig. 2). In both cases bone
as were significantly ($P < .05$) longer in
perimental group. There was a positive
ation between the two methods of mea-
tent. Actual tibial, femoral, and pelvic
as were $31.5 \pm (\text{SEM}) .29, 26.0 \pm .33,$
. .24 mm respectively for controls and
 .88, 28.9 \pm .24, 33.3 \pm .44 mm for
imals (1×10^6 cells). Correlations
-rays were $r = .77$ (tibia), $r = .84$
a), $r = .97$ (pelvis).
hy composition. In a separate experi-
30-day-old hypox δ rats receiving $2 \times
ells intraventricularly showed weight
over 30 days of 22.9 ± 0.5 g (SEM)
crease in body weight) vs. 7.5 ± 1.4
crease in body weight) for those
ing “CSF”. The increase in the experi-
ul group represented 14.1 ± 3.5 g dry
r of which 5.0 ± 1.5 g were protein, 8.5
g were lipid, and 1.1 ± 0.5 g were ash.
crease in the control group represented
2.8 ± 0.5 g dry matter of which 0.1 ± 0.3 g
were protein, 2.6 ± 0.7 g were lipid and 0.4
.01 g were ash. These results clearly show
that significant ($P < .05$) increases in both
protein and fat account for the weight gain in
the experimental animals.
Age and sex. Younger recipients showed a
better growth response than the older ones
(Fig. 3, top). Pituitary cells from older donor
imals gave better responses than cells from
young animals (Fig. 3, middle). Cells from
male donors of different ages gave consist-
ently inferior responses when implanted into
hypox females (Fig. 3, middle vs. bot-
). This result is consistent with the observ-
ation that male rats grow larger than fe-
males. Cells from >70-day-old female donors
were as effective as their male counterparts
when transplanted into hypox males (data
not shown).
Somatotroph implantation. Intraventricular
implantation of 630,000 somatotrophs puri-
fied to 90% by the method of Snyder et al.
(14) resulted in a weight gain at 30 days of

2. Radiographs and bones (tibia-lower, femur-upper) from two hypox animals 30 days after intraventricular
ination of either 2×10^6 cells (left) or “mock” CSF vehicle (right). Scale bar equals 1 cm.
PITUITARY CELL TRANSPLANTS

Fig. 3. Effect of age of recipient at hypophysectomy (top), and age of donor pituitary cells in δ recipients (middle) or δ recipients (bottom) on weight gain. Statistical analysis: top panel: one animal in the 30-day experimental group grew 3× more than the other three. Analysis of variance (ANOVA) on these data excluding this single animal resulted in significant ($P < 0.05$) elevations in the experimental groups in all cases. Middle panel: by ANOVA 50 and 70-day-old donor cells caused significant ($P < 0.05$) growth. Bottom panel: growth, although apparently elevated, was not statistically significant.

17.4 ± 3.6% vs. −1.5 ± 4.3% for those injected with vehicle ($P < .05$).

Castration. Four groups ($n = 5$ each group) of hypophysectomized recipients, two of which were castrated at the time of pituitary removal, received either 2×10^6 pituitary cells or vehicle. Growth (% wt. gain) 30 days postimplantation was as follows: (a) castrated animals with cells 45.8 ± 10.8%; (b) castrated animals with vehicle 5.3 ± 1.5%; (c) noncastrated animals with cells 69.1 ± 15.0% and (d) noncastrated animals with vehicle 9.1 ± 2.7%. Growth of animals at 30 days in both experimental groups was significantly greater than in controls ($P < .05$), but not significantly different between experimental groups.

Brain and blood growth hormone (GH). The levels of GH in homogenates of brains prepared from animals receiving either 1×10^6 pituitary cells or vehicle is given in Table I. The data reveal detectable hormone in the brains of the experimental group 30 days postimplantation, but at ¼ the level detected 12 days postimplantation.

Cell placement and viability. In four separate experiments designed to assess requirements of cell placement and viability in relation to the growth response, the following data were collected (% wt. gain in 30-day-old hypophysectomized males one month postimplantation): (a) 1×10^6 cells — intraperitoneally, 13 ± 4%; (b) 1×10^6 cells—anterior chamber of the eye, 7.8 ± 2.4%; (c) heat-killed (56°C, 30 min) cells—intraventricularly, 4.7%; and (d) a 100,000g particle fraction (prepared from 1×10^6 cells) 5.4 ± 0.3%. None of these responses were significantly different from vehicle-injected controls, but all were significantly lower ($P < .01$) than the response obtained by implanting 1×10^6 cells intraventricularly (40.6 ± 4.0%, mean of the four experiments).

Histology. Serial sections of the entire brains of several experimental animals revealed epithelial cells in the 3rd ventricle, lateral ventricles, and subarachnoid space. Since such cells were not found in the sections of the brains of a control animal, it is tentatively concluded that the pituitary cells spread throughout the entire ventricular system.

Discussion. The key finding in this study is that implantation of pituitary cells into the ventricular system of hypophysectomized rats results in animal growth. This growth is reflected both in increased bone length as well as deposition of total body protein. Our data

TABLE I. GROWTH HORMONE LEVELS (ng GH/mg PROTEIN) IN BRAIN HOMOGENATES PREPARED FROM HYPOX RATS PREVIOUSLY IMPLANTED WITH 1×10^6 PITUITARY CELLS (EXPERIMENTALS) OR CSF VEHICLE (CONTROLS).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>12</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentals *</td>
<td>53.4 ± 9.0c</td>
<td>16.1 ± 4.1</td>
<td>13.6 ± 2.3</td>
</tr>
<tr>
<td>Controls</td>
<td>3.2 ± 3.2</td>
<td>0c</td>
<td>0 ± 0</td>
</tr>
</tbody>
</table>

* 30 day old hypox δ rats received 1×10^6 pituitary cells from 70-day-old δ rats.

c SEM.

* One animal; all other groups had three to four animals.
that intact cells placed in the ventricles
secreted to obtain this response since
or cells placed in the anterior chamber
or peritoneal cavity nor heat-killed
or pituitary organelles gave a positive
response.

A growth response can probably be at-
ted to somatotrophs in the pituitary cell
nions for the following reasons: first,
notation of purified somatotrophs gave
itive response; second, the response was
ed in a castrated animal in which influ-
of anabolic steroids were not present;
hird, GH was detected in the brains of
0 days postimplantation of cells, but not
icle-injected controls (Table 1).

st results show that the CSF of the hypox
vides a suitable functional milieu for
ainence of somatotrophs for at least 3
postimplantation.

mmary. Implantation of acutely dis-
d adenohypophysial cells into the lateral
les of hypophysectomized rats resulted
trial growth restoration for periods of
three months. Weight gain by experi-
al animals was consistently 20%–60%
or than among hypophysectomized con-
ts; the response was related to the num-
of cells implanted. The weight gain re-
ed increases of both protein and fat in
osition. A significant increase in bone
ths was also observed among
earing intraventricular cells. Intravene-
ar implantation of either heat-killed an-
pituitary cells or subcellular organelles,
plantation of pituitary cells into the
al cavity or anterior chamber of the
id not promote significant growth in
hysectomized recipients. The results
it that transplanted growth hormone-
secrating cells are provided with a suitable
functional milieu by the cerebrospinal fluid
of the hypophysectomized rat.

The authors thank Drs. Judith Weiss and Roy Martin
for critically reading the manuscript. Body composition
analysis was done by Dr. Martin.

1. Goldberg, R. C., and Knobil, E., Endocrinology 61,
742 (1957).
(1964).
5. Gittes, R. F., and Kastin, A. J., Endocrinology 78,
1023 (1966).
7. Yoshimura, F., Harumiya, K., Ishikawa, H., and
in “Brain-Endocrine Interaction. The Ventricular
System in Neuroendocrine Processes” (K. M.
S., in “Brain-Endocrine Interaction. The Ventricular
System in Neuroendocrine Processes” p. 312 Karger,
10. Severa, W. B., Summy-Long, J., Taylor, J. S., and
Conner, J. D., J. Pharmacol. Exp. Ther. 174, 27
11. Hymer, W. C., Kraicer, J., Benocosme, S. A., and
(1972).
13. Lowry, O., Rosebrough, H., Farr, A., and Randall,
14. Snyder, G., Hymer, W. C., and Snyder, J., Endocri-

Serologic Response of Primates to Influenza Viruses (40360)

S. S. KALTER and R. L. HEBERLING

Southwest Foundation for Research and Education, San Antonio, Texas 78284

The appearance of a new strain of influenza A at Fort Dix, NJ, in February of 1976, was of interest, principally because of its antigenic relatedness to the virus presumed to be etiologically responsible for the 1918 pandemic, a variant of swine influenza. Very little is known regarding the interrelationships between human and animal influenza, although it has been clearly demonstrated that this virus does exist in a wide variety of animal and avian species. Only limited information, however, is available on influenza in primates other than man, and these data have generally resulted from experimental rather than natural infections (1–7), although an epidemic of influenza with high mortality was reported in baboons during the 1918–19 pandemic (WHO Ref. Z2/180/11, 16 July 1971). Other investigators (8, 9) have also reported influenza in simians, with death and clinical disease noted. Easterday (WHO Ref. Z2/180/11 and Z2/87/5, 10 January 1973) reported antibody in primates to A/FMI at the San Diego Zoological Gardens.

Serological surveys have indicated that antibody to influenza A (PR8, FMI, Hong Kong) and influenza B (Lee) exists to varying extents in "normal" colonies of gorillas, chimpanzees, orangutans, gibbons, baboons in Africa, captive baboons, Japanese macaques, African green monkeys, marmosets, squirrel monkeys, and capuchin monkeys. Owl, howler, and spider monkeys were generally serologically negative, although the number of animals examined was very small (7).

In 1974, an outbreak of respiratory disease occurred in a group of newly imported baboons (Papio cynocephalus). An isolate was obtained from seven of 20 animals, which appeared to be identical to A/Mayo Clinic/4/75 (H3N2). (Dr. F. Lief, personal communication). The seven animals from which virus isolations were made had high antibody titers; of the remaining 13 animals, six had antibody titers to the virus and seven had no antibody to the isolate but developed titers later. The serologic data suggested that infection had occurred just prior to shipment from Kenya in the late spring of 1974.

Since the data indicated the susceptibility of nonhuman primates to influenza virus following contact with infected humans, occurrence of a new strain of influenza virus offered the opportunity to examine representative simian sera in order to ascertain the possible role nonhuman primates may play in this virus infection. Reported herein are results obtained by examining human, captive-chimpanzee, and baboon sera collected each month for the year immediately following the outbreak of the A/New Jersey/76 (Hsw,N3) virus.

Materials and methods. Sera. Human, chimpanzee (Pan troglodytes), and baboon (P. cynocephalus) sera were obtained from randomly selected populations each month in the usual manner. Sera were so selected in order to avoid the following of animals with high titers and the possibility of not detecting seroconversions. Human donors were questioned regarding influenza vaccinations in order to distinguish vaccinees from cases (Table 1). Most of the human volunteers were animal personnel or laboratory staff engaged in either the daily handling of the animals or in collecting specimens from these animals. Since the number of staff and chimpanzees is limited, over the 10-month study period of number of these were sampled on more than one occasion.

Antigens. Two influenza antigens supplied by CDC, Atlanta, Georgia, were used throughout the study. These consisted of chicken egg preparations of allantoic fluid and included strains A/Victoria A/3/75 (H3N2) and A/New Jersey/8/76 (Hsw,N3). Control chicken antisera to each virus, also provided by CDC, were routinely and simultaneously tested each month.

Antibody determination. A micro-HI test using 0.025 ml volumes and 4 HA units of antigen with 0.8% chicken erythrocytes was

0037-9727/78/1593-0414$01.00/0
Copyright © 1978 by the Society for Experimental Biology and Medicine
All rights reserved.
TABLE 1. HEMAGGLUTINATION INHIBITION (HI) RESULTS ON PRIMATE SERA TESTED AGAINST INFLUENZA ANTIGENS

<table>
<thead>
<tr>
<th>Date</th>
<th>Antigen</th>
<th>Primate Sera</th>
<th><10</th>
<th>≥10</th>
<th>≥20</th>
<th>≥40</th>
<th>≥80</th>
<th>≥160</th>
<th>≥320</th>
<th>≥320</th>
</tr>
</thead>
<tbody>
<tr>
<td>pt. '76</td>
<td>Victoria</td>
<td>Human</td>
<td>0</td>
<td>16</td>
<td>14</td>
<td>9</td>
<td>3</td>
<td>NOT DONE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>0</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>3</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>NOT DONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimpanzee</td>
<td>5</td>
<td>38</td>
<td>26</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t. '76</td>
<td>Victoria</td>
<td>Human</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>5</td>
<td>38</td>
<td>26</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimpanzee</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baboon</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w. '76</td>
<td>Victoria</td>
<td>Human</td>
<td>2</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>10</td>
<td>18</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>6(2)*</td>
<td>2</td>
<td>2</td>
<td>2(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimpanzee</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baboon</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. ’76</td>
<td>Victoria</td>
<td>Human</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>1</td>
<td>21</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>1</td>
<td>10(1)</td>
<td>6(1)</td>
<td>4</td>
<td>2</td>
<td>2(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimpanzee</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baboon</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. ’77</td>
<td>Victoria</td>
<td>Human</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>8</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>6</td>
<td>2(1)</td>
<td></td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimpanzee</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baboon</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ’77</td>
<td>Victoria</td>
<td>Human</td>
<td>2</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>13</td>
<td>29</td>
<td>26</td>
<td>21</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>4(2)</td>
<td>2</td>
<td>2</td>
<td>2(2)</td>
</tr>
<tr>
<td></td>
<td>Chimpanzee</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baboon</td>
<td>42</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arch ’77</td>
<td>Victoria</td>
<td>Human</td>
<td>0</td>
<td>17(3)</td>
<td>8(1)</td>
<td>5</td>
<td>5(2)</td>
<td>2</td>
<td>2</td>
<td>2(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>8</td>
<td>29</td>
<td>21</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>8</td>
<td>9</td>
<td>6(2)</td>
<td>4(1)</td>
<td>3(1)</td>
<td>2</td>
<td>2</td>
<td>2(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimpanzee</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baboon</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ril ’77</td>
<td>Victoria</td>
<td>Human</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>9(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chimpanzee</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Table I.—Continued.

<table>
<thead>
<tr>
<th>Date</th>
<th>Antigen</th>
<th>Primate Sera</th>
<th>Number of sera with HI titer (Cumulative numbers)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><10</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>Chimpanzee</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>May '77</td>
<td>Human</td>
<td>Chimpanzee</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>0</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>Chimpanzee</td>
<td>34(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>58</td>
</tr>
<tr>
<td>June '77</td>
<td>Human</td>
<td>Chimpanzee</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>0</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Human</td>
<td>Chimpanzee</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baboon</td>
<td>16</td>
</tr>
</tbody>
</table>

* Number of individuals at indicated titer receiving vaccine.

employed throughout the study. Sera were pretreated with heat (56°, 30 min), trypsin, and periodate, according to procedures previously described (10). Appropriate controls and antigen “back-titrations” were included with each test.

Results. The survey was conducted over a 10-month period starting in September 1976, and ending in June 1977. Each month, 10–50 randomly collected serum samples were simultaneously tested, with the results given in Table I. The results indicate that influenza infection (principally by a strain related to A/Victoria) occurred in this area. All three primate species evidenced some level of antibody to the Victoria A antigen. Late winter testing suggested a possible localized outbreak evidenced by high titers to this antigen in all three species. Clinical evidence and virus isolation studies in the community confirmed these serologic findings. Similarly, lack of antibody (generally) to the newly isolated New Jersey strain, except in vaccinated individuals, as well as lack of isolation of virus from the community, indicated that this strain did not occur in the San Antonio area. No attempt was made to ascertain the reason for the few seropositives to the New Jersey strain that were recorded.

Discussion. Influenza, experimental and natural, has been reported (11) in various species of nonhuman primates. Very little is known about influenza in simians under natural conditions, but this is also true for other viruses (12). The data reported herein suggest that nonhuman primates, as reflected by chimpanzees and baboons, follow the serologic pattern to influenza virus developed in humans. A/Victoria virus was in the community, and the primate population reflected this. Similarly, there was no evidence for human infection with the A/New Jersey strain, and this, too, was supported by the serologic data. No attempt was made to determine any epidemiologic factors associated with the results, but two observations may have some relevance: (1) The animals are housed in “open” cages, permitting access to small wildlife and birds, and (b) exposure to staff, while minimized, does occur.

Periodically, we isolate influenza viruses from the colony of baboons (12). The source of these infections is unknown, but it has generally involved newly imported animals under surveillance in quarantine. The pattern of seroconversion noted at times suggests horizontal transmission from animal to animal. Horizontal transmission in baboons following experimental infection has been reported previously (6, 13). It has also been observed that the duration of virus excretion (approximately 20 days post inoculation) is somewhat longer than that generally observed in humans (13). These data do not suggest a poten-
tial reservoir but, more probably, a host reaction closely akin to that occurring in humans.

Summary. Nonhuman primate (chimpanzees and baboons) sera were compared with human sera for serological activity to influenza viruses A/Victoria A/3/75 (H3N2) and A/New Jersey 8/76 (Hsw1N1). The results obtained indicate that all three primates reacted similarly to the influenza virus that was present in this area (A/Victoria). The data suggested that the nonhuman primates are not a potential reservoir but react to infection as do humans.

This study was supported in part by Grants from the NIH (RR00361) and WHO (V4/181/38) and was conducted as part of the activities of the NIH/WHO Collaborating Center for Reference and Research in Simian Viruses. We are indebted to Ms. Betiye Tunner for her excellent technical assistance and to Dr. W. R. Dowdle, CDC, Atlanta, Georgia, for providing the antigens.

Effect of Hemolyzed Blood on Reticuloendothelial Function and Susceptibility to Hemorrhagic Shock

MARLOWE J. SCHNEIDKRAUT AND DANIEL J. LOGEERING
Department of Physiology, Albany Medical College, Albany, New York 12208

Severe depression of reticuloendothelial system (RES) phagocytic function is considered to contribute to the deterioration of an organism during circulatory shock (1–4). One aspect of the data supporting this concept is the finding that the injection of various foreign colloids including colloidal carbon, thiorotras, saccharated iron oxide and gelatinized lipid emulsion will induce a period of RES depression or blockade which is associated with increased susceptibility to various forms of shock (5–9). Additionally, RES blockade has been shown to be associated with the depletion of a plasma opsonic α-2-glycoprotein and the circulating levels of this opsonic protein have been implicated in the control of RES phagocytic function (3, 8, 10–12).

Few studies have been carried out using altered homologous material as a potentially blockading substance even though the RES avidly clears such material from the circulation (13). RES blockade induced with altered homologous material would represent a much less artificial condition than the use of foreign or inert colloidal material. The present study was carried out to determine if a blockade-like depression of RES phagocytic function and increased susceptibility to shock is induced following the RES clearance of homologous erythrocyte cellular debris. Additionally, α-2-glycoprotein opsonic activity was measured to determine its potential role in this form of RES depression.

Methods. Male Sprague-Dawley rats weighing 250–300 g were used for all experiments. Blood to be hemolyzed was collected in a plastic heparinized syringe from animals under ether anesthesia. The blood was hemolyzed by freezing at −20° for 30 min and rapid thawing and warming to 37°. Hemolyzed blood was injected over 1–2 min at a dose of 0.3 ml/100 g and control animals received an equal volume of heparinized non-hemolyzed blood.

Animals receiving injections of hemolyzed or non-hemolyzed blood were anesthetized with sodium pentobarbital (30 mg/kg, iv) and a femoral artery was cannulated. The animals were heparinized (100 USP units/100 g) and colonic temperature was monitored and maintained at 36–37°. Arterial blood pressure was monitored throughout the experiments. Thirty minutes after the injection of hemolyzed or nonhemolyzed blood, phagocytic index was determined, or a blood sample was taken for the determination of plasma opsonic activity, or hemorrhagic shock was induced for the evaluation of shock susceptibility.

Hemolyzed blood was separated into a particulate stroma and soluble supernatant fraction by centrifugation at 2000g for 15 min. The stroma fraction was washed three times in isotonic saline and resuspended in sufficient saline to bring the volume to the original blood volume. This stroma preparation contained approximately 13.5 mg of stroma protein/ml as determined with the Lowry assay. Similarly, the supernatant fraction was diluted with sufficient saline to bring the volume to the original blood volume. The fractions were injected iv at a dose of 0.5 ml/100 g, into animals prepared as described above, and phagocytic index was determined 30 min after injection.

Erythrocytes and erythrocyte stroma were labelled with 125I using a slight modification of the method of Hynes (14). Washed erythrocytes were suspended in phosphate buffered saline (PBS) (pH 7.2) plus 5 mM glucose to a hematocrit of approximately 50%. Carrier free Na125I was added to a final concentration of 400 μCi/ml and the reaction was started by the addition of 3.2 units/ml of lactoperoxidase (Boehringer Mannheim, E.C. 1.11.1.7) and 0.1 units/ml of glucose oxidase (Boehringer Mannheim, grade I, E.C. 1.1.3.4). The mixture was incubated for 30 min at 37°.
ction was stopped by the addition of 0.9% NaCl, and the cells were washed and resuspended in an equal volume. Erythrocyte stroma was prepared as described above. The clearance rate of eryth- and erythrocyte stroma was deter- mining the iv injection into anesthe- d heparinized rats by taking blood (0.1 ml) at 5 min intervals for 30 to 30 min, the distribution of the 125I termed in liver, spleen, lungs and Half-time was determined from sem- mic plots of blood radioactivity time.

Phagocytic index for the hemolyzed blood unlabelled stroma was determined the clearance rate of gelatinized lipid a labelled with 131I to tritein as previ- scribed (11, 12). The gelatinized lipid a was injected iv at a dose of 50 g. Sequential blood samples were ver 6 min and the half-time deter- rom semilogarithmic plots of blood ivity against time. Phagocytic index ulated from the formula: phagocytic .301/half-time, where .301 is the logio d half-time is expressed in min. Five or the colloid injection, the distribu- the colloid in the liver, lungs and was determined.

A opsonic activity (α-2-glycoprotein was determined using the rat liver assayed as previously described (11, 12). ay evaluates the plasma opsonic stim- of phagocytosis of gelatinized lipid a by rat liver slices in vitro. The liver are incubated for 30 min in the pres- heparin, 1 ml of plasma, 2 ml of inger phosphate buffer (pH 7.4) and 131I labelled gelatinized lipid elui end of the incubation, the liver are evaluated for the presence of 131I, onic activity was expressed as μg of usion phagocytized per 100 mg he- sue (μg/100 mg). Each plasma sam- ed in triplicate.

Hypotonic shock was induced as previ- scribed (15) by withdrawing suffi- via a cannulated femoral artery ase the mean arterial blood pressure mm Hg within 10 min. The arterial pressure was then maintained at 40-45 by withdrawing small volumes of blood until the point of initial decompensa- tion, that is, when it was first necessary to return some of the withdrawn blood to main- the blood pressure. Shock susceptibilit was evaluated on the basis of the duration of hypotension required to reach the point of initial decompensation and the maximum shed volume.

Data were statistically analyzed using the unpaired Student's t test, placing the confidence level at 95%. All data are expressed as the mean and standard error of the mean.

Results. Phagocytic index, determined 30 min following the injection of hemolyzed whole blood, was decreased 44.7% (P < 0.01) compared with control animals injected with an equal volume of nonhemolyzed blood (Fig. 1). Evaluation of the distribution of the test colloid 5 min after colloid injection re- vealed a 30.7% decrease (P < .01) in liver phagocytosis and no change in the colloid localization in the spleen and lungs.

Following the injection of the particulate stroma fraction of hemolyzed blood phagocytic index was decreased 41.4% when com- pared to the saline controls (Table I). The injection of the soluble supernatant fraction of hemolyzed blood had no effect on phagocytic index. Tissue distribution of the test colloid showed that hepatic phagocytosis was depressed 37.7% following stroma injection and was unchanged after injection of the supernatant fraction. Localization of the colloid in the spleen was not changed. The stroma injection was associated with an in- crease in lung colloid localization, however,
HEMOLYSIS, RES BLOCKADE AND SHOCK

the lungs contained only a small proportion
of the injected colloid.

The intravenous injection of hemolyzed whole blood resulted in a large but transient decrease in arterial blood pressure. The rate of injection was adjusted so that the blood pressure was not reduced below 50 mm Hg which required that the blood be injected over 1–2 min. The pressure recovered to the preinjection level within 2.3 ± 0.3 min after the start of injection. The pressure then increased to and remained at or above control levels for the remainder of the 30 min observation period. The injection of the supernatant fraction of hemolyzed blood resulted in a blood pressure response that was identical to that seen following the injection of whole blood. The injection of non-hemolyzed blood or the stroma fraction did not change arterial blood pressure.

Intact erythrocytes labelled with 125I were not cleared from the circulation at a sufficient rate to allow the determination of half-time over the 30 min observation period (Table II). The organ distribution of the erythrocytes is consistent with a very slow clearance rate. On the other hand, the erythrocyte stroma was rapidly removed from the circulation. A very substantial amount of the stroma was cleared by the liver with lesser amounts present in the spleen and lungs. This pattern of particulate clearance is very similar to that observed with the test colloid clearance (Table I). The minimal amount of labelled erythrocyte stroma present in the kidney indicates little non-specific trapping in vascular beds.

Plasma opsonic activity determined 30 min after the injection of hemolyzed blood is presented in Table III. No differences were observed in plasma opsonic activity in animals injected with hemolyzed whole blood when compared with animals injected with non-hemolyzed blood.

Evaluation of the response to hemorrhagic shock revealed that the time to initial decompensation during hypotension was decreased 50.1% (P < .01) in the animals injected with hemolyzed blood 30 min before initiation of hemorrhage (Fig. 2). There was no difference in maximum shed volume in animals injected with hemolyzed or nonhemolyzed blood. The large decrease in time to initial decompensation is interpreted as indicating an increased susceptibility to hemorrhagic shock in animals injected with hemolyzed blood.

Discussion. The present study has demonstrated that the injection of hemolyzed whole blood results in a large decrease in phagocytic index. This depression of RES phagocytic function was associated with a large reduction in the test colloid localization in the liver, with no change in the spleen and lung local-

| TABLE I. PHAGOCYTIC INDEX AND ORGAN LOCALIZATION OF TEST COLLOID 30 MIN FOLLOWING INJECTION OF HEMOLYZED BLOOD STROMA OR SUPERNATANT FRACTIONS.\(^*\)\(^*\) |
|---|---|---|---|
| Phagocytic index \(K\) | Liver \%(ID/TO) | Spleen \%(ID/TO) | Lungs \%(ID/TO) |
| Sham (saline) | .947 ± .0070\(^b\) | 46.10 ± 2.26 | 2.88 ± 0.31 | 0.75 ± 0.08 |
| Stroma | .555 ± .0086\(^c\) | 28.70 ± 3.80\(^c\) | 3.09 ± 0.29 | 1.28 ± 0.16\(^c\) |
| Supernatant | .942 ± .0167 | 43.96 ± 4.03 | 2.39 ± 0.22 | 0.73 ± 0.06 |

\(^a\) Stroma and supernatant fraction injected volume was 0.5 ml/100 g.

\(^b\) Colloid localization was determined 5 min after injection of 50 mg/100 g \(^{125}\)I labelled gelatinized lipid emulsion and is expressed as the percent of the injected dose per total organ \%(ID/TO).

\(^c\) Values expressed as mean ± SE; \(n = 7–10\) for all groups.

\(^d\) \(P < .01\) compared with the sham group.

| TABLE II. CLEARANCE RATE AND ORGAN LOCALIZATION OF LABELLED ERYTHROCYTES AND ERYTHROCYTE STROMA.\(^*\) |
|---|---|---|---|---|
| | Half-time (min) | Liver \%ID/TO | Spleen \%ID/TO | Lungs \%ID/TO | Kidneys \%ID/TO |
| Erythrocytes | –\(^a\) | 6.0 ± 0.4 | 1.9 ± 0.2 | 3.1 ± 0.2 | 0.34 ± 0.01 |
| Erythrocyte stroma | 1.86 ± 0.16 | 71.5 ± 2.2 | 5.6 ± 0.8 | 8.1 ± 0.9 | 0.42 ± 0.03 |

\(^a\) Organ distribution was determined 30 min after iv injection of 0.5 ml/100 g and expressed as the percentage of the injected dose per total organ.

\(^b\) Erythrocyte clearance was too slow to estimate the half-time over the 30 min observation period.
HEMOLYSIS, RES BLOCKADE AND SHOCK

<table>
<thead>
<tr>
<th>Plasma Opsonic Activity (μg/100 mg)</th>
<th>n</th>
<th>lyzed blood</th>
<th>268 ± 17'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>d blood</td>
<td>291 ± 19</td>
</tr>
</tbody>
</table>

One of hemolyzed and nonhemolyzed blood as 0.3 ml/100 g. Activity is expressed as μg of gelatinized stion phagocytized per 100 mg hepatic tissue. s are expressed as the mean ± SE of the mean animals per group.

Since the bulk of the colloid cleared circulation was removed by the liver, resion of RES clearance was due to a reduction in hepatic phagocytic function appears to be the same stroma fraction. The depression phagocytic index due to stroma injection ated with a pattern of tissue colloid ion which is similar to that observed g whole hemolyzed blood injection. nally, the pattern of colloid distribu-the animals injected with hemolyzed erythrocyte stroma was similar to visibly seen during RES depression RES colloidal blockage (11). The sol- lution of hemolyzed blood had no RES function which indicates that hemoglobin may or may not be re-from the circulation by the hepatic cells (16, 17), the presence of free obin in the circulation does not res- function.

response to the fractions of hemolyzed n addition to demonstrating that the pressor substance is present in the same stroma fraction, also showed that S depression was independent of the ive components of whole hemolyzed This indicates that the RES depression t due to the vasoactive material de-g the hepatic blood flow sufficiently to iloid delivery to the hepatic Kupffer

obtained from the clearance of la-erythrocyte stroma suggests that the tion of stroma employed in this study ed by the RES. This is based on (a) the rapid rate of clearance from the circula-tion; (b) organ localization pattern which is very similar to that of the test colloid; and (c) minimal localization in the kidneys. The dose of erythrocyte stroma which was used to evaluate stroma clearance characteristics was identical to the dose which depressed RES phagocytic function. The persistence of the labelled intact erythrocytes in the circulation indicates that the rapid clearance of the stroma was not due to an alteration of the membrane during the labelling process. Thus, the particulate erythrocyte stroma fraction of hemolyzed blood is rapidly cleared from the circulation by the RES, and appears to be responsible for a blockade-like depression of RES phagocytic function.

The animals used in the present experiments were heparinized in order to eliminate the procoagulant effects of hemolyzed blood (18). This was done because it has been shown that intravascular coagulation induced by the injection of thrombin is associated with a depression of RES phagocytic function (19). Additionally, the high clearance rate of the control animals can be attributed to the heparin because in our hands heparin increases the rate of gelatinized lipid emulsion clearance (20). Other investigators have found that heparin increases (21, 22) or decreases the rate of colloid clearance (23). However, heparin does not reverse RES blockade following the injection of gelatinized lipid emulsion (21).

While the depression of RES phagocytic

![Fig. 2. Time to initial decempan during hypotension and maximum shed volume in animals injected with hemolyzed and nonhemolyzed blood at a dosage of 0.3 ml/100 g. Hemorrhage was initiated 30 min after injection. Significant difference in time to decempan (P < .01). Values are expressed as the mean ± SEM of 10 animals per group.](image)
function following hemolyzed blood injection is similar to RES colloid blockade in terms of colloid clearance depression and the pattern of tissue colloid distribution, the lack of a depression of plasma opsonic activity is not consistent with the humoral opsonic factor theory of RES blockade. The depletion of plasma opsonic α-2-glycoprotein activity from the circulation is a consistent finding with RES depression due to colloidal blockade (8, 10, 11) and various types of shock and injury (3, 4, 12, 15, 26). Since the RES depression associated with the injection of erythrocyte stroma is not associated with a depression of the circulating activity of this opsonic factor some other mechanism must mediate this RES depression. Such possible mechanisms may include the depletion of some other opsonic factor(s), saturation of phagocytic cell function or a decrease in liver blood flow of sufficient magnitude to limit delivery of the test colloid to the phagocytic cells. The data presented here suggested that a decrease in liver blood flow is not a likely mechanism.

The RES depression induced by the injection of hemolyzed blood was associated with an increased susceptibility to hemorrhagic shock. Since the whole hemolyzed blood contained a vasoactive component, and soluble proteins as well as stroma it is possible that the observed increase in shock susceptibility was not entirely due to the stroma-induced RES depression. Previous work by Hardaway et al. has shown that the injection of a small volume of hemolyzed blood into heparinized dogs resulted in an increased mortality with hemorrhagic shock (27). The present study suggests that this increase in mortality was due, in part, to a depression of RES phagocytic function. This notion is consistent with previous studies that have demonstrated that RES blockade with foreign material increased susceptibility to shock induced by hemorrhage, trauma, intestinal ischemia and endotoxin (5–9). Other studies by Subramanian et al. showed that intravascular hemolysis associated with experimental cardio-pulmonary bypass was associated with a depression of RES phagocytic function in terms of the clearance of colloidal gold and bacteria (28, 29). Thus, it is possible that hemolysis associated with severe burn or traumatic injury (30, 31) may contribute to RES depression and thereby increase the rate of deterioration of the organism during shock.

Summary. RES phagocytic function and susceptibility to hemorrhagic shock were determined following the injection of hemolyzed blood into heparinized rats. Phagocytic index was severely depressed 30 min following the iv injection of whole hemolyzed blood (0.3 ml/100 g) and was due primarily to an impairment of hepatic phagocytosis of the test colloid. The erythrocyte stroma fraction of hemolyzed blood depressed phagocytic index while the soluble protein fraction had no effect on phagocytic index. Labelled erythrocyte stroma was rapidly cleared from the circulation and localized primarily in the liver with lesser amounts in the spleen and lungs indicating RES clearance of this particulate material. This depression of phagocytic index was associated with normal circulating levels of α-2-glycoprotein opsonic activity. Animals injected with hemolyzed blood showed a 50% decrease in the duration of hypotension required to cause initial decompensation indicating an increased susceptibility to hemorrhagic shock. It is concluded that the hemolysis which accompanied severe injury such as burn or trauma may contribute to RES depression and increased susceptibility to shock states.

The authors acknowledge the fine technical assistance of John Bodi.

High Dosage of Testosterone Propionate Increases Litter Production of the Genetically Obese Male Zucker Rat (40362)

RICHARD B. HEMMES, SUSAN HUBSCH, AND HOWARD M. PACK
Vassar College, Poughkeepsie, New York 12601 and The Rockefeller University New York, New York 10021

Since it was first described in 1961 (1) the genetically obese Zucker rat has been of considerable interest as a possible animal model of human obesity, particularly that of early-onset. Homozygous recessive (fafa) individuals become recognizably obese near the time of weaning and are hypercellular (2), hyperinsulinemic (3) and hypertriglyceridemlic (4). In addition to their weight regulatory dysfunction, fafa rats are reproductively inadequate. Obese sires are rare (1), and obese dams have not been reported. Virtually all fafa individuals have been derived from heterozygous (Fafa) crosses with an expected yield of 25%. Since Fafa and homozygous dominant (Fafa) individuals are phenotypically indistinguishable, obligatory testcrossing contributes to the inefficiency of production of the fafa genotype. The difficulty of obtaining adequate numbers of experimental subjects has so severely restricted work on the fafa rat that any improvement in the efficiency of its production would be welcome.

Factors predisposing for reproductive failure in the fafa rat have not been identified, but work on the fafa rat (5) and several studies on various genetically obese strains of mice (6–8) suggest steroid insufficiency as a proximal cause of abnormal reproductive morphology and low fertility. In our breeding colony at Vassar College we have been investigating the efficacy of steroid therapy in bringing about an improved breeding performance of intact fafa males. Subcutaneous injection of testosterone at high dosage levels showed promise. We report below experimental confirmation of the efficacy of this treatment in substantially enhancing the fertility of fafa males, its suppressive effects on increments in body weight and observations on the size and genotypic composition of litters resulting from the crossing of fafa males with known Fafa females.

Materials and methods. Twenty-eight fafa males ranging from 83 to 106 days of age were randomly assigned to one of two treatment groups. Fourteen males received a subcutaneous injection of 20 mg testosterone propionate (TP) in 0.1 cc sesame oil for the first three consecutive days and 20 mg TP once every three days thereafter. Fourteen fafa males received sham injections of sesame oil on an identical schedule. Injections were continued over a 90-day period. On the third day of the experiment, two Fafa females were introduced to each male’s cage and remained for 13 days whereupon they were removed and replaced by two other females. Thereafter, new Fafa females were provided each male every seven days. Thus during the 90-day experimental period each male had exposure to 24 females. Care was taken to assure that one of the females was a proven breeder whenever feasible, as we believed previous experience on the part of the female might improve the chance of impregnation. Females varied in age from three to 16 months. Males in both treatment groups were periodically weighed to detect any influence of TP on body weight.

Results. The numbers of litters sired by the two groups of males during the 90-day experimental period are summarized in Table I. The difference in production is substantial: TP-injected males sired 73 litters while sham-injected males sired 19 (P < .001, Chi-square test). This disparity in litter production by the two treatment groups is attributable to three factors. Eleven TP males became sexually active compared to seven sham-injected males. Mean latency to first conception for sexually active TP males was 15.9 days (range 2–36 days); for active sham-injected males: 24.1 days (range 2–56 days). The rate of impregnation was higher for active TP than active sham males: 30.6% of females placed with TP males after they had sired their first litter gave birth whereas only 10.5% of females placed with proven sham males bore young. For comparison, 90.2% of females
placed with eleven similarly experienced non-injected Fafa males in an otherwise identical breeding regimen conceived. Females with prior breeding experience were no more likely than inexperienced females to conceive when placed with TP or sham males.

The breakdown of litter conception into consecutive 30-day periods (Table I) reveals a sharp drop in the number of males active and the number of litters sired for both treatment groups during the last third of the treatment period. While the number of litters remained significantly higher (P < .01, Chi-square test) for the TP males, it appears that the efficacy of TP attenuates with time. A separate experiment in which thirteen fafa males seven to eleven months of age received 20 or 30 mg TP (n = 11) or sham (n = 2) for 90 days in the regimen described above resulted in no litters. Females were provided to these older males in the same manner as for young males.

Table II provides information which makes possible a comparison of the size and composition of litters from fafa and Fafa males paired with Fafa females. Size and composition of litters from FaFa × FaFa crosses are included for comparison. Litter size at birth did not differ significantly among groups, nor did litter size at weaning. For Fafa sired litters the fafa pups comprised 25.5% of the offspring, which conforms to expectation. In fafa sired litters 44.5% of the pups were fafa. This is a significant departure from the expected 50% (P < .05, Chi-square test). Between birth and weaning fafa sired pups exhibit a 21.2% mortality, lean sired pups a 14.7% mortality. The difference is significant (P < .01, Chi-square test). Among lean pups and obese pups, regardless of parentage, there is a slightly smaller number of male pups than female pups at weaning age.

At the beginning of the experiment, the young TP-injected males had a mean body weight of 354 ± 6.7 g; the young sham-injected males 334 ± 13.6 g. The difference was not statistically significant. On day 89 of treatment the mean weight of TP males was 505 ± 13.8 g; sham males 584 ± 16.2 g (P < .001, t test). Changes in body weight with time are shown in Fig. 1 as mean percent increase over initial body weight. The rate of weight gain was significantly reduced (P < .01, t test) as early as 29 days after treatment was begun.

Partial correlational analyses of litter production and body weight dynamics among the TP-injected males revealed no significant association between either latency to first conception or number of litters sired and initial body weight, final body weight, the changes in body weight or the percent increase in body weight. The same was true for sham-injected males.

Discussion. High doses of testosterone propionate clearly increase the litter production of the young fafa male rat. TP-injected males sired nearly four times as many litters as sham-injected controls. The improved litter production makes practical the use of fafa males instead of heterozygous males for breeding with heterozygous females. This should increase greatly the efficiency of producing fafa rats since nearly twice as many will result from a successful mating. The breeding of fafa males with lean females also guarantees that any phenotypically lean offspring are heterozygous. Thus, testcrossing to identify heterozygous rats is no longer necessary.

The suppressive effect of TP on rate of weight gain is attributable, at least in part, to reduced food consumption. We have preliminary data which indicate that fafa males given TP in the same regimen as in our breeding experiment significantly reduce their daily food intake.

The possibility that the increased obesity which accrues with age contributes to the reproductive impairment of fafa males is suggested by the sharp decline in litter production in both TP-and sham-injected young

Table 1. Effect of Testosterone Propionate on the Litter Production of Young Fafa Males.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of males conceived</th>
<th>0-90 days</th>
<th>1-30 days</th>
<th>31-60 days</th>
<th>61-90 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>73 (11)*</td>
<td>25 (9)</td>
<td>32 (11)</td>
<td>16 (7)</td>
</tr>
<tr>
<td>Sham</td>
<td></td>
<td>14</td>
<td>19 (7)</td>
<td>8 (5)</td>
<td>9 (5)</td>
</tr>
</tbody>
</table>

*20 mg testosterone propionate in 0.1 cc sesame oil administered subcutaneously once every three days.

*Numbers in parentheses indicate the number of males responsible for the litters conceived during the above indicated span of time.
TABLE II. SIZE AND COMPOSITION OF LITTERS Sired by fafa, Fafa and FaFa MALES.

<table>
<thead>
<tr>
<th>Genotype of parents</th>
<th>Mean litter size</th>
<th>Phenotype and sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of litters</td>
<td>At birth</td>
</tr>
<tr>
<td>fafa (19)*</td>
<td>55</td>
<td>8.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.41</td>
</tr>
<tr>
<td>Fafa (30)</td>
<td>55</td>
<td>9.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.42</td>
</tr>
<tr>
<td>FaFa (16)</td>
<td>55</td>
<td>9.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.47</td>
</tr>
</tbody>
</table>

* Numbers in parentheses indicate the number of individuals of this type involved in the production of the litters on which the data is based.

S.E.M.

Data based on 21 litters. Remainder of those used for determining litter size at birth were utilized in experiments before weaning age.

Frequency of phenotypes at weaning expressed as a percentage.

FIG. 1. Effect of testosterone propionate on the rate of weight gain in young fafa males.

males toward the end of the testing period and the total lack of response of the older, more obese, males to treatment. Hemmes and Hirsch (9) have recently reported that Osborne Mendel rats rendered obese by feeding a high fat diet exhibit markedly diminished sexual vigor. These findings together with the observation that substantially reducing the weight of fafa males improves their litter production (P. Johnson, personal communication) lead us to suspect that factors secondary to the obese condition contribute to the infertility of fafa males.

The efficacy of TP in increasing litter production suggests that fafa males may have a testosterone deficiency. Circulating levels of testosterone have not been reported for the Zucker rat. Testosterone deficiency is known to occur in morbidly obese men. Glass et al. (10) have suggested that aromatization of testosterone by the enlarged adipose depot may be responsible for the deficiency. Barbato and Landau (11) report that, after substantial weight loss, testosterone levels of obese men return to the normal range and that sexual performance and libido improve. Further study would reveal the extent to which adipose tissue, steroid levels, and reproductive function are causally interrelated.

Summary. A high dose of testosterone propionate increases dramatically the litter production of young genetically obese male Zucker rats. Twenty milligrams testosterone injected subcutaneously once every three days over a 90-day period resulted in a nearly fourfold increase in the number of litters sired compared to sham-injected controls. The efficacy of the treatment attenuates with time. TP was ineffective in inducing litter production in older, more obese, males. Young obese males injected with TP exhibited a significantly reduced rate of weight gain compared to sham-injected controls. The findings are consistent with the hypothesis that the reproductive inadequacy of the genetically obese male rat may be due to a deficiency of circulating testosterone. The treatment of obese males with TP greatly increases the efficiency with which the obese (fafa) genotype may be produced and also avoids time-consuming testcrossing for identification of heterozygous (Fafa) individuals.

This investigation was supported in part by NIH Grant Nos. HD 08965 and AM 19382. The authors wish to acknowledge the professional contribution of Dr. P. R. Johnson and Dr. M. R. C. Greenwood.

Effect of Kidney Surface Temperature on Single Nephron Filtration Rate (40363)

THOMAS J. BURKE, LINDA N. PETERSON, AND KENNETH L. DUCHIN

Department of Physiology, University of Colorado Medical Center, Denver, Colorado 80262

In 1970, McDonald and Sparks (1) reported in a preliminary communication that blood flow to the decapsulated area prepared for micropuncture appeared to be slower than was flow to the superficial cortex in the normal dog kidney with an intact capsule. Shortly afterward, Clapp and his associates (2, 3) suggested that nephron function was significantly improved during dog micropuncture studies, if the exteriorized kidney was wrapped in saline-soaked sponges and insulated against heat loss by an "overall covering wrap of clear and light weight plastic." Kidney surface temperature was well maintained at 37°C with these protective features but fell promptly to 35°C when the plastic wrap was not utilized. Later, Deetjen and Silbernagl (4), reported that a decrease in whole body temperature of rats is accompanied by a decrease in both cardiac output and renal cortical blood flow; mean arterial blood pressure (BP) remained constant. Extrapolation from their data at both 37°C and 35°C suggests that the magnitude of the decrease in outer cortical blood flow was about 30%.

Taken together, these observations imply that an exteriorized kidney prepared for micropuncture studies might function at levels that are below normal, possibly to a greater degree in the decapsulated area. Thus, reduced nephron blood flow and/or filtration rate at the micropuncture site might occur.

Whole kidney clearance measurements however, might not reflect this local diminution in function. The current studies were designed to reevaluate the reports of Clapp (2, 3) and to quantitate any improvement in single nephron glomerular filtration rate (SNGFR) that may accompany the preservation of surface temperature at a near normal value.

Methods. Mongrel dogs of both sexes weighing 18–26 kg were anesthetized with sodium pentobarbital (30 mg/kg, iv) and intubated with a cuffed endotracheal tube. Peripheral catheters were placed in superficial veins to infuse inulin and para-aminohippurate (PAH) at 1.0 ml/min and a maintenance infusion of isotonic saline at 2.0 ml/min. A catheter was placed in each femoral artery, one to measure mean arterial blood pressure (MAP) with a Harvard transducer (model 377) and to collect blood samples. The other catheter was advanced into the aorta and its tip positioned just above the left renal artery. Small volumes (0.5–1.0 ml) or 10% lissamine green dye were injected through this catheter to visualize proximal and distal tubules. The right ureter was catheterized via a suprapubic incision.

Via a flank incision, the left kidney, renal artery and vein were exposed. The left renal vein was catheterized from a gonadal vein to quantitate PAH extraction. In addition, a flow probe (Carolina Medical Electronics, Inc., King, NC) placed on the left renal artery permitted direct measurement of renal blood flow (RBF) at endogenous MAP. An adjustable brass clamp was placed on the aorta above the left renal artery in order to reduce renal perfusion pressure to determine the RBF autoregulatory capability of the kidney (5–9). This test was performed after completion of surgery. All experiments were conducted at endogenous MAP which was above the lower limit of autoregulation. Finally the left ureter was catheterized near the hilus.

The left kidney was mounted in a plastic cup attached to a steel micropuncture table above the dog. A small 1–2 cm² area of capsule was removed from the surface of the mounted kidney in order to visualize tubules. Warm (37°C) oil was dripped on the decapsulated surface. A fiberoptic (Dolan-Jenner Industries, Inc.) was used to illuminate the micropuncture field. A small (1.0 mm diameter) thermistor connected to an electronic thermometer was placed on the exposed surface near the border between the decapsulated and intact capsule to monitor kidney surface temperature. At this point the dogs were di-
d into two groups. In the first (group I; 0) the exteriorized kidney was covered with warm saline-soaked sponges and sealed with a loose insulating plastic wrap to prevent heat loss and evaporation from the exposed organ (Fig. 1). Micropuncture was performed through a small "window" in the plastic wrap. Three to four collections from proximal nephrons and as many distal collections as possible were obtained during the 30-minute fluid (TF) collection period. Each tubular fluid (TF) collection was immediately followed by a collection of arterial blood in order to measure plasma inulin concentration; collections from proximal and distal nephrons were obtained randomly. The collection period which lasted about an hour was begun sixty minutes after placement of the kidney in the cup and initiating the infusion of inulin and PAH. During the micropuncture study, two 30-minute collections were obtained from each kidney along the mid-point arterial and renal vein blood vessels. In group II (n = 9) the kidney was clamped. Urine and tubular fluid collections were obtained with a protocol that resembled that of group I.

Analytic methods. Plasma (P) and urine (U) inulin and PAH were both measured by autoanalyzer technique (10). Hematocrit was measured by microcentrifugation. Tubular fluid (TF) inulin concentration was measured by the fluorometric method of Vurek and Pegram (11). SNGFR was calculated from the formula:

\[\frac{TF_{In}}{F_{In}} \times \dot{V} \text{ (nl/min)} = \text{SNGFR (nl/min)} \]

where \(\dot{V} \) is the quantitative collection rate of TF expressed in nl/min. \(V \) in nl was measured with a constant bore capillary tube. Standard clearance formula was used to calculate inulin and PAH clearance. Renal plasma flow (RPF) was estimated by both PAH clearance and extraction and by flowmeter estimates of RBF and hematocrit measurements in most experiments. In an occasional dog, two renal arteries prevented the use of the flow probe; however when both techniques were used simultaneously, estimates of RBF agreed to within 4% in any single experiment. All measurements of RPF and RBF reported in this study are based upon clearance and extraction of PAH. At the end of each experiment kidneys were removed, blotted dry, decapsulated and weighed. Standard statistical techniques (paired and unpaired t test) were used to determine significant differences. Individual SNGFR values were averaged to provide a single mean value for each site (proximal or distal) from each dog. Values are mean ± one SE.

Results. Renal clearance and hemodynamic measurements. Table I demonstrates there were no significant differences in either inulin

1. The clear plastic wrap (overlying the warm saline soaked sponges) covering the entire kidney is shown. The wrap secures the wrap to the kidney holder and is stretched over the kidney and secured to the sides of the incubation table. Micropuncture is performed through a small "window" in the plastic wrap. The decapsulated kidney is indicated by the arrow and approximately 1 cm².
clearance, RPF, RBF or MABP among the two groups. However, temperature at the surface of the kidney was consistently and significantly lower \((P < 0.002)\) when the plastic wrap was omitted.

Micropuncture-group I (Fig. 2). In 10 dogs, proximal SNGFR averaged \(72 \pm 7\) ml/min (range: 46–108 ml/min) and significantly \((P < .01)\) exceeded distal SNGFR which averaged \(46 \pm 4\) ml/min (range: 23–68 ml/min). Distal \(V\) averaged \(14.8 \pm 1.8\) ml/min and \(TF/P_{in}\) averaged \(3.37 \pm 0.32\). MABP averaged \(112 \pm 7\) mm Hg (range: 80–140 mm Hg).

Table I. Renal Function, Mean Arterial Blood Pressure and Kidney Surface Temperature.

<table>
<thead>
<tr>
<th>Group I ((n = 10))</th>
<th>RPF* (ml/min·g)</th>
<th>MABP (KW)</th>
<th>Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W)</td>
<td>0.57*</td>
<td>1.99</td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td>±0.06</td>
<td>±0.16</td>
<td>±0.24</td>
</tr>
<tr>
<td></td>
<td>±7</td>
<td>±0.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group II ((n = 9))</th>
<th>(U)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.58</td>
<td>>9</td>
</tr>
<tr>
<td></td>
<td>±0.09</td>
<td>±0.29</td>
</tr>
<tr>
<td></td>
<td>±0.50</td>
<td>±2</td>
</tr>
<tr>
<td></td>
<td>±7</td>
<td>±0.1</td>
</tr>
</tbody>
</table>

* RPF was determined by PAH clearance and extraction; RBF was determined from RPF and hematocrit. Flow rates are ml/min·gram kidney weight.
* Mean ± SE; \(C_{in}\) = inulin clearance; RPF = renal plasma flow; RBF = renal blood flow; MABP = mean arterial blood pressure; Temp. = surface temperature in °C of kidney prepared for micropuncture; \(U\) = unwrapped; \(W\) = wrapped.

Micropuncture-group II (Fig. 2). As in group I, proximal SNGFR also significantly \((P < .02)\) exceeded distal SNGFR. In nine dogs, proximal SNGFR averaged \(52 \pm 4\) nl/min (range: 29–66 nl/min) which was significantly lower \((P < .02)\) than average proximal SNGFR in wrapped kidneys (group I). The average distal SNGFR of 30 ± 7 nl/min (range: 10–46 nl/min) was also significantly lower \((P < .02)\) than that of wrapped kidneys (group I). Distal \(V\) was lower by more than 50% averaging 6.1 ± 1.0 nl/min \((P < .001)\) and \(TF/P_{in}\) was higher averaging 5.43 ± 0.48 \((P < .01)\). MABP was similar to group I averaging 113 ± 7 mm Hg (range: 84–150 mm Hg).

Discussion. The results of these studies suggest the exteriorized wrapped kidney prepared for micropuncture maintains a more normal surface temperature and the nephrons demonstrate higher values for both proximal and distal SNGFR compared to the unwrapped kidney. Cooling of the outer kidney surface by exposure to room temperature might induce the type of vasoconstriction characteristic of other vascular beds exposed to cold (12). The effects of cooling could be more pronounced in the area of micropuncture where the capsule has been removed as has been suggested by McDonald and Sparks (1). The apparent local reduction in flow in that study was not accompanied by measurable changes in whole kidney function which is consistent with the present observations. Moreover, these results suggest also that only a small region of the exteriorized kidney could be significantly influenced by exposure to room temperature and overall renal hemodynamics including RBF might remain within normal limits. However, any substantial RBF decrease at the area prepared for micropuncture could well proved an appropriate explanation for the lower SNGFR we have observed. The lower surface temperature (2, present study), apparent decreased local blood flow (1), and lower proximal and distal SNGFR (present study) all suggest that diminution in nephron function might occur in the decapsulated area if appropriate caution is not taken in preparing the kidney for micropuncture studies.

Clapp et al. (2, 3) have reported a similar qualitative interpretation of nephron function in the wrapped versus the unwrapped kidney.
Although providing no quantitative data, these investigators report "renal function was more improved following wrapping of the kidney." Our present data provide some measure of the improvement induced in the wrapped kidney. Distal SNGFR averaged about 30 nl/min in unwrapped kidneys which is approximately 35% lower than the average dog distal SNGFR (44-47 nl/min) reported for wrapped kidneys (8, present study).

Finally, the difference between proximal and distal SNGFR in the same kidney whether wrapped or unwrapped, appears to indicate that orthograde flow to the macula densa is an important factor which regulates afferent arteriolar tone and thus SNGFR (8, 9, 13). The data also suggest that a tubuloglomerular feedback system sensitive to changes in "distal delivery" (13) does exist and can be demonstrated even in unwrapped kidneys, where proximal SNGFR exceeds distal SNGFR by about 21 nl/min. However, the reduced surface temperature might have led to local vasoconstriction thereby impairing assessment of normal distal and proximal nephron function in the dog.

In conclusion, the results of these studies indicate that an improvement in nephron function does occur in the exteriorized kidney which is protected against exposure to room temperatures. Quantitatively, superficial single nephron glomerular filtration rate (SNGFR) measured at distal nephron sites averaged about 35% less in unwrapped kidneys (surface temperature average 35.7°) compared to similar studies in wrapped kidneys (surface temperature average 37.6°); whole kidney GFR, RBF and BP were similar in both studies. When surface temperature is maintained by an insulating plastic wrap, we agree with Clapp and coworkers (2, 3) that "... stability of function was significantly improved ...".

Summary. In dog kidneys prepared for micropuncture experiments, the thesis that exteriorized organs with an intact circulation may demonstrate reduced function due to exposure to cool (21-23°) room temperatures, was tested by measuring superficial proximal and distal SNGFR on the surface of kidneys either protected against heat loss with a plastic wrap or unwrapped and exposed to room temperature. No significant differences in GFR or RBF could be detected between these conditions. However, temperature at the kidney surface was 37° in wrapped kidneys but fell (P < .002) to 35° in the unwrapped state. The lower surface temperature was associated with reduced values for proximal SNGFR, 72 ± 7 vs. 52 ± 4 nl/min (P < .02) and distal SNGFR, 46 ± 4 vs. 30 ± 7 nl/min (P < .02). The results indicate that the uninsulated kidney prepared for micropuncture may have decidedly lower values for superficial SNGFR measured by total collections of tubular fluid from either proximal or distal sites. These data also suggest that the reductions may be local because whole kidney function does not indicate a similar quantitative reduction in function.

Portions of this study have been reported (Fed. Proc., 35: 541, 1976). Drs. Duchin and Peterson are postdoctoral trainees supported, as was this research, by a USPHS Grant No. AM 17646. Ms. Susan J. Christie and Ms. Carole S. Bucher provided excellent technical and secretarial support, respectively. We thank Dr. Robert W. Schrier for his advice and suggestions during this study and the preparation of this manuscript.

Blood Pressure Responses to Extremes of Sodium Intake in Normal Man

RAYMOND H. MURRAY, FRIEDRICH C. LUFT, RICHARD BLOCH, ARTHUR E. WEYMAN

Department of Medicine and Specialized Center of Research in Hypertension, Indiana University Medical Center, Indianapolis, Indiana

Although a connection between dietary salt intake and the development of hypertension has been proposed by many observers, the evidence presently available is largely circumstantial (1). Increases in blood pressure have been observed with increases in salt intake in subjects with diminished renal function since the classic report of Ambard and Beaujard in 1904 (2); however, reports of increasing blood pressure with increasing salt intake in normal subjects have been few and anecdotal (3, 4).

Guyton and associates (5) have developed a systems analysis approach which provides a conceptual framework for integrating the various mechanisms that control blood pressure. Their analysis suggests that the kidney's ability to excrete salt and water is the overriding mechanism of blood pressure regulation. They termed the relationship between the state of salt balance and blood pressure the renal function curve. The renal function curve indicates the blood pressure for any state of salt balance in the intact organism. Alterations in the renal function curve may be important in the generation of chronic hypertension in man. We have undertaken studies in normal men and have observed increases in blood pressure with extremes of salt intake. Our data describes the relationship between the kidney's ability to excrete salt and water and the systemic blood pressure.

Methods. Eight normotensive, healthy male volunteers (mean age 32 years, range 22–40) were obtained by advertisement and were studied at the Indiana University Clinical Research Center. The protocol was approved by the Indiana University Medical Center Human Use and Clinical Research Center Committees and informed consent was obtained from each volunteer after detailed explanation of the procedures to be performed.

Protocol. The subjects were given a constant diet containing 10 mEq sodium, 80 mEq potassium, 65 gms protein, 50 gms fat, 270 gms carbohydrates, 400 mg calcium and 1000 mg phosphorus daily. Dietary sodium intake was maintained at 10 mEq for seven days, 290 mEq of sodium in the form of sodium chloride were added to the diet for 3 days (300 mEq sodium diet), and 790 mEq sodium were added to the diet for 6 days (800 mEq sodium diet). In order to achieve an 800 mEq sodium intake, sodium was given with bouillon between meals and at bed time. All meals were eaten in the Clinical Research Center; however, the subjects were not hospitalized until the final three days of the study when they received an additional 700 mEq sodium in the form of intravenous normal saline throughout the night. The design of the study was such that the subjects received 10 mEq Na/24 hr for 7 days, 300 mEq Na/24 hr for 3 days, 800 mEq Na/24 hr for 3 days, and 1500 mEq Na/24 hr for 3 days. Fluid intake (distilled water) was allowed ad libitum.

The subjects were weighed every morning before breakfast after voiding. Blood pressures were obtained daily before meals by the indirect auscultatory technique. The same mercury manometers (Baum, Inc., New York, NY) and the same cuffs were employed throughout the study. The subjects rested supine in a darkened room for 5 min after which blood pressure and measurements of heart rate were obtained in the nondominant

1 Supported by USPH Grants HL 14159, Specialized Center of Research (SCOR), Hypertension, HL 07181 and RR 00750 (Generalized Clinical Research Center).
2 R. Murray's Present Address: R. H. Murray, M. D., Professor of Medicine, Chairman, Department of Medicine, Michigan State University, E. Lansing, Michigan 48823.
3 Dr. Bloch's Present Address: Richard Bloch, M. D., Arnett Clinic, 2600 Greenbush St., Lafayette, Indiana 47902.
arm each minute for 5 min. The same two observers (RB and FL) were responsible for these measurements throughout the study. Mean arterial blood pressure was calculated by adding one-third the pulse pressure to the diastolic pressure.

Twenty-four hour urine specimens were obtained daily for the determination of sodium, potassium, and creatinine concentrations. At 7:00 AM on the morning of the final day at each level of sodium intake, blood specimens were obtained following two hours of ambulation for hematocrit, creatinine, sodium, potassium, plasma renin activity, and plasma aldosterone concentrations. Stroke volume and cardiac output were measured noninvasively by echocardiography on the final day at each level of sodium intake (6). The echocardiograms were interpreted by two observers without knowledge of the regimens.

Subject safeguards. To tolerability of the diet was examined in an initial pilot study. Two of the investigators (RB and FL) and a medical student volunteer ingested first the 10 mEq/day sodium diet for 1 week, followed by the 800 mEq/day sodium diet for one week. We found that the diet was tolerable and that a generous intake of free water eliminated the tendency to develop diarrhea at the higher sodium loads. Additional sodium was also infused intravenously to total 1200 mEq/day and no ill effects were noted. Balance was achieved at the 10 mEq/day level by the 6th day in every subject. When sodium intake was increased to 300 mEq/day or higher, balance was approached by 72 hr.

Two of the eight subjects were physicians (RB and FL), one taught high school biology, and five were Indiana University Hospital employees. All were well aware of the nature and the potential risks of the study. The subjects were examined by a physician thrice daily except at the 1500 mEq/day sodium intake at which time they were examined four times daily. None developed any adverse symptoms other than the fatigue ostensibly related to the sleeplessness because of nocturia. At the 1500 mEq/day sodium intake, pedal edema became clinically detectable. No rales or gallop rhythms were heard in any subject; no electrocardiographic changes were observed. The chest roentgenograms revealed a detectable increase in cardiac size in five subjects and small pleural effusions in two subjects at the end of the last study day. Three days after the experiment, the subjects' weights, blood pressures, and chest roentgenograms had returned entirely to normal, as had their sense of well being.

Laboratory methods. Sodium and potassium concentrations in plasma and urine were measured by a flame photometer (Instrumentation Laboratories, Boston, MA). Creatinine was measured by an automated technique (Technicon, Chauncey, NY). Plasma renin activity and plasma aldosterone were measured by previously reported radioimmunoassay methods (7). The data was analyzed statistically by two way repeated measures analysis of variance. A computerized program was employed.

Results. The variables obtained on the last day at each level of sodium intake were tabulated and are outlined in Table I. Increasing sodium intake had a significant effect on body weight (P < 0.001), mean arterial blood pressure (P < 0.001), sodium excretion (UNV) (P < 0.001), potassium excretion (UKV) (P < 0.001), creatinine clearance (P < 0.025), plasma renin activity (PRA) (P < 0.001), plasma aldosterone concentration (PA) (P < 0.001), stroke volume (P < 0.01), and cardiac output (P < 0.025). The heart rate remained unchanged.

Compared to the 10 mEq/day level of sodium intake, mean arterial blood pressure was significantly increased at the 800 mEq/day level (P < 0.05), but not at the 300 mEq/day level. An additional increase (P < 0.01) occurred between the 800 mEq/day and 1500 mEq/day levels of sodium intake. The relationship between systemic blood pressure and sodium excretion is graphically displayed in Fig. 1. The interaction between systolic, diastolic and mean blood pressure, and sodium excretion was highly significant (P < 0.001).

The urinary potassium excretion and creatinine clearance were both increased significantly by the 800 mEq/day level of sodium intake (P < 0.05). The increase in sodium intake to 1500 mEq/day resulted in another increase in kaliuresis (P < 0.01); however, no further increase in creatinine clearance was observed (P > 0.05). Consistent changes in
TABLE 1. CHARACTERISTICS FOLLOWING BALANCE AT EACH LEVEL OF SODIUM INTAKE (MEAN ± SD).

<table>
<thead>
<tr>
<th>Sodium intake (mEq/24 hr)</th>
<th>10</th>
<th>300</th>
<th>800</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>78.2 ± 12</td>
<td>79.5 ± 12</td>
<td>80.5 ± 12</td>
<td>83.1 ± 11</td>
</tr>
<tr>
<td>Mean blood pressure (mm Hg)</td>
<td>82.6 ± 6</td>
<td>83.6 ± 7</td>
<td>89.5 ± 8</td>
<td>99.2 ± 9</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>62 ± 12</td>
<td>63 ± 13</td>
<td>58 ± 9</td>
<td>60 ± 11</td>
</tr>
<tr>
<td>U\textsubscript{a}V (mEq/24 hrs)</td>
<td>12 ± 4</td>
<td>265 ± 68</td>
<td>702 ± 67</td>
<td>1442 ± 100</td>
</tr>
<tr>
<td>Plasma Na (mEq/L)</td>
<td>138.8 ± 4</td>
<td>139.5 ± 3</td>
<td>132.6 ± 6</td>
<td>135.6 ± 2</td>
</tr>
<tr>
<td>Plasma K (mEq/L)</td>
<td>3.7 ± 3</td>
<td>3.6 ± 2</td>
<td>3.9 ± 4</td>
<td>3.6 ± 2</td>
</tr>
<tr>
<td>Creatinine clearance (ml/min)</td>
<td>110 ± 23</td>
<td>126 ± 8</td>
<td>131 ± 22</td>
<td>137 ± 12</td>
</tr>
<tr>
<td>Plasma renin activity (ng AI/ml/3 hr)</td>
<td>13.5 ± 8.0</td>
<td>2.6 ± 2.0</td>
<td>1.3 ± 1.0</td>
<td>0.7 ± 0.4</td>
</tr>
<tr>
<td>Plasma aldosterone (ng/100 ml)</td>
<td>39 ± 22</td>
<td>9.0 ± 7.0</td>
<td>2.6 ± 2.0</td>
<td>1.6 ± 0.4</td>
</tr>
<tr>
<td>Stroke volume (ml/beat)</td>
<td>86 ± 12</td>
<td>93 ± 13</td>
<td>100 ± 11</td>
<td>115 ± 10</td>
</tr>
<tr>
<td>Cardiac output (L/min)</td>
<td>5.3 ± 0.5</td>
<td>5.9 ± 1.2</td>
<td>5.8 ± 1</td>
<td>6.9 ± 1.8</td>
</tr>
</tbody>
</table>

Fig. 1. The relationship between systolic, diastolic and mean arterial blood pressure and sodium excretion in eight normal subjects.

plasma sodium and plasma potassium concentration were not observed. The plasma sodium concentration obtained at the 800 mEq/day level of sodium intake differed from the two lower levels of sodium intake ($P < 0.05$); however, there was no difference in mean plasma sodium concentration between the lowest and highest levels of sodium intake. The plasma potassium concentration at the 800 mEq/day level of sodium intake differed from the plasma potassium concentration at the 300 and 1500 mEq/day levels of sodium intake. Plasma renin activity and plasma aldosterone concentration decreased ($P < 0.01$) between the 10 and 300 mEq/day levels of sodium intake. Stroke volume increased at the 800 mEq/day ($P < 0.05$) and again at the 1500 mEq/day ($P < 0.05$) levels of sodium intake. The cardiac output increased at the 1500 mEq/day level of sodium intake ($P < 0.05$).

Discussion. These results demonstrate a relationship between the states of sodium balance and systemic blood pressure in our normotensive subjects which was similar to that predicted by Guyton’s systems analysis (5). Although there was no apparent effect on systemic blood pressure by increasing sodium intake from 10 to 300 mEq/day, increases to 800 mEq/day and 1500 mEq/day resulted in a stepwise significant increase in systemic blood pressure. Kirkendall et al. (8) studied normotensive human volunteers after four week exposure to 10 mEq/day, 210 mEq/day and 410 mEq/day levels of sodium intake. They were unable to document an increase in systemic blood pressure in their subjects. Relman and Schwartz (9) studied normotensive volunteers under conditions of sodium intake up to 450 mEq/day. Their subjects received intramuscular injections of desoxy-corticosterone acetate. They observed
nal slight elevations of arterial dia-
tension in two of three subjects. These
are consistent in that they suggest that
increases in sodium intake are nec-
in normal subjects to effect an increase
in systemic blood pressure.
Mcdonough and Wilhelmj (3)
37 mEq sodium daily to a single nor-
dive subject for 23 days and observed
ese in systemic blood pressure. Facial
ess also occurred in their patient.
urrie, Thompson, and Anderson (4) ad-
ted the adult equivalent (by body
) of from 1204 to 2408 mEq of sodium
d in diabetic children. They noted 30%
increases in both systolic and diastolic
pressures above control values. Al-
the state of sodium balance was not
ented in these early reports, and statis-
tical analyses were not applied, they indicate
ium may be associated with increases
emic blood pressure if huge amounts
mean 24 hr urinary sodium excretion
ements obtained in our subjects at the
levels of sodium intake indicate that
of sodium balance was approached at
vel. The difference between ingested
covered sodium in our study likely
ecal and cutaneous losses of the ion
ot reflect inadequate urine collec-
ary potassium excretion increased
ively with increasing sodium intake.
rfindings were reported by Kirkendall
8), who raised the possibility that the
asis was engendered by physical dis-
sent of potassium from intracellular
by sodium. The kaliuresis may also
en the result of enhanced rates of tubular fluid flow at the higher levels
um intake (10).
urnine clearance increased signifi-
ith increasing sodium intake, sug-
t that glomerular filtration rate in-
man with sodium loading. The
omenon was observed by Kirken-
al. (8) using inulin clearance.
ma renin activity and plasma aldoster-
cecretions decreased progressively
with increasing sodium intake. Kirkendall et
al. (8) noted a similar relationship between
asma renin activity and urinary aldosterone
cretion. Conceivably, the suppression of
renin–angiotensin–aldosterone system
coupled with an increase in glomerular filtra-
tion rate served to permit our subjects to
crete enormous sodium loads. The possible
icipation of other systems cannot be as-
certained from these studies. The increase in
arterial blood pressure observed in our pa-
tients may be attributed to an increase in
arc output. Permission was not obtained
in our study to measure right atrial pressure
directly at each level of sodium intake; how-
ever, assuming that the value remained con-
stant at 5 mm Hg, systemic vascular resistance
decreased in our subjects from 1171 to 1092
dynes/sec/cm⁻⁵. It is likely that right atrial pressure increased during the study, which
suggests that the actual decrease in systemic
vascular resistance was greater than our esti-
imate. These short term studies do not address
the concept of whole body circulatory auto-
regulation (5). Long term studies at extremes
of sodium intake would be necessary to de-
terminate whether or not an increase in sys-
temic vascular resistance would eventually be
provoked.
Guyton and colleagues (5) postulate that
hypertensive disorders are characterized by
quantitative and/or qualitative alterations in
the kidney's ability to excrete sodium at a
given blood pressure. Our results support
Guyton's conceptual relationship as applied
to normotensive individuals; however, we can
make no comments about the relationships
between the state of sodium balance and
systemic blood pressure in hypertension. Ap-
propriately modified protocols applied to
subjects with various categorized forms of
hypertension will be necessary to define the
kidney's behavior under these conditions.
Summary. The relationship between blood
pressure and the state of salt balance was
evaluated at four levels of salt intake (10
mEq/day, 300 mEq/day, 800 mEq/day, and
1500 mEq/day) in eight normal men. Increasing
salt intake resulted in progressive in-
creases in weight, blood pressure, potassium
cretion, and creatinine clearance, while
asma renin activity and plasma aldosterone
concentration decreased. Cardiac output in-
creased with increasing salt intake, while calculated systemic vascular resistance decreased. The curve defining the relationship between salt excretion and blood pressure was derived. These results support the conceptual framework integrating blood pressure regulation through the final common pathway of renal salt excretion. Moreover, they underscore the importance of salt regulation in the pathogenesis of hypertension.

Red Cell Oxygen Affinity in Severe Hypertriglyceridemia

H. THOMAS ROBERTSON, ALAN CHAIT, MICHAEL P. HLASTALA, AND JOHN D. BRUNZELL

Department of Medicine and of Physiology and Biophysics, University of Washington, Seattle, Washington 98195

An observed relationship between hyper-xia and angina by Kuo et al. led to his hypothesis that hypertriglyceridemia might reduce oxygen uptake from the lungs by reducing oxygen delivery to the tissues (1). Subsequent studies on oxygenation in hyperlipemic diseases with a markedly increased affinity of globin for oxygen (low P50) have been carried out in this laboratory (2-3), until Ditzel (4, 5) recently described a series of severely hyperlipemic patients with normal arterial oxyhaemoglobin and high oxygen affinity could be studied by incubating the patient’s red cell plasma. The authors suggested that this abnormality would interfere with normal delivery to active muscle, leading to a reduction in the oxygen content of the blood by 6-10 mm Hg in the presence of DPG levels. The present study was undertaken to investigate the relationship between hypertriglyceridemia and red cell oxygen affinity.

Methods. Blood was obtained from seven subjects with hypertriglyceridemia due to a variety of causes (Table I) at 4-6 months after serum lipid profile (TG = 2213 mg/dl, X ± SD) and from two normal subjects with triglyceride levels less than 10 mg/dl. Hemoglobin oxygen affinity was measured for all subjects by the method of (6) using a rotating flask tonometer (7) and Radiometer blood gas electrode. A blood-gas O2 correction factor (tonometer gas PO2/tomometer blood PO2) calculated from normal blood was measured daily and applied to all P50 calculations. Results were expressed as P50 standardized to pH of 7.40, PCO2 of 40 torr, and temperature of 37.0° by the standard correction factors for human blood (8). Patients 5, 6, and 7 (Table I) also had P50 measured by the disassociation curve apparatus (DCA) of Duvelley et al. (9). Both techniques are performed routinely in our laboratory, with a deviation of 0.5 torr by the mixing technique and 0.5 torr with the DCA apparatus from eleven aliquots of the same sample of human blood. DPG concentrations, expressed as μg/ml of packed red cells, were measured by the method of Detter et al. (10). The blood-gas oxygen correction factors for normal and hypertriglyceridemic blood were compared by tonometry for samples of 30 min with 21%, 7%, or 4.5% O2 prior to blood PO2 measurement, using the flask tonometer and blood gas electrodes described.

Incubation studies comparing normal blood (plasma TG = 72 mg/dl) with hypertriglyceridemic blood (plasma TG = 1625 mg/dl) were performed after the separated red cells were washed and spun three times in buffered normal saline. Three serial two-fold saline dilutions of both the normal and lipemic plasma were prepared. One volume of packed normal red cells was added to 1 vol of each normal plasma sample, and 1 vol of packed lipemic red cells was added to 1 vol of each lipemic plasma sample. The mixed samples were tonometered for 30 min with room air prior to blood PO2 measurements. Spectrophotometric measurements of hemoglobin concentration and oxygen saturation were made on a model 182 Cooximeter (Instrumentation Laboratories) calibrated with normal human blood. Oxygen content of the tonometered resuspended mixtures was measured directly with a Lox-O2-Con (Lexington) oxygen analyzer.

Results. In this group of severely hypertriglyceridemic subjects, the mean P50 measured

Support: Public Health Service Grant Nos. HL HL 19457, HL 18687 and AM 02456. Part of this work was performed at the University Hospital Clinical Center (RR-37).
by the mixing technique was not different from normal (Table I). A substantial discrepancy was observed in P_{50} values measured concurrently by the DCA technique in subjects 5–7. The mean DPG concentration was normal, although there was considerable scatter in this value which did not correlate with the measured P_{50}. This variability may be related to the need to express DPG values per unit of packed red cells rather than per gram hemoglobin, since lipemic plasma causes an artifact in the spectrophotometric measurement of hemoglobin concentration (11). Although the plasma from the DCA chamber after a run showed evidence of hemolysis, in no case did the hematocrit fall by more than 2%. It thus appears that there was insufficient free hemoglobin to account for the decrease in P_{50} by the DCA measurement.

The blood–gas oxygen correction factors calculated at three PO$_2$ values on the tonometered lipemic blood (Table II) show that the correction value in the PO$_2$ range of the measured P_{50} is only about 5% greater than that for normal blood. Although these differences are relatively small, a second experiment demonstrated that this error is magnified considerably when lipemic blood remains in contact with the PO$_2$ electrode for fifteen minutes. In this study either lipemic blood or normal blood was held on the electrode for 15 min and then a sample of normal blood tonometered in 5% CO$_2$ and 20% O$_2$ was drawn into the chamber and the measured PO$_2$ was recorded. The baseline correction factor was 1.07, the correction factor after 15 min of incubation with normal blood was 1.31, and the factor with lipemic blood was 2.00. Thus prolonged contact between lipemic blood and the PO$_2$ electrode such as occurs during a DCA measurement can result in a measurement error of sufficient magnitude to account for the P_{50} differences observed between the mixing technique and the DCA.

The final experiment was performed to expand on the previous observation that the low (DCA) P_{50} of lipemic blood could be corrected by incubation with normal plasma (5). The washed red cells of normal and lipemic blood were incubated in a tonometer with serial saline dilutions of the normal and lipemic plasma, respectively. Measurement of O$_2$ content, O$_2$ saturation and PO$_2$ for each dilution of the blood samples (Fig. 1) shows that while the O$_2$ content of the lipemic blood remains unchanged with saline dilution of the plasma, there was a progressive increase in both measured O$_2$ saturation and measured PO$_2$. This discrepancy was not seen with serial dilution of normal plasma. (The blood from the normal subject had a higher hematocrit, accounting for the higher measured oxygen content at all dilutions.)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Cause of hypertriglyceridemia</th>
<th>Plasma triglyceride mg/dl</th>
<th>P_{50} STD (torr) mixing technique</th>
<th>P_{50} STD (torr) duvelloroy apparatus</th>
<th>DPG µg/ml packed RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Familial and untreated diabetes</td>
<td>6600</td>
<td>28.6</td>
<td>—</td>
<td>4.4</td>
</tr>
<tr>
<td>2</td>
<td>Primary lipoprotein lipase deficiency</td>
<td>6048</td>
<td>27.3</td>
<td>—</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>Broad beta disease and untreated diabetes</td>
<td>2190</td>
<td>27.0</td>
<td>—</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td>Primary lipoprotein lipase deficiency</td>
<td>970</td>
<td>29.0</td>
<td>—</td>
<td>4.3</td>
</tr>
<tr>
<td>5</td>
<td>Primary lipoprotein lipase deficiency</td>
<td>4560</td>
<td>27.7</td>
<td>19.1</td>
<td>3.6</td>
</tr>
<tr>
<td>6</td>
<td>Familial and untreated diabetes</td>
<td>2475</td>
<td>26.2</td>
<td>20.8</td>
<td>4.9</td>
</tr>
<tr>
<td>7</td>
<td>Familial and estrogen therapy</td>
<td>1764</td>
<td>28.2</td>
<td>22.0</td>
<td>5.2</td>
</tr>
</tbody>
</table>

$3515 \pm 2213 \quad 27.7 \pm 1.0 \quad 20.6 \pm 1.5 \quad 4.8 \pm 1.0$

<table>
<thead>
<tr>
<th>Tonometer PO$_2$ torr</th>
<th>Normal blood correction</th>
<th>Lipemic blood correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>1.07</td>
<td>1.21</td>
</tr>
<tr>
<td>50</td>
<td>1.03</td>
<td>1.08</td>
</tr>
<tr>
<td>32</td>
<td>1.03</td>
<td>1.08</td>
</tr>
</tbody>
</table>
Pso IN HYPERTRIGLYCERIDEMIA

1. Effects of serial dilution of lipemic (----) vs.
nonlipemic (---) plasma with saline on
O2 content (CO2, by Lex-O2-Con), satu-
ration by Co-oximeter) and partial pressure (by PO2,
le.

The affinity of hemoglobin for O2 in blood from severely hypertriglyc-
eremic patients is normal, and our findings that the previous reports of low Pso,
measured with the DCA apparatus in patients are incorrect because of the
lack of association with measurement of a single lipemic plasma. Lipemic plasma
measured with the standard
ators of both PO2 and hemoglobin oxygenation. The DCA apparatus is particu-
larly susceptible to this PO2 measurement artifacts, as the insertion of a full disso-
ciation curve requires that the oxygen electrode be in contact with the blood for up to 15 min.
The problem with the measurement of PO2 in triglyceridemic blood was noted by
Brom et al. (12) in a study of patients with triglyceride emulsion lipid, which has physiological properties
similar to chylomicrons in vivo. They also noted that there was an artifactual de-
crease in spectrophotometrically measured
O2 saturation, although the relation of the effect to triglyceride levels was not
clear. Blood with added Intralipid gave
oxygen concentration spectrophotometric measurement (11),
and the per cent oxygen saturation cal-
culated from this measurement is underestimated.
Neither we nor others (5, 12) could
state any effect on the measured PO2
for triglyceride levels 970–6600 mg/dl) the mean standard Pso measured by the mixing tech-
nique was normal. However when measure-
ments were repeated on three of the samples
using the Duvellorey dissociation curve appa-
atus, the measured Pso was decreased by
5–9 torr. This difference was secondary to a
time dependent interference of the lipemic plasma with the blood O2 electrode, increas-
ing the blood–gas O₂ correction factor. The red cell oxygen affinity of subjects with severe hypertriglyceridemia is normal and other explanations need be sought for the clinical observations suggesting a decrease in tissue oxygen delivery.

Maintenance of Pregnancy in the Rat in the Absence of LH

GORDON J. MACDONALD

Department of Anatomy, College of Medicine and Dentistry of New Jersey Rutgers Medical School, Piscataway, New Jersey 08854

The significant role of LH in pregnancy in rats was revealed by studies utilizing specific antisera to LH (LHAS) (1, 2). Madhwa and Moudgal (2) demonstrated that S was capable of delaying implantation en before day 4. This study also showed that LHAS terminated pregnancy when given just 8 through 11, further identifying the for LH during this period (3-5). A subsequent study (6) also confirmed the LH remnant and showed further that inhibition of prolactin secretion by ergocornine retard resorption of the conceptuses when given on days 6 and 7 but not if given after 1. Their study also suggested that a placental luteotropin could substitute for pituitary prolactin after day 7 and this has been successfully proven (7). Thus, it appears that the changing requirements for LH and FSH during pregnancy and this may also be of the steroids.

In resorption as a consequence of LHAS nistration has been correlated with re- on of progesterone secretion in many al models (8, 9). However, fetal resorp- tion to LHAS may also be relatedduced estrogen secretion during days 11 (10).

At blastocysts survive in utero beyond the time of implantation if two conditions are met. First, that sufficient progesterone is able to insure their survival and second, there is no estrogen available to cause intation. In this state implantation can be initiated by the provision of small amounts of estrogen. In the two conditions causing delay of im- ulation can be met by autografting the pituitary beneath the kidney capsule. In implantation. This experimental model has adequate prolactin from the graft to support sufficient progesterone secretion to insure blastocyst viability. Conversely, there is insufficient gonadotropin secretion to induce estrogen secretion to initiate implanta- tion. Thus, the blastocysts remain unimplanted until estrogen is administered.

The day estrogen administration begins in rats experiencing delay of implantation becomes equivalent to day 4 of normal pregnancy. In the pituitary autografted model estrogen must be given for 9 consecutive days, equivalent to days 4 through 12 of normal pregnancy. Estrogen induces implantation and insures fetal survival beyond day 16 equivalent (7). This experimental model provides the opportunity to test if specific LHAS is capable of acting at any site other than by neutralizing maternal pituitary LH.

Methods and materials. Sprague-Dawley rats used in these experiments were housed in a temperature, humidity and light (14L-10D) controlled room. They were provided food and water ad libitum. Females were caged with experienced males and day 1 of pregnancy was the day sperm were found in the vaginal lavage. Parapharyngeal hypophysectomies were performed on day 2 and were later confirmed complete at autopsy. The anterior pituitary gland of each female was autografted (APtr) beneath the kidney capsule (7). Successive laparotomies were performed on days 8, 12, 16, and 20. No fetal sites were found on day 8 because blastocyst implantation was delayed due to the absence of estrogen. Estradiol-17β (E-17β) (Sigma Chemical Co.) was administered in sesame oil (0.1 µg/day, days 8 through 12) by subcutaneous injection. This E-17β induced implantation and sites were visible on day 12. Thus, because of the 4 day delay in implantation days 8, 12, 16 and 20 became equivalent to day 4, 8, 12 and 16 of a normal pregnancy.

Antiserum to LH (LHAS) was prepared by

441
immunizing rabbits with Papkoff ovine LH in Freund's complete adjuvant. The antisemum was rendered "monospecific" to LH by absorption with dilute normal sheep serum. The specificity of this material was assessed using the Ouchterlony diffusion technique. This test determined there was no cross reactivity with dilute normal sheep serum, ovine liver extract, NIH-FSH or NIH prolactin. However, a single clear precipitin band developed relative to Papkoff-LH with no spurs indicating no cross reactivity with the tissue preparations or the other pituitary hormones (2). The LH neutralizing capacity of this antisemum in our animals was assessed by determining the amount required to induce abortion. When given as one subcutaneous injection on day 8 of pregnancy, 0.7 ml of the antisemum induced total resorption. The antisemum dose used in the present experiments was one ml or 1.4 times the dose producing 100% resorption.

Results. LHAS given the day before the implantation-inducing E-17β treatment failed to delay nidation or to cause later resorption of the fetal sites (Table I). Administration of single doses of LHAS on days equivalent to days 7, 8, 9, 10 or 11 also failed to cause fetal resorption. Further, individual rats given aborting doses of LHAS on days 9 and 10 equivalent, did not show signs of fetal resorption.

Discussion. Previous experiments using hypophysectomized and pituitary autografted rats have been subjected to the criticism that some small amount of LH may have been available for continuing luteal function from basophilic cells on remnants of the pituitary stalk or from cells of the graft pituitary. The current experiments were designed to neutralize any LH with LHAS in the pregnant rat, which was hypophysectomized and pituitary autografted and treated with adequate amounts of estrogen to support pregnancy. Neither blastocyst survival nor subsequent implantation was influenced by the administration of LHAS. Most importantly, LHAS did not cause fetal resorption when given on days equivalent to days 8 through 11 of pregnancy. Thus, the corpus luteum can function at a physiological level in the absence of LH.

Blastocyst implantation and maintenance of pregnancy in the model used was dependent upon two factors, the continuing secretion of progesterone from the corpus luteum maintained by prolactin from the autografted pituitary and the provision of exogenous estrogen (estradiol-17β, 0.1 µg/day) (7). This augurs toward the concept that estrogen secretion induced by LH (11, 12) may be acting on the uterus in concert with progesterone to accommodate the rapidly expanding fetuses. Estradiol may also act upon the corpus lu-

<table>
<thead>
<tr>
<th>TABLE I. EFFECT OF LH ANTISERUM (LHAS) ON THE BLASTOCYTES OR IMPLANTATION SITES OF RATS BEARING PITUITARY AUTOGRAFTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>19 and 23</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

*Anterior pituitaries grafted on day 2, the day after sperm were seen in the vaginal lavage.
RD—Relative day of normal pregnancy.
CD—Chronological day after day 1.
8/8/16—females with sites/total females observed.
X̄—mean number of sites ± SE in females with sites.
1 One animal died.
to promote progesterone secretion in the absence of anterior pituitary or placental influence. It was interesting to note that Madhwa Raj and Moudgal (2) were unable to thwart the implantation of LHAS by the administration of estrogen alone. Yet, in the model under consideration, estrogen was reported in a previous study to maintain pregnancy following ovariectomy accomplished during this stage of pregnancy. The reason for the failure of the model to maintain pregnancy in the present study may be due to the administration of LHAS. The studies of the capacity of LHAS to induce implantation and maintain pregnancy in the rat seem to amply illustrate that mullerian both progesterone and estrogen secretion. This study also confirmed the concept, long accepted but unproved, that LHAS acts specifically against LH-like material and denies the possibility that LHAS acts upon the unimplanted yolk sac, the implanting blastocyst, or the portion of the placenta.

Pregnant rats were hypophysectomized and pituitary autografted on day 2, 3 days after sperm were observed in the oviduct. Estradiol-17β (E-17-β) was injected (0.1 μg/day) on days 8 through 16 to induce implantation and maintain pregnancy. This protocol resulted in a 4 day delay of implantation, and day 8 becomes equivalent to day 4 of normal pregnancy. A single dose of LHAS (equivalent to 1.4 times the dose necessary to cause abortion on day 8 in the normal pregnant rat) failed to prevent implantation when administered on days 1 or 7 or cause fetal resorption when administered on day 11, 12, 13, 14, or 15 (equivalent to days 4, 7 through 11). LHAS given on the two successive days 13 and 14 (days 9 and 10 equivalent) was also without effect. These results suggest that LHAS causes abortion in the rat by acting on pituitary LH-like material and not on the ovary, developing fetus or placenta.

I wish to thank Dr. H. G. Madhwa Raj for his generous gift of LH antiserum. The author gratefully acknowledges the efforts of Ms. Jacqueline Salomon and Laura K. Greeley for their parts in preparation of this manuscript.

In Vitro Analysis of the Participation of Oxytocin and Vasopressin in the Gonadotropin Releasing Hormone-Induced Release of LH

M. H. CAFFREY, T. M. NETT, AND G. P. KOZLOWSKI

Department of Anatomy & Department of Physiology and Biophysics Colorado State University, Fort Collins, Colorado 80523

Both anatomical (1) and physiological (2) evidence suggest that the neurohypophyseal hormones may be involved in the control of the anterior pituitary gland. Cells of the anterior pituitary are exposed to concentrations of vasopressin (AVP) and oxytocin (OT) that are hundreds of times greater than those found in the peripheral circulation (3, 4). One aspect of the question of anterior-posterior pituitary interactions concerns the influence of neurohypophyseal hormones on the secretion of gonadotropins. In fact, pituitary stores of the neurohypophyseal hormones have been found to vary according to the estrous cycle of the rat, the highest concentrations being measured at estrus and proestrus followed by a marked depletion during diestrus (5). In humans, peripheral levels of AVP exhibit a rhythmic pattern during the menstrual cycle (6). An analysis of the menstrual cycle of the monkey revealed a peak of estrogen-stimulated neurophysin, the carrier protein thought to be associated with OT, which coincided with the peaks for estrogen and LH prior to ovulation (4). The hypothesis that there may be some relationship between AVP and gonadotropin releasing hormone (GnRH) was first tested in 1964 by Sakiz and Guillemin (7) who used a bioassay for LH, the ovarian ascorbic acid depletion (OAAD) assay. A dose of synthetic AVP with no activity in the OAAD assay did not further enhance the test response when used in combination with LH. However, when the same dose of AVP was administered concomitantly with hypothalamic extracts, OAAD activity was increased over controls. More recent in vivo studies in the rat also suggest an interaction between AVP and GnRH. When a tripeptide identical to the terminal amino acid sequence of AVP was injected into chlorpromazine-blocked proestrus rats, there was an increased number of ova shed 18 hours later in response to GnRH or LH (8). In another experiment (9), lysine vasopressin increased the ovulatory response in immature rats primed with pregnant mare serum gonadotropin. There is some indication, then, that the neurohypophyseal hormones may affect gonadotropin secretion via an interaction with GnRH. The purpose of the present experiments was to clarify the relationship between the neurohypophyseal hormones and GnRH using an in vitro approach.

Materials and methods. Anterior pituitary glands from male Wistar rats (170-350 g) were used for all perfusion experiments. Rats were decapitated immediately before each experiment and the pituitary gland was removed. The posterior pituitary was discarded and the anterior pituitary was hemisected. The halved anterior pituitaries (hemipituitaries) were kept at room temperature in fresh Krebs-Hensleit buffer containing 0.2% (w/v) glucose and oxygenated with 95% O₂-5% CO₂ until all the tissue had been collected. Each hemipituitary was then placed in a Tygon tubing chamber (length, 10 mm; inner diameter, 3 mm) which was narrowed at either end by the attachment of glass micropipet tips. Glass wool was inserted into the pipet tip leading to the collection tubes in order to prevent exit of cellular material from the chamber. All hemipituitaries were perfused with control buffer for two hours in a shaking water bath at 34°C to obtain a steady baseline secretion of LH. The tissue was continuously perfused at a rate of 0.5 ml/min with Krebs-Hensleit buffer (plus 0.1% gelatin) that was oxygenated and warmed to 34°C before com-

1 Supported by USPHS Grant No. HD-08867 and HD-07841.
2 Submitted by M. H. C. in partial fulfillment for the MS degree in the Department of Anatomy, Colorado State University, Fort Collins, Colorado 80523.
3 Member of Graduate Faculty of Cellular and Molecular Biology.
contact with the tissue. Effluent was collected at four minute intervals, kept ice-cold throughout the experiment, and stored at 0°C until assayed. After the effluent had collected for 20 minutes, the pituitary glands were perfused with hormone-containing media. Administration of the hormone was accomplished by quickly transferring the gland carrying the perfusion media to the injection without altering the speed of the perfusion. Hormone treatments were: 6 g/ml GnRH; 0.2 ng/ml GnRH plus 1 GnRH plus OT (0.002, 0.02, 0.2, 2 or 20 U/ml); AVP alone (0.02, 0.2, 2, 20 or 1 U/ml); or OT alone (0.02, 0.2, 2 or 20 nl). In some experiments, 2 and 20 nl AVP or 0.02 and 0.2 mU/ml OT were added to the media in the initial 20-min collection period as well as during GnRH treatment. The dose of GnRH (0.2 ng/ml) shown was in our previous experiments to cause submaximal release of LH and follicle-stimulating hormone, allowing for any possible interacting effects by AVP or OT to be detected. A fresh solution of GnRH was prepared on the day of each experiment, and AVP or OT were stored at -40°C in a stock of 400 U/ml dissolved in 0.3% acetic acid.

Table 1: Effect of Different Concentrations of AVP and OT on LH Release in Perfused Rat Hemipituitaries.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Neurohypophyseal hormone concentrations (mU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>AVP</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>91±7</td>
</tr>
<tr>
<td>OT</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>91±7</td>
</tr>
</tbody>
</table>

* Rat hemipituitaries were perfused first with buffer for a control period to determine baseline then with AVP or OT for 20 min followed by a 24-min washout period. Control, no hormone added.

Analysis of Data

In order to eliminate interassay and inter-animal variation, data collected from each hemipituitary were recorded as percent of baseline over time. The baseline was calculated as the mean value of the four samples taken in the 20 min before the hormone-administration period. For statistical analysis, a cumulative value of the percent of baseline data was determined for each hemipituitary in an experimental group. This value was essentially a measure of the area under a hypothetical curve which could be plotted with the values from each individual hemipituitary. The resulting cumulative value was then expressed in terms of percent of baseline attained by each gland per sample collection period. The mean of these final values was used as the standard of comparison between groups. Dunnett's test (11) was used to determine significant differences.

Results. Experiment 1

In this experiment (Table 1), the responsiveness of the luteotrop to AVP and OT was examined. LH was measured in effluent from rat hemipituitaries perfused with different concentrations of AVP or OT. All hemipituitaries were perfused with control buffer for the first 2 hr of each experiment resulting in a mean steady baseline of 1.68±0.12 (SE)ng LH/ml (n=114). Responses of the hemipituitaries were then followed for 44 min. For the first 20 min, the hemipituitaries in experimental groups were treated with AVP or OT-containing media. For the remaining 24 min all...
groups were perfused with hormone-free perfusion media. After most concentrations of AVP, treated hemipituitaries did not differ from controls. However, after 0.02 mU/ml AVP, release of LH was significantly elevated (P < 0.05) over the control value (Fig. 1). All concentrations of OT tested, except the 2 mU/ml concentration, were able to induce LH release (Fig. 1).

Experiment II. The purpose of this experiment (Table II) was to investigate the combined effects of neurohypophyseal hormones and GnRH on the release of LH. Tissue was perfused with either GnRH or GnRH plus different concentrations of AVP or OT for 20 min following the two hour perfusion with control buffer. Hemipituitaries stimulated with 0.2 ng/ml GnRH increased baseline LH release (P < 0.01) over controls. Doses of AVP ranging in concentration from 0.02 to 200 mU/ml did not alter tissue response to GnRH. Only one concentration of OT, 0.02 mU/ml, potentiated (P < 0.05) the LH response to GnRH while concentrations that were tenfold greater or smaller had no effect. A graph of the data (Fig. 2) shows that at this dose OT increased the magnitude and prolonged the release of LH from the hemipituitaries in response to 0.2 ng/ml GnRH.

Experiment III. This experiment was performed to determine if a greater release of LH could be induced by a longer exposure time to the neurohypophyseal hormones. Hemipituitaries were perfused with the hormones according to the schedule described for experiments I and II, but in addition were treated with either AVP or OT in the 20-min period prior to the usual 20 min of GnRH stimulation. This modification altered the response seen after acute exposure to the hormones. The addition of either 2 or 20 mU/ml AVP prior to as well as during GnRH treatment resulted in a mean cumulative percent of baseline per collection period of 233±40 SE (n=4) for the lower and 294±26 SE (n=4) for the higher dose. These values represent a significant (P < 0.05 and P < 0.01, respectively) and dose-related increase over GnRH control data as seen in Table II. In the same experiment, pre-exposure of the tissue to 0.02 mU/ml OT increased LH production in response to GnRH to 283±39 SE (n=4; P < 0.01). Hemipituitaries pretreated with 0.2 mU/ml OT responded to GnRH with a reading of 168±29 SE (n=4) percent of baseline, a value similar to that for tissue perfused with GnRH alone.

Discussion. Results from in vitro studies in which release of anterior pituitary hormones is stimulated by various agents imply that multiple functional receptors may be present on the tropic hormone-producing cells. Our experiments demonstrate that neurohypophyseal hormones can influence LH secretion in vitro. Our finding that most concentrations of AVP, when used alone, are ineffective in releasing LH confirms studies by other investigators using in vitro pituitary incubation systems (12, 13). The LH releasing ability of 0.02 mU/ml AVP, however, is contradictory to previous reports in which only high concentrations of Pitressin released LH after long incubation periods (14). In an investigation of TSH release by neurohypophyseal hormones in incubated pituitaries, Krass et al. (15) also obtained a spike-like dose response curve for AVP when only one of four concentrations of AVP (8 × 10⁻¹⁰ M or 0.3 mU/ml) caused significant release after 30 minutes. The failure of our single LH-releasing concentration of AVP to release LH in the presence of GnRH may have been due to the fact that the stimulatory effect of AVP was masked during the GnRH stimulation despite use of submaximal concentrations of the releasing hormone. Preexposure of the tissue to two previously ineffective higher concentra-

![Fig. 1. LH release from perfused rat hemipituitaries which were exposed to buffer only (control) or to different concentrations of AVP alone (0.02 mU/ml) or OT alone (0.2 mU/ml, 20 mU/ml) from 0 to 20 min.](image_url)
NEUROHYPOPHYSSEAL HORMONES AND GnRH

ILE II. EFFECT OF DIFFERENT CONCENTRATIONS OF AVP AND OT ON GnRH-INDUCED RELEASE OF LH FROM PERFUSED RAT HEMIPIUTITARIES.*

<table>
<thead>
<tr>
<th>Neurohypophyseal hormone concentrations (mU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>H* + AVP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H* + OT</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Rat hemipectuits were perfused first with buffer for a control period to determine baseline, then for 20 min GnRH alone or GnRH plus either AVP or OT followed by a 24-min washout period.

0.2 ng/ml
Treated with GnRH alone, 0.2 ng/ml.
Number of hemipectuits perfused.
Percent of baseline per sample collection period.

Mean ± SE *P < 0.05. **P < 0.01 as compared to control in Table I.

![Graph](image-url)

Figure 2. LH release from perfused rat hemipectuits h were exposed to 0.2 ng/ml GnRH from 0 to 20 or to 0.02 mU/ml OT plus the same dose of GnRH 0 to 20 min.

s of AVP resulted in a significant enhancement of the subsequent GnRH-induced release of LH. This suggests that AVP may be responsible for the activation of some component of the stimulus-secretion coupling mechanism required for the release of LH in the luteotrop in response to GnRH.

In our in vitro system, OT alone was able to raise baseline LH production at most of concentrations tested. The one ineffective 2, 2 mU/ml, is a concentration which may borderline between a physiological and a pharmacological concentration. Possibly, the response curve for OT is a plateau which persists after 0.2 mU/ml. Krass et al. (15) reported a similar pattern for OT stimulation of SHH release when three different concentrations of OT elicited equal responses while or higher doses were ineffective. The stimulation of LH release by 20 mU/ml OT represents a nonspecific response. In various investigation, Wilks and Hansel showed that OT had no LH-releasing ability. However, in their system, degradation of LH would have prevented the detection of the slight increase in LH seen under the conditions of our experiment. Only one concentration of OT in combination with GnRH was effective in releasing LH above control GnRH-stimulated values. When the tissue was preexposed to OT, this same concentration was still effective while a concentration tenfold higher was not, indicating that a precise ratio between GnRH and OT must be attained for a potentiating effect to take place.

Although the GnRH-potentiating effect of OT is highly concentration dependent it is less so, in our pre-exposure experiments, for AVP. Preexposure of the anterior pituitary tissue appears to be necessary for the enhancement of the GnRH-induced release of LH by AVP whereas this pretreatment is not necessary in the case of OT. OT acts in concert with GnRH while AVP must act prior to GnRH, preparing the luteotrop for the stimulating effects of the releasing hormone.

It has been proposed that the modification of enzymatic degradation of peptide hormones at receptor sites could be one possible mechanism for the regulation of their actions (16). The fact that OT and GnRH are inactivated by the same peptidase has led to the hypothesis that elevations of OT in hypothalamic and portal blood during proestrus may enable GnRH stores to increase sufficiently to initiate the LH surge (17). This may be one of the mechanisms whereby OT enhances and/or prolongs the effect of GnRH on LH release in our pituitary perfusion system.

It is evident from the present experiments
that AVP and OT augment the GnRH-induced release of LH by the pituitary in vitro. The purpose of these and other peptide-peptide interactions might be the attainment of finer levels of control of secretion which would not be possible through only one hormone. The ability of AVP and OT to act alone leaves open the possibility of a completely independent mechanism although this might reflect an interaction with endogenously produced GnRH already occupying the receptor.

The results of the present studies show that AVP and OT can affect the release of LH and the responsiveness of the lutetotrop to GnRH. Although evidence for participation of AVP and OT in the reproductive cycle is still not conclusive, the relationship between the neurohypophyseal hormones and GnRH warrants further investigation.

Summary. The pituitary perfusion technique was used to investigate the possible interaction between the neurohypophyseal hormones and gonadotropin releasing hormone (GnRH). The perfusion of rat anterior pituitaries with 0.2 mU/ml arginine vasopressin (AVP) resulted in a significant ($P < 0.05$) increase in LH release over baseline, while higher doses had no effect. When combined with GnRH, this and higher concentrations of AVP did not alter the GnRH-induced release of LH. Three concentrations of oxytocin (OT): 0.02, 0.2, and 20 mU/ml, increased baseline secretion of LH ($P < 0.05$) while 2 mU/ml OT did not. When added to GnRH-containing perfusion media, 0.02 mU/ml OT caused significant ($P < 0.05$) enhancement and prolongation of the LH response to GnRH. All higher concentrations of OT and one concentration that was tenfold lower, did not exhibit potentiating effects. When the pituitary tissue was pretreated with AVP or OT prior to stimulation with GnRH, only the same concentration of OT (0.02 mU/ml) was effective ($P < 0.01$) while two concentrations of AVP (2 and 20 mU/ml) which had been ineffective previously, then enhanced the LH release due to GnRH ($P < 0.05$ and $P < 0.01$, respectively). It is proposed that the data from these experiments support the hypothesis that AVP and OT may have a role in reproduction via an interaction with GnRH at the level of the anterior pituitary.

The authors wish to thank Dr. G. D. Niawender for the use of his laboratory and antisera in the LH radioimmunoassays. We would also like to thank Donna Gazette of Dr. John Kendall's laboratory for assaying our samples for ACTH.

Oxygen Consumption in the Spontaneously Hypertensive Rat (40368)

G. L. WRIGHT, E. KNECHT, D. BADGER, S. SAMUELOFF, M. TORAAISON, AND F. DUKES-DOBOS

U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health Division of Biomedical and Behavioral Science, Cincinnati, Ohio 45226

1The Hebrew University, Hadassah Medical School, Department of Physiology, Jerusalem, Israel

The spontaneously hypertensive rat (SH) has been widely utilized as an animal model for the study of physiological functions as they pertain to essential hypertension in man. In a recent report, Wright et al. (1) demonstrated a marked decrease in the responsiveness to thermal stress in the SH rat which they, in part, attributed to deficient water mobilization for evaporative cooling. The possibility remained that changes in metabolic heat production, cardiovascular adjustments to heating or other factors which might accompany the development of hypertension could influence thermoregulation of hypertensive animals in hot environments.

The work of Kloetzlel et al. (2) demonstrating a high percentage of hypertensive individuals in industrial jobs requiring heat exposure has emphasized the need for studies to define stress responses in diseases such as hypertension in which the early symptoms may go undetected or the use of maintenance therapy combined with peer group pressure may encourage normal work and recreational activities. The limits which are described for physical exertion and exposure to environmental factors are nearly always based on data obtained from young, healthy individuals, and it may be reasonable to question their applicability to individuals exhibiting chronic alterations in physiological functions. In the present study, oxygen consumption and rectal temperatures of SH and normotensive rats were determined during exposure to a range of environmental temperatures designed to induce mild cold or heat stress. In an attempt to determine the nature of the observed differences, the effects of beta adrenergic blockade on O_2 uptake in cool and warm environments was examined.

Materials and methods. Male SH rats (blood pressure = 163 ± 7 mm Hg and weight, 341 ± 7 g) of the Okamoto-Aoki strain (3) and parent strain Wistar-Kyoto (WKY) normotensive (BP = 112 ± 5 mm Hg and weight, 447 ± 16 g) rats were examined at 15–20 weeks of age. Animals were housed at 24 ± 1°C and 50% relative humidity with a 14 hr light–10-hr dark photoperiod. Water and Purina rat chow were available ad libitum.

Oxygen utilization was determined using the open flow system of Ben-Porat et al. (4). The animals were studied in 3.0 liter metabolic chambers submerged in a 170 liter waterbath held at ± 0.1°C of the desired temperature. Room air was passed through the chamber at approximately 0.6 liter/min and the ambient temperature (Ta) in the chamber monitored with thermometers inserted into the chamber space. Water was absorbed on dryrite which had been incorporated into the inflow and outflow lines and in the chamber floor. Carbon dioxide absorbant (NaOH) was placed in the chamber floor and outflow lines. Air samples of about 1.0 liter were collected in Saran plastic bags at 30-min intervals over a 3.0-hr period for determination of O_2 content with the Beckman E-2 O_2 analyzer. In order to avoid variations in the data associated with the early adjustment of the animal to the chamber environment, only the last three values were averaged and compared. Pairs of SH and WKY animals were placed in the preheated chambers at either 0900 or 1300 hours (Eastern Standard Time) for exposure to a total of 5 ambient temperatures ranging from 21°C to 32°C. Animals were exposed to a single environmental temperature at each experiment with experiments spaced at 7-day intervals over a 5-week period. In order to minimize acclimatory effects and error related to circadian variations in data, exposure scheduling was randomized as to the sequence of exposure temperatures and was arranged in such a fashion that equal
numbers of animals in each group were utilized in morning and afternoon determinations. Body temperatures were determined before and at the end of each exposure with YSI thermister probes inserted 5–7 cm into the rectum. Oxygen consumption was calculated per metabolic body weight, ml O₂/ min/kg⁻₀·₇₄ (5).

Following the determinations in untreated animals, the effect of beta adrenergic blockage on the rectal temperature and O₂ utilization was examined at Ta 21° and 30°. Animals were administered propranolol (Inderal, Ayerst Laboratories; 3.0 mg/kg) by ip injection at 12 hr and immediately prior to placement in the metabolic chamber. Preliminary experiments with animals not used in this study indicated that this dose regimen resulted in an average 18% (74 bpm) drop in heart rate at 2 hr after the second injection.

Two weeks after the termination of the O₂ uptake studies the animals were anesthetized with Secobarbital sodium (Lilly, 0.06 ml/100 g) and blood samples were obtained by heart puncture for TSH, T₃ and T₄ determination by radioimmunoassay (6) of the serum. Animals were then sacrificed by cervical dislocation and the thyroid gland removed into 10% formalin for histological examination.

Results. The oxygen consumption of SH animals as compared to the WKY group was elevated at each temperature examined although the differences were statistically significant (P < 0.05) only at temperatures above 25° (Fig. 1). Propranolol had no effect on the O₂ uptake of either the SHR and WKY groups at 21° but resulted in 14% and 12% decreases (P < .001) in the normotensive and SH rats, respectively, at 30°. Propranolol did not, however, ameliorate SHR-WKY differences in O₂ consumption at 30°.

The SH rat rectal temperatures obtained at the end of the 3-hr exposure showed a slight (0.4–0.6°) elevation above control values at ambient temperatures above 25° (Fig. 1). The rectal temperature of the SH rats receiving propranolol was increased above the values recorded for untreated SH animals whereas no change was observed for the WKY group at Ta 21°. No effect on rectal temperature was noted in either group following propranolol administration at Ta 30°.

Histological examination of thyroid tissue revealed no apparent differences between the WKY and SHR groups. In contrast, the serum T₃ levels were elevated (P < .005) while T₄ concentrations tended to be lower in the hypertensive animals (Table I). Serum TSH levels were markedly elevated in SH rats, showing a more than 4-fold increase above those recorded for the normotensive controls.

Discussion. A comparison of oxygen utilization of SH and normotensive rats indicates an enhanced metabolic response (15–20%) to higher temperature environments in SH rats (Fig. 1). The corresponding increase in end exposure rectal temperature (0.4–0.6°) in the warm environments suggests that this phenomenon is related to the relative inability of the hypertensive animal to prevent body temperature elevation as compared to normotensive controls. It is not clear, however, as to whether the increase in O₂ utilization represents a major contributing factor to the elevation in rectal temperature observed in the SH rat or a manifestation of the increase in body temperature occurring as a result of defective thermoregulatory function in other heat loss effector systems. Elevation in O₂ uptake seen in the SH rat may result from the direct effect of the higher body temperature on metabolic rate or on the energy requirement for increased respiratory, behavioral
O2 Consumption in the Hypertensive Rat

Table 1. The Serum T₃, T₄ and TSH Values in Normotensive and Hypertensive Rats.

<table>
<thead>
<tr>
<th>Weight (g)</th>
<th>T<sub>3</sub> (ng%)</th>
<th>T<sub>4</sub> (ng%)</th>
<th>TSH (ng%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>477 ± 16</td>
<td>43.1 ± 2.0</td>
<td>4.6 ± 0.2</td>
<td>19.3 ± 3.0</td>
</tr>
<tr>
<td>341 ± 7</td>
<td>54.2 ± 2.7<sup>a</sup></td>
<td>3.9 ± 0.2</td>
<td>81.8 ± 4.4<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Significant difference (P < 0.05 or greater). Data are 1 as mean ± SE of 10 animals.

O₂ consumption measurements in ind SH rats before and after adminis-
tration of the beta adrenergic blocking agent propranolol provide information concerning a reduced metabolic rate in hypertensive rats. The remarkable elevation noted in hypertensive TSH levels is in agreement with the observations of Kojima et al. (7) and indicates a marked abnormality in thyroid function and a relatively refractory response to pituitary stimulation. The observation of elevated O₂ uptake in SH rats only at high ambient temperatures, however, suggests that factors unrelated to the pituitary–thyroid axis may be operant in the SH rat which would result in elevated metabolism, particularly in stress situations. For example, the hyper-responsiveness to adreno-sympathetic adrenergic stimuli in hypertensive rats is well documented (14, 15), and it is possible that stress induced activity in these systems might result in a disproportionate elevation in metabolic rates. In view of the complementary activity of thyroxine to the positive calorigenic effect of epinephrine (16), the nature of the influence of the thyroid in SH animals should be investigated further.

Summary. Oxygen utilization was found to be elevated in SH rats as compared to control animals, and the difference was statistically significant at ambient temperatures above 25°. Corresponding elevations in rectal tempera-
ture were noted, and it was concluded that the enhanced metabolic response was related to the relative inability of the hypertensive rat to prevent rectal temperature elevation during heat stress. It was not clear as to whether the increase in O₂ uptake was a causal factor or resulted from body temperature elevation due to defective heat loss by the SH rat. Propranolol induced a significant reduction in oxygen usage of both SHR and WKY groups at Ta 30° but not at 21° indicating an adrenergic influence on metabolic rate during acute heat stress which was absent during cooler exposures. Serum T₄ levels of SH rats were not significantly different from control values whereas T₃ levels were elevated (26%) indicating normal or slightly increased thyroid activity. In comparison, TSH levels were elevated fourfold indicating a markedly abnormal thyroid response to this hormone.

The authors wish to thank Dr. L. Srivastava, Division of Metabolism, University of Cincinnati Medical School for TSH, T₃ and T₄ analysis. We are also grateful to S. Adams for secretarial assistance.
O₂ CONSUMPTION IN THE HYPERTENSIVE RAT

have reported that treatment of mouse
with homologous interferon results in
cession in the ability of initiation factor
) to bind with initiator tRNA (Met)
and GTP (1). In the rabbit reticulo-
lystate-protein synthesizing systems,
pitide chain initiation is inhibited by a
regulated translation inhibitor (HR1)
presence of ATP. Inhibition is induced
by a low concentration of double-
ed RNA (dsRNA), but prevented by
dition of either excess eIF or cAMP
TP (2, 3). Recent evidence showed that
ution of polypeptide chain initiation
d by HR1 involves the phosphorylation
second by HR1 associated protein kinase
In the interferon system it has also
ported that protein synthesis in cell-
s from interferon-treated cells is de-
ed by low concentrations of dsRNA (10,
ich activates certain protein kinases, a
est and production of a low molecular
or of protein synthesis (11–17).
present study was undertaken to study
ct of these nucleotides, high and low
trations of dsRNA, and other control-
ces on the eIF-2 inhibitory mech-
aducd by interferon in mouse L cells.
tsuits provide evidence that substances
ffect the activity of different protein
s strongly influence the level of eIF-2
y as shown in the rabbit reticulocyte
system (4–9).

Materials and Methods. Interferon treat-
Exponentially growing mouse L cells
layer strain L929) were treated with
ference units/ml of mouse interfer-
ic activity: 10^7 units/mg) for 24 hr at
the presence of 2% fetal calf serum.
treatment, the cells were harvested and
with 10 mM Tris–HCl buffer (pH
ontaining 10 mM KCl, 5 mM MgCl_2
mM dithiothreitol.
Met-tRNA_preparation. Initiator tRNA
(Met) was purified from rat liver us-
ing DEAE-cellulose and BD-cellulose, suc-
cessively, and then charged with 35S-methio-
ine (22.3 Ci/mmoll using Met-tRNA syn-
thesatase purified from *Escherichia coli* as
viously reported (1).

Preparation of eIF-2. The cells treated or
untreated with interferon (about 4 × 10^6 cells)
were homogenized in 20 mM Tris–HCl buffer
(pH 7.5) containing 10 mM KCl, 5 mM
MgCl_2 and 2 mM dithiothreitol (DTT), then
centrifuged for 20 min at 15,000 rpm. Rib-
osomes in this supernatant were further
ified by 60% sucrose cushion gradient cen-
figation as previously reported (1). The purified
ibosomes were suspended in 10 mM
Tris–HCl (pH 7.5) containing 0.25 M sucrose,
1 mM EDTA, 2 mM DTT and 0.5 M KCl,
and then gently stirred for 60 min at 4°C. After
centrifugation (45,000 rpm for 3 hr), solid
ammonium sulfate (0.361 g/ml) was added
to the supernatant. The precipitate was redis-
solved in 1.0 ml of 20 mM Tris–HCl (pH 7.5)
containing 0.1 M KCl, 2 mM DTT and 5%
glycerol. After dialysis against the same
uffer, the crude eIF-2 preparation was
ored at −20°C and used within 1 month.

Assay of eIF-2 activity. Each 0.1 ml of the
action mixture contained 50 mM Tris–HCl
(pH 7.5), 0.1 M KCl, 2 mM dithiothreitol, 50
moles of 35S-Met-tRNA,
and amount of eIF-2 indicated in the text.
The solution was mixed before and after the
addition of eIF-2, then incubated for 10 min
at 37°C in the presence of 1 mM GTP. The
ternary complex formation (35S-Met-tRNA,
eIF-2-GTP) was determined as previously
ported (1).

Chemicals. 35S-Methionine (22.3 Ci/mmoll)
was obtained from Schwarz/Mann, cAMP
derivatives of cAMP from P-L Biochemicals Inc., poly rI and poly rC from Miles
aboratories and crude mouse interferon
rom the Bionetics Corp.

Results. Effect of cAMP and ATP on the
eIF-2 activity from interferon-treated cells.
Previously, we have reported that treatment of cells with interferon results in reduction of the activity of eIF-2 which interacts with Met-tRNA\textsubscript{A} and GTP to form a ternary complex (Met-tRNA\textsubscript{A}-eIF-2-GTP) (1). When mouse L cells were exposed to mouse interferon (300 units/ml) for 24 hr at 37°C, the eIF-2 activity was reduced about 60–70% as compared with that from the untreated control (1). Experiments similar to those performed with rabbit reticulocyte lysates (2, 3) were done to test the effects of cAMP, CAMP derivatives and ATP on the activity of eIF-2 from interferon treated cells. Figure 1 shows that the activity of eIF-2 from interferon treated cells is increased by cAMP at concentrations between 10 μM and 50 μM. The optimum concentration of cAMP was 12 μM and this dose increased eIF-2 activity 2.8 times. cGMP (data not shown) and derivatives of cAMP (Table I) did not substitute for cAMP. High concentrations of cAMP (higher than 1 mM) significantly inhibited the eIF-2 activity from both interferon treated and untreated cells (about 49%). ATP (1–3 mM) partly reversed the impaired eIF-2 activity from interferon treated cells. The increase of activity of eIF-2 from interferon treated cells by 1 mM ATP was less than that obtained with cAMP. The effect of cAMP and ATP was further increased in the presence of Mg2+ (1 mM).

![Graph](image)

Fig. 1. Effect of cAMP and ATP on the eIF-2 activity from interferon-treated and untreated cells. The eIF-2 from cells treated with interferon (300 units/ml) and untreated cells prepared as described in Materials and Methods. The activity of eIF-2 (10 μg protein) was assayed in the presence of either cAMP (left) or ATP (right). The eIF-2 activity was plotted as % of initial activity. 100% of eIF-2 activity corresponds to the activity to 10 μg of eIF-2 from interferon-treated and untreated cells, respectively. The eIF-2 activity from interferon-treated (O) and untreated cells (C).

Table I. Effect of cAMP and Its Derivative Compounds on eIF-2 Activity from Interferon Treated and Untreated Cells

<table>
<thead>
<tr>
<th>Compound tested</th>
<th>Untreated cells</th>
<th>Interferon treated cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pmol</td>
<td>pmol</td>
</tr>
<tr>
<td>None</td>
<td>15.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Adenosine 3':5'-cyclic phosphate (cAMP)</td>
<td>14.4</td>
<td>14.8</td>
</tr>
<tr>
<td>8-Bromadenosine 3':5'-cyclic phosphate</td>
<td>8.7</td>
<td>5.0</td>
</tr>
<tr>
<td>8-Methyladenosine 3':5'-cyclic phosphate</td>
<td>12.8</td>
<td>5.1</td>
</tr>
<tr>
<td>N6-Monobutyrlyadenosine 3':5'-cyclic phosphate</td>
<td>10.9</td>
<td>5.1</td>
</tr>
<tr>
<td>N2-O-Monobutyrlyadenosine 3':5'-cyclic phosphate</td>
<td>11.8</td>
<td>5.8</td>
</tr>
<tr>
<td>N6-Benzoyladenosine 3':5'-cyclic phosphate</td>
<td>11.0</td>
<td>5.7</td>
</tr>
<tr>
<td>N6-Dibutyryladenosine 3':5'-cyclic phosphate</td>
<td>10.5</td>
<td>5.8</td>
</tr>
</tbody>
</table>

* The complete reaction mixture (0.1 ml) contained 40 mM Tris-Cl (pH 7.5), 2 mM dithiothreitol, 0.1 M KC1, 1 mM MgCl\textsubscript{2}, 1 mM GTP, 50 pmol of [35S]-Met-tRNA\textsubscript{A} (4500 cpm/pmol) and 10 μg of eIF-2 from either interferon treated cells or untreated cells. 12 μM cAMP and the same concentration of its derivative compounds were added to the separated reaction mixtures and incubated for 10 min at 37°C. The eIF-2 activity was determined as described in Materials and Methods.

Table II

Compared with its absence (Table II). The enhancing effect of Mg2+ also occurred with Mn2+, but not with Ca2+ (data not shown) reversal of interferon-impaired eIF-2 activity by cAMP, ATP and either Mg2+ or Mn2+ strongly suggests an enzymatic control of the eIF-2 activity related to phosphorylation by protein kinases.

The specific involvement of interferon was established as follows. Using an eIF-2 preperation from untreated cells, no effect of cAMP and ATP on the eIF-2 activity was observed (Fig. 1). Similarly, eIF-2 preparations from cells treated with heterologous human leukocyte interferon (300 units/ml) at levels which did not induce antiviral activity in mouse L cells (18), or treated with both mouse interferon (300 units/ml) and either actinomycin D (98% inhibition of cellular RNA synthesis) or cycloheximide (93% inhibition of cellular protein synthesis) which inhibit the action of interferon on the cells (19, 20) were not affected by cAMP and ATP (data not shown).
LE II. Effect of ATP, cAMP, dsRNA and aminopurine on eIF-2 Activity Impaired by Interferon.*

<table>
<thead>
<tr>
<th>Addition</th>
<th>35S-Met-tRNA<sub>v</sub> in ternary complex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Mg<sup>2+</sup></td>
</tr>
<tr>
<td></td>
<td>pmol</td>
</tr>
<tr>
<td>.TP</td>
<td>7.9</td>
</tr>
<tr>
<td>AMP</td>
<td>12.8</td>
</tr>
<tr>
<td>AMP + 1 mM ATP</td>
<td>14.8</td>
</tr>
<tr>
<td>dsRNA</td>
<td>4.7</td>
</tr>
<tr>
<td>il dsRNA + 12 μM</td>
<td>5.1</td>
</tr>
<tr>
<td>P + 1 mM ATP</td>
<td></td>
</tr>
<tr>
<td>il dsRNA</td>
<td>4.9</td>
</tr>
<tr>
<td>il dsRNA + 1 mM ATP</td>
<td>2.0</td>
</tr>
<tr>
<td>ml dsRNA + 12 μM</td>
<td>2.4</td>
</tr>
<tr>
<td>P + 1 mM ATP</td>
<td></td>
</tr>
<tr>
<td>ml dsRNA + 2 mM ATP</td>
<td>4.7</td>
</tr>
<tr>
<td>opurine + 1 mM ATP</td>
<td></td>
</tr>
<tr>
<td>aminopurine</td>
<td>5.1</td>
</tr>
<tr>
<td>Aminopurine + 12 μM</td>
<td>5.5</td>
</tr>
</tbody>
</table>

* Complete reaction mixture (0.1 ml) contained 40 mM-sHCl (pH 7.5), 2 mM dithiothreitol, 0.1 M KCl, 3TP, 50 pmols of 35S-Met-tRNA_v (4500 cpm/μl) and 10 μg of eIF-2 from interferon treated or untreated cells. The reaction mixture was incubated for 37°C. The effect of ATP, cAMP, dsRNA and aminopurine on the eIF-2 activity was examined in the presence of 1 mM MgCl₂. Poly rI-rI poly RC was used as a dsRNA.

The activity of eIF-2 from interferon-treated cells was further reduced when incubated with a low concentration of dsRNA (50 ng/ml) which activates certain protein kinases in the presence of both ATP and Mg²⁺ (about 78% inhibition). The effect of a low level of dsRNA was not observed in the eIF-2 preparation from untreated cells and was prevented by the addition of aminopurine (2 mM).

These results suggest that the increase and decrease of activity of eIF-2 from interferon-treated cells are cAMP and low levels of dsRNA in the presence of ATP, respectively, may involve protein kinases which are sensitive to both aminopurine and high concentrations of dsRNA, and requires Mg²⁺ for optimum enzyme activity.

Discussion. We have presented indirect evidence that suggests the interferon-induced mechanisms for regulation of eIF-2 activity have general similarities to those of poly peptide chain initiation induced by HR1 in reticulocyte lysates (2-9). These similarities are that: (a) Both inhibitors are specifically overcome in the presence of suitable concentrations of cAMP; (b) the effect of cAMP is stimulated by the addition of either Mg²⁺ or Mn²⁺; (c) restoration of activity by both cAMP and ATP are prevented by protein kinase inhibitors such as aminopurine (2-5 mM) or high concentrations of dsRNA (5-10 μg/ml); and (d) low concentrations of dsRNA (10-200 ng/ml) stimulates both inhibitions. Thus the control of eIF-2 activity in both systems may be due to specific phosphorylations of eIF-2 by different protein kinases.

Dissimilarities of the two systems are that preincubation of impaired eIF-2 from interferon-treated cells with cAMP and GTP, which has an effect in reticulocyte lysates, has no effect in our system (data not shown) and ATP (1 mM) which is ineffective in the reticulocyte lysates partly reverses the eIF-2 activity of interferon-treated cells. Moreover, low levels of cAMP which reverse the eIF-2 activity of interferon-treated cells have no effect on the HR1-induced reduction of eIF-2 activity (7). Thus, the two systems have major similarities but may not be entirely comparable.
If protein kinases actually are involved in these processes it is possible that the cAMP and ATP requirements for the reversion of interferon-impaired eIF-2 activity occurs in conjunction with either preexisting protein kinase or with interferon-induced new or increased protein kinase synthesis. Elevation of eIF-2 activity by both cAMP and ATP in the presence of Mg$^{2+}$ does not occur in the eIF-2 preparation from untreated cells, from cells treated with both actinomycin D and interferon, or from cells treated with heterologous human leukocyte interferon (data not shown). Moreover, low concentrations of dsRNA (10-200 ng/ml) also do not enhance the inhibition of eIF-2 activity from untreated cells (data not shown). Therefore, it seems more likely that if protein kinases are involved they are either newly induced or increased by interferon. This aspect is under active study.

Previous reports indicate that the addition of low concentrations of dsRNA (10-200 ng/ml which stimulates certain protein kinases) to cell extracts from interferon-treated cells induces: (a) enhanced inhibition of viral protein synthesis (10); (b) dsRNA-dependent protein kinase mediated synthesis of a low molecular weight inhibitor (LMW-inhibitor) which directly inhibits viral mRNA translation in cell-free system (11-13); (c) phosphorylation of ribosomal and cellular proteins (14-16); (d) activation of uncharacterized protein kinases (14-16); and (e) activation of an endonuclease which digests viral mRNAs faster than those of host mRNAs in interferon treated cells (17). This activation of protein kinase and the protein phosphorylation may explain our finding that the activity of eIF-2 from interferon-treated cells is strongly decreased by the addition of low concentrations of dsRNA (50 ng/ml) in the presence of both ATP (1 mM) and Mg$^{2+}$ (1 mM). Although it is not clear why the activity of eIF-2 from interferon treated cells is differentially affected by different concentrations of dsRNA (50 ng/ml and 5 µg/ml), there are several possibilities which include activation or inhibition of the same or different protein kinases by the different concentrations of dsRNA (7).

Summary. Interferon treatment of mouse L cells causes the reduction of activity of initiation factor (eIF-2) which forms a ternary complex with Met-tRNA$_f$ and GTP. The activity of eIF from the cells treated with interferon was specifically increased when incubated with 12 µM cAMP, but no effect of cAMP on the eIF-2 activity from untreated cells was observed. ATP (1 mM) also slightly increased the interferon-impaired eIF-2 activity. The restoration of activity of eIF-2 from interferon-treated cells was completely prevented by the addition of inhibitors of protein kinases (either aminopurine (2 mM) or a relatively high concentration (5 µg/ml) of dsRNA (poly rI-poly rC)) without a direct effect on normal eIF-2 activity. However, low concentrations of dsRNA (50 ng/ml) which activate certain protein kinases, strongly stimulated the reduction of eIF activity induced by interferon. Taken together, these observations suggest that different protein kinases may be involved in the interferon-induced reduction of eIF-2 activity and the restoration of interferon-impaired eIF-2 activity.

We are grateful to Mr. J. D. Stanton for technical assistance. This work was supported in part by the McAulughlin Foundation.

The Isoproterenol Stress Test in Unanesthetized Atherosclerotic Rabbits (40370)

ROBERT J. LEE1 AND SHERRIN H. BAKY2

The Squibb Institute for Medical Research, Princeton, New Jersey 08540

Cardiac stress testing is a necessary diagnostic prelude to selective coronary angiography. The most prevalent stress test utilized is exercise performed on a treadmill or bicycle ergometer. There are situations, however, in which exercise stress testing cannot be performed due to physical or psychological limitations (1). It is also difficult, at times, to obtain stable electrocardiographic (ECG) traces due to movement artifacts. Atrial pacing at rapid heart rates has also been utilized as a cardiac stress test (2, 3) but has the disadvantage of requiring cardiac catheterization.

Isoproterenol infusion has been reported to cause S-T segment and T wave changes indicative of ischemia in patients with coronary artery disease but not in normal individuals (4). In addition it has recently been reported to be more reliable than the Masters two-step (5) and as reliable as treadmill exercise (1) in predicting the presence of coronary artery disease in man. Because of its simplicity and great sensitivity it has been suggested that the “isoproterenol stress test” would appear to have a useful role in the clinical assessment of coronary artery disease (1). We have investigated the response to this isoproterenol stress test in an atherosclerotic rabbit model previously described (6, 7). This model is pathophysiologically similar to the patient with coronary artery disease, demonstrates a similar ECG response to the stress of atrial pacing, and responds similarly to pharmacological interventions.

Methods. Twenty-three male New Zealand white rabbits, weighing approximately 2 kg, were fed a standard laboratory chow pelleted with 2% cholesterol for 14–16 weeks. At that time surgical preparation of the animals was carried out as previously described (6). Briefly, a 14 G polyvinyl chloride catheter was implanted in the right external jugular vein under local anesthetic (procaine HCl) for subsequent infusion of isoproterenol. At least 24 hr later, the unanesthetized rabbits were lightly restrained on their backs. Surface leads were placed over the spine and sternum for recording the ECG on a Brush recorder (Mark 260) at a standard sensitivity of 1 mv/cm and on magnetic tape for computer analysis of S-T segment response. A solution of isoproterenol was infused continuously at a rate of 0.2 cc/min for 10 min using a commercial infusion pump (Sage Instruments, Model 255-1). The initial concentration of isoproterenol was such that a dose of 1 µg/kg/min was delivered. If S-T segment depression (i.e. at least 1 mm difference from control) was not seen after 3 min of infusion at this concentration, the infusion was stopped and the concentration of isoproterenol was increased to deliver 2–3 µg/kg/min. The rate of infusion and volume of fluid infused was always constant, however. Propranolol (Inderal) (0.01–1.0 mg/kg, n = 6), nitroglycerin (100 µg/kg, n = 9), dipyridamole (Persantin) (250 µg/kg, n = 8) or saline (0.2 cc/min, n = 5) was injected intravenously into the marginal vein of the left ear during the fifth or sixth min of the isoproterenol infusion to determine the effects on isoproterenol-induced heart rate and S-T segment depression. Dosages were selected based upon previous experience with these compounds in the paced rabbit model (6, 7).

Statistical analysis of the effects of propranolol, nitroglycerin (GTN) and diprydamole were determined using Students t test (8).

Results. Effects of isoproterenol infusion. Heart rate began to increase almost immediately after the start of isoproterenol infusion and reached a steady-state value within 2 min as did ischemic S-T segment changes. Two
Effects of propranolol on isoproterenol-induced ECG changes. The effects of a dosage of 0.1 mg/kg of propranolol on isoproterenol-induced tachycardia and ECG changes in one rabbit are shown in Fig. 1. Isoproterenol infusion caused an increase in heart rate from a control value of 240 to 310 beats/min, S-T segment depression and T-wave inversion. One min after intravenous injection of propranolol the heart rate decreased to 260 beats/min, and the S-T segment depression and T-wave inversion disappeared although the isoproterenol infusion continued. This is a typical response to a β-blocking dose of propranolol.

A dose-response relationship for propranolol can be seen in Fig. 2, in which the effects of three dosages of propranolol on heart rate and S-T segment depression are compared with those of saline (five animals per group). Propranolol did not significantly reduce heart-rate or S-T segment depression at the 0.01 mg/kg dose but did at the two higher doses.

Effects of nitroglycerin and dipyridamole on isoproterenol-induced ECG changes. Nitroglycerin was effective in reversing isoproterenol-induced S-T segment depression whereas dipyridamole had no beneficial effect. In fact, dipyridamole frequently caused

1. ECG tracings demonstrating the reversal by propranolol (0.1 mg/kg) of the tachycardia, ischemic S-T depression and T-wave inversion caused by isoproterenol infusion.

Fig. 2. Dose-response relationship of the effects of propranolol on isoproterenol-induced tachycardia and S-T segment depression (mean ± SEM). Asterisks in this and subsequent figures indicate significant differences (P < 0.05) when compared with the value at the fourth minute of isoproterenol infusion.
the S-T segment depresses a typical response to as in the same animal on daily days. The response to ion was the same on both a peak heart rate of 390 sagging S-T segment of inversion.

Administration during iso- reversed the ischemic S without affecting the tachy-

The effects of nitroglycerin on isoproterenol-induced segment changes is shown rate and S-T segment influence were the s of animals. Neither drug isoproterenol-induced of the animals. Following on the mean S-T segment reduced from 1.3 to 0.4 mm, nore tended to exacerbate expression (to 1.6 mm).

[Diagrams and text]

FIG. 4. Summary of the effects of nitroglycerin and dipyridamole on isoproterenol-induced heart rate and S-T segment changes (mean ± SEM). The only significant effect was the decrease in S-T segment depression following nitroglycerin (100 μg/kg) administration.

In this, Infusion of isoproterenol intravenously to unanesthetized atherosclerotic rabbits caused ischemic S-T segment depression and T-wave inversion similar to that seen when patients with coronary artery disease are similarly stressed (1, 4, 5, 9). Electrocardiographic S-T segment depression is thought to be a manifestation of subendocardial ischemia (10). The major portion of total coronary blood flow, and all of subendocardial blood flow, occurs during diastole (11). Therefore the supply of blood, and thus ox-
gen, to the subendocardium depends upon the diastolic perfusion pressure, the coronary resistance, and the duration of diastole. The diastolic blood pressure (afterload) is also a major determinant of oxygen consumption, and its net effect on myocardial oxygen balance is determined by the relative contribution to coronary flow (oxygen supply) and cardiac work (oxygen demand). Infusion of isoproterenol causes tachycardia and a positive inotropic effect thereby greatly increasing myocardial oxygen consumption. The presence of the tachycardia reduces the duration of diastole and thus the time during which subendocardial coronary flow can occur. Diversion of blood flow away from the subendocardium by isoproterenol has been reported (9). Thus, during infusion of isoproterenol to these animals with compromised coronary circulation, the highly susceptible subendocardium performs more work at a
oxygen cost in the presence of de-
lopment and becomes ischemic.
ch is manifested by electrocardi-
ic S-T segment depression.
cts of propranolol on isoproterenol-in-
ECG changes. Presumably the ischemic
gress of heart-rate and contractility in-
are brought about by beta-receptor stim-
As might be expected from a com-
pharmacological antagonism, in-
ng doses of propranolol caused a dose-
inhibition of the effects of isoproter-
infusion (Fig. 2). The results of the
study have a clinical corollary in the
of Ushiyama et al. (5) who reported
propranolol (5 mg, iv) completely sup-
l the isoproterenol-induced heart rate
chemic S-T segment depression in each
anginal patients tested.
propranolol is a clinically effective antian-
gent (12), the major beneficial effects
reduction of atrial and cardiac work due to blockade
adrenergic stimulation by endoge-
atecholamines. Its action in this animal
with coronary artery disease (13) mim-
se clinical effects.
cts of nitroglycerin and dipyridamole on
erenol-induced ECG changes. While
ences of opinion regarding its mecha-
function, the efficacy of nitroglycer-
therapy of angina pectoris is be-
question. Dipyridamole, however, has
own only a benign coronary
atory effect that has no significant
eutic value when compared to placebo
double-blind conditions and may ex-
te the patient's angina (14). The vaso-
on caused by dipyridamole is believed
due to its inhibition of adenosine de-
se and cellular uptake of adenosine
therefore might be expected to be
ly in vascular beds that are not
ally dilated because of ischemic con-
. This is borne out by its tendency to
"coronary steal" from ischemic regions.
ycin also causes vasodilation in a
vascular beds, however, its periph-
olar effects, particularly in the
system, are felt to be chiefly (16, 17)
only (18) responsible for its antian-
ginal effects. Its dramatic effect on isoproter-
enol-induced S-T segment depression in the
present experiments suggests that this mecha-
anism of venous pooling was operative since
it is difficult to imagine coronary vasodilation
being less than maximal under the condi-
ions imposed by isoproterenol infusion in these
animals with compromised coronary circu-
lation. It is highly unlikely that the \(\beta \)-adrener-
getic blocking effects of nitroglycerin (19) were
in any way involved since there was no effect
on isoproterenol-induced tachycardia. In ad-
in, the doses of nitroglycerin used to dem-
strate \(\beta \)-adrenergic blockade were 30 times
those used in this study.

Comparison of the effects of nitroglycerin
and dipyridamole on ischemic S-T segment
depression in this study shows a good corre-
lation with clinical results, i.e. nitroglycerin
has a beneficial effect whereas dipyridamole
does not. The isoproterenol stress test appears
to be a useful adjunct to atrial pacing in this
experimental model of angina pectoris as well
as in the clinical setting.

Summary. Isoproterenol infusion was
employed as a cardiac stress test in unanesthe-
tized, atherosclerotic rabbits. In addition to
tachycardia, isoproterenol infusion caused is-
chemic S-T segment depression of the elec-
trocardiogram. Propranolol (0.1 and 1
mg/kg, iv), given during isoproterenol infu-
sion, reversed the tachycardia and S-T seg-
ment depression. Nitroglycerin (100 \(\mu \)g/kg,
iv) reversed the ischemic S-T segment de-
pression but did not affect the tachycardia.
Dipyridamole (250 \(\mu \)g/kg) tended to exac-
terate S-T segment depression, and had no
effect on the tachycardia. The effects of nitro-
glycerin and dipyridamole in these animals
were well correlated with clinical results, i.e. nitro-
glycerin had a beneficial effect whereas di-
pyridamole did not. We conclude that the
stress of isoproterenol infusion is as useful as
atrial pacing in this experimental model of
angina pectoris.

87, 711 (1974).
2. Frick, M. H., Balcon, R., Cross, D., and Sowton, G.
E., Circulation 37, 160 (1968).
J. 33, 759 (1971).

her Characterization and Evidence for a Precursor in the Formation of Plasma Antinatrieric Factor (40371)

K. A. GRUBER AND V. M. BUCKALEW, JR.

nents of Physiology and Pharmacology and Medicine, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27103

iderable evidence supports the exist-
ence of a humoral natriuretic factor which increases the renal response to extracellular volume (ECFV) expansion (1). Reports from laboratory have demonstrated a natriuretic effect in plasma of ECFV expanded (VE) rabbits, which is natriuretic in rats and inhibits urinary bladder (2, 3), a biological test of the distal renal tubule. A similar natriuretic effect has been observed in other laboratories (4), in urine of VE and in renal tissue of VE rats (6). We now wish to report the partial purification of this substance by high pressure liquid chromatography and the development of a biological assay for it. The data suggest that the low molecular weight, acidic peptide may provide evidence of its formation precursor molecule.

ial and Methods. Blood samples (150 ml) were obtained from the jugular vein of monic (H) and VE dogs as previously described (3). Blood was collected in heparinized tubes and handled according to two protocols.

1. Blood was centrifuged at 2500 rpm for 20 min, the plasma was aspirated and stored at -40°C until processing by chromatography. The time interval between the collection and processing varied from several days to 2 months. Eighteen to 20 milliliters of plasma were eluted on a 1.2 (medium) column, 2 x 95 cm, with 10% acetic acid as eluant. Ten milliliter fractions were collected automatically and ed for uv absorbance at 280 nm, and rical resistance to detect the salt peak. Elution immediately after the peak (Fraction IV) was lyophilized and stored at -70°C. Biogel Fraction IV was redis- solved 300 µl of 0.05 M HCl and separated by high pressure liquid chromatography. Biogel Fraction IV was then lyophilized and processed on Partisil SCX as described above for Group I. Biogel P-2 Fraction IV was then lyophilized and processed on Partisil SCX as described above for Group I.

In most instances, bio-assays were performed under a protocol previously described (7). Four minute fractions (~1 ml) were collected in a fraction collector.

Peptides in the column effluent were detected by a discontinuous stream-splitting valve coupled to a fluorescamine detection system, as previously reported (8). The valve loops were calibrated to provide one percent of the column effluent for detection, while 99% was diverted to a fraction collector. Column effluent fractions comprising each peak seen on the recorder were pooled and freeze dried. The residue was redissolved in amphi- Ringer and assayed for antinatrieric activity (AA) as described previously (3). AA is reported as percent decrease in short circuit current (SCC).

Group II. In Group II, blood from each dog was split into equal, pooled samples and processed by two different methods. In Group II (a) (rapid processing) blood was collected in iced, heparinized syringes containing 50 nmoles bacitracin (an enzyme inhibitor), and centrifuged at 10,000 rpm at 4°C for 5 min. The plasma was quickly aspirated, acidified to pH 5.0 with 10% acetic acid, and placed in a boiling water bath for 20 min. The total elapsed time from drawing of blood to placement in the water bath was 15 min. In Group II (b) (slow processing), blood was drawn without bacitracin and centrifuged at 2500 rpm for twenty minutes at 4°C. The plasma was aspirated and allowed to sit at room temperature for approximately 30 min, then acidified and boiled as in Group II (a).

In Group II (b), the elapsed time from drawing of blood to boiling was approximately 60 minutes. Then the extract was centrifuged and the supernatant removed and stored at -70°C. Twenty-five milliliter supernatant samples were eluted on Biogel P-2 as described above for Group I. Biogel P-2 Fraction IV was then lyophilized and processed on Partisil SCX as described above for Group I.
formed on randomly selected bladders. However, in Group II samples, two of the six pairs of assays were performed on paired hemibladders from the same toad and one pair of assays on the same bladder section.

Ten percent of each SCX fraction was used for the reverse-phase peptide analysis of Gruber et al. (9). The sample (200 µl) was diluted with 300 µl of 0.05 M sodium phosphate buffer (pH 7), reacted with fluorescamine, and the peptide-fluorophors separated on a Partisil ODS-2 column (Whatman Inc., Clifton, NJ). The peptide-fluorophors were eluted with a 5–30% acetone:water gradient.

Results. AA in plasma extracts of VE dogs was consistently found in a post salt u-v absorbing peak (peak IV) on Biogel P-2 chromatography in Group I samples as previously reported (2). Partisil SCX chromatography of Biogel Fraction IV resulted in the appearance of several fluorescamine-reactive peaks V (Fig. 1). No consistent difference could be observed in the chromatograms of VE and H plasma. These peaks did not contain intrinsic fluorescence (at 390 nm excitation - 475 nm emission). This was shown by turning off the fluorescamine pump in the preparative monitoring system and observing the absence of any peaks on the recorder. AA was only found in the void volume peak (Fraction I) of the VE extracts (Fig. 1 and Table I). There was negligible AA in the fraction (II) immediately after the void volume (Table I), nor did any other column fraction contain AA. Since Guggenheim et al. (10) reported that ammonia has AA, all samples were analyzed for ammonia. Our "ammonia titration" curve on the toad bladder shows a plateau of AA at -14% between 0.5 mM and 1.5 mM. In Group I and II samples, ammonia concentrations were uniformly less than 0.4 mM, causing trivial degree of AA in our assay.

Aliquots of the Partisil SCX void volume fractions were reacted with fluorescamine at pH 7, and the resulting peptide-fluorophors separated on a Partisil ODS (reverse-phase) column. The pH used for the reaction has been shown to maximize the fluorescence of peptides, while minimizing the fluorescence of amino acids (11). A group of peaks, consistently found after the void volume peak in VE samples, was used as a marker permitting a blind assay for AA. The fluorescence of

FIG. 1. Partisil SCX chromatogram of Biogel Fraction IV from an ECFV expanded dog. AA is fo in the first two sampling periods (void volume). E line in the discontinuous tracing represents the fluorescence in one test tube in the fraction collector.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Fraction 1 AA (%)</th>
<th>Fraction 2 AA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expanded</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-27</td>
<td>-16</td>
</tr>
<tr>
<td>2</td>
<td>-21</td>
<td>-11</td>
</tr>
<tr>
<td>3</td>
<td>-23</td>
<td>+9</td>
</tr>
<tr>
<td>4</td>
<td>-34</td>
<td>+19</td>
</tr>
<tr>
<td>5</td>
<td>-23</td>
<td>-2</td>
</tr>
<tr>
<td>6</td>
<td>-26</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>-26</td>
<td>0</td>
</tr>
<tr>
<td>SE</td>
<td>1.89</td>
<td>6.40</td>
</tr>
</tbody>
</table>

	Hydroponic	
1	-10	
2	+31	
3	-9	
4	-27	
5	-5	
mean	-4	
SE	9.53	
p	<0.02	

a Fraction 1 = void volume of HPLC column. Fraction 2 = fraction immediately after void volume.

a Significance of difference between volume expanded and hydroponic groups.
these peaks was due entirely to their reaction with fluorescamine. The reverse-phase chemical assay correlated with the toad bladder assay in 80% of the samples tested.

To determine whether enzymatic degradation reduced the yield of our factor, we collected a series of plasma samples to which actinacin had been added. To our surprise, this resulted in a decrease in activity in the VE samples, and reverse-phase chromatograms which resembled H samples.

Accordingly, a study was performed in which plasma samples from VE dogs were divided into paired aliquots (Group II a and b). Bacitracin was added to one-half of the sample, which was processed rapidly with immersion in boiling water to stop further enzymatic activity and to precipitate proteins. The other half was processed more slowly without bacitracin, and boiled after 60 minutes. The conditions under which the slowly processed samples were handled approximated those by which the samples in Group I were handled, with the exception that Group I was not boiled.

The results, seen in Table II, clearly show that the rapidly processed samples have significantly less AA than their slowly processed rate. It is interesting to note that sample 6, which gave the lowest AA, was obtained from the dog with the lowest sodium excretion.

Figure 2 shows a typical reverse-phase chromatogram of a Group II plasma extract. The heights of Peaks I and II have a significant correlation with the SCC of Group II (a and b) samples (Fig. 3). H samples did not contain these peaks, as would be expected since they did not possess biological activity.

Discussion. An earlier report from this laboratory demonstrated AA in the post salt fraction of plasma from ECFV expanded dogs eluted on Biogel P-2 in 1 M acetic acid (12). The present study shows further purification of the antinatriferic factor in this fraction by high pressure liquid chromatography. The mobility on Biogel P-2 suggests the factor is a low molecular weight molecule. It is excluded from a cation-exchange resin, appears to react with a reagent (fluorescamine) specific for amino groups at a pH which allows only peptides to develop maximal fluorescence, and is formed by enzymatic action. These data suggest that the antinatriferic factor is an acidic peptide of low molecular weight (~500). These results are in accord with the reported characterization of an antinatriferic factor isolated from urine of uremic patients (13).

Reports have indicated the presence of two natriuretic factors in urine of ECFV expanded subjects (1). One factor, which causes natriuresis in rats after a 20-min delay, appears to have a larger molecular weight than a second factor which produces an immediate natriuresis. The low molecular weight factor is antinatriferic, while the higher molecular

TABLE II. GROUP II EXPERIMENTS EFFECT OF PROCESSING TIME ON ANTINATRIFERIC ACTIVITY OF VOLUME EXPANDED SAMPLES.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Rapid</th>
<th>Slow</th>
<th>Δ</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>−10</td>
<td>−22</td>
<td>−12</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>−24</td>
<td>−30</td>
<td>−6</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>−13</td>
<td>−28</td>
<td>−15</td>
<td>115</td>
</tr>
<tr>
<td>4*</td>
<td>−15</td>
<td>−25</td>
<td>−10</td>
<td>87</td>
</tr>
<tr>
<td>5'</td>
<td>−16</td>
<td>−30</td>
<td>−14</td>
<td>88</td>
</tr>
<tr>
<td>6*</td>
<td>−7</td>
<td>−13</td>
<td>−6</td>
<td>86</td>
</tr>
</tbody>
</table>

Mean	−14	−25	−10	83
SE	2.39	2.65	1.59	14
P<.01				

* Difference between rapid and slow samples.
* Paired assay performed on same bladder.
* Paired assay performed on hemibladders from same ad.
* Significance of difference between paired samples / paired t test.
weight factor is not, as has been shown in unpublished studies from this laboratory, and others (14). Speculation is that the higher molecular weight factor could be a precursor of the lower molecular weight factor (15).

The correlation of 2 small molecular weight peptides (on reverse-phase chromatography) with SCC in Group II samples (Fig. 3) suggests that they may be the breakdown products of a precursor molecule. This precursor may be the natriuretic, non-antinatriferic factor previously described (14). These peptides may be responsible for antinatriferic activity. Because of the high correlation between antinatriferic activity and peak height, it may be possible to chemically assay for antinatriferic activity in plasma extracts using the height of Peaks I and/or II.

Our results show that rapid processing of plasma samples reduces the recovery of the antinatriferic factor. This finding may provide an explanation for previous conflicting reports on the presence of antinatriferic factor in plasma (1). Our data is the first direct evidence that "natriuretic hormone" is a cascading system. Confirmation of this hypothesis will require isolation and characterization of the precursor substance and its in vitro conversion by enzymatic digestion to an effector substance.

Summary. Antinatriferic factor was isolated from VE dog plasma on high pressure liquid chromatography. The use of an enzyme inhibitor while collecting plasma reduced the presence of this factor. A reverse-phase chromatography peptide map revealed 2 peptides whose presence was directly correlated with antinatriferic activity. The results suggest that antinatriferic factor is a small acidic peptide, formed from a precursor molecule. Reverse-phase chromatography may prove to be a chemical assay for antinatriferic factor.

Portions of this work were presented at the Southern Society for Clinical Investigation, New Orleans, LA, January 28, 1978, and the VIIIth International Congress of Nephrology, Montreal, Canada, June 22, 1978. Supported in part by NIH Grant Nos. AM 17341, HL 5392 and RR 05404.

Decrease in Renal Perfusion, Glomerular Filtration and Sodium Excretion by Hypoxia in the Dog (40372)

FRANK J. BRUNS

Department of Medicine, University of Pittsburgh School of Medicine and Montefiore Hospital, Pittsburgh, Pennsylvania 15213

The present investigation was designed to assess the effect of hypoxia on renal hemodynamics and sodium excretion. Previous studies in dogs have shown conflicting results (1-4). In most studies lowered concentrations of oxygen were administered without controlling ventilation. Presumably, the hyperventilation induced by hypoxia altered blood pH and cardiac output (5); two factors which are known to alter renal function (6-9). Since the pH and pCO₂ were neither measured nor controlled in these studies altered states of acid-base balance might explain the disparate results. In the present study ventilatory rate was maintained constant so that no changes in pCO₂ or pH occurred.

Furthermore, in the earlier studies in which hypoxia reduced GFR and RPF (2, 4) it was not determined whether the altered renal perfusion was due to ischemic injury with cell swelling or to a functional and reversible increase in renal vascular resistance. To determine whether hypoxia exerts a direct toxic effect on the renal vasculature the vasodilator acetylcholine was infused into one renal artery during hypoxia and the GFR, RPF, and sodium excretion of this kidney was compared with the non-infused kidney.

Materials and methods. Studies were performed on 12-18 kg mongrel dogs. Food and water were withheld for 2-6 hr before study. All dogs were anesthetized with pentobarbita- tal, intubated and placed on a Harvard 614 respirator. A polyethylene catheter was inserted into a foreleg vein for infusion of inulin or 125I iodothalamate (Glo-fil. Abbott Laboratories), and PAH. Plasma inulin was maintained at approximately 20 mg/100 ml and PAH at 2 mg/100 ml. Blood pressure was monitored and blood obtained for clearance determinations from a femoral artery catheter. Both ureters were catheterized near the renal pelvis through bilateral flank incisions. A large polyvinyl catheter for microsphere injection was advanced through the right axillary or right carotid artery to the aortic root. In the eight animals receiving acetylcholine a hooked 23 gauge needle was placed in the right renal artery and kept open with a saline infusion at a rate of 0.11 ml/min. In four additional animals not receiving acetylcholine a hooked 23 gauge needle was placed in the right renal vein and passed to the hilus for PAH extraction. Arterial blood was obtained initially for PAH, pCO₂ and pO₂. When minor adjustments of the respirator were necessary the dogs were allowed to stabilize an additional 15 min. Acetylcholine was infused at 30-50 µg/min into the right artery throughout the entire experiment. Following stabilization arterial blood gases were obtained and four 15 minutes control periods were obtained for inulin or 125I iodothalamate and PAH clearances and sodium excretion. During the second period either strontium 85 or cerium 141 labelled microspheres (15 µM, 3M Company, St. Paul, MI) was given through the aortic catheter. After suspension in 107 dextran, 10 × 10⁷ spheres containing about 10 µCi were rapidly injected and the catheter flushed with 10-15 ml of saline. Following the control period a Heidbrink Kinet-O-Meter (Lundy-Rochester) anesthesia machine with a circle CO₂ reabsorber was connected in line with the Harvard Respirator. To lower the pO₂ nitrogen was added to oxygen. The addition of nitrogen allowed the arterial pO₂ to be lowered from 74 to 106 mmHg and maintained between 30 and 40 mmHg. Arterial blood gases were sampled at 5- to 10- min intervals thereafter to insure stability. Following a 30-min hypoxic equilibration period, five to seven 8-min periods were obtained for clearance of inulin or 125I iodothalamate, PAH and sodium. Microspheres with a different isotope label from those used during control were injected into the aortic catheter. During recovery the anesthesia ma-
was disconnected from the respirator he dog again ventilated with room air. wing a 30-min stabilization period ar- blood gases were determined and four n recovery periods obtained for insulin I, and PAH.

euse preparation for microspheres. At the usion of each experiment both kidneys removed, drained of blood and frozen. jital slice, 2–5 mm thick, was cut from enter of each frozen kidney. The slice further divided into ten wedges approxi- mately 5 mm wide by cutting perpendicular e cortical surface. The cortical wedge divided into four equal zones by using a cutting box. While still frozen the s were rapidly weighed on a Roller- balance and placed in gamma counting . The zones were numbered 1 (superfi- through IV (juxtamedullary) (10).

tyic methods. Glomerular filtration t) was determined by clearance of either ndothalimate (11) or inulin. Inulin con- ditions were determined by the diphen- ne method (4). Renal plasma flow () was estimated from PAH clearance ut correcting for extraction. PAH con- ditions were determined by the method ith (12). Arterial pO₂, pCO₂ and pH measured on an IL 113 pH-gas analyzer. um was measured on an IL 143 flame meter. Radioactivity was determined in clear Chicago two channel gamma spec- ter. Fractional blood flow distribution renal cortex was calculated from the ion: \(P_e = qz/\text{pt} \) where \(P_e \) = percent of per g for a given zone uncorrected for volume, \(qz \) = cpmp per g of tissues in spective zone, and q represents the sum n per g from all four cortical zones (13). rared \(t \) test was used to determine sta- il significance. All values are given as ± SE.

evts. Maintenance of arterial pH, pCO₂ blood pressure during hypoxia. There were gnic differences in arterial pH be- t control (7.38 ± 0.01) or hypoxia at 20 7.38 ± .01), hypoxia at 60–90 min (7.37 l) or during recovery (7.36 ± .01). The l also remained unchanged during these dss (36.5 ± 1.6, 36.7 ± 1.6, 35.8 ± 1.8, ± 1.9). Thus, extracellular acid ba- tions were maintained constant throughout the experiment. Mean blood pres- sure increased from 111 ± 2 mmHg to 119 ± 5 mmHg during hypoxia (\(P < .05 \)) and returned to control level during recovery (112 ± 5 mmHg).

The effect of hypoxia on GFR and C_{PAH}. The effect of hypoxia on GFR and C_{PAH} in acetylcholine perfused and nonperfused kid- neys is shown in Table I. The GFR of non acetylcholine perfused kidneys fell 33 ± 7% (\(P < .001 \)) during hypoxia. Although the percent change varied, the GFR decreased in each kidney. Restoration of normal oxygen tension caused the GFR to increase in all nonperfused kidneys and the GFR for the entire group had returned to the control level. C_{PAH} also decreased in all nonperfused kid- neys. The mean decrease of 38 ± 6% was significant (\(P < .005 \)).

In acetylcholine perfused kidneys GFR did not change during hypoxia. The difference in response of GFR to hypoxia between perf- used and nonperfused kidneys is significant (\(P < .005 \)) showing that acetylcholine pre- vents the hypoxia induced decrease in GFR. The mean 6% decrease in C_{PAH} of perfused kidneys during hypoxia was not statistically significant. The difference in C_{PAH} between perfused and nonperfused kidneys is signifi- cant (\(P < .005 \)) so it appears that acetylcho- line prevents a decrease in C_{PAH} during hypoxia.

In four additional dogs hypoxia was in- duced without infusing acetylcholine and PAH extraction determined. During hypoxia GFR fell 42% (\(P < .005 \)) while C_{PAH} fell 35% (\(P < .025 \)). The renal extraction of PAH was 0.76 ± .07 in controls, 0.79 ± .09 during hypoxia, and 0.76 ± .04 in recovery. These differences were not significant.

Effect of hypoxia on cortical blood flow. Fractional blood flow to the renal cortex determined by microsphere distribution is shown in Fig. 1. The fraction of blood flow to inner and outer cortical zones was identical during control and hypoxia. Therefore, the increased vascular resistance caused by hypoxia is evenly distributed throughout the kidney demonstrating that the decrease in whole kidney GFR and RPF are not the result of a redistribution of cortical blood flow. Cortical blood flow distribution in ace- tylcholine perfused kidneys likewise was un-
EFFECT OF HYPOXIA ON RENAL FUNCTION

TABLE 1. EFFECT OF HYPOXIA ON GFR AND RPF IN DOGS WITH UNILATERAL RENAL ACETYLCHOLINE PERFUSION.

<table>
<thead>
<tr>
<th></th>
<th>GFR (ml/min)</th>
<th>C, H, R</th>
<th>Ac</th>
<th>C, H, R</th>
<th>Ac</th>
<th>C, H, R</th>
<th>Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.3</td>
<td>40.8</td>
<td>48.8</td>
<td>50.6</td>
<td>46.4</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.1</td>
<td>21.7</td>
<td>23.1</td>
<td>35.8</td>
<td>46.9</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.8</td>
<td>28.9</td>
<td>38.9</td>
<td>18.1</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.6</td>
<td>13.9</td>
<td>20.8</td>
<td>18.2</td>
<td>17.2</td>
<td>15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>19.1</td>
<td>25.3</td>
<td>26.8</td>
<td>24.0</td>
<td>25.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.1</td>
<td>21.5</td>
<td>32.7</td>
<td>36.0</td>
<td>34.1</td>
<td>31.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.1</td>
<td>17.2</td>
<td>21.9</td>
<td>28.5</td>
<td>21.7</td>
<td>21.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.9</td>
<td>10.3</td>
<td>48.1</td>
<td>33.8</td>
<td>36.1</td>
<td>39.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.8</td>
<td>31.7</td>
<td>32.5</td>
<td>31.0</td>
<td>30.4</td>
<td>29.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>4.26</td>
<td>5.04</td>
<td>4.38</td>
<td>4.03</td>
<td>4.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GFR, glomerular filtration rate; C, control; H, hypoxia; R, recovery. Ac, acetylcholine perfused kidney; No Ac, kidney without acetylcholine perfusion.

* Comparing C to H; P < .01; † comparing H to R; P < .025.

FIG. 1. Fractional blood flow to renal cortex in acetylcholine perfused and nonperfused kidneys. Results represent mean fractional flow ± SEM to each cortical zone.

changed by hypoxia. These microsphere data indicate that the maintenance of GFR and RPF with acetylcholine is a result of general renal vasodilatation rather than a redistribution of renal blood flow by the drug.

The effect of hypoxia on sodium excretion. Sodium excretion decreased in all the nonperfused kidneys. As shown in Fig. 2 mean sodium excretion in nonperfused kidneys decreased 65 ± 9% from control (P < .001). By contrast the mean 8 ± 10% decrease in sodium excretion of perfused kidneys was not significant. Thus, the decrease in sodium excretion caused by hypoxia is prevented by vasodilatation with acetylcholine.

Discussion. Although many studies in dogs have examined the effect of hypoxia on renal function, much of the data are contradictory. Earlier dog studies demonstrated that moderate hypoxia results in either no change (1, 3) or a decrease in GFR (2). Moreover, RPF was reported to be either increased (1), decreased (2, 4) or unchanged (3) and changes in RPF did not always parallel changes in GFR. Sodium excretion also varied independently from changes in RPF and GFR and was found to be either decreased (3) or unchanged by hypoxia (2). Alterations in extracellular acid base conditions may at least partially account for the disparate results since pH was neither monitored nor controlled in the studies cited. In most of the previous studies hypoxia was associated with hyperventilation which may have caused a respiratory alkalosis. Alkalosis decreases renal vascular resistance (8) and causes a sodium diuresis (14). There are two studies, however, in which the pCO₂ was maintained constant. In the study of Cosgrove et al (15) most of the animals developed a progressive and unexplained metabolic acidosis. Acidosis
either increase (6, 7, 9) or decrease vascular resistance (8) depending on the degree of hypoxia. Kaloyonides (3) maintained pCO₂
\(\text{H} \) constant while decreasing the pO₂ from 400 to 44 mmHg in dogs and was unable to detect any change in GFR or RPF. However, raising the arterial oxygen to a level of 160 mmHg significantly decreases RPF if the initial GFR and RPF in Kaloyonides' studies were already reduced by the high of oxygen, altered renal function induced by acute hypoxia might be undetectable. The present study clearly shows that acid-base conditions and control oxygenation are maintained hypoxia reduces Cₚₐₙ and sodium excretion.

General mechanisms could be responsible for hypoxia induced effects. First, hypoxia might decrease cardiac output which then lead to a decrease in both RPF and GFR. Although cardiac output was not measured in this study blood pressure remained constant. Also, it has been shown that PAH actually augments cardiac output in nate acutely hypoxic to the same extent as in this study (5, 17). It seems unlikely, therefore, that cardiac output was altered.

Second, hypoxia might injure renal tubular cells resulting in back diffusion of PAH inulin falsely lowering the calculated and RPF. In various models of acute failure PAH (18) and inulin (19) have shown to diffuse from the renal tubule to the venous blood resulting in a decrease in calculated RPF and GFR. How in the four dogs examined in this study extraction was not altered by hypoxia. Significant back diffusion of PAH across the glomerular capillary membrane should have decreased. In on, maintenance of PAH and inulin clearance during hypoxia in the acetylcholine-perfused kidney at a time when these clearance had decreased in the nonperfused lateral kidney also argues against a specific alteration of renal tubular cell integrity. Third, redistribution of cortical blood flow during hypoxia could decrease GFR and A functional decrease in RPF and GFR is seen associated with a redistribution of flow away from the outer renal cortex (20). Redistribution of cortical blood flow, however, cannot account for the hypoxia induced decrease in hemodynamic function found in this study since fractional flow distribution in the cortex was not altered. Finally, a diffuse increase in renal vascular resistance either functionally or as a result of direct ischemic injury with swelling or spasm of the renal vasculature could explain the decrease in RPF and GFR.

The decrease in RPF when considered with the microsphere data demonstrates that hypoxia diffusely increases renal vascular resistance. Since filtration fraction was unchanged, resistance must have increased in both afferent and efferent arterioles. The return towards control levels of RPF and GFR during recovery demonstrates the reversibility of this increased resistance but cannot truly distinguish between a functional increase in resistance and a direct toxic effect on the renal vasculature resulting from ischemia and cell swelling (21, 22). However, since renal hemodynamic function is maintained during vasodilatation with acetylcholine a direct toxic effect of hypoxia seems unlikely.

The large decrease in sodium excretion seen during hypoxia can be accounted for by the decreases in both renal perfusion and GFR (4). Whether hypoxia exerts a separate effect on renal tubular sodium reabsorption such as altering single nephron filtration fraction (10) was not examined in this study. However, since sodium excretion is maintained with acetylcholine perfusion, it seems unlikely that hypoxia has any direct effect on sodium reabsorption separate from its effect on renal perfusion.

Summary. Previous studies of hypoxia induced alterations in renal function have yielded conflicting results. Uncontrolled acid base conditions in most studies may account for this scatter. To eliminate acid-base effects hypoxia was induced in dogs while arterial pCO₂ and pH were maintained constant for 60–90 min. To test whether the effects of hypoxia were mediated by vasoconstriction or ischemic injury, acetylcholine was infused unilaterally into one renal artery. During hypoxia the GFR and RPF of the kidney not receiving acetylcholine decreased significantly. In the kidney perfused with acetylcholine, however, GFR and RPF did not change. Sodium excretion fell in nonperfused but did not change significantly in acetylcholine perfused kidneys. Using the radiomicrosphere
method, fractional distribution of renal cortical blood flow was found to be unaffected by hypoxia. The data demonstrate that acute hypoxia reversibly decreases GFR and RPF by functionally increasing renal vascular resistance uniformly throughout the kidney and that these changes were associated with a decrease in sodium excretion.

The author thanks Dr. Sheldon Adler for his advice on the manuscript. Appreciation is extended to Mrs. Kathleen Losos and Ms. Rosemarry Todroff for their excellent technical assistance and to Mrs. Elaine R. New for her secretarial support.

response of the Arterial Wall to Endothelial Removal: An Autoradiographic Study
(40373)

'ARD R. BURNS,1 THEODORE H. SPAET,1 AND MICHAEL B. STEMERMAN2

1on of Hematology, Department of Medicine, Montefiore Hospital and Medical Center, Albert Einstein College
dicine, Bronx, New York 10467 and 2Department of Medicine, Beth Israel Hospital, Harvard Medical School,
Boston, Massachusetts 02215

have shown in earlier studies that the
al hyperplasia which follows deendo-
lization of rabbit aortas is self-limited
in the absence of restored endothelial

ve

thus, the hyperplastic response
es a maximum by about two months
the insult, although reendothelialization
be incomplete for 6 months or longer.

resent studies were designed to study
urse of this proliferative response as
ed by incorporation of tritiated thymi-
to the nuclei of vascular smooth mus-
dles, as a function of the interval after
othelialization. The findings indicate
he proliferative response subsides with
kable rapidity.

ths and materials. Experimental ani-
were male New Zealand rabbits, weigh-
4 kg. Surgical procedures were per-
d under light sodium pentobarbital an-
ia, supplemented with ether as neces-

sections of small intestine were obtained to
provide controls for [3H]thymidine labeling.

Four segments from each aorta were then
chosen for study, selected to provide repre-
sentative sampling of both blue and white
areas. Particularly in vessels after 2 or more
weeks of healing, sections completely stained
or free of staining could not be obtained.

Accordingly, many sections examined had
both blue and white components. Cross sec-
sections were excised by sharp dissection and
embedded in paraffin. The segments chosen
were marked on the Polaroid photographs
and given a code number. These were then
cut, mounted on slides, and coated with Ko-
dak NTB2 emulsion as described by Sprara-
gen et al. (3). Slides were incubated for 7 days
at 4° in the dark, developed, and counter-
stained with hematoxylin and eosin.

Labeled cells were defined as those having
at least five grains per nucleus. Counts were
made microscopically with 450x magnifica-
tion and an eye piece reticle micrometer.

Each slide consisted of 4 serial cross sec-
tions from the designated areas of each aorta.
Counting was done without knowledge of
origin of either section, Evans' blue staining,
or animal. In each cross section the following
variables were evaluated by direct counting:
(a) Total number of intimal cells, (b) total
number of labeled intimal cells and (c) total
number of labeled medial cells. The total
number of intimal cells present per cross
section ranged from about 30 in control ani-
imals to about 500 in 28-day animals. For
purposes of more exact localization of labeled
cells, the media was divided into four ap-
proximately equal levels, with the first being
immediately beneath the IEL and the fourth
adjacent to the adventitia. The number of
labeled cells in each level was then enumer-
ated. Finally, the intimal cells oriented on the
vessel lumen in a manner similar toendothe-

0037-9727/78/1959-0473$01.00/0
Copyright © 1978 by the Society for Experimental Biology and Medicine
All rights reserved.
lial cells were counted, and their location in relation to the blue-white junctions was noted. The total number of medial cells in one section of each slide was then counted. Since the size of the media was constant and did not change following injury, this number of about 500 cells was taken to be an estimate of the total medial cells of each cross sectional area. Data from all sections from all four segments studied in each group of three animals were pooled and tabulated, to give the incidence of labeled cells in each region of the vessel (lumenal intima, total intimal, medial levels 1-4) per 1000 nuclei counted ± SE of the mean.

Following this initial analysis the code was broken, and the slides were reexamined to evaluate mitotic activity in blue and white areas respectively. This was done by comparing slides with the colors (blue or white) on the photographs which were taken prior to their embedding. Further comparison was made between the cross sections on the slides with the cross sections as they appeared on the uncut remainder in paraffin blocks. Here, the vessel cross section could be plainly seen as blue, white or a mixture. Blue and white areas had their thymidine indices determined as labeled cells per 100 nuclei in the intima or media of each group. Blue and white areas in each cross section were then gauged with respect to intimal thickness by number of cell layers, and actual widths as determined with the optical micrometer. Finally, the presence of [H]thymidine labeling in sections of gut from each animal was ascertained to verify that systemic exposure to the reagent had actually occurred.

Results. Identification of labeled cells presented no difficulty, since background counts were negligible. Each animal showed uptake of radioactive label in sections of intestine. The degree of aortic intimal hyperplasia and cell labeling varied among different areas in a single cross section in both blue and white regions. In conformity with previous findings (2), there was also variation in the hyperplastic response along the length of the vessel and among different animals within a group. Whether this reflected an artifact of technique or spontaneous variability is unclear.

Intimal hyperplasia, as measured by the parameters of thickness and total number of intimal cells per cross section, increased with time after injury (Fig. 1). Mitotic activity, as reflected by [H]thymidine cell labeling, was maximal in the first week post-injury; it rapidly and progressively decreased thereafter (Table I, Fig. 2). Few intimal cells were present 3 days after injury, but those present showed significant mitotic activity. By 6 days a characteristic labeling pattern had become evident: The closer to the lumen the greater the incidence of labeled cells. In the subsequent periods, this relationship was maintained in the face of the reduced proliferative activity, and the luminal cells were the last to return to baseline levels. Of additional interest is the rate of this reduction, which appears to approximate linearity on the semilogarithmic plot, and gives a halving time of about 3 days.

The relationship between continued proliferative activity and restoration of endothelial cover was evaluated by systematic counting of labeled cells from blue or white areas. Although no significant and consistent differences were observed, it should be noted that the area of reendothelialization up to 2 weeks postinjury was small, thus preventing collection of meaningful data, and no white area counted was more than 2 mm from a blue area. Perhaps this represented lateral diffusion of blood borne mitogens in the vessel wall. Re-endothelialization was more extensive in the 28-day animals, but in these, the labeling index was too low for meaningful comparisons. These data are presented in Table II. Cell proliferation appeared to depend primarily upon time after injury rather than location in blue or white areas. Thus, the thymidine labeling index in blue areas was only slightly higher than in white areas (Table II). Variations in intimal thickness were not associated with differences in mitotic activity in either the intima or media. At 28 days, the vessel walls were almost completely devoid of labeled cells throughout.

Discussion. The vascular endothelium, and medial smooth muscle cells, represent relatively stable populations of cells under normal conditions. In the uninjured rabbit aorta the incidence of [H]thymidine labeled cells in the intima and media are about 0.8 and 0.03 per thousand respectively (4). Increased cell turnover and associated mitotic activity
is seen as a response to various insults in the aortae of rabbits such as atherogenic diets (3), hemodynamic stresses (5), or physical trauma (6).

Medial smooth muscle cells constitute the source of neo-intimal SMC’s in the regenerating intima of injured arteries, but cells from the entire breadth of the media are stimulated to divide. Some of these then migrate to the intima and continue dividing. Intimal mitotic activity was typically greater and persisted longer than that of the media. Thus, the majority of neo-intimal cells are generated within the intima itself from a starting pool of SMC’s originating in the media. The consequence of these events is preservation of medial thickness in the presence of intimal hyperplasia.

The present data are in conformity with the earlier observations of Hassler who subjected carotid arteries and aortae to mechanical trauma (7), and with the findings of Webster et al. (8) in the rabbit aorta. However, in those earlier experiments, the relationship between moderation of the proliferative response and reendothelialization was not characterized, and no hypothesis was developed concerning the mechanisms involved.

The stimulus for the initial migration and proliferation of the medial smooth muscle cells is presumably based upon the mechanisms suggested by Ross and his colleagues (9), whereby platelets adhering and aggregat-
Fig. 2. Intimal medial mitotic activity of rabbit aortae following endothelial removal.

TABLE II. MITOTIC ACTIVITY OF INJURED RABBIT AORTAE TREATED WITH EVANS' BLUE DYE.

<table>
<thead>
<tr>
<th>Location</th>
<th>Control</th>
<th>3</th>
<th>6</th>
<th>14</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intima:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue areas</td>
<td>10.9 ± 5</td>
<td>14.1 ± 6</td>
<td>3.2 ± 2</td>
<td>0.1 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>White areas</td>
<td>0</td>
<td>13.3 ± 5</td>
<td>2.1 ± 3</td>
<td>0.1 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>Media:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue areas</td>
<td>1.0 ± 0.5</td>
<td>1.1 ± 0.3</td>
<td>0.1 ± 0.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>White areas</td>
<td>0</td>
<td>1.0 ± 0.4</td>
<td>0.1 ± 0.2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Based on total number of intimal and medial cells present on each cross section.

...ing at the sites of exposed subendothelial connective tissue undergo a release reaction, and flood the vessels cells with a mitogenic protein. Several possibilities could account for the transient nature of this response. One of these could be a rapid decline in delivery of platelet mitogen to the vessel, and this would be consistent with the findings of Groves et al. (10), who demonstrated a dramatic reduction of platelet turnover shortly after deendothelialization of rabbit aortae by techniques similar to those used by us. Whether platelet turnover is reduced sufficiently to produce the observed changes remains to be determined: We have found well preserved and presumably recently adhering platelet in significant numbers on blue areas for many months after injury (2). Blue areas in the balloon deendothelialized rabbit have been shown to represent the virtual absence of an endothelial cell cover (2). Additionally, even in the presence of sustained turnover, platelets participating at later intervals following injury might undergo a diminished release reaction, and thus make correspondingly less mitogen available. Alternatively,
smooth muscle cells themselves might become progressively less responsive to available mitogen as a consequence of their previous proliferative history. In any event, the phenomenon of the limited hyperplastic response is clearly adaptive: Persistence of the high proliferative rate would rapidly produce a mass of tissue that would rapidly occlude the lumen whenever endothelial loss occurred.

Summary. The proliferative response of the deendothelialized rabbit aorta was studied by tritiated thymidine labeling. Peak labeling was seen by 6 days after the procedure, with progressively decreasing activity as increasing distance from the lumen. The proliferative response rapidly subsided, so that baseline values were achieved by 14th after the vessel insult. The decrease in labeling occurred even in areas which were not re-endothelialized. The mechanism of this moderating response is presently not known, but it appears to have adaptive value in preventing excessive lumen occlusion following vascular injury.

The authors gratefully acknowledge Ms. Maria Underwood for typing this manuscript and Ms. Ilze Lejniex for her technical assistance. Supported in part by Grant No. HL 16387, NIH, USPHS.

Total Salivary Calcium and Amylase Output of Rat Parotid with Electrical Stimulation of Autonomic Innervation (40374)

C. A. SCHNEYER, C. SUCANTHAPREE, L. H. SCHNEYER,¹ AND D. JIRAKULSOMCHOK

Department of Physiology and Biophysics, University of Alabama in Birmingham, Birmingham, Alabama 35294

A relationship between the kind of autonomic stimulation used to elicit salivary secretion and the concentration of amylase and calcium in the secretion has been demonstrated using an in vivo preparation (1–3). Administered autonomic agonists were compared with the effects of direct electrical stimulation of the autonomic nerve fibers (3). The results obtained using the more physiological condition of stimulation (i.e., the nerve) were not identical to those obtained using injected agonists (3). From recent work on the perfused main duct of submaxillary gland where effects of nerve stimulation were compared with effects of administered agonists, major differences between effects of drug administration and nerve stimulation were also observed (4, 5). These findings suggest that the effects observed with injected autonomic drugs may not be equated to effects observed under more physiological conditions of stimulation. When still another modification from the physiological state is introduced (such as use of an in vitro system), it is probable that additional discrepancies may become evident. Thus, although the in vitro parotid slice model has yielded important information regarding autonomic control of amylase and calcium secretion, it has become evident that the initial postulate of Schramm's group, i.e., that calcium and amylase are packaged together and secreted together across the luminal membrane (6, 7), probably is not true for all conditions of stimulation (3). In fact, recent work has implied that at least two routes for calcium secretion may exist, one involving packaging with amylase and the other may involve secretion of calcium in the saliva without packaging with amylase. To test this hypothesis further, in vivo systems that are more comparable to the in vitro ones were employed; these included analysis of gland depletion of calcium and amylase with stimulation and measurement of total salivary output of these two moieties. Disparities between gland depletion and salivary output would be indicative of the importance of other mechanisms. Finally, Schramm (8) also suggested that in the in vitro system, any apparent cholinergically induced release of amylase or calcium is actually the result of acetylcholine induced catecholamine release. The validity of this assumption was also examined in the present study, and appropriate adrenergic antagonists were used in conjunction with stimulation of the parasympathetic innervation to test this point.

Materials and methods. Female Long-Evans rats used in these experiments were 4-5 months of age, weighed approximately 200 g, and were maintained on lab chow and water ad libitum. After 18 hr of starvation, rats were anesthetized with 1% sodium pentobarbital in doses of 50 mg/kg of body wt. The trachea was cannulated to avoid respiratory complications. Collection of saliva was made by application of calibrated micropipettes to the cut orifice of the parotid duct (4). Electrical stimulation of either the auriculotemporal nerve or the superior cervical ganglion was used to elicit flow of saliva from the parotid; square wave pulses of 4 V at a frequency of 20 pulses/sec and 5 msec in duration were delivered to the nerves by a Grass stimulator, SD5. Flow rate was determined by measuring the time required for collection of a given volume of saliva and relating this to gland weight (9). Stimulation and collection of samples were continuous so that not only concentration but total salivary output of calcium and amylase were measured. Calcium concentration was determined on saliva samples by titration of the fluorescent calcium-calcine complex with Ethylene-glycol bis (2 amino

¹ This work was supported by NIH Career Award 5 KO6 DE 3341 (held by Dr. Leon H. Schneyer until his death) and NIH Research Grant DE 02110.
Nerve-induced Calcium and Amylase Output

Theret)-NNN‘N tetra acetic acid (automatic calcium titrator, Fiske tests, Inc.).

Simulated parotid gland was removed ately following termination of the ion period. The tissue was divided parts and weighed separately. One used for analysis of amylase activity; part was put in a crucible, dried and reweighed to determine its weight. The dried residue was ashed at 12–14 hr. The ash was dissolved in 0.5 N HCl. The resultant solution was then determined (Fiske Associates). Atomic absorption analysis of calcium was also done and the two methods essentially yielded the same results.

Unstimulated contralateral control was also quickly removed and treated the same way as the experimental.

Activity of appropriately diluted samples of saliva or gland homogenate was measured by methods previously described.

Amylase activity was expressed as grams of reducing substance formed per milligram of protein at 37°C, whereas glandular amylase was expressed in milligrams of reducing substance formed per milligram of gland in a 15 min digestion period at 37°C.

Some of saliva were obtained continuously 0-min period of nerve stimulation. Output of amylase in saliva was also studied.

To rule out the possibility that acetylcholinesterase release of catecholamines was in any of the effects, the α-adrenergic blocking agent (phenoxylbenzamine or propranolol or Inderal) were administered in doses of 5 and 3 mg/kg, respectively, before initiation of nerve stimulation.

Analysis of data. All data in the text, tables and figures are expressed as means ± SE. Control values were compared with the salivary values by unpaired Student’s t test. Values were considered to be statistically different if P values were < 0.05.

Results. The data in Fig. 1 summarize the effects of direct nerve stimulation on calcium, amylase and flow rate of saliva from parotid of adult rats. No saliva flow could be observed during the prestimulation period. The calcium concentration of saliva evoked by supramaximal stimulation of the auriculotemporal nerve was initially high (11–12 mEq/l) and remained high (10 mEq/l) during a 60-min period of continuous stimulat-
tion. Calcium concentrations of saliva evoked by stimulation of the superior cervical ganglion were initially somewhat lower (9–10 nEq/1), but reached levels similar to those induced by cholinergic stimulation within 20 min and remained at these levels thereafter.

Flow rate under the two conditions of stimulation differed markedly from each other. It was very high initially with cholinergic nerve stimulation (0.105 μl/min/mg of gland) but within 10 min fell to levels of about 0.06–0.05; these levels were then maintained for the 60 min of stimulation. On the other hand, flow rate with sympathetic nerve stimulation was initially very low (0.1 μl/min/mg) and remained at this level for the 60 min period of stimulation.

Amylase levels were also consistently (initially and thereafter) very low (20 mg/μl of saliva) with cholinergic nerve stimulation. However, with stimulation of the sympathetic nerve, while initial values were only 450–500 mg/μl, within 15–20 min, they attained a maximum of 600 mg/μl and remained at this plateau level thereafter.

Flow rate does not appear to be an important factor in regulating levels of amylase or calcium under these conditions of stimulation. However, since the total volume of fluid secreted under the two conditions of stimulation were so different (Table I), it was probable that the volume of fluid would affect total output of calcium and amylase. Thus, calculations of total volume of saliva secreted during the 60 min of nerve stimulation were made, and are presented by the data in Table I. With stimulation of the auriculotemporal nerve, 653 ± 103 μl of fluid were secreted over the 60-min period when collection of saliva was continuously made. During the same interval, only 82 ± 9 μl were secreted when the sympathetic nerve was stimulated. Thus, there is an eightfold difference in volume when comparison between effects of the two conditions of stimulation are made. (These data agree very well with those of Young et al. (10) who showed that electrolyte concentrations of precursor fluids were similar under the two conditions of stimulation but the total volume produced was eight times greater with cholinergic than with adrenergic stimulation.)

Calculations of total output of calcium and

TABLE I. TOTAL OUTPUT OF AMYLASE, CALCIUM, AND FLUID IN RAT PAROTID SALIVA FOLLOWING STIMULATION OF THE AURICULOTEMPORAL NERVE (AT) OR SUPERIOR CERVICAL GANGLION (SYM) FOR 60 MIN.

<table>
<thead>
<tr>
<th>Kind of stimulation</th>
<th>AT</th>
<th>SYM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total volume (μl)</td>
<td>653 ± 103</td>
<td>82 ± 9</td>
</tr>
<tr>
<td>Total Ca output (nEq)</td>
<td>6744 ± 867</td>
<td>762 ± 91</td>
</tr>
<tr>
<td>Total amylase output (mg of reducing sub.)</td>
<td>8330 ± 906</td>
<td>41,076 ± 3337</td>
</tr>
</tbody>
</table>

* Values are means ±SE. The number of rats for each kind of stimulation was 7; output was continuously collected over 60 min. The differences between parasympathetic and sympathetic stimulation are statistically significant at a level of P < 0.001.

Amylase were made. For example, since calcium concentrations under the two conditions of stimulation were generally similar in magnitude and in course of change whereas total volumes under the two conditions were markedly different, it was anticipated that total output of calcium with parasympathetic nerve stimulation would greatly exceed that obtained with stimulation of the sympathetic innervation. There was in fact about a ninefold difference in total calcium output when the two kinds of nerve stimulation were compared. This slight difference is attributable to the slight differences in calcium concentration observed between the two kinds of stimulation. Thus, a total of 6744 ± 867 nEq of calcium were secreted with cholinergic stimulation and only 762 ± 91 with sympathetic nerve stimulation. Similarly, amylase concentration of cholinergically-evoked saliva was very low (20 mg/μl) initially and throughout the period of collection, whereas the values with sympathetic nerve stimulation were 30–40 times greater. Again, the total output under the two conditions of nerve stimulation reflected these differences and the total amylase with stimulation of the sympathetic nerve was five times greater than that found with cholinergic stimulation, even though the total volume of cholinergically-evoked saliva was eight times greater.

Since flow rate was a modifying factor in assessment of total salivary output, it was necessary to relate the salivary output of these moieties to the levels remaining in the gland after stimulation was halted. From the data in Table II, it is clear that only a small (but
Since calcium levels of saliva evoked by cholinergic and adrenergic nerve stimulation were so similar, there was the possibility that catecholamines were indeed released by stimulation of the cholinergic nerve, and that high calcium levels with either kind of stimulation must be attributed to adrenergic influences. However, this assumption was not found to be the case. The calcium levels of saliva evoked by cholinergic stimulation initiated 25 min after injection of both α- and β-adrenergic blocking agents were not different from saliva levels of parasympathetically stimulated glands of rats that did not receive blocking agents (Table IV).

The depletion of gland levels of amylase paralleled the total output of the enzyme in the saliva. Thus, amylase levels of the gland were reduced by 23% after 60 min of stimulation of the cholinergic nerve; with sympathetic nerve stimulation there was a 46% reduction in gland levels.

Discussion. Present data strongly suggest that calcium and amylase secretion follow different routes with parasympathetic and sympathetic nerve stimulation. With auriculotemporal stimulation, calcium is transferred from plasma through the gland, with the

<table>
<thead>
<tr>
<th>Rat parotid gland</th>
<th>Water content (percent)</th>
<th>Amylase activity (mg/mg wet wt)</th>
<th>[Ca] (mEq/kg wet wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td></td>
<td>537 ± 29 (11)</td>
<td>13.0 ± 0.3 (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>380 ± 24 (4)</td>
<td>11.3 ± 0.9 (8)</td>
</tr>
<tr>
<td></td>
<td>(P < 0.05)</td>
<td>(P < 0.01)</td>
<td>(P < 0.05)</td>
</tr>
<tr>
<td></td>
<td>178 ± 16 (5)</td>
<td>(P < 0.01)</td>
<td>(P < 0.001)</td>
</tr>
<tr>
<td></td>
<td>(P < 0.05)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*es are means ±SE; all values from experimental animals differ significantly from controls. In each case, period of stimulation was 60 min. The numbers in parentheses are number of rats.

<table>
<thead>
<tr>
<th>Rat parotid gland</th>
<th>Water content (percent)</th>
<th>Amylase activity (mg/mg wet wt)</th>
<th>[Ca] (mEq/kg wet wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td></td>
<td>537 ± 29 (11)</td>
<td>13.0 ± 0.3 (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>434 ± 21 (6)</td>
<td>13.0 ± 1.0 (6)</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*es are means ± standard error. The numbers in parentheses are number of rats. NS = Not significantly (P > 0.05).
TABLE IV. Effects of Prior Administration of Adrenergic Antagonists on Calcium of Saliva evoked by Stimulation of the Auriculotemporal Nerve (AT).*

<table>
<thead>
<tr>
<th>Condition of stimulation</th>
<th>Ca concentration (mEq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT.</td>
<td>12.3 ± 0.76 (10)</td>
</tr>
<tr>
<td>AT. + IN.</td>
<td>12.8 ± 1.20 (6)</td>
</tr>
<tr>
<td>AT. + DI.</td>
<td>11.0 ± 0.58 (5)</td>
</tr>
<tr>
<td>AT. + DI. + IN.</td>
<td>11.3 ± 0.63 (4)</td>
</tr>
</tbody>
</table>

* Values are means ± SE. In no case did calcium values differ (P > 0.05) from each other or from levels found with nerve stimulation alone. Propranolol (IN) (3 mg/kg) or dibenzyline (DI) (5 mg/kg) was administered ip. singly or together 25–40 min before resumption of stimulation of auriculotemporal nerve. The numbers in parentheses are number of rats.

levels in the saliva mainly representative of the amounts transferred through the glandular cells; thus a greater proportion of the total calcium output is not packaged and secreted with the amylase. Since the levels of amylase are low, the amounts of calcium packaged with the amylase are also low, and a large excess of calcium may be transferred independently from plasma to saliva. This is not the case with adrenergic nerve stimulation. With such stimulation, the amylase levels are very high and virtually all of the calcium may be packaged and secreted with the amylase (3). A parallelism between secretion of these two moieties with adrenergic but not cholinergic stimulation would be expected consequences (3), and the present data also supported the previous finding (3).

The principal finding that remains inexplicable is that a large output of calcium was observed with cholinergically stimulated saliva but little depletion of calcium in the gland was found. On the other hand, a small output of calcium was obtained with sympathetically induced secretion and there was a parallel between depletion of gland calcium and total output in saliva. Thus, secretory mechanisms for calcium secretion are not the same for both kinds of stimulation. The only explanation presently tenable to account for these differences is that uptake of calcium into the gland proceeds as rapidly as it is released into the saliva when cholinergic stimulation is employed. Furthermore, this uptake must occur very early or continuously, since gland depletion was very insignificant in amount even as early as 20 min after stimulation was initiated.

Finally, the data show that the surprisingly high levels of calcium found with cholinergic nerve stimulation cannot be attributed to indirect effects of cholinergically released catecholamines as postulated by Schramm's group (8) since the injection of both α- and β-adrenergic antagonists prior to stimulation of the auriculotemporal nerve did not cause any modification in calcium levels from those observed with nerve stimulation alone. Furthermore, other evidence refutes the postulate that cholinergic stimulation involves catecholamine release. Thus, amylase activity of cholinergically evoked saliva samples is very low and the inhibition of adrenergic activity does not modify these levels further (2, 9, 11, 14, 17). In addition, when isoproterenol is concentrations (2.5 μg/kg) too low to elicit secretion are injected during stimulation of the auriculotemporal nerve, a sharp increase in amylase, attributable to the isoproterenol, is observed (11). This clearly shows that the two different groups of receptors are involved in the amylase release and depend on kind of autonomic stimulation employed. Indeed, this view is further supported by work of several investigators (12, 14–16), since they have shown that cholinergic release of amylase is mediated through a pathway (cyclic GMP) separate from that of β-adrenergic release of amylase (cyclic AMP). Evidence is accumulating therefore that supports the thesis of separate pathways for the release of amylase and calcium, and this separation is determined by the kind of autonomic stimulation employed.

It is interesting that the total output of amylase induced by stimulation of the sympathetic nerve was fivefold greater than that of the parasympathetic nerve stimulation in spite of the finding that there was only a twofold difference in residual gland amylase. It is probable that stimulation of the sympathetic nerve enhances synthesis of amylase at a greater rate than that induced by stimulation of the parasympathetic nerve. However, the detailed mechanisms of enhancement of amylase synthesis evoked by the two kinds of autonomic nerve stimulation have not been clarified.

Summary. Calcium levels of rat parotid
evoked by stimulation of the auriculotemporal nerve are high (11 mEq/l) and in higher than those evoked by stimulation sympathetic innervation. Total calcium in the cholinergically-evoked saliva is very high but the depletion of gland is insignificant 20 or even 60 min after initiation of stimulation. With sympathetic stimulation, there is a closer correlation between gland depletion and total output of calcium in the saliva. These findings suggest the uptake mechanism for calcium with cholinergic stimulation is more rapid than that with adrenergic stimulation. The levels of calcium in the cholinergically-evoked saliva are also not due to acetylcholine-induced release of catecholamines since similar levels of cholinergically-evoked salivary amylase release the same whether or not adrenergic agents are present. The total output of amylase in the saliva when sympathetic stimulation is employed is about five times greater than that found with cholinergic stimulation, and the reduction in gland amylase: these two conditions of stimulation have these same relations. The data also that there is a parallelism between denervation of gland amylase and calcium and secretion and total output of these two substances in the saliva when adrenergic stimulation is used but that no parallelism between secretion of these substances is seen with cholinergic stimulation. It is suggested with adrenergic stimulation all of the calcium is packaged together with calcium and two are secreted together; however, cholinergic stimulation, only a fraction of the total calcium is packaged with the calcium, and the remainder is transferred through the gland to the saliva. Thus, two separate routes for secretion of calcium exist with cholinergic stimulation, and the pathways with the two kinds of nerve stimulation are different.

We would like to thank Ayerts for providing us with the propranolol and Smith, Kline and French for the phenoxybenzamine.

Temporal Changes in Ovarian Steroid-17α-hydroxylase in Immature Rats Treated with Pregnant Mare’s Serum Gonadotropin¹ (40375)

DONALD C. JOHNSON

Departments of Gynecology and Obstetrics, and Physiology, Ralph L. Smith Research Center, Kansas University Medical Center, Kansas City, Kansas 66103

Ovaries in immature rats increase their production of androgens and estrogens in response to pregnant mare’s serum gonadotropin (PMS) but only after a lag period of several hours; in contrast, progesterone production increases within a few minutes (1–3). This delay suggests that the enzymes necessary for production of androgen and estrogen, i.e. 17α-hydroxylase, 17–20 lyase, aromatase, and 17β-steroid dehydrogenase, must be induced by gonadotropic action. Indeed, Suzuki et al. (4) have demonstrated that the activity of each of these enzymes was increased in ovaries when measured 48 hr after exposure of immature rats to PMS.

Steroid 17α-hydroxylase (EC 1.14.99.9) would appear to be an especially important enzyme in steriodogenesis because it could control androgen and estrogen production via either the 3-oxo-4-unsaturated pathway from progesterone or the 5-unsaturated pathway from pregnenolone. The latter pathway has been shown to predominate in the rabbit ovarian follicle (5) but for the rat the 4-unsaturated pathway may be preferred (4). The present study was undertaken to define the quantitative and temporal changes in hydroxylase of intact and hypophysectomized immature rats associated with exposure of the ovary to PMS. The results indicate that changes in this enzyme are related to secretory patterns of ovarian androgens and estrogens.

Materials and methods. Holtzman strain female rats were maintained in temperature (23 ± 1°C) and light (14 hr light: 10 hr dark) controlled quarters and given free access to water and Purina laboratory chow. In some experiments animals were injected with 2mg diethylstilbestrol (DES) dissolved in 0.1 ml of sesame seed oil on the 25th and 26th days of age; controls received only oil. These animals were hypophysectomized via the parapharyngeal approach using ether anesthesia when they were 27 days old. After hypophysectomy a solution of 5% glucose was used for drinking water.

Pregnant mare’s serum gonadotropin (PMS) (Sigma Chemical Co., St. Louis, MO) was dissolved in 0.15 M NaCl and injected (20 IU in 0.2 ml, iv) on the 28th day of age. At various times after this injection animals, in groups of 10–15, were killed by decapitation; animals with incomplete hypophysectomy were discarded. Ovaries were removed, cleaned of adhering fat and oviduct, pooled, weighed and then homogenized (100mg wet wt/ml) in cold 0.15 M KCl. The homogenate was centrifuged for 20 min at 10,000g and then at 105,000g for 1 hr. The microsomal pellet from the latter centrifugation was resuspended in 0.15 M NaKPO₄ buffer (pH 7.4) and used for assay of 17α-hydroxylase activity. The protein concentration of the microsomal suspension was determined using the Bio-Rad kit (Bio-Rad Laboratories, Richmond, CA). When in this dilution (1mg protein/ml) the hydroxylase is very labile and storage for 12 hr at −20°C removes more than half of its activity. In contrast, microsomal suspensions with protein concentrations of 10 mg/ml or greater retain activity for several weeks when stored at −20°C.

Hydroxylase activity was determined by the method of Kremers (6). This tritium exchange assay depends upon the reaction: 17α²Hpregnenolone + NADPH + H⁺ + O₂ → 17α-hydroxypregnenolone + ³HOH + NADP⁺. Specifically labelled pregnenolone (15 mCi/mmol) was kindly provided and characterized by Dr. P. Kremers (University of Liege, Belgium). Unlabelled pregnenolone (Sigma) was used to reduce the specific activity of the label to 2.4 μCi/μmole.

Generally 0.2 ml of the ovarian microsomal...
nasion (1 ml = 100 mg wet weight of) was incubated in a 20 ml glass scintillation vial. The medium (final volume = 1 contained 100 or 200 nmole of 17α-H- enolone (0.25 μCi), 0.5 mg tween 80 to s the steroid, 5 μmole glucose-6-PO₄, glucose-6-PO₄ dehydrogenase, 1 μmole P₄, 4 μmole Mg Cl₂ and 0.7 ml NaKPO₄ (pH 7.4); all chemicals were obtained Sigma. Vials were incubated in a Dub- shaking water bath at 37°. Preliminary iments had confirmed Kremers's (6) re- n that the enzyme activity is a function incubation time, up to 60 min, the nt of ovarian homogenate incubated, 0.5 ml, and that 100 nmole of substrate ued the enzyme. In the present experi- the incubation time was 40 min. a incubation was stopped by adding 1 ice-cold distilled water followed quickly 4 mg pellet of dextran-coated charcoal Screening System Inc., North Holly- CA). We found this method as efficient addition of 20% trichloroacetic acid (6) t has the advantage of removing the rate radioactivity. The charcoal was sep- by centrifugation at 2000g for 30 min. supernatant was transferred to a 25 × am glass tube and the water distilled reduced pressure at a temperature of ml aliquot of the distillate was placed scintillation vial along with 10 ml of cel (Packard Instrument Co., Downers IL). The mixture was counted in a Scintillation counter with an effi- of 64% for tritium. The enzyme activity xpressed as nmole of pregnenolone con- per mg protein per hour. In all exper- s the homogenates were incubated in ate and in some cases at two dose levels; series was repeated. The details for spe- treatments are given with their results. tical analyses of enzyme determinations done using Student's t test: p < .05 was dered significant.

ults. Ovaries of intact immature rats considerable 17-hydroxylase activity 1). Two groups of animals injected with killed 48 or 96 hr later had enzyme ties which were not significantly differ- om that of starting controls. Eight hours injection of 20 IU PMS the activity was ed by about 90%. The enzyme level remained low through 24 hr and then began an increase so that by 36 hr the activity was the same as that found in starting controls. The enzyme activity continued to increase to a peak level at 48 hr, but it then decreased drastically during the next 12 hr. Activity continued to decrease to almost undetectable levels by 72 hr. Histological examination of the ovaries at 48 and 60 hr revealed many large antral follicles and a highly stimulated theca and interstitium but little luteinization of granulosa. To insure ovulation and luteinization animals were given (sc) 10 IU of human chorionic gonadotropin (hCG) (Antiuhrin-"S", Parke-Davis & Co., Detroit, Mich) 48 hr after the injection of PMS. The ovaries were assayed 12, 24, 48 and 72 hr after the hCG (Fig. 1). This treatment did not alter the pattern of decline in hydroxylase activity to any extent.

Fig. 1. 17α-hydroxylase activity, determined by a tritium exchange assay, in the ovaries of immature (28 day) rats. PMS (20 IU) was injected (iv) at time 0. Groups of 10–15 rats were killed at various times, the ovaries pooled, homogenized and centrifuged. The 105,000g pel- let from the homogenate was incubated for 40 min with 17α-H-pregnenolone and the titrated water produced distilled under reduced pressure; the enzyme activity is expressed as nmole of substrate converted per hour per mg protein. Each point represents the mean activity in at least 6 samples; SEM does not exceed the area covered by the symbols. Solid circles (●) indicate values for animals given PMS; single points (○) indicate enzyme activity for ovaries from control animals given 0.2 ml normal saline. The dotted line indicates changes in en- zyme activity in ovaries from animals injected with PMS at time 0 and 10 IU human chorionic gonadotropin (sc) at 48 hr to insure ovulation in all animals.
0.03 vs 0.98 ± 0.03 n mole × mg protein⁻¹ × hr⁻¹). In an additional 24 hr the activity in hypophysectomized animals declined to 0.76 ± 0.08 which indicated a decay rate or half-life of more than 48 hr when endogenous gonadotropins were removed.

Ovaries in rats given DES were 36% heavier at the time of PMS administration than those given oil; the increase was due to larger numbers of granulosa cells in the DES-treated animals. However, hydroxylase activity in the enlarged ovaries was only 4% of the level found in oil-treated animals. The enzyme activity increased in the ovaries of both oil and DES-treated animals between 12 and 24 hr after PMS. In the oil-treated animals enzyme activity had returned to the preinjection control level by 24 hr, remained at this level until 36 hr and then increased sevenfold in the next 12 hr (Fig. 2). Hydroxylase also increased in the DES-treated animals but to a somewhat lesser extent. However, even in the latter, enzyme activity exceeded that found at 48 hr in intact immature females. The enzyme activity of ovaries in hypophysectomized oil-treated animals decreased 27% between 60 and 72 hr (NS P > .05) after PMS but it was still 63% higher than the peak level found in intact animals at 48 hr.

Discussion. The reason for the initial decrease in hydroxylase activity in the ovaries of intact or oil-treated hypophysectomized animals after the injection of PMS is unknown. A similar phenomenon occurs in testicular hydroxylase after administration of hCG (7). The drop in enzyme activity is too rapid (90% in 8 hr) to be accounted for by inhibition of further production and suggests that some other process of inactivation is involved. Testicular hydroxylase has a half-life of 2.5 days (7); the ovarian enzyme seems to disappear at about the same rate when gonadotropin is removed.

Attention has recently been focused again upon the kinds of cells which contain 17β-hydroxylase (8). Presumably this enzyme is largely, if not entirely, restricted to theca and interstitial tissues of the mammalian ovary (8, 9). The present results are consistent with this view; that is, ovaries which were increased in size and weight by increasing the number of granulosa cells with DES did not have a proportionate increase in hydroxylase activity (Fig. 2). We must be careful in interpreting these results however because the ovaries were exposed to high levels of a potent estrogen and this may have had an effect upon hydroxylase or upon the cellular response to gonadotropin. Some suggestion of such an effect, although not necessarily upon granulosa, is gained from the finding that the enzyme level at time 'O' in animals given DES was very low; the enzyme would not be expected to disappear this quickly in animals lacking a pituitary.

If the granulosa cell does not have hydroxylase then luteinization would not be expected to increase the enzyme level in the ovary. Actually luteinization was associated with a drastic decrease in hydroxylase (Fig. 1); as with the initial decrease this one also appeared to be due to an inactivation process considering the rate of decrease. This decrease in hydroxylase may be causally related to a decrease in ovarian androgen and estrogen secretion seen between 48 and 60 hr after PMS administration to immature rats (10, 11). A similar decrease is found with the LH surge on proestrus in the rat and has prompted several speculations into possible

Fig. 2. Hydroxylase activity in the ovaries of hypophysectomized animals; methods indicated in legend for Fig. 1. Animals were injected with 0.1 ml of sesame seed oil (O—O) or 2 mg diethylstilbestrol (DES) (X--X) on the 25th and 26th days of age; hypophysectomy was performed on day 27 and PMS was injected 24 hr later. The vertical line at each point indicates the SEM for at least 6 samples. The single point (O) indicates the enzyme level in a group pretreated with oil and injected with normal saline.
mechanisms. While intra-ovarian autoregulation by steroids or their metabolites has received the most attention (see ref in 11) Katz and Armstrong (12) suggested that LH caused a decrease in aromatase and this was responsible for the drop in estrogen production. The surge in LH associated with PMS treatment may also be responsible for the decrease in hydroxylase found in the intact animals of present study. Further support for this is obtained from the finding that injection of 10 IU hCG into hypophysectomized rats 48 hr after giving PMS resulted in a 90+\% decrease in hydroxylase activity within 12 hr (unpublished data). However, this may not be the only factor involved since prolactin caused a 70\% reduction in the enzyme activity stimulated by PMS and a 94\% reduction in that stimulated by hCG in hypophysectomized animals (unpublished data). Considerably more study is needed for clarification of the control of 17-hydroxylase.

The increase in hydroxylase activity found in hypophysectomized animals coincides with an increase in serum estradiol and testosterone (1, 2). However, the amounts of these steroids in DES or oil-treated animals does not correlate with the enzyme levels found; DES-treated animals had significantly more estrogen and testosterone than did oil-treated controls (3). Perhaps the enzyme levels found in DES-treated animals are inaccurate due to the large volume of granulosa present which does not contribute to enzyme activity, or equally likely, the amount of enzyme present may not indicate the amount of function possible.

Summary. Steroid 17α-hydroxylase was measured, using a tritium exchange assay, in the microsomal fraction of ovaries from immature intact or hypophysectomized rats exposed to 20 IU pregnant mare's serum gonadotropin. The hypophysectomized animals were pretreated with diethylstilbestrol (DES) to increase the ratio of granulosa:theca + interstitium in the ovary; controls received oil vehicle. In intact animals hydroxylase levels decreased within 8 hr after injecting PMS but by 48 hr the concentration was more than 3 times that found in starting controls; after 48 hr the enzyme level decreased drastically and remained low through 120 hr. In oil-treated hypophysectomized rats hydroxylase activity decreased within 12 hr after PMS but in DES-treated animals the enzyme was already extremely low. In both, the enzyme level reached much higher levels than in intact animals and it did not decrease significantly through 72 hr after PMS. The results indicate that 17-hydroxylase activity is induced by PMS treatment but that the enzyme is actively destroyed beginning at 48 hr in intact animals; this could account for the decrease in estrogen and androgen production associated with the ovulatory surge in gonadotropins which occurs on the second day after PMS injection.

Special thanks are due Dr. P. Kremers for his help in setting up the hydroxylase assay and for preparation of the special labelled pregnenolone. The excellent technical assistance of Mrs. Muriel Wagoner is gratefully acknowledged.

Author Index for Volume 159

A

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abe, H.</td>
<td>346</td>
</tr>
<tr>
<td>Adler, S. S.</td>
<td>260</td>
</tr>
<tr>
<td>Anagnostou, A.</td>
<td>139</td>
</tr>
<tr>
<td>Anderson, D.</td>
<td>281</td>
</tr>
<tr>
<td>Arendash, G. W.</td>
<td>121</td>
</tr>
<tr>
<td>Arimura, A.</td>
<td>161</td>
</tr>
<tr>
<td>Assali, N. S.</td>
<td>386</td>
</tr>
<tr>
<td>Aures, D.</td>
<td>400</td>
</tr>
<tr>
<td>Autrup, H.</td>
<td>111</td>
</tr>
<tr>
<td>Azuma, T.</td>
<td>350</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badger, D.</td>
<td>449</td>
</tr>
<tr>
<td>Bailie, M. D.</td>
<td>180, 249</td>
</tr>
<tr>
<td>Baky, S. H.</td>
<td>436</td>
</tr>
<tr>
<td>Bang, F. B.</td>
<td>34</td>
</tr>
<tr>
<td>Baron, S.</td>
<td>453</td>
</tr>
<tr>
<td>Barton, J. C.</td>
<td>213</td>
</tr>
<tr>
<td>Beck, N. F. G.</td>
<td>394</td>
</tr>
<tr>
<td>Bellinger, L. L.</td>
<td>80</td>
</tr>
<tr>
<td>Belsky, J.</td>
<td>390</td>
</tr>
<tr>
<td>Bergland, R.</td>
<td>409</td>
</tr>
<tr>
<td>Berry, L. J.</td>
<td>359</td>
</tr>
<tr>
<td>Bersenbrugge, A.</td>
<td>281</td>
</tr>
<tr>
<td>Bloch, R.</td>
<td>432</td>
</tr>
<tr>
<td>Bluestone, R.</td>
<td>184</td>
</tr>
<tr>
<td>Bonner, D. P.</td>
<td>1</td>
</tr>
<tr>
<td>Bowser, E. N.</td>
<td>187, 266</td>
</tr>
<tr>
<td>Brady, F. O.</td>
<td>30</td>
</tr>
<tr>
<td>Brattin, W. J.</td>
<td>6</td>
</tr>
<tr>
<td>Bray, G. A.</td>
<td>364</td>
</tr>
<tr>
<td>Brissette, W. H.</td>
<td>317</td>
</tr>
<tr>
<td>Brown, A.</td>
<td>98</td>
</tr>
<tr>
<td>Bruni, J. F.</td>
<td>256</td>
</tr>
<tr>
<td>Bruns, F. J.</td>
<td>468</td>
</tr>
<tr>
<td>Brunzell, D. J.</td>
<td>437</td>
</tr>
<tr>
<td>Buckalew, V. M., Jr.</td>
<td>463</td>
</tr>
<tr>
<td>Bugat, R.</td>
<td>237</td>
</tr>
<tr>
<td>Burke, T. J.</td>
<td>428</td>
</tr>
<tr>
<td>Burks, T. F.</td>
<td>374</td>
</tr>
<tr>
<td>Burns, E. R.</td>
<td>473</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffrey, M. H.</td>
<td>444</td>
</tr>
<tr>
<td>Carr, R. H.</td>
<td>116</td>
</tr>
<tr>
<td>Chait, A.</td>
<td>437</td>
</tr>
<tr>
<td>Channing, C. P.</td>
<td>230</td>
</tr>
<tr>
<td>Chesley, L. C.</td>
<td>386</td>
</tr>
<tr>
<td>Ch'ih, J. J.</td>
<td>288</td>
</tr>
<tr>
<td>Chihara, K.</td>
<td>346</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deavers, S. L.</td>
<td>152</td>
</tr>
<tr>
<td>de Bernard, B.</td>
<td>403</td>
</tr>
<tr>
<td>Degnan, T. J.</td>
<td>380</td>
</tr>
<tr>
<td>Desforges, J. F.</td>
<td>136</td>
</tr>
<tr>
<td>Devlin, T. M.</td>
<td>288</td>
</tr>
<tr>
<td>Dianzani, F.</td>
<td>94</td>
</tr>
<tr>
<td>Dilley, D.</td>
<td>184</td>
</tr>
<tr>
<td>Duchin, K. L.</td>
<td>428</td>
</tr>
<tr>
<td>Dukes-Dobos, F.</td>
<td>449</td>
</tr>
<tr>
<td>Duncan, J. R.</td>
<td>39</td>
</tr>
<tr>
<td>Dyck, W. P.</td>
<td>192</td>
</tr>
<tr>
<td>Dyer, I. A.</td>
<td>335</td>
</tr>
<tr>
<td>Eichelman, B.</td>
<td>57</td>
</tr>
<tr>
<td>Erlanger, M.</td>
<td>339</td>
</tr>
<tr>
<td>Fan, P. T.</td>
<td>184</td>
</tr>
<tr>
<td>Fang, V. S.</td>
<td>12</td>
</tr>
<tr>
<td>Feldman, E. J.</td>
<td>400</td>
</tr>
<tr>
<td>Ferren, L. G.</td>
<td>239</td>
</tr>
<tr>
<td>Field, A. K.</td>
<td>195</td>
</tr>
<tr>
<td>Finch, C. A.</td>
<td>335</td>
</tr>
<tr>
<td>Finkelstein, J. D.</td>
<td>313</td>
</tr>
<tr>
<td>Fischer, V. W.</td>
<td>339</td>
</tr>
<tr>
<td>Fleischmann, W. R., Jr.</td>
<td>94</td>
</tr>
<tr>
<td>Foulkes, E. C.</td>
<td>321</td>
</tr>
<tr>
<td>Frankfurt, S. J.</td>
<td>16</td>
</tr>
<tr>
<td>Frazer, P. D.</td>
<td>30</td>
</tr>
<tr>
<td>Fried, W.</td>
<td>139</td>
</tr>
<tr>
<td>Friedler, R. M.</td>
<td>48</td>
</tr>
<tr>
<td>Froman, P. A.</td>
<td>288</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gazdar, A. F.</td>
<td>142</td>
</tr>
<tr>
<td>Geison, R. L.</td>
<td>44</td>
</tr>
<tr>
<td>Ginsburg, L.</td>
<td>126</td>
</tr>
<tr>
<td>Glenn, E. M.</td>
<td>223</td>
</tr>
<tr>
<td>Gonano, F.</td>
<td>403</td>
</tr>
<tr>
<td>Goodrum, K. J.</td>
<td>359</td>
</tr>
<tr>
<td>Gray, T. K.</td>
<td>303</td>
</tr>
<tr>
<td>Greenspoon, S. A.</td>
<td>324</td>
</tr>
<tr>
<td>Grogan, W. M. C.</td>
<td>219</td>
</tr>
<tr>
<td>Grossman, M. I.</td>
<td>237, 400</td>
</tr>
<tr>
<td>Grossman, M. R.</td>
<td>313</td>
</tr>
<tr>
<td>Grubb, M. N.</td>
<td>374</td>
</tr>
<tr>
<td>Gruber, K. A.</td>
<td>463</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haines, H.</td>
<td>21</td>
</tr>
<tr>
<td>Hargis, G. K.</td>
<td>187, 266</td>
</tr>
<tr>
<td>Harvey, A. N.</td>
<td>266</td>
</tr>
<tr>
<td>Harris, B. J.</td>
<td>313</td>
</tr>
<tr>
<td>Harris, C. C.</td>
<td>111</td>
</tr>
<tr>
<td>Hassett, C. M.</td>
<td>253</td>
</tr>
<tr>
<td>Heberling, R. L.</td>
<td>414</td>
</tr>
<tr>
<td>Hedo, J. A.</td>
<td>245</td>
</tr>
<tr>
<td>Hemmes, R. B.</td>
<td>424</td>
</tr>
<tr>
<td>Henderson, G. I.</td>
<td>270</td>
</tr>
<tr>
<td>Henderson, W. J.</td>
<td>187</td>
</tr>
<tr>
<td>Hilleman, M. R.</td>
<td>195, 201</td>
</tr>
<tr>
<td>Hlastala, M. P.</td>
<td>437</td>
</tr>
<tr>
<td>Holm, L. W.</td>
<td>386</td>
</tr>
<tr>
<td>Hong, K. C.</td>
<td>368</td>
</tr>
<tr>
<td>Hook, J. B.</td>
<td>180, 249</td>
</tr>
<tr>
<td>Hoyumpa, A. M., Jr.</td>
<td>270</td>
</tr>
<tr>
<td>Hubsch, S.</td>
<td>424</td>
</tr>
<tr>
<td>Huebner, R. J.</td>
<td>65</td>
</tr>
<tr>
<td>Huggins, R. A.</td>
<td>152</td>
</tr>
<tr>
<td>Hurley, L. S.</td>
<td>39</td>
</tr>
<tr>
<td>Hyman, P. M.</td>
<td>380</td>
</tr>
<tr>
<td>Hymer, W. C.</td>
<td>409</td>
</tr>
</tbody>
</table>

I

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imura, H.</td>
<td>346</td>
</tr>
<tr>
<td>Inaudi, P.</td>
<td>403</td>
</tr>
<tr>
<td>Iwasaki, Y.</td>
<td>346</td>
</tr>
<tr>
<td>Izak, E.</td>
<td>84</td>
</tr>
</tbody>
</table>

J

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenkin, H. M.</td>
<td>88</td>
</tr>
<tr>
<td>Jirakulsoyehok, D.</td>
<td>478</td>
</tr>
<tr>
<td>Joel, D. D.</td>
<td>298</td>
</tr>
<tr>
<td>Johnson, D. C.</td>
<td>484</td>
</tr>
<tr>
<td>Johnson, P. A.</td>
<td>266</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalnitsky, G.,</td>
<td>239</td>
</tr>
<tr>
<td>Kalter, S. S.,</td>
<td>414</td>
</tr>
<tr>
<td>Kato, Y.,</td>
<td>346</td>
</tr>
<tr>
<td>Kauker, M. L.,</td>
<td>165</td>
</tr>
<tr>
<td>Kilton, L. J.,</td>
<td>142</td>
</tr>
<tr>
<td>Knecht, E.,</td>
<td>449</td>
</tr>
<tr>
<td>Kobayashi, M.,</td>
<td>148</td>
</tr>
<tr>
<td>Koffler, A.,</td>
<td>48</td>
</tr>
<tr>
<td>Koment, R. W.,</td>
<td>21</td>
</tr>
<tr>
<td>Kopp, S. J.,</td>
<td>339</td>
</tr>
<tr>
<td>Kozlowski, G. P.,</td>
<td>444</td>
</tr>
<tr>
<td>Krakower, C. A.,</td>
<td>324</td>
</tr>
<tr>
<td>Krulich, L.,</td>
<td>210</td>
</tr>
<tr>
<td>Kukreja, S. C.,</td>
<td>187, 266</td>
</tr>
<tr>
<td>Lahav, M.,</td>
<td>126</td>
</tr>
<tr>
<td>Lee, R. J.,</td>
<td>458</td>
</tr>
<tr>
<td>LeFevre, M. E.,</td>
<td>298</td>
</tr>
<tr>
<td>Lester, G. E.,</td>
<td>303</td>
</tr>
<tr>
<td>Leveille, G. A.,</td>
<td>308</td>
</tr>
<tr>
<td>Lin, P.-Y.,</td>
<td>308</td>
</tr>
<tr>
<td>Lindsey, A. M.,</td>
<td>230</td>
</tr>
<tr>
<td>Loegering, D. J.,</td>
<td>418</td>
</tr>
<tr>
<td>Loo, T. L.,</td>
<td>374</td>
</tr>
<tr>
<td>Lorenc, R. S.,</td>
<td>303</td>
</tr>
<tr>
<td>Luft, F. C.,</td>
<td>432</td>
</tr>
<tr>
<td>MacDonald, G. J.,</td>
<td>441</td>
</tr>
<tr>
<td>Marco, J.,</td>
<td>245</td>
</tr>
<tr>
<td>Marshall, S.,</td>
<td>256</td>
</tr>
<tr>
<td>Martinez, D.</td>
<td>195</td>
</tr>
<tr>
<td>Massry, S. G.,</td>
<td>48</td>
</tr>
<tr>
<td>Matsumoto, S.,</td>
<td>75</td>
</tr>
<tr>
<td>McCann, S. M.,</td>
<td>210</td>
</tr>
<tr>
<td>McGinnis, J.,</td>
<td>276</td>
</tr>
<tr>
<td>Meier, H.,</td>
<td>65</td>
</tr>
<tr>
<td>Meites, J.,</td>
<td>256</td>
</tr>
<tr>
<td>Meltzer, H. Y.,</td>
<td>12</td>
</tr>
<tr>
<td>Mendel, V. E.,</td>
<td>80</td>
</tr>
<tr>
<td>Moro, L.,</td>
<td>403</td>
</tr>
<tr>
<td>Morris, H. P.,</td>
<td>313</td>
</tr>
<tr>
<td>Mueller, D.,</td>
<td>25</td>
</tr>
<tr>
<td>Muiuiri, K. L.,</td>
<td>308</td>
</tr>
<tr>
<td>Murray, R. H.,</td>
<td>432</td>
</tr>
<tr>
<td>Nakayama, M.,</td>
<td>75</td>
</tr>
<tr>
<td>Nett, T. M.,</td>
<td>444</td>
</tr>
<tr>
<td>Nicholes, B. K.,</td>
<td>324</td>
</tr>
<tr>
<td>Noordewier, B.,</td>
<td>180, 249</td>
</tr>
<tr>
<td>Ofek, I.,</td>
<td>126</td>
</tr>
<tr>
<td>Oshima, K.,</td>
<td>61</td>
</tr>
<tr>
<td>Ohtsuki, T.,</td>
<td>350</td>
</tr>
<tr>
<td>Okazaki, K.,</td>
<td>453</td>
</tr>
<tr>
<td>Ohlau, R.,</td>
<td>298</td>
</tr>
<tr>
<td>Olson, L. C.,</td>
<td>84</td>
</tr>
<tr>
<td>Oswin, J. L.,</td>
<td>249</td>
</tr>
<tr>
<td>Pack, H. M.,</td>
<td>424</td>
</tr>
<tr>
<td>Padmanabhan, V.,</td>
<td>157</td>
</tr>
<tr>
<td>Page, R.,</td>
<td>409</td>
</tr>
<tr>
<td>Parker, H. R.,</td>
<td>386</td>
</tr>
<tr>
<td>Parker, T. H.,</td>
<td>270</td>
</tr>
<tr>
<td>Pedraza, E.,</td>
<td>161</td>
</tr>
<tr>
<td>Peerschke, E. L.,</td>
<td>54</td>
</tr>
<tr>
<td>Perry, E. F.,</td>
<td>339</td>
</tr>
<tr>
<td>Perry, H. M., Jr.,</td>
<td>339</td>
</tr>
<tr>
<td>Peterson, L. N.,</td>
<td>428</td>
</tr>
<tr>
<td>Phernetton, T.,</td>
<td>25, 281</td>
</tr>
<tr>
<td>Pietrassil, A.,</td>
<td>276</td>
</tr>
<tr>
<td>Polin, D.,</td>
<td>131</td>
</tr>
<tr>
<td>Portanovia, R.,</td>
<td>6</td>
</tr>
<tr>
<td>Pottashil, R.,</td>
<td>65</td>
</tr>
<tr>
<td>Price, P. J.,</td>
<td>253</td>
</tr>
<tr>
<td>Provost, P. J.,</td>
<td>201</td>
</tr>
<tr>
<td>Puschett, J. B.,</td>
<td>204</td>
</tr>
<tr>
<td>Qureshi, A. A.,</td>
<td>57</td>
</tr>
<tr>
<td>Ragan, H. A.,</td>
<td>335</td>
</tr>
<tr>
<td>Rankin, J. H. G.,</td>
<td>25, 281</td>
</tr>
<tr>
<td>Ratliff, C. R.,</td>
<td>192</td>
</tr>
<tr>
<td>Rencricca, N. J.,</td>
<td>317</td>
</tr>
<tr>
<td>Resch, G.,</td>
<td>397</td>
</tr>
<tr>
<td>Ringer, R. K.,</td>
<td>131</td>
</tr>
<tr>
<td>Roberts, R. K.,</td>
<td>270</td>
</tr>
<tr>
<td>Robertson, H. T.,</td>
<td>437</td>
</tr>
<tr>
<td>Roman, R. J.,</td>
<td>165</td>
</tr>
<tr>
<td>Romson, D. R.,</td>
<td>308</td>
</tr>
<tr>
<td>Ross, G.,</td>
<td>390</td>
</tr>
<tr>
<td>Sakaguchi, M.,</td>
<td>350</td>
</tr>
<tr>
<td>Salter, L.,</td>
<td>94</td>
</tr>
<tr>
<td>Samueloff, S.,</td>
<td>449</td>
</tr>
<tr>
<td>Schade, S. G.,</td>
<td>139</td>
</tr>
<tr>
<td>Schaffner, C. P.,</td>
<td>1</td>
</tr>
<tr>
<td>Schally, A. V.,</td>
<td>161</td>
</tr>
<tr>
<td>Schenker, S.,</td>
<td>270</td>
</tr>
<tr>
<td>Schmidt, D. E.,</td>
<td>270</td>
</tr>
<tr>
<td>Schneidkraut, M. J.,</td>
<td>418</td>
</tr>
<tr>
<td>Schneyer, C. A.,</td>
<td>478</td>
</tr>
<tr>
<td>Schneyer, L. H.,</td>
<td>478</td>
</tr>
<tr>
<td>Schwam, H.,</td>
<td>195</td>
</tr>
<tr>
<td>Schwartz, R.,</td>
<td>171</td>
</tr>
<tr>
<td>Scott, R. B.,</td>
<td>219</td>
</tr>
<tr>
<td>Seely, R. J.,</td>
<td>223</td>
</tr>
<tr>
<td>Sela, M. N.,</td>
<td>126</td>
</tr>
<tr>
<td>Semprevivo, L. H.,</td>
<td>105</td>
</tr>
<tr>
<td>Senterfitt, V. C.,</td>
<td>69</td>
</tr>
<tr>
<td>Shah, J. H.,</td>
<td>187</td>
</tr>
<tr>
<td>Shah, K. V.,</td>
<td>34</td>
</tr>
<tr>
<td>Shands, J. W., Jr.,</td>
<td>69</td>
</tr>
<tr>
<td>Sheets, P.,</td>
<td>34</td>
</tr>
<tr>
<td>Sheng, H.-P.,</td>
<td>152</td>
</tr>
<tr>
<td>Simonovic, M.,</td>
<td>12</td>
</tr>
<tr>
<td>Singh, S. P.,</td>
<td>226</td>
</tr>
<tr>
<td>Singhal, A. K.,</td>
<td>1</td>
</tr>
<tr>
<td>Siriniania, S.,</td>
<td>176</td>
</tr>
<tr>
<td>Sisk, D. R.,</td>
<td>84</td>
</tr>
<tr>
<td>Skee, P. C.,</td>
<td>253</td>
</tr>
<tr>
<td>Smith, R. L.,</td>
<td>484</td>
</tr>
<tr>
<td>Snyder, A. K.,</td>
<td>226</td>
</tr>
<tr>
<td>Solomon, J. K.,</td>
<td>44, 57</td>
</tr>
<tr>
<td>Sowers, J. R.,</td>
<td>397</td>
</tr>
<tr>
<td>Spaet, T. H.,</td>
<td>473</td>
</tr>
<tr>
<td>Spiekerman, A. M.,</td>
<td>192</td>
</tr>
<tr>
<td>Stanisic, D.,</td>
<td>12</td>
</tr>
<tr>
<td>Starrett, S.,</td>
<td>380</td>
</tr>
<tr>
<td>Stauber, W. T.,</td>
<td>239</td>
</tr>
<tr>
<td>Stemereman, M. B.,</td>
<td>473</td>
</tr>
<tr>
<td>Stoehr, B., Jr.,</td>
<td>25</td>
</tr>
<tr>
<td>Sucanthapree, C.,</td>
<td>478</td>
</tr>
<tr>
<td>Sugiyama, H.,</td>
<td>61</td>
</tr>
<tr>
<td>Taketa, K.,</td>
<td>148</td>
</tr>
<tr>
<td>Teichberg, S.,</td>
<td>380</td>
</tr>
<tr>
<td>Tempel, G.,</td>
<td>397</td>
</tr>
<tr>
<td>Terragno, N. A.,</td>
<td>165</td>
</tr>
<tr>
<td>Thenen, S. W.,</td>
<td>116</td>
</tr>
<tr>
<td>Tono-oka, T.,</td>
<td>75</td>
</tr>
<tr>
<td>Torasson, M.,</td>
<td>449</td>
</tr>
<tr>
<td>Trobaugh, F. E., Jr.,</td>
<td>260</td>
</tr>
<tr>
<td>Trump, B. F.,</td>
<td>111</td>
</tr>
<tr>
<td>Tucker, H. A.,</td>
<td>394</td>
</tr>
<tr>
<td>Tuma, S.,</td>
<td>48</td>
</tr>
<tr>
<td>Tungkanak, R.,</td>
<td>176</td>
</tr>
<tr>
<td>Turpen, C.,</td>
<td>409</td>
</tr>
<tr>
<td>Tust, R. H.,</td>
<td>353</td>
</tr>
<tr>
<td>Tytell, A. A.,</td>
<td>195</td>
</tr>
<tr>
<td>Ueda, M.,</td>
<td>148</td>
</tr>
<tr>
<td>Untawale, G. G.,</td>
<td>276</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>PAGE NUMBERS</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Valenzuela, J. E.</td>
<td>237</td>
</tr>
<tr>
<td>Vanderhoff, J. W.</td>
<td>298</td>
</tr>
<tr>
<td>Vijayan, E.</td>
<td>210</td>
</tr>
<tr>
<td>Vilchez-Martinez, J. A.</td>
<td>161</td>
</tr>
<tr>
<td>Villanueva, M. L.</td>
<td>245</td>
</tr>
<tr>
<td>Vinciguerra, V.</td>
<td>380</td>
</tr>
<tr>
<td>Vora, N. M.</td>
<td>187</td>
</tr>
<tr>
<td>Warth, J.</td>
<td>136</td>
</tr>
<tr>
<td>Wasserman, R. H.</td>
<td>171, 286</td>
</tr>
<tr>
<td>Watanabe, A.</td>
<td>148</td>
</tr>
<tr>
<td>Weinman, E. J.</td>
<td>16</td>
</tr>
<tr>
<td>Weiss, S.</td>
<td>409</td>
</tr>
<tr>
<td>Welbourne, T. C.</td>
<td>294</td>
</tr>
<tr>
<td>Weyman, A. E.</td>
<td>432</td>
</tr>
<tr>
<td>Wiley, K. S.</td>
<td>353</td>
</tr>
<tr>
<td>Williams, G. A.</td>
<td>187, 266</td>
</tr>
<tr>
<td>Winaver, J.</td>
<td>204</td>
</tr>
<tr>
<td>Wong, P. Y-K.</td>
<td>165</td>
</tr>
<tr>
<td>Wright, G. L.</td>
<td>449</td>
</tr>
<tr>
<td>Yang, T. K.</td>
<td>88</td>
</tr>
<tr>
<td>Yukimura, Y.</td>
<td>364</td>
</tr>
<tr>
<td>Zucca, M.</td>
<td>94</td>
</tr>
<tr>
<td>Zucker, M. B.</td>
<td>54</td>
</tr>
</tbody>
</table>
CUMULATIVE SUBJECT INDEX

Volumes 157-159

A

Acetate
incorporation into lipids, role of L-histidine supplemented diets (rat), 159, 57

Acetylcholine
concentration and utilization in brain regions, effects of ethanol on (mice, rats), 159, 270
contraction of vas deferens (mouse), 157, 200

N-Acetyl-β-D-hexosaminidase
renal, sex- and diabetes-dependent variations in (Chinese hamster), 157, 319

N-Acetylneuraminic acid
involvement in surface absorption of measles virus, 157, 622

Acetylsalicylate
antipyretic effect of, 157, 472

Accholeplasma laidlawii
injection-suppressed the interferon response to NDV (mice), 157, 83

Acidosis
subcellular localization and role of glutaminase-γ-glutamyltransferase in (rat), 159, 294

Acrosin
inhibitor, from acrosomes of boar and rabbit sperm, 158, 491

ACTH, see Adrenocorticotropic Actin

myosin interaction, mediation of by phosphorylation of myosin light chains in mammalian vascular smooth muscle, 158, 410

Actinomycin D
embro lethal and teratogenic effects in mid-pregnancy (rats), 157, 553

Actinomycin
Ca²⁺-dependent phosphorylation of in bovine aorta, 158, 410

Adenine phosphoribosyltransferase (EC 2.4.2.7)
activity in dystrophic and dystrophic gouty chickens, 158, 332

Adenosine deaminase (EC 2.5.4.4)
activity in dystrophic and dystrophic gouty chickens, 158, 332

Adenosine diphosphate
platelet shape change induced by, 159, 54

Adenosine kinase (EC 2.7.1.20)
activity in dystrophic and dystrophic gouty chickens, 158, 332

Adenosine 3′-5′-monophosphate (cAMP)
accumulation in granulosa cells, effect of phosphodiesterase inhibitor on stimulatory effect of FSH and LH on (porcine), 159, 230
dose-dependent effect on ³H-labeled thymidine incorporation in MLC, 158, 590
effect of somatostatin on in isolated islets of Langerhans in rats, 158, 458
effect of TRH and LVP on levels of, suppression by thyroxine and dexamethasone (rat), 158, 524
levels in acute hepatic injury, lack of responsiveness to dietary control (rat), 159, 148
levels in renal cortical tubules, ionophore A23187 effect on (rat), 157, 168
regulatory role in interferon-impaired initiation factor activities in vivo, 159, 453
renal, role in regulation of tubular transport of glucose and bicarbonate, 159, 48
role in corticotrophin releasing factor (CRF)-induced ACTH secretion (rats), 159, 6

Adenosine triphosphatase
parathyroid hormone in bone culture increases activity of (chick embryo), 157, 358

Adenosine triphosphate (ATP)
effect of heart rate on levels of in left ventricle of dog, 158, 230
effects of ionophore-induced Ca²⁺ influx on (human and ovine), 157, 506
exogenous, effect on glucoregulation in vivo in rat, 158, 554

S-Adenosylhomocysteine
metabolism in hepatomas (rat), 159, 313

S-Adenosylhomocysteine synthase
in extracts from rat hepatomas, effect of high protein diet on specific activity of, 159, 313

Adenylosuccinate synthetase
levels in normal and dystrophic muscles of chicken, 158, 406

Adenylate deaminase (EC 3.5.4.6)
activity in dystrophic and dystrophic gouty chickens, 158, 332
levels in normal and dystrophic muscles of chicken, 158, 406

Adenylsuccinate lyase
levels in normal and dystrophic muscles of chicken, 158, 406

Adherent cells
effects of graded concentrations of phytohemagglutinin on, 158, 5
function as a suppressor cell, 158, 5

Adipocytes
cholesterol storage, essential fatty acid deficiency effect on (rat), 157, 297

Adipose tissue

1 Boldface numbers indicate volume; lightface numbers indicate pagination.
CUMULATIVE SUBJECT INDEX

rat, effects of fasting, diabetes, and hypophysectomy on pyruvate kinase in, 158, 255
ADP, see Adenosine diphosphate
Adrenal cortex
 effect of lithium chloride on (rat), 157, 163
Adrenalectomy
 effect of high phosphate diet on, 158, 388
 effect on renal hypertension in dogs on constant steroid therapy, 157, 116
 effect on serum and antral gastrin levels in rat, 158, 609
 effect on thyroid function and insulin levels in obese mice, 159, 364
 ether effect on prolactin release after (rat), 157, 415
 inhibitory effect on skeletal and renal changes of secondary hyperparathyroidism in rats on high phosphate diet, 158, 388
Adrenal gland
dexamethasone inhibition of lithium chloride-stimulated corticosterone (rat), 157, 163
 effect of indoleamines on steroids of (rat), 157, 103
17β-estradiol and testosterone propionate effects on weight of (hesus monkey), 157, 231
steroidogenesis
 human prolacltion action on, 157, 159
 in vitro effects of melatonin and serotonin on (rat), 157, 103
β-Adrenergic amines
gastric mucosa, effect on (frog), 157, 256
α-Adrenergic blocker
 effect on l-Dopa-stimulated release of glucagon (rat), 157, 1
β-Adrenergic blocker
 effect on l-Dopa-stimulated glucagon release (rat), 157, 1
β-Adrenergic blocking agents
 myocardial depressant effects of in atherosclerotic rats, 158, 147
Adrenergic nerve stimulation
 effect on salivary calcium and amylase output (rat), 159, 478
α-Adrenergic receptors
 effect of trans α- and β-rotomeric conformations of dopamine and epinephrine on, 158, 28
 in salivary glands, α-subunitlike release following activation of in mouse, 158, 342
β-Adrenergic receptors
 effect of isoproterenol on following induction of renal hypertension in rats, 158, 363
β-Adrenergic response
 of tail skin temperature following l-isoproterenol administration (rat), 157, 18
Adrenocorticotropic distribution in hypothalamic-neurohypophyseal complex in various species, 158, 421
 effect of on serum and antral gastrin levels in rats, 158, 609
 human, ineffective stimulatory effect on estrogen biosynthesis by Fang 8 cells, 157, 159
inhibition of action of by puromycin or cycloheximide in adrenal mitochondrial preparations, 158, 10
secretion of following stimulation with TRH or LVP, suppression by thyroxine and dexamethasone (rat), 158, 524
stimulation of adrenal steroidogenesis and phospho-rylation in mitochondrial preparations by, 158, 183
Adriamycin
 site-specific delivery of by magnetic microspheres (rat), 158, 141
Adsorption
 of West Nile virus to CE cultures, Mg²⁺ requirement, 157, 322
Agarose
 assay, use in study of chemokinesis and chemotaxis of mouse neutrophils, 158, 170
Agarose plate method
 use in study of granulocyte mobility induced by chemotactic stimuli, 159, 75
Age
 dependent changes in electrolyte balance (rat pups), 157, 12
 dependent lethality after endotoxin injection in irradiated old and young leukemic AKR mice, 157, 424
 dependent TSH secretion in response to stress (rats), 157, 144
 effect of on DNA synthesis (rat), 157, 572
 effect on immunosuppression by Δ⁷-Tetrahydrocannabinol in mice, 158, 350
 -related development of pulmonary antioxidant defense systems (rat), 157, 293
Albumin
 effect of furosemide diuresis on excretion of by rat kidney, 158, 550
 from synovial liquid, as inhibitor of β-glucuronidase activity (human), 159, 403
 use of in magnetic microspheres, 158, 141
Alcohol
 relationship to circulatory changes in combination with anxiety, 158, 604
Aldosterone
 effect on absorption, excretion, and serum values of calcium, phosphate, and magnesium in adre-nectomized rats, 158, 388
 levels in (dolphins and sea lions), 157, 665
Alkaline phosphatase
 isoenzyme characterization of from pancreas (human dog), 159, 192
 pancreatic duct cells following fasting, activity associated with (rats), 157, 23
 parathyroid hormone in bone culture decreases activity of (chick embryo), 157, 358
Alkylating agents
 effect on DNA synthesis in lens epithelial cells (rat), 157, 688
Allopurinol
 serum biochemistry following treatment with, 157, 541
toxic effects of, 157, 541
Alpha receptor
effect of blockade of in near-term sheep fetus, 158, 166
Alpenrolol
effect as myocardial depressant in unanesthetized ath-
ersclerotic rabbits, 158, 147
α-Amanitin
competitive binding assay of for detection of RNA
polymerase B, 159, 98
Amatoxin
competitive binding assay of, 159, 98
Amino acids
14C-labeled, incorporation into pancreatic duct cell proteins (rat), 157, 23
residues, substitutions of in hemoglobin variants, 157, 250
role in uptake of noncereuloplasminic copper in brain
(rat), 158, 113
stimulation of erythropoietin secretion by (rats), 159, 139
stimulation of gastrin release (dog), 157, 440
p-Aminohippurate
effects of buffer and temperature on pH-dependent
transport of in rabbit kidney slices, 158, 509
transport in the intact kidney, metrazamide effect on
(dog), 157, 453
δ-Aminolevulinic acid
as heme precursor in rat liver, comparison with gly-
cine, 158, 466
Aminonucleoside nephrosis
morphological changes in glomerular basement mem-
brane associated with (rat), 159, 324
Aminopeptidase
in tears, effects of malnutrition on levels of (children),
157, 215
Amitrazazole
inhibitory effect on catalase and cinnarazine syn-
thetic of normal and acatalasemic mice, 158, 398
Ammonia
production, role of glutaminase-γ-glutamyltransferase
in acidotic kidney (rat), 159, 294
Amniotic fluid
TSH, T4, T3, and T4 levels in prediction of hypo-
roidism (lamb), 157, 106
Amylase
differential effect of autonomic stimulation on salivary
secretion of, in rats, 158, 59
secretion route following parasympathetic and symp-
pathetic nerve stimulation (rat), 159, 478
in serum and tears, moderate to severe malnutrition
effects on (children), 157, 215
Androgenization
critical period for, in female cesarean-delivered rats,
158, 179
Androgens
relationship to protein metabolism following exercise
(rat), 158, 622
Androstenedione
relationship to protein metabolism following exercise
(rat), 158, 622
Anemia
hemolytic, induction by light therapy in rats with
hyperbilirubinemia, 158, 81
Anesthesia
basal conditions, blood flow gradient in small intestine
in (dog), 157, 390
hypothalamic somatostatin and LH-RH after (rat),
157, 235
ketamine, effect on plasma prolactin levels (rats), 159, 12
Angina pectoris
experimental model of, utilization of isoproterenol
stress test in determination of (rabbit), 159, 458
Angiosarcoma
glycosaminoglycan composition compared to normal
heart tissue GAG (human), 157, 461
Angiotensin I
effect of acute alveolar hypoxia on conversion of, 158, 589
Angiotensin II
effect on uterine vascular resistance in near-term
sheep, role of endogenous prostaglandins, 158, 54
pressor response to following overproduction and in-
hibition of prostaglandin synthesis, 158, 502
role in blood flow and vascular resistance in ovary of
near-term sheep, 158, 105
Angiotensin blockade
with SQ 14225, effect on arterial pressure response to
renal artery constriction (dog), 157, 245
Angiotensin-converting enzyme
SQ 14225 inhibition of, hemodynamic and renal vas-
cular effects in anesthetized dogs, 157, 121
Angiotensin receptor
effect of blockade of in near-term sheep fetus, 158, 166
Anions
monovalent and divalent, effect on binding of [3H]-
diazepam to rat brain, 158, 393
Anoxia
effect on 2H-labeled 2-deoxy-d-glucose uptake in iso-
lated cerebral capillaries (gerbil), 158, 318
nitrogen-induced, effect of on isolated heart muscle
(rat), 157, 681
Anserine
levels of in traumatized rat and chicken, effect of
histamine and histidine on, 158, 402
Anterior putitary
clonal cells from (2E6), effect of factor from Rathke's
pouch mesenchymal on GH and PRL on, 158, 224
Anthracene
role in induction of sister chromatid exchange, 158, 269
Antibiotics
dietary supplementation, effect on adhesion and in-
vasion of intestinal microflora (chick), 159, 276
Antibody
anti-idiotypic from BALB/c mice to myeloma protein,
ability of to compete with hapten for antigen-
binding site on Protein-315, effect of booster, 159, 176
formation, depression during mastocytoma-immuno-
suppression (mice), 157, 381
HSV-1 and HSV-2, RIA detection of (human), 157, 273
measles virus, RIA detection in SSPE brain tissue
(human, hamster), 157, 268
-mediated neutralization of immunosuppression in-
duced by mastocytoma ascites fluid, 158, 238
production, modulation by 5-azacytidine, 158, 36
responses of human subjects to initial and revaccina-
tion with polyvalent pneumococcal vaccine, 157, 148
responses of human subjects to a meningococcal pol-
ysaccharide vaccine groups A, C, Y, 157, 79
Antibody-forming cells
splenic, vitamin deficiency effects on (rat), 157, 421
Anti-CSF serum
effect on diffusion chamber granulopoiesis of, 158, 542
Antigens
histocompatibility, interferon-enhanced expression on
embryonic fibroblasts (mouse), 157, 456
KCI-solubilized, molecular heterogeneity in fibrosar-
comas (mice), 157, 354
measles virus, RIA detection in SSPE brain tissue
(human, hamster), 157, 268
solubilized from B cells, mice immunization to IPE
with, 157, 330
Antinatriuretic factor
from plasma of ECFV-expanded dogs, purification of
by high pressure liquid chromatography, 159, 463
Antipyretics
ability to reduce streptococcal pyrogenic exotoxin-in-
duced fever (rabbit), 157, 472
Antiserum
and complement, inactivation of tumor cells in con-
taminated bone marrow by, 158, 449
Antithyroid drugs
action of in Mycobacterium leprae infections of mice,
158, 582
Anti-TSF serum
use in neutralizing biological activity of thrombocy-
topoiesis-stimulating factor (TSF), 158, 557
Antiviral activity
of interferon, cholera toxin reduction of (human), 157, 253
Anxiety
relationship to circulatory changes in combination
with intoxication by alcohol, 158, 604
Aorta
effects of rotomeric conformations of dopamine and
its analogs in rabbit, 158, 28
thoracic, level of superoxide dismutase in (bovine)
fetus, 159, 30
Apomorphine
as inhibitor of episodic LH release in ovariectomized
rats with complete hypothalamic deafferentation,
159, 121
9-β-D-Arabinofuranosyladenine
inhibition of chemically induced cell transformation
(rat embryo), 159, 253
Arachidonic acid
effect on vasodpressor action of by progesterone,
testosterone, and estrogen, 158, 442
use of prostaglandin transport inhibitors in modifying
response of in lung (dog), 157, 677
Arginine
effect on glucagon secretion by splenic pancreas (li-
ard), 157, 180
Arrhythmia
enhanced effect of guanidine-propranolol combina-
tions in dogs to control, 158, 337
Artery
coronary, anterior descending, ligation of and re-
sponses associated with (Rhesus monkeys), 158, 135
pulmonary, level of superoxide dismutase in (bovine)
fetus, 159, 30
response of wall to endothelial removal (rabbit), 159,
473
umbilical, level of superoxide dismutase in (bovine)
fetus, 159, 30
Ascitic fluid
thymidine phosphorylase activity in (healthy and tu-
mor-bearing mice and rats), 157, 262
Aspirin
inhibitory effect on platelet aggregation, counteracted
by addition of heat-treated plasma (rats), 158, 10
Atenolol
effects as myocardial depressant in unanesthetized
atherosclerotic rabbits, 158, 147
ATP, see Adenosine triphosphate
ATPase
effects of chloride, nitrate, and sulfate on in renal
cortex and medulla of rabbits, 158, 370
ATPase technique
use in study of fibers and capillaries of skeletal muscle
in dog, cat, rabbit, and guinea pig, 158, 288
Atrium
electrophysiological actions of guanidine and propan-
olol combinations (dog), 158, 337
Autoimmune disease
severity of in immunodeficient old mice, 158, 326
Autoimmune thyroid disorder
determination of IgE and IgG autoantibodies in, 158,
73
Autonomic stimulation
effect of on salivary secretion of IgG, IgA, and amylase
in rats, 158, 59
Autoradiography
use in study of intimal hyperplasia following injury
(rabbit), 159, 473
Avian spp.
comparative study of blood coagulation factor XIII
with mammalian species, 158, 68
A-V shunt
effect of neural control of in dog hindpaw, 157, 536
CUMULATIVE SUBJECT INDEX

5-Azacytidine
- effects on 7S antibody synthesis in rats, 158, 36

Azurophilic granules
- of bovine blood neutrophils, biochemistry of, 157, 342

B

Baboon
- as model for study of mechanism of effects of cigarette smoking on various systems, 157, 672
- serological response to influenza virus, comparison with human, 159, 414

Bacillus Calmette Guerin
- effect of on development of virus-induced mammary adenocarcinomas in RIII mice, 158, 235

Bacteria, see Individual entries

Bacteriolysis
- inhibition by lipoteichoic acid, 159, 126

Bacteriophage
- c-st absorption and conversion of Clostridium botulinum types C and D to type C toxigenicity by, 159, 61
 - \(\psi-1 \)
 - characteristics of, and comparison with \(\psi-2 \) and \(\psi-3 \), 158, 383
 - isolation from live virus vaccines, assessment of human risk, 158, 378
 - \(\psi-2 \), characteristics of, and comparison with \(\psi-1 \) and \(\psi-3 \), 158, 383
 - \(\psi-3 \), characteristics of, and comparison with \(\psi-1 \) and \(\psi-2 \), 158, 383

Barter's syndrome
- effect of prostaglandin synthesis inhibitors on, 158, 502

Basement membrane
- glomerular, proteinuria and fragility of in normal and diseased (rats), 159, 324

Benzo-(a)-pyrene
- role in induction of sister chromatid exchange, 158, 269

Bicarbonate
- blood concentration effect
 - on renal citrate content (rat), 157, 393
 - on urinary citrate excretion (rat), 157, 393
- effect on urinary \(pCO_2 \) (human), 157, 97
- renal tubular reabsorption of, effect of cholera toxin on (dog), 159, 48

Bile
- ethacrynic acid and theophylline effect on salt-dependent and salt-independent flow (rat), 157, 306
- influence of gastrin on (rat), 158, 40

Bile acids
- concentration in liver (newborn rat), 157, 66
- gallbladder, amount and composition in germfree and conventional dogs, 157, 386

Bilirubin
- as cause of cholestasis, in combination with manganese, 158, 283
- production increase by light therapy in jaundiced rats, 158, 81

Biogenic amines
- effects on plasma prolactin levels (rats), 157, 576

Biotin
- deficiency-induced reduction in splenic antibody-forming cells (rat), 157, 421

Biphenyls
- polybrominated, relationship of concentration to hatchability of chicken eggs, 159, 131

Blastogenic assay
- use in determination of age role in mammary tumor virus-induced lymphocyte inhibition in BALB/c mice, 158, 23

Blastokinin
- secretion, melengesterol acetate effects on (rabbit), 157, 220

Blood
- changes in red cell volume, plasma volume, and venous and circulatory hematocrits in first week following birth (dog and pig), 159, 152
- colony-forming unit, cumulative increase in concentration after dextran sulfate (dog), 157, 301
- coagulation, study of in mammalian and avian species, 158, 68
- flow, gradient in small intestine measured by indicator-fractionation technique (dog), 157, 390
- group A or B isoantigens, enzymic activity in synthesis of (human colorectal carcinoma), 157, 411
- hemolyzed, effect on reticuloendothelial system phagocytic function and susceptibility to hemorrhagic shock (rat), 159, 418
- neutrophils, azurophilic granules of, \(O_2^- \) generation by, oxidative metabolism of (bovine), 157, 342
- peripheral, enumeration of colony-forming cells in (chronic granulocytic leukemia patients), 157, 337

Blood-brain barrier
- uptake of copper across, role of amino acids in, 158, 113

Blood group antigens
- \(\alpha \)-butanol extraction of from animal tissues, 158, 220
- H, HI, I, and i from organ tissues extracted by butanol, 158, 220

Blood pressure
- arterial, effect of angiotensin-converting enzyme inhibition with SQ 14,225 (dogs), 157, 121
- effects of interaction of alcohol and anxiety on, 158, 604
- effects of pregnancy on in spontaneously hypertensive and nonnormotensive rats, 158, 242
- responses to extreme sodium intake, role of renal excretion (human), 159, 432

BK virus
- effects on primary cultures of rodent and primate cells, 158, 437

B Lymphocytes
- replication of herpes simplex virus in, 158, 263

Boar
- isolation of low molecular weight acrosin inhibitor during capacitation of sperm from, 158, 491
CUMULATIVE SUBJECT INDEX

Body fat
accumulation, high-fat and high-carbohydrate diet influence on (dog), 157, 278
content of lean and obese mice at 7 and 14 days of age, 157, 402

Body weight
changes, high-fat and high-carbohydrate diet influence on (dog), 157, 278
and energy metabolism in early life (lean, obese mice), 157, 402

Bone
culture, alkaline phosphatase and ATPase activity in, parathyroid hormone effect on (chick embryo), 157, 358
metabolism in, effect of long-term administration of estrogen on (male rat), 159, 368
mineralization, alterations during progression of zinc deficiency (rat), 157, 211

Bone marrow
aplasia induction by 85Sr, proliferative response in diffusion chambers (mice), 159, 260
enumeration of colony-forming cells in (chronic granulocytic leukemia patients), 157, 337
eosinophilic promyelocytes associated with diseased states of, secretion of primary granules from (human), 159, 380
erythroid precursor cells
flow analysis of light scatter characteristics of (rabbit), 159, 219
testosterone-induced increase in (mouse), 157, 184
human, stimulation of colony growth in vitro by poly I:poly C in, 158, 151
as source of neutrophils for study of chemokinesis and chemotaxis in mouse, 158, 170
transplantation, use of antibody with tumor-contaminated grafts in cancer treatment, 158, 449

Bovine
blood neutrophils, ultrastructure and biochemistry of, 157, 342
distribution of CRF activity and immunoreactive ACTH in hypothalamic-neurohypophyseal complex of, 158, 421
dose and time of exposure effect of luteinizing hormone release hormone and estradiol on LH release from pituitary cells of, 159, 157
inhibition of oxytocin release by serine protease inhibitors in, 157, 550
iron turnover in, 159, 335
lymphatic smooth muscle, transmembrane potentials of, 159, 350
measurement of arteriovenous levels of serum insulin during lactation of, 159, 394
superoxide dismutase in fetal ductus arteriosus, thoracic aorta, and pulmonary and umbilical arteries of, 159, 30

Brain
cerebrospinal fluid transport of TRH, elevated thyroxine levels and (rat), 157, 134
medial basal hypothalamus, afferent input to sustain episodic LH release, blocking action of apomorphine, 159, 121
regional concentration and utilization of acetylcholine effect of ethanol on (rat, mice), 159, 270
serotonin neurons, fenfluramine and norfenfluramine depletion of (rat), 157, 202
tissue with SSPE, measles virus antigen and antibody detection by RIA (human, hamster), 157, 268

Bran
effect of on DMH-induced colon carcinogenesis (rat), 157, 656

Bromcresol green
use in modification of vasopressor response of arachidonic acid, PGE2, and norepinephrine in lung (dog), 157, 677

Buffer
effect on pH-dependent transport of p-aminohippurate in rabbit kidney slices, 158, 509

Buoyant density
effect of cesium chloride, sucrose, and metrizamide on scrapie virus infectivity, 158, 513

n-Butanol
blood group antigens from animal tissues extracted with, 158, 220

Butorphanol
inhibition of oxytocin release in lactating mice by, 157, 476

Cadmium
effects of on Dahl hypertension-sensitive and hypertension-resistant rats following unilateral renal artery clipping, 158, 310
effects of on ingestion on calcium metabolism in developing fetus in utero, 158, 614
electrocardiographical, biochemical, and morphological effects of chronic low-level feeding on heart (rat), 159, 339

Cadmium-metallothionein interaction with myoglobin, competition for renal tubular reabsorption (rabbit), 159, 321

Caenorhabditis briggsae
growth-promoting effect of lipid-related compounds in, 158, 187

Calcification
role of calcium-phospholipid-phosphate complexes in process of (rabbit), 157, 590

Calcitonin
ethanol effect on secretion of (human), 159, 187
increased secretion after oral calcium-free glucose solution (rat pups), 157, 374
long-term effect of administration of epinephrine and propranolol on secretion of (rat), 159, 266
radioimmunoassay of concurrent secretion in rat of parathyroid hormone and, 158, 299

Calcium
absorption during ovulatory cycle, relation of vitamin D-dependent intestinal calcium-binding protein to
(Japanese quail), 159, 286

effect of pharmacological doses of methylprednisolone and vitamin D in intestine of infant rat on, 158, 174

content of bone during progression of zinc deficiency (rat), 157, 211
cytosolic levels of, ionophore A23187 alteration of (rat), 157, 168

dependent phosphorylation of bovine aortic actomyosin, 158, 410
effect of ionophore A23187 on efflux and influx in erythrocytes (humans, sheep, and lamb), 157, 506

effect on sperm motility and fertilization (rat), 157, 54
gastric, influence of gastrin on (rat), 158, 40

intestinal transport of, effect of magnesium deficiency on (rat), 159, 171

metabolism effect of cadmium ingestion on developing fetus in utero, 158, 614

plasma, influence of gastrin on (rat), 158, 40

plasma levels, acute fluoride toxicity effect on (rat), 157, 363

reabsorption, effect of vitamin D3 metabolites on (dog), 159, 204

relationship to contraction and relaxation in vascular smooth muscle (rat), 159, 353

secretion route following parasympathetic and sympathetic nerve stimulation (rat), 159, 478

serum, long-term effect of administration of epinephrine and propranolol on (rat), 159, 266

Calcium-binding protein vitamin D-dependent, relationship to calcium absorption during ovulatory cycle (Japanese quail), 159, 286

Calcium-phospholipid-phosphate complexes role of in mineralization, 157, 590

Calf

phenoxybenzamine-induced pulmonary hypertension in, 158, 652

cAMP, see Adenosine 3':5'-monophosphate

Cancer
gastric, possible role of N-nitrosourea compound of spermidine on, 158, 85

therapy, use of antibody and bone marrow transplantation in, 158, 449

Canine

anesthetized, effect of SQ 14,555 on arterial pressure and renal vasodilation, 157, 121

blood colony-forming unit, dextran sulfate-induced increase in, 157, 301

blood flow gradient in small intestine under basal conditions of anesthesia, 157, 390

blood volume changes during first week after birth, 159, 152

cell proliferation of cyclic hematopoietic marrow in diffusion chambers of, 158, 50

distribution of CRF activity and immunoreactive ACTH in hypothalamic-neurohypophyseal complex of, 158, 421

effect of acute alveolar hypoxia on conversion rate of angiotensin I in, 158, 589
effect of cardioacceleration on trans levels in left ventricle of, 158, 23
effect of hypoxia on renal hemodyna excretion, 159, 468

effect of ouabain on vascular resistance, 158, 161

effect of progesterone, testosterone, vasodepressor action of arachids 442

effect of synthetic vasoactive intestinal and secretin on gastric secretion.
effect of vitamin D3 metabolites c transport mechanisms, 159, 204

electrophysiological action of quinidol on atrium of, 158, 337

endotoxin shock in, hemodynamic c germfree and conventional, composit der bile acids, 157, 386

glycosaminoglycan composition ch myocardial infarction in, 158, 21

high-fat and high-carbohydrate diet in, fat, body weight changes, and, 278

indomethacin and tolmetin effects oduced changes in renin, 159, 18C

influence of carotid occlusion on pul resistance, in, 158, 215

inhibition of insulin and glucagon se tostatin, indirect effects, 157, 64:

intact kidney, metrizamide effect on p transport in, 157, 453

iron turnover in, 159, 335

isoenzyme characterization of alkal from pancreas of, 159, 192

kidney surface temperature effect on filtration rate, comparison of dis sites, 159, 428

kinetics of serum ferritin, 157, 481

mechanism of action of cycloctydine lar system of, 159, 374

mechanism of PGE2 stimulation of 159, 249

as model to examine effect of sodi lactic acidosis and cardiovascular 158, 426

one-kidney renal hypertension, SQ 157, 245

neural control on A-V shunt and caj hindpaw of, 157, 536

pancreatic and gastric secretion, eff forms of gastrin on, 159, 237

pulmonary vascular pressure changes neural receptors responding to, 1 purification of antinatriferic factor 1 liquid chromatography from pl expanded), 159, 463

renal hypertension after renal artery adrenalectomy, 157, 116
renal tubular reabsorption of glucose and bicarbonate, effect of cholera toxin on, 159, 48
role of sympathetic cholinergic nerves in renal vasodilatation, 158, 462
serum gastrin, amino acid-induced release of, 157, 440
skeletal muscle fiber size and capillarity in, 158, 288
stimulation of gastric secretion and gastric mucosal blood flow by methionine-enkephaline in, 158, 156
Capacitation
isolation of low molecular weight acrosin inhibitor during, 158, 491
Capillarity
in skeletal muscle (guinea pig, rabbit, cat, and dog), 158, 288
Capillary circuits
effect of neural control of in dog hindpaw, 157, 536
Carbon dioxide tension (pCO2)
urinary, various factors influencing (human), 157, 97
Carbon monoxide
effect of on isolated heart muscle (rat), 157, 681
measurement in blood of baboons following heavy smoking behavior (baboon), 157, 672
Carcinogenesis
chemical induction by diethylnitrosamine and suppression by goat antibodies against murine leukemia virus (mice), 159, 65
colon, effect of dietary bran on incidence of (rat), 157, 656
Carcinogens
diethylnitrosamine as causative agent in lung tumors, suppression by goat antibodies against murine leukemia virus (mice), 159, 65
role in induction of sister chromatid exchange, 158, 269
Cardiac muscle
isolated, effects of immersion in fluorocarbon and Krebs-Henseleit solution and effects of metabolic blockade on, 158, 561
Cardiac output
effect of interaction of alcohol and anxiety on fractional distribution of, 158, 604
effect of salt intake on (human), 159, 432
effect of sodium salicylate intoxication on (dog), 157, 531
Cardiac tumors
glycosaminoglycan composition of normal heart tissue compared to (human), 157, 461
Cardiomyopathy
progressive, pathologic characteristics of (BALB/c mice), 157, 442
Cardiovascular hemodynamics
effect of sodium nitroprusside on in dog model, 158, 426
Cardiovascular system, see also Individual entries
mechanism of action of cycloxytide on (rat, cat, and dog), effect of tilt stress, 159, 374
pulmonary vascular pressure and intrapulmonary receptor activities (canine), 157, 36
Carnosine
levels of in traumatized rat and cock, effect of histamine and histidine on, 158, 402
Carotid occlusion
influence of on pulmonary hemodynamics and systemic hemodynamics in anesthetized dogs, 158, 215
Casamino acids
effect on growth of free-living nematode (Caenorhabditis briggsae), 158, 187
Castration
effect on synthesis of cholesterol, protein, and DNA in ventral prostate (rat) after testosterone administration, 157, 1
Cat, see Feline
Catalase
activity of in cytosol of polymorphonuclear leukocytes, use in disposal of hydrogen peroxide in mammalian species, 158, 478
comparison with cinnabarinate synthase in normal and acatalasemic mice, 158, 398
in human eosinophils, 158, 537
pulmonary activity levels, age-related development of (rat), 157, 293
spectrophotometric assay with sodium perborate as substrate (mouse liver fractions), 157, 33
Catecholamine
contents in sympathetic ganglia of spontaneously hypertensive rats, 158, 45
Cathepsins
subcellular distribution of in lung (guinea pig), 159, 239
Cationic conductance
of nutrient and secretory membranes of frog stomach in Cl−-free solutions, 158, 96
Cations
monovalent and divalent, effect on binding of [3H]-diazepam to rat brain, 158, 393
Cell cycle
period during which vinblastine causes multinucleation (HeLa cells), 157, 206
Cell differentiation
use of diffusion chambers in study of in mice, 158, 201
Cell growth
cholera toxin-reduced interferon inhibitory activity (human), 157, 253
Cell lines
comparison of transforming titer of SiSV-1 and HL23V in FEF and, 157, 312
Cell transformation
in BK virus-infected rodent cells, 158, 437
inhibition by 9-β-D-arabinofuranosyladenine (rat embryo), 159, 253
Cellulose
14C-labeled, passage rate in the gastrointestinal tract, chromium sesquioxide estimation of (rat), 157, 418
Centrifugal elutriation modified, new method of granulocyte separation, 157, 599

Cerebral capillaries anoxic effect on \(^{3}H\)-labeled 2-deoxy-d-glucose uptake in, 158, 318

Ceruloplasmin changes in serum levels during malignant conversion of Shope papillomas (rabbis), 157, 694

Cesium chloride effect on buoyant density of scrapie infectivity, 158, 513

cGMP, see Guanosine 3':5'-monophosphate

Channel catfish disease cytopathic effect of phosphonoacetic acid on causative agent of (herpesvirus), 159, 21

Chemokinesis observation of by agarose plate method, relationship between degree of and concentration of chemotactic factor, 159, 75

t of mouse neutrophils under agarose, 158, 170

Chemophylaxis degree in trypanosomiasis, pharmacological interpretation (mice), 157, 397

Chemotactic assay in vitro, anti-inflammatory agents action on eosinophilotaxis during (guinea pig), 157, 129

Chemotactic factor derivation from \(E.\ coli\), in study of granulocyte mobility, 159, 75

Chemotaxis of mouse neutrophils under agarose, 158, 170

Chick embryo cells parathyroid hormone effect on ATPase and alkaline phosphatase activity in bone culture, 157, 358

West Nile virus adsorption, Mg\(^{2+}\) requirement for, 157, 322

Chicken eggs and hatchability, relationship of concentration of polyborinated biphenyls to, 159, 139

hepatic purine enzyme profiles and uric acid production in dystrophic and dystrophic gouty, 158, 352

levels of enzymes of purine nucleotide cycle in normal and dystrophic muscles of, 158, 406

role of histamine and histidine on levels of anserine and carnosine in injured and uninjured, 158, 402

Chicks \(D.\) or \(L.\)-homocysteine as source of methionine for, crystalline amino acid diet and, 157, 139

effect of diet on adhesion and microflora invasion in intestinal mucosa of, 159, 276

Chimpanzee serological response to influenza virus, comparison with human, 159, 414

Chinese hamster cells V-79, effect of promutagens/carcinogens on frequency of sister chromatid exchange in, 158, 269

Chloride effect of on ATPase of renal cortex and medulla (rabbits), 158, 370

excretion rate, fluoride-induced concentrating defect (rat), 157, 44

1-Chloro-2,4-dinitrobenzene use in localization of GSH transferase in proximal tubules (rabbit), 157, 189

Chloroform-methanol use in extraction of glycoproteins from human erythrocytes, 158, 530

\(N\)-\(2-(\alpha\)-Chlorophenox)-ethyl-cyclopropylamine hydrochloride as in vivo inhibitor of monoamine oxidase types A and B, 158, 323

Chloroquine hydrochloride -induced inhibition of eosinophil migration (guinea pig), 157, 129

Cholera exenterotoxin relationship to immunoregulatory responses in vivo and in vitro, 157, 631

Cholera toxin stimulation of renal adenylate cyclase by, effect on renal tubular reabsorption of glucose and bicarbonate (dog), 159, 48

use in reduction of antiviral activity and the cell growth inhibitory activity of human interferon, 157, 253

Cholestasis induction of by manganese and bilirubin, role of order and injection times and prevention by sulfobromophthalein, 158, 283

Cholesterol biosynthesis in liver, effect of dietary \(L\)-histidine (rat), 159, 44

free and esterified, essential fatty acid deficiency effect on storage in adipocyte (rat), 157, 297

plasma, \(17\) \(\beta\)-estradiol and testosterone propionate effects on (thresus monkey), 157, 231

rate of synthesis in ventral prostate (rat) after testosterone administration, 159, 1

Cholic acid in gallbladder bile acids of germfree and conventional dogs, 157, 386

Choline -induced reticuloendothelial system stimulation and shock protection, role of spleen, 158, 77

Cholinergic nerve stimulation effect on salivary calcium and amylase output (rat), 159, 478

Chondroitin-4-sulfate changes in levels of following myocardial infarction in dog, 158, 210

Chromatography affinity, immunoreactive human parathyroid hormone N terminal similarity with synthetic peptide, 157, 241

use in analysis and isolation of a low molecular weight DNA fraction from rat hepatocytes, 158, 117

Chromium \(L\)-labeled immunoglobulin G complexes, use in precip-
CUMULATIVE SUBJECT INDEX

itation of rheumatoid factor, 157, 75
Chromium sesquisulioxide
and [14C]cellulose passage rate in gastrointestinal tract
(rats), 157, 418
Chronic granulocytic leukemia
enumeration of colony-forming cells in peripheral
blood and bone marrow of (human), 157, 337
Cinnabarine synthase
activity in normal and acatasialic mice, parallelism
with catalase activity, 158, 398
Citrate
renal content, blood bicarbonate effects in hypo-
normo- and hyperkalemic rats, 157, 393
urine excretion, blood bicarbonate effects in hypo-
normo- and hyperkalemic rats, 157, 393
Citrate synthase
levels of in hypertrophied left ventricle (rat), 158, 599
Cleft palate
cortisone-induced, role of genetic and dietary factors
on susceptibility to in mice, 158, 618
Clinical testing
of groups A, C, Y meningococcal polysaccharide vac-
cine (human), 157, 79
Clostridium botulinum
conversion of types C and D to type C toxigenicity by
phage c-st, 159, 61
Coenzyme
riboflavin replacement, effect on hepatic monoamine
oxidase activity, 157, 466
Collagen
changes in amount and concentration in kidney during
compensatory growth, 158, 275
composition of skin (obese and lean Zucker rats), 157,
435
Colon
human, metabolism of acyclic and cyclic N-nitrosam-
ines in, 159, 111
Colonic mucosa
effect of secretin on DNA synthesis in (rats), 158, 521
Colony-forming cells
granulocyte, enumeration in peripheral blood during
chronic granulocytic leukemia (human), 157, 337
spleen
proliferation in vivo, testosterone enhancement of
(mouse), 157, 184
proliferation recovery in a diffusion chamber, tes-
tosterone effect on (mouse), 157, 184
Colony-forming unit
congestion in blood, dextran sulfate-induced cum-
ulative increase in (dog), 157, 301
Colony-stimulating factor (CSF)
effect of poly I:poly C on production of by mononu-
clear cells, 158, 151
granulopoiesis effect in vivo, 158, 542
Colorectal carcinoma
A or B isoantigens, enzymic activity in synthesis of
(human), 157, 411
Competition binding assay
of amatoxin, use in detection of RNA polymerase B,
159, 98
Complement
and antisem, inaetivation of tumor cells in contam-
inated bone marrow by, 158, 449
effects on precipitation of IgG complexes with rhe-
matoid factor (human), 157, 75
serum, role of vitamin A and protein deficiencies in
levels of, 158, 92
Conductance
cations through nutrient and secretory membranes
of frog stomach in Cl- free solutions, 158, 96
Copper
effect of deficiency on red cell membrane stability and
superoxide dismutase activity, 158, 279
uptake of into rat brain, role of amino acids, 158, 113
Coronary occlusion
cardiovascular changes in nonhuman primates, 158,
135
Corticosterone
effect on ether-induced prolactin release (rat), 157, 415
effect on serum and antral gastrin levels in rat, 158,
609
as inhibitor of cAMP- and CRF-induced ACTH se-
cretion (rat), 159, 6
plasma levels, lithium chloride stimulation of (rat
157, 163
secretion, melatonin and serotonin effects on (rat ad-
renal slices), 157, 103
Corticotropin releasing factor
distribution in hypothalamic/neurohypophyseal com-
pex in various species, 158, 421
role in mechanism of ACTH secretion (rat), 159, 6
Cortisone
antipyretic effect of, 157, 472
Cortisone acetate
effect on rat liver, 158, 245
Coxiella burnetii
as causative agent of respiratory Q fever, metabolic
sequelae associated with (guinea pig), 158, 626
Coxackievirus B-3
-induced cardiomyopathy, pathologic characteristics of
(BALB/c mice), 157, 442
Creatine phosphate
effect of heart rate on levels of in left ventricle of dog,
158, 230
CRF, see Corticotrophin-releasing factor
Croton oil
ehnancement of skin tumor by, 158, 1
Cryopreservation
neonatal lymphocyte sensitivity to infection and trans-
formation with EBV after, 157, 326
Crypt cell
kinetics of after partial resection, influence of rat age
on, 157, 572
Curve-fit method
plasma half-lives, determinations of vasopressin and
oxytocin analogs (rat), 158, 663
Curve-fitting
method of determining plasma half-lives, 157, 584
Cyclic hematopoiesis
canine, cell proliferation of marrow in diffusion chambers, 158, 50

Cycloxydine
mechanism of action on cardiovascular system (dog, cat, rat), 159, 374

Cycloheximide
effect on ACTH-stimulated steroidogenesis in adrenal mitochondria, 158, 183
synthesis of liver mitochondrial proteins following nonlethal doses of (rat), 159, 288

Cyclophosphamide
role in induction of sister chromatid exchange, 158, 269

Cystic fibrotic serum
effect on jejunum potential difference and short-circuit current (rat), 157, 70

Cystine
effect on plasma erythropoietin levels (rat), 159, 139

Cytomegalovirus
guinea pig type (GPCMV), dose-dependent inhibition by heparin of, 157, 569

Cytopathic effects
VSV-induced after inoculation of DRK1 cells with Shope fibroma virus, 157, 225

Cytoplasm
protein synthesis in, interaction with mitochondria, effect of nonlethal doses of cycloheximide on (rat liver), 159, 288

Cytopoietic potential
of cyclic hematopoietic marrow of canines, 158, 50

Cytosol
glycerol movement to mitochondria, strain differences in (rat), 157, 5
location of glutaminase-γ-glutamyltransferase in (rat kidney), 159, 294
of polymorphonuclear leukocytes, species differences in mechanism of disposal of hydrogen peroxide, 158, 478

D

Density gradient centrifugation
use in isolation of two types of mucosal cells from urinary bladder (turtles), 158, 565

Dental caries
relationship of radiotherapy and saliva flow to incidence of, 157, 50

2-Deoxy-d-glucose
uptake in isolated cerebral capillaries in oxygen and anoxic conditions, 158, 318

Dermatan sulfate
changes in levels of following myocardial infarction (dog), 158, 210

Dermatosis
inflammatory, topical effect of salbutamol on, 159, 223

Dexamethasone
effects on brain PNMT and ganglionic catecholamines in genetically hypertensive rats, 158, 45
as inhibitor of lithium-stimulated adrenal response (rat), 157, 163
inhibitory effect on ACTH secretion and cAMP levels following stimulation by TRH and LVP (rat), 158, 524

Dextran
production by Streptococcus sanguis, as cause of increased infectivity in bacterial endocarditis in rabbits, 158, 415

Dextran sulfate
blood colony-forming unit increased by (dog), 157, 301
effect on mononuclear and polymorphonuclear leukocytes (dog), 157, 301

Diabetes
-dependent variations in renal glycohydrolases of inbred lines (Chinese hamster), 157, 319
effects of on rat adipose pyruvate kinase levels, 158, 255
experimental, glucagon and the mediation of hyperglycemia, pancreatic α cells role in (lizard), 157, 180

Diazepam
3H-labeled, effects of cations and anions on binding of to rat brain, 158, 393

Dibutylryl cAMP
inhibitory effect on protein synthesis in MLC, 158, 590

Dibutylryl cGMP
effect of administration of on body temperature (cat), 158, 655

Diet
diurnal feeding patterns and relationship to hypophysectomy (rat), 159, 80
effect on adhesion and invasion of microflora in intestinal mucosa (chick), comparison of effects of raw beans versus corn or rye, 159, 276
effect on endotoxin-induced metabolic alterations in BCG-infected mice, 159, 69
effect on frequency of cortisone-induced cleft palate in mice, 158, 618
effect of protein and vitamin A deficiencies on levels of serum complement in rat, 158, 92
extreme sodium intake, blood pressure responses to and renal salt excretion (human), 159, 432
fat-free
effect of on indomethacin-induced intestinal lesions, 157, 615
role in indomethacin-induced ulcers, 158, 19
feed intake relationship to serum insulin in lactating cows, 159, 394
high carbohydrate, influence on food intake, body weight changes, and body fat (dog), 157, 278
high fat, influence on food intake, body weight changes, and body fat (dog), 157, 278
high protein
as compared to normal and relationship to increased levels of glucagon secretion in rat, 158, 578
effect on specific activity of adenosylhomocysteine synthase in hepatomas (rat), 159, 313
influence of fat and fasting on in vivo rates of fatty acid synthesis in lactating mice, 159, 308
low cadmium, effect on heart (rat), 159, 339
normal and fasting, effect on plasma levels of pancreatic polypeptide, daily fluctuations (human), 159, 245
relationship between polybrominated biphenyl and hatchability of chicken eggs, 159, 131
role in cholesterol biosynthesis of fat-free and L-histidine supplements (rat), 159, 57
role of protein-calorie malnutrition in impairment of antiviral functioning of macrophages, 159, 84
vegetable meal, effect on daily fluctuations of pancreatic polypeptide in plasma (human), 159, 245
Diethylthiuramoxide
induction of tumorigenesis by, effect of treatment using goat antibodies against endogenous murine leukemia viruses (MuLV) (mouse), 159, 65
metabolism of in cultured human colonic mucosa cells, 159, 111
role in induction of sister chromatid exchange, 158, 269
Diffusion chambers
hemopoiesis of pluripotent stem cells from 85Sr marrow-ablated mice, 159, 260
spleen colony-forming cells proliferation in, testosterone effect on (mouse), 157, 184
use in evaluating induction of sister chromatid exchange in Chinese hamster cells by promutagens/carcinogens, 158, 269
use of study of effect of erythropoietin stimulation of fetal hemopoietic tissue differentiation, 158, 201
Diffusion chamber technique
use in study of proliferation of marrow cells from dogs, 158, 50
Diffusion chamber granulopoiesis
inhibitory effect of anti-CSF serum on, 158, 542
Dihydrocorticosterone
secretion, melatonin and serotonin effects on (rat), 157, 103
20α-Dihydroprogesterone
activity of in parturient periods in rats, effect of pelvic neurectomy on, 158, 631
7,12-Dimethylbenz(a)anthracene
effect of altered thyroid states on prolactin binding to mammary tumors induced by, 158, 517
role of induction of sister chromatid exchange, 158, 269
1,2-Dimethylhydrazine
-induced enteric tumors in germfree strains of rats, 158, 89
Diethylene-tetramine
effect on membrane-bound ribosomes, 157, 660
metabolism of in cultured human colonic mucosa cells, 159, 111
role in induction of sister chromatid exchange, 158, 269
5,5-Dimethylxazolidine-2,4-dione
use in determination of intraerythrocyte pH, 159, 136
Dipeptidase
subcellular distribution of in lung (guinea pig), 19, 239
Dipeptidylpeptidases
subcellular distribution of in lung (guinea pig), 19, 239
Diploid fibroblasts
human, independent effects of human platelet growth factor and hydrocortisone on acetate incorporation by, 158, 292
Dipyridamole
effect on ischemic S-T segment depression, comparison with nitroglycerin (rabbit), 159, 458
DMBA, see Dimethylbenz(a)anthracene
DNA
binding of carcinogens to, 159, 111
content of pancreatic duct cells (rat), 157, 23
isolation and analysis of low molecular weight fraction of, by electrophoresis and chromatography from rat hepatocyte, 158, 117
replication, role of in tumor initiation, 158, 1 synthesis in 2E6 clonal cells, effect of growth factor from Rathke's pouch mesenchyme and surrounding tissue on, 158, 224
effect of alkylating agents on in rat lens epithelial cells, 157, 688
effect of pancreaticobiliary duct ligation on, following small bowel resection in rats, 158, 101
effect of secretin on rate of in colonic mucosa of rat, 158, 521
effect of zinc deficiency on in developing embryos (rat), 159, 39
inhibition of by proteolytic agents, 158, 666
kinetics of in ventral prostate of castrated rats after testosterone administration, 159, 1
of mitogen-stimulated lymphocytes, D-penicillamine effect on (human), 157, 155
DNA polymerase
activity in normal and zinc-deficient in developing embryos (rat), 159, 39
Dog, see Canine
Dolphins
renin and aldosterone levels, 157, 665
L-DOPA
effect of administration of (rats) following loss of hepatic monoamine oxidase activity, 157, 466
-stimulated glucagon release, sympathetic nervous system role in (rat), 157, 1
Dopamine
effect of on prolactin release in vitro, 157, 605
effect of trans α- and β-rotomeric conformations of α-adrenergic receptors, 158, 28
-stimulated glucagon release, sympathetic nervous system role in (rat), 157, 1
stimulation of prolactin secretion by pituitary gland in rat, 158, 10
suppression effect on plasma prolactin levels (rat), 155, 576
Drug delivery
 site-specific, using magnetic microspheres (rat), 158, 141
Ductus arteriosus
 level of superoxide dismutase in (bovine) fetus, 159, 30
Duodenum
 calcium transport in, effect of magnesium deficiency on (rat), 159, 171
 stimulation of ornithine decarboxylase activity by epidermal growth factor in (mice), 159, 400
E
Elastase
 -emphysema, lung elastin metabolism during (hamster), 157, 369
Elastin
 biosynthesis in lung after elastase-induced emphysema (hamster), 157, 369
Electrolyte balance
 age-dependent changes during maturation (rat pups), 157, 12
Electrophoresis
 use in analysis and isolation of a low molecular weight DNA fraction from rat hepatocytes, 158, 117
Emphysema
 elastin-induced, elastin biosynthesis during (hamster), 157, 159
Endocrine system, see Individual entries
Endorphins
 effect of β- and α-endorphin on prolactin and growth hormone secretion in rats, 158, 431
Endotoxin
 bacterial, age-dependent lethality after injection of (leukemic AKR mice), 157, 424
 metabolic alterations induced by in BCG-infected mice, 159, 69
Endotoxin shock
 hemodynamic course in (dog), 157, 610
Energy metabolism
 oxygen consumption as indicator of in lean and obese mice, 157, 402
Enterobacteriaceae
 evaluation of ability of smooth species of to confer broad-spectrum immunity to rough mutants of, 158, 482
Enzymes
 duct epithelium, activity during fasting and feeding (rat pancreas), 157, 23
Eosinophil
 human, enzymes of oxidative metabolism in, 158, 537
Eosinophilotoxins
 corticosteroids and chloroquine hydrochloride inhibition of, in vitro (guinea pig), 157, 129
Epidermal growth factor
 induction of ornithine decarboxylase activity in digestive tract by (mice), 159, 400
Epinephrine
 contents of in sympathetic ganglia and brain regions in spontaneously hypertensive rats, 158, 45
 effect on lipolysis in genetically obese mice, 159, 116
 inhibitory effects on resistance, PD, and H+ secretory rate of gastric mucosa (frog), 157, 256
 long-term effect of administration on serum calcium and parathyroid hormone and calcitonin secretion (rat), 159, 266
Epinephrine
 effect of trans α- and β-rotomeric conformation of on α-adrenergic receptors, 158, 28
Epstein-Barr virus (EBV)
 infection and transformation of cryopreserved neonatal lymphocytes, 157, 326
 transformation of woolly monkey lymphocytes, 157, 489
Erythrocyte glutathione reductase
decrease in, G-6-PD deficiency and prevention by phototherapy (hyperbilirubinemic infants), 157, 41
Erythrocytes
 affinity for oxygen, relationship to hypertriglyceridemia (human), 159, 437
 cell separation of, using light scatter characteristics studied by flow analysis (rabbit bone marrow), 159, 219
 effects of copper and zinc deficiencies on stability of membrane of, 158, 279
 fractional turnover rate of urea in (human), 157, 282
 G-6-PD deficient effect on riboflavin deficiency during phototherapy (infants), 157, 41
 hemolysis, induction of by light therapy in hyperbilirubinemia in rats, 158, 81
human, comparative immunochemical studies of glycoproteins from, 158, 530
 intracellular pH and physicochemical properties of, 159, 136
 ionophore-induced Ca2+ influx on (human, sheep, lamb) 157, 506
 stroma fraction, role in depression of phagocytic index (rat), 159, 418
Erythropoietin
 effects of lead poisoning on response to hypoxia by, 158, 109
 stimulation of secretion of by single amino acids (rats), 159, 139
 stimulatory effect on fetal hemopoietic tissue differentiation in an in vivo culture system, 158, 201
Escherichia coli
 chemotactic factor from, use in study of granulocyte mobility, 159, 75
Esterase
 elastolytic, subcellular distribution in lung (guinea pig), 159, 239
Estriol
 blood levels, melengestrol acetate effects on (rabbit), 157, 220
 dose and time of exposure effect on LH release from pituitary cells (bovine), 159, 157
as stimulator of prolactin release in vitro, 157, 605
17 β-Estradiol
effect on plasma cholesterol and phospholipid levels (rhesus monkey), 157, 231
evaluation of serum concentrations using two delivery systems in ovariectomized rats, 158, 475
Estrogen
cardiovascular and hematologic responses to at high altitude (rat), 158, 658
effects of on vasodepressor action of arachidonate, 158, 442
long-term effect of on metabolism of bone (male rat), 159, 368
stimulation of prolactin receptors in liver, species differences (mice, rats), 159, 256
vasodilation induced by in uterus, effect of indomethacin and meclofenamate on (rabbit), 159, 25
Estrous cycle
effects of LHRH inhibitory analog on (rat), 159, 161
Ethacrynic acid
−enhanced bile salt-independent flow (rat), 157, 306
−glutathione and cysteine adducts from incubation of renal proximal tubules with, 157, 189
−induced alterations in bile salt-dependent flow (rat), 157, 306
Ethanol
effect on absorption and retention of lead (rat), 159, 213
effect on cerebral regional acetylcholine concentration and utilization (rats, mice), 159, 270
effect on growth in free-living nematode (Caenorhabditis briggsae), 158, 187
effect on parathyroid hormone and calcitonin secretion (human), 159, 187
interaction with thyroxine, effect on hepatic oxygen consumption (rat), 159, 226
Ethynyl estradiol
−treated groups, tail skin temperature after l-isoproterenol in (rat), 157, 18
Exercise
hormone changes related to in mice, 158, 622
Exometabolites
from L. donovani, isolation and characterization of, 159, 105

F
Factor XIII
blood coagulation factor in blood of mammalian and avian species, comparative studies of, 158, 68
Fasting
effects on biochemistry and metabolism in duct cells (rat pancreas), 157, 23
effects on rat adipose pyruvate kinase levels, 158, 255
Fat-free diets
role of in indomethacin-induced intestinal ulcers, 158, 19
Fatty acids
essential, deficiency effect on cholesterol storage in adipocyte (rat), 157, 297
synthesis in lactating mice, role of dietary fat, fasting and premature weaning on in vivo rates, 159, 30
Fc receptors
on wooly monkey lymphocytes, EBV transformation, 157, 489
Fecal markers
cromium sesquioxide estimation of cellulose passage (rat), 157, 418
Fecal specimens
freezing effect upon nuclear dehydrogenating clostridia (human), 157, 94
Feeding
effect on biochemistry and metabolism in duct cells (rat pancreas), 157, 23
Feeding behavior
nutrients absorbed and food intake, regulation by gastrointestinal tract signals (rat), 157, 430
Feline
effect of administration of cyclic guanosine nucleotides on body temperature of, 158, 655
effect of gastric inhibitory polypeptide on mesenteric blood flow in, 158, 448
effect of tetraethylammonium and manganese on mesenteric vasconstrictor escape in, 159, 390
mechanism of action of cyclosporine on cardiovascular system of, 159, 374
skeletal muscle fiber size and capillarity in, 158, 288
tonic sympathoinhibition in, 157, 648
Feminizing adrenal neoplastic gland (Fang-8) cells
estrogen biosynthesis, human prolactin stimulation of, 157, 159
Fenfluramine
depletion of brain serotonin (rat), 157, 202
Ferriin
in serum, kinetics of (dog), 157, 481
Fertilization
sperm motility role in, Ca++ effect on (rat), 157, 54
α-Fetoprotein
immunological comparison of with uterine estrogen receptor (mouse), 157, 594
FFA-free bovine serum albumin
effect on 2-deoxy-D-glucose uptake in cerebral capillaries under anaerobic conditions, 158, 318
Fibrinogen
concentration of in blood of mammalian and avian species, 158, 68
Fibroblasts
embryonic, interferon-enhanced H-2 antigen expression on (mouse), 157, 456
HLA-B27 positive, susceptibility to agents causing spondylarthropathies, 159, 184
sensitivity to primate RNA tumor viruses SiSV-1 and HL-23V (feline embryo), 157, 312
Fibrosarcomas
methylcholanthrene-induced, KCl-solubilized antigens from (mice), 157, 354
Flavokinase
induction of in riboflavin-deficient rats following per os administration of riboflavin, 158, 572
Flow analysis
in study of light scatter characteristics of erythroid precursor cells from bone marrow (rabbit), 159, 219
Flow cytometry
use of in determination of effect of thyroid hormone on ploidy of rat liver nuclei, 158, 63
Fluoride
acute toxicity effect on plasma calcium levels (rat), 157, 363
induced changes in renal function (rat), 157, 44
Fluorocarbon
effect on performance of isolated cardiac muscle following immersion in solution of, 158, 561
Folic acid
deficiency-induced reduction in splenic antibody-forming cells (rat), 157, 421
Follicle-stimulating hormone (FSH)
determination of levels of in cyclic hamster following LHRH administration, 158, 313
stimulatory effect on cAMP accumulation by granulosa cells, effect of phosphodiesterase inhibitor on (porcine), 159, 230
Food intake
high-fat and high-carbohydrate diet influence on (dog), 157, 278
nutrients absorbed and, regulation by gastrointestinal tract signals (rat), 157, 430
Forelimb
role of ouabain in vasoconstriction of (dog), 158, 161
Freezing
of fecal specimen effect on isolation of NDC (human), 157, 94
Frog
β-adrenergic amine effects on resistance, PD, and H+ secretory rate of gastric mucosa, 157, 256
stomach, cationic conductance of nutrient and secretory membranes in Cl−-free solutions in, 158, 96
Fruit
methylation of monellin with retention of sweetness (Dioscoreophyllum cumminsi), 157, 194
FSH, see Follicle-stimulating hormone
Furosemide
changes induced in renin by, effect of indomethacin and tolmetin on (dog), 159, 180
effect of diuresis by on albumin excretion by rat kidney, 158, 550
effect on prostaglandin E2 and influence on renal blood flow in rat, 158, 354

G
GABA, see γ-Hydroxybutyric acid
α-Galactosidase
renal, sex- and diabetes-dependent variations in (Chinese hamster), 157, 319
β-Galactosidase
renal, sex- and diabetes-dependent variations in (Chinese hamster), 157, 319
Gallic acid
blocking action of on immune response, 157, 684
Ganglionic blockade
t-dopa-mediated response of glucagon after (rat), 157, 1
Gastric acid
secretion, effect of molecular forms of gastrin on (dog), 159, 237
Gastric inhibitory polypeptide
effect on superior mesenteric blood flow, 158, 446
stimulation of insulin and glucagon secretion by pancreatic islet cultures (rat), 157, 89
Gastric mucosa
H+ secretory rate, β-adrenergic amine effects on (frog), 157, 256
transmucosal potential difference, β-adrenergic amine effects on (frog), 157, 256
transmucosal resistance, β-adrenergic amine effects on (frog), 157, 256
Gastric secretion
effect of synthetic vasoactive intestinal peptide and secretin on, 157, 565
stimulatory effect of methionine-enkephalin, 158, 156
Gastrin
effect of ACTH and adrenal hormones on antral and serum levels of in rat, 158, 609
hypocalcemic effect in rat, independent of calcitonin, 158, 40
influence on plasma calcium, bile, and gastric calcium secretions in rat, 158, 40
molecular forms of, effect on pancreatic and gastric secretion (dog), 159, 237
release, amino acid-induced (dog), 157, 440
Gastrointestinal system, see also Individual entries chromium sesquisulfide and [[14C]]cellulose passage rate in (rat), 157, 418
sites of absorption of methylmercury and mercury chloride (rat), 157, 57
Gastrointestinal tract
effects of methionine-enkephalin on secretion and mucosal blood flow in, 158, 156
Gelation
Hb S, positive effects on hemoglobin variants (human), 157, 250
Gestation
eyear, quantification of trypsin-like inhibitor in uterus during (mouse), 157, 175
GH, see Growth hormone
Glomerular filtration rate
effect of furosemide diuresis on, 158, 550
effect of hypoxia on (dog), 159, 468
Glucagon
effects of high levels of glucose on in isolated perfused rat liver, 158, 496
output from canine pancreas following somatostatin
administration, 157, 643
portal plasma levels during adrenergic and ganglionic blockade after l-dopa administration (rat), 157, 1
relationship of high-protein diet to increased secretion of in rats, 158, 578
secretion by pancreatic α cells, regulation and dynamics of (lizard), 157, 180
secretion by pancreatic islets, gastric inhibitory polypeptide stimulation of (rat), 157, 89
D-Glucono-1,4-lactone
effect on β-glucuronidase activity, role in intestinal ulcers in rats, 158, 19
Glucocorticoid antagonizing factor
endotoxin-induced cortisol antagonist, effect on hepatoma cells (mouse), 159, 359
Glucocorticoids
effect on calcium absorption in intestine of infant rat, 158, 174
Glucocorticogenesis
defective in BCG-infected mice, relationship of endotoxin poisoning to pathway perturbation, 159, 69
Glucoregulation
effects of exogenous ATP on in rat (in vivo), 158, 554
Glucosamine
14C-labeled, incorporation into duct epithelium glycoproteins (rat pancreas), 157, 23
Glucose
adrenergic and ganglionic blockade on l-dopa-mediated response effect, 157, 1
14C-labeled, incorporation into duct epithelium glycoproteins (rat pancreas), 157, 23
oxidation in duct cells during fasting (rat pancreas), 157, 23
effect on glucagon secretion by splenic pancreas α cells (lizard), 157, 180
-induced hypocalemia and increased serum calcitonin (rat pups), 157, 374
inhibitory action of high levels of on glucagon effects in isolated perfused rat liver, 158, 496
ionophore A23187-stimulated production of, Ca++ levels in renal cortical tubules and (rat), 157, 168
oxidation
effect of exogenous ATP on rate of in rats, 158, 554
effect of somatostatin in isolated islets of Langerhans in rat, 158, 458
renal tubular reabsorption, effect of cholera toxin on (dog), 159, 48
tolerance, oral and intravenous in obese men, 157, 407
Glucose-6-phosphate dehydrogenase (G-6-PD)
deiciency and decrease in EGR activity during phototherapy (infants), 157, 41
in human eosinophils, 158, 537
impaired dietary induction of during acute hepatic injury caused by thiocetamide intoxication (rats), 159, 148
Glucose tolerance
effect of exogenous ATP on, in rat, 158, 554
feeding frequency effect (pig), 157, 528
α-Glucosidase
renal, sex- and diabetes-dependent variations a (Chinese hamster), 157, 319
β-Glucosidase
renal, sex- and diabetes-dependent variations a (Chinese hamster), 157, 319
β-Glucuronidase
effect on activity in indomethacin-treated rats of i-fri diets, 158, 19
inhibition of activity of by albumin from synovial fluid (human), 159, 403
Glutaminase-γ-glutamyltransferase
subcellular localization of and role in ammoniagenesis in acidic kidneys (rat), 159, 294
Glutamine
ionophore A23187-stimulated glucose production from, Ca levels and (rat), 157, 168
Glutathione
enzymatic activities of in cytosol of polymorphonuclear leukocytes, use in disposal of hydrogen peroxide in mammalian species, 158, 478
metabolism by bovine blood neutrophils, 157, 342
reduced, age-related development of antioxidant defense systems (rat), 157, 293
Glutathione peroxidase
in human eosinophils, 158, 537
pulmonary activity levels, age-related development of (rat), 157, 293
Glutathione reductase
in human eosinophils, 158, 537
pulmonary activity levels, age-related development of (rat), 157, 293
Glutathione-S-transferase
activity in isolated segments of the nephron (rabbit), 157, 189
Glycerol
ionophore A23187 effect on glucose production from renal cortical tubules (rat), 157, 168
metabolism in BHE and Wistar livers (rat), 157, 5
Glycerol kinase
activity in BHE and Wistar strains (rat liver), 157, 5
Glycerol metabolites
hepatic levels in BHE and Wistar strains (rat), 157, 5
α-Glycerophosphate
shuttle activity in mitochondria of BHE and Wistar strains (rat liver), 157, 5
α-Glycerophosphate dehydrogenase
mitochondrial activity in BHE and Wistar strains (rat liver), 157, 5
Glycine
as heme precursor in rat liver, comparison with glycine, 158, 466
Glycopeptides
from exometabolites of L. donovani, isolate and characterization of, 159, 105
Glycoproteins
comparative immunochemical studies of, from human erythrocytes, 158, 530
Glycosaminoglycans, see Individual entries
changes in levels of following myocardial infarction in dog, 158, 210
Glycosaminoglycans
of normal heart tissue compared to GAG composition of cardiac tumors (human), 157, 461
Gonadotropin
comparison of PMSG with PMEG, 158, 373
effect of on ovarian hydroxylase activity (rat), 159, 494
Gonadotropin releasing hormone
induction of release of luteinizing hormone, role of oxytocin and vasopressin in (rat), 159, 444
radioimmunoasay of using synthetic analog D- [Lys'x]-GnRH, 158, 643
Gorilla
Kirsten strain—murine sarcoma virus-induced non-producer cells in spleen cells of, 158, 304
Gram-negative bacterial sepsis,
avility of rough mutant antisera to protect mice against smooth species Enterobacteriaceae, 158, 482
Granular cells
isolation of from mucosal cells of urinary bladder of turtles, 158, 565
Granulocytes
mobility under various chemotactic stimuli, 159, 75
neutrophils, azurophil enzymes and lysozymes of (bovine blood), 157, 342
separation of by a modified centrifugal elutriation technique, 157, 599
Granulosa cells
accumulation of cAMP by, effect of phosphodiesterase inhibitor on stimulatory effect of FSH and LH on (porcine), 159, 230
Grave’s disease
determination of levels of IgE and IgE autoantibodies in patients with, 158, 73
Growth
cell, effect of heparin on, 159, 88
of chicks, effect of diet on, 159, 276
inhibition, of lymphoma cells by 3T3, 157, 517
promotion activities of lipid-related compounds in Caenorhabditis briggsae, 158, 187
promotion of by various cell lines of lymphoma cells, 157, 517
promotion of in hypophysectomized rats by pituitary cell transplants to cerebral ventricles, 159, 409
Growth hormone (GH)
effect of α- and β-endorphin on secretion of in rat, 158, 431
somatostatin effect on secretion of (rat), 159, 346
stimulation of release of by intraventricular administration of SHT or quipazine (rats), 159, 210
stimulation of secretion of by growth factor from mesenchymo of Rathke’s pouch and surrounding tissue in pituitary clonal cells, 158, 224
Guanosine 3’-5’-monophosphate (cGMP)
effect on body temperature in cat, 158, 655
Guinea pig
blood group antigens from organ tissues of extracted by n-butanol, 158, 220
eosinophils, corticosteroids and chloroquine hydro chloride inhibition of migration, 157, 129
iron turnover in, 159, 335
lung proteases of, differential centrifugation of, 159, 239
as model for naturally acquired respiratory Q fever metabolic sequela of, 158, 626
skeletal muscle fiber size and capillarity in, 158, 288
H
Haloperidol
effect on ouabain cardiac inotropy and toxicity, in rabbit atria, 158, 192
Hamster
baby kidney cells, effects of heparin on growth of, 159, 88
effects of BK virus infection on primary cell cultures of, 158, 437
elastin synthesis in vivo during elastase-empysema, 157, 369
inhibition of testicular regression by melatonin in short daylength exposures, 158, 359
LH and FSH levels after LHRH administration in, determination of ovulatory response, 158, 313
measles virus antigen and antibody detection by RIA in SSPE brain tissue, 157, 268
nutritional influences in the development of squamous metaplasia of tracheal epithelium, 157, 500
sex- and diabetes-dependent variations in renal glycohydrolases of highly inbred lines, 157, 319
Hashimoto’s thyroiditis
determination of levels of IgE and IgE autoantibodies in patients with, 158, 73
Heart
disease, serum levels of histidine-rich glycoprotein in various types of, 158, 647
effect of haloperidol on ouabain effects in rabbit, 158, 192
effect of rate on cardiac metabolite level in, 158, 230
electrocardiographical, biochemical, and morphological effects of chronic low level cadmium feeding on (rat), 159, 339
isolated, effect of carbon monoxide and nitrogen-induced anoxia on (rat), 157, 681
left ventricle, enzyme activity levels following pressure overload (rat) in epicardium and endocardium, 158, 399
normal tissue GAG compared to glycosaminoglycan composition of cardiac tumors (human), 157, 461
rate
effects of interaction of alcohol and anxiety on, 158, 604
effects of pregnancy on in spontaneously hypertensive and normotensive rats, 158, 242
SQ 14,225-induced increase in (anesthetized dogs), 157, 121
recovery following hypoxia and administration of a glucocorticoid, methylprednisolone, 157, 580
Heat treatment
abolished inhibition of interferon induction by mycoplasma preparations (mice), 157, 83
HeLa cells
multinucleation by vinblastine and mitotic spindle formation, 157, 206
uptake of transcobalamin II-cofactor by, competition between apo TcII and holo TcII in, 158, 206
Hematocrit
level, dextran sulfate effect on (dog), 157, 301
Heme
synthesis of in liver mitochondria and microsomes of rat, 158, 466
Hemodynamic change
relationship to sodium salicylate dosage, 157, 531
Hemoglobin N-Baltimore
Hb S gelation negative effects on (human), 157, 250
Hemoglobin S
gelation, effect in oxy- and deoxy-conformation (human), 157, 250
Hemoglobin variants
positive effects of Hb S gelation on (human), 157, 250
Hemolytic disease
serum levels of histidine-rich glycoprotein in various types of, 158, 647
Hemoperin
effect of leukocytic endogenous mediator on plasma levels of, 157, 669
Hemopoesis
in diffusion chambers, from strontium-89 marrow-ablated mice, 159, 260
testosterone-enhanced erythropoietin production and -stimulated stem cells in (mouse), 157, 184
Hemorrhage
role of spleen in choline-induced reticuloendothelial system stimulation and protection against shock caused by, 158, 77
Hemorrhagic shock
susceptibility to following injection of hemolyzed blood (rats), role of reticuloendothelial system, 159, 418
Heparin
dose-dependent inhibitory effect on herpesvirus replication, 157, 569
effect on growth of cultured mammalian cells, 159, 88
Hepatitis A virus
vaccine against from marmoset liver, 159, 201
Hepatocytes
effect of excess dietary l-histidine on size of in liver (rat), 159, 44
isolation and analysis of low molecular weight DNA fraction by electrophoresis and chromatography from (rat), 158, 117
mechanism of transport of ouabain and taurocholic acid into (newborn rat), 157, 66
Hepatoma cells
glucocorticoid antagonizing factor effect on (mice), 159, 359
Hepatomas
S-adenosylhomocysteine metabolism in (rat), 159, 31
Herpes simplex virus
replication of in human peripheral leukocytes, 158, 263
susceptibility of C3H/HeJ and C3HeB/FeJ mice to a vivo infection by, 157, 29
type II, role of progesterone in susceptibility to in mice, 158, 131
types 1 and 2, RIA detection of antibody (human), 157, 273
Herpesvirus
heparin effect on infection by, 157, 569
homeothermic, increased sensitivity to antiviral effect of phosphonoacetic acid as compared to poikilo-thermic systems, 159, 21
poikilothermic, antiviral effect of phosphonoacetic acid on, 159, 21
Heterozygous serum
effect on jejunum PD and Iac (rat), 157, 70
Hexabromobiphenyl
relationship of amount in diet to hatchability of chicken eggs, 159, 131
Histamine
effect on levels of carnosine and anserine in traumatized and uninjured rat and chicken, 158, 402
-induced gastric secretion and gastric mucosal blood flow, role of methionine-enkephalin, 158, 156
L-Histidine
dietary effects of on lipids (rat), 159, 57
dietary supplementation, effect on cholesterol biosynthesis in liver (rat), 159, 44
Histidine-rich glycoprotein
human, comparison of serum levels of in various disease states, neonates, pregnant women, and healthy adults, 158, 647
Histocompatibility complex (H-2) role in frequency of cortisone-induced cleft palate in mice, 158, 618
Homocysteine
d and l isomers as source of methionine and cysteine (chicks), 157, 139
Hormone replacement therapy
effect on renal hypertension in adrenalectomized dep., 157, 116
Hormones
anterior pituitary, ineffective stimulatory effect on estrogen biosynthesis (Fang 8 cells), 157, 159
levels, 17β-estradiol and testosterone propionate effects on (rhesus monkey), 157, 231
HPGF, see Human platelet growth factor
HRG, see Histidine-rich glycoprotein
Human
activities of blood group synthetic enzymes, 157, 41
albumin from synovial fluid of, inhibitory effect on activity of β-glucuronidase, 159, 403
antibody responses to a meningococcal polysaccharide vaccine groups A, C, Y, 157, 79
bivariate Pearson analysis of factors influencing urinary pCO2, 157, 97
COMBINED SUBJECT INDEX

Complement effects on precipitation of IgG complexes with rheumatoid factor, \(^{41}\)CrCl\(_2\) tagging, 157, 75

distribution of CRF activity and immunoreactive ACTH in hypotalamic-neurohypophyseal complex of, 158, 421
eosinophilic promyelocytes, secretion of primary granules from, 159, 380
ethanol effect on parathyroid hormone and calcitonin secretion in, 159, 187
fetal specimens, freezing effect on isolation of NDC from, 157, 94
glycosaminoglycan composition of cardiac tumors compared to normal heart tissue GAG, 157, 461
hemoglobin variants, positive effects of Hb S gelation on, 157, 250
initial and revaccination studies with polyvalent pneumococcal vaccine (adults, infants), 157, 148
interferon antiviral and cell growth inhibitory activity, cholera toxin reduction of, 157, 253
isoezyme characterization of alkaline phosphatase from pancreas of, 159, 192
measles virus antigen and antibody detection by RIA in SSPE brain tissue (child), 157, 268
mitogen-stimulate lymphocytes, \(\alpha\)-penicillamine inhibitory effect on, 157, 155
moderate to severe malnutrition effects on proteins in serum and tears (children), 157, 215
neonates, G-6-PD deficiency effect on EGR activity during phototherapy, 157, 41
obese men, oral and intravenous glucose tolerance in, 157, 407
parathyroid hormone, N terminal similarity with synthetic peptide, 157, 241
plasma and erythrocytes, in vitro kinetics of urea distribution between, 157, 282
plasma levels of pancreatic polypeptide, daily fluctuations, effect of food intake and fasting on, 159, 245
prolactin stimulation of estrogen biosynthesis (Fang 8 cells), 157, 159
radiotherapy effect on parotid gland flow rate of, 157, 50
relationship of kidney excretion of salt and water to systemic blood pressure, effect of extreme salt intake, 159, 432
relationship of red cell oxygen affinity to severe hypertriglyceridemia, 159, 437
response of erythrocytes to ionophore-induced Ca\(^{2+}\) accumulation, 157, 506
RIA detection of antibody to HSV-1 and HSV-2, 157, 273
serological response to influenza virus by, comparison with nonhuman primates, 159, 414
stable, accelerated and blast phases of CGL, enumeration of colony-forming cells in, 157, 337
Human leukemia virus (HL\(23V\)) focus-formation titer on feline embryo fibroblasts, 157, 312
Human papovavirus effects on primary cultures of rodent and primate cells 158, 437
Human platelet growth factor effect on acetate incorporation by human diploid fibroblasts, independence from action of hydrocortisone, 158, 292
Hyaluronic acid changes in levels of following myocardial infarction in dog, 158, 210
Hydrocortisone effect on acetate incorporation by human diploid fibroblasts, independence from human platelet growth factor, 158, 292
effect on serum and antral gastrin levels in rat, 158, 609
- induced hepatic enzymes, Sindbis infection inhibition of (mouse), 157, 125
Hydrocortisone sodium succinate
- induced inhibition of eosinophil migration (guinea pig), 157, 129
Hydrogen ion secretory rate, \(\beta\)-adrenergic amine effects on (frog), 157, 256
Hydrogen peroxide metabolism by blood neutrophils (bovine), 157, 342
species differences in disposal of by polymorphonuclear leukocytes, 158, 478
\(\gamma\)-Hydroxybutyric acid (GABA) mediated inhibition of prolactin secretion in rat, 158, 10
Hydroxyalase quantitative and temporal changes associated with exposure of ovary of immature rats to pregnant mare's serum gonadotropin, 159, 484
Hydroxyproline levels in bone, effect of long-term administration of estrogen on (male rat), 159, 368
use in measurement of collagen concentration in rat kidney following uninephrectomy, 158, 275
15-Hydroxyprostaglandin dehydrogenase NAD-dependent, effect of indomethacin on (rat), 159, 165
20a-Hydroxysteroid Dehydrogenase ovarian, activity of in parturient periods in rats, effect of pelvic neuromectomy on, 158, 631
5-Hydroxytryptamine (5-HT) stimulation of growth hormone release by intravenous administration of (rat), 159, 210
5-Hydroxytryptophan
- induced prolactin secretion, inhibition by GABA, 158, 10
Hyperbilirubinemia
G-6-PD deficiency effect on riboflavin deficiency during phototherapy in (infants), 157, 41
use of light therapy in, relationship to hemolytic anemia, 158, 81
Hypercholesterolemia induction by dietary \(L\)-histidine in liver (rat), 159, 44
long-term histidine supplementation to fat-free diet
effect on (rat), 159, 57
Hyperglycemia
glucagon and mediation of, pancreatic α cells in (lizard), 157, 180
Hyperplasia
adaptive, role of pancreaticobiliary secretions in small intestine of rats, 158, 101
of smooth muscle cells following injury (rabbit), 159, 473
Hypertension
role of salt regulation in pathogenesis of (human), 159, 432
-sensitive and resistant Dahl rats, effect of cadmium on following unilateral renal artery clipping, 158, 310
spontaneous
oxygen consumption and response to high environmental temperatures, 159, 449
pituitary response to thyrotropin releasing hormone and luteinizing hormone releasing hormone (rat), 159, 394
in rats, contents of epinephrine and PNMT in sympathetic ganglia and brain regions, 158, 45
Hyperthermia
effect of cyclic guanosine nucleotides on in cat, 158, 655
Hyperthyroidism
effect on growth rate and prolactin binding in tumors, and plasma prolactin levels in rats, 158, 517
Hypertriglyceridemia
relationship with increased red cell oxygen affinity (human), 159, 437
Hyperuricemia
uric acid and/or potassium oxonate-induced (mouse), 157, 110
Hypocalcemia
induced by oral calcium-free glucose solution (rat pups), 157, 374
Hypoglycemia
induction by endotoxin in BCG-infected mice, 159, 69
Hypokalemia
effect of prostaglandin synthesis inhibition on vasopressor resistance in, 158, 502
Hypophysectomy
effects of on rat adipose pyruvate kinase levels, 158, 255
effect of on serum and antral gastrin levels in rat, 158, 609
hypothalamic somatostatin and LH-RH after (rat), 157, 235
relationship to diurnal food intake patterns (rats), 159, 80
Hypotension
postural, as side effect of cyclocytidine administration (rat, cat, dog), 159, 374
Hypothalamic deafferentation
apomorphine-induced inhibition of episodic LH release in ovarectomized rats following, 159, 121
Hypothalamic extracts
effect on [H]thymidine incorporation in monolayer cultures of rat anterior pituitary cells, 158, 471
Hypothalamic releasing hormone
relationship with pituitary hormone secretion and cAMP levels and influence of feedback hormones on (rat), 158, 524
Hypothalamo-hypophyseal system
sensitivity to stress, TSH secretion and (young and old rats), 157, 144
Hypothalamo-pituitary axis
alteration in spontaneously hypertensive rats, 159, 394
Hypothalamus
response to androgen administration in female ovariectomized rats, age dependence, 158, 179
somatostatin and LH-RH, anesthesia and hypophysectomy effects on (rat), 157, 235
Hypothermia
effect of cyclic guanosine nucleotides on in cat, 158, 655
Hypothyroidism
antenatal diagnosis of, amniotic fluid TSH and rT levels in (lamb), 157, 106
effect on growth rate and prolactin binding in tumors and plasma prolactin levels in rats, 158, 517
relationship to hypoaggregability of platelets in rat, 158, 577
Hypoxanthine phosphoribosyltransferase (EC 2.4.2.8)
activity in dystrophic and dystrophic gouty chickens, 158, 332
Hypoxia
acute alveolar, relationship to decreased capacity of lung to activate angiotensin, 158, 589
chronic, effect of sex hormones on cardiovascular and hematologic responses during (rat), 158, 658
effect of chronic, low-level lead poisoning on erythropoietin response to in rats, 158, 109
effect of chronic, low-level lead poisoning on erythropoietin response to in rats, 158, 109
effect on isolated cardiac muscle following immersion in fluorocarbon and Krebs-Henseleit solutions, 158, 561
effect on renal hemodynamics and sodium excretion (dog), 159, 468
steroid effect (rat) 157, 580

I
Infection
viral, detection of circulating interferon in Sudde Infant Death Syndrome and, 157, 378
Illeum
calcium transport in, effect of magnesium deficiency on (rat), 159, 171
Immune polioencephalomyelitis
immunization by solubilized line 1, cell antigens (mice), 157, 330
induction by solubilized line 1, cell antigens (mice), 157, 330
Immunocompetence
restoration of in T cell-deficient mice, role of thymo
poietin, ubiquitin, and synthetic serum thymic factor, 159, 195

Immunocytes
producing IgM, suppression during mastocytoma-immunosuppression (mice), 157, 381

Immunoglobulins

IgA
differential effect of autonomic stimulation on salivary secretion (rat), 159, 59
serum levels and tissue synthesis, ontogeny of (mink), 157, 289
in tears, moderate to severe malnutrition effects on (children), 157, 215

IgE
autoantibodies, determination of levels of using the radioallergosorbent (RAST) technique in patients with autoimmune thyroid disorders, 158, 73
determination of plasma levels in patients with autoimmune thyroid disorders, 158, 73

IgG
differential effect of autonomic stimulation on salivary secretion of in rats, 158, 59
serum levels and tissue synthesis, ontogeny of (mink), 157, 289
complexes, 51CrCl$_2$-labeled, rheumatoid factor and complement effects on (human), 157, 75

IgM
formation, depression during mastocytoma-immunosuppression (mice), 157, 381
serum levels and tissue synthesis, ontogeny of (mink), 157, 289

Immunosuppression
antibody-mediated neutralization of induced by mastocytoma ascites fluid, 158, 238
mastocytoma-induced, effect on immunocytes involved in immune response (mice), 157, 381
radiation-induced, endotoxic lipopolysaccharide prevention and repair of (mice), 157, 348
by Δ^4-tetrahydrocannabinol, effect of age on, 158, 350

Implantation
delayed, quantification of trypsin-like inhibitor in uterus during (mouse), 157, 175
rates, melengestrol acetate effect on blastokinin enhancement of (rabbit), 157, 220

IMP phosphohydrolases (EC 3.1.3.1 and 3.1.3.5)
activity in dystrophic and dystrophic guity chickens, 158, 332

Indicator-fractionation technique
blood flow gradient in anesthesia measured by (dog), 157, 390

11Indium
-oxine complex emission of γ photons, 157, 61
-oxine complex-labeled lymphocytes and tumor cells (mice, rats), 157, 61

Indoleamines
effect on adrenal steroidogenesis (rat), 157, 103

Indomethacin
antipyretic effect of, 157, 472
effect on estrogen-induced uterine vasodilation (rab-

bit), 159, 25
effect on furosemide-induced renin release (dog), 159, 180
effect on placental vascular response to norepinephrine (sheep), 159, 281
fat-free diet effect following administration of (rat), 157, 615
induction of intestinal ulcers by, effect of fat-free diets on rat, 158, 19
as inhibitor of renal prostaglandin synthesis and metabolism (rat), 159, 165
role in vascular resistance in ovary of near-term sheep, 158, 105

Influenza viruses
A/NJ effect of aerosol rimantadine and ribavirin therapy on, 158, 454
types A/Victoria and A/New Jersey, comparison of serological responses of human and nonhuman primates, 159, 414

Initiation factor
regulation of interferon-impaired activity of by cAMP and double-stranded RNA in vitro, 159, 453

Insulin
effect of exogenous ATP on lethality of and hypoglycemia, 158, 554
levels in obese mice, effect of adrenalectomy on, 159, 364
measurement of arteriovenous levels in serum of lactating cows, 159, 394
output from canine pancreas following somatostatin administration, 157, 643
secretion by pancreatic islets, gastric inhibitory polypeptide stimulation of (rat), 157, 89

Interferon
antiviral activity and cell growth inhibitory activity, cholera toxin reduction of (human), 157, 253
circulating, assay for in Sudden Infant Death Syndrome, 157, 378
effect on initiation factor, regulation by cAMP and double-stranded RNA in vitro, 159, 453
immune, cellular activation by compared to virus-induced, 159, 94
induction, inhibition by Mycoplasma preparations (mice), 157, 83
kinetics of, 159, 94
mitogen-induced, blocking action of gallic acid on (mice), 157, 684
- treated fibroblasts, enhanced H-2 antigen expression on (mouse), 157, 456
virus-induced, cellular activation by compared to immune interferon, 159, 94

Intestinal adaptation
following ligation of pancreaticobiliary duct of rat small intestine, 158, 101

Intestine
effect of methylprednisolone and vitamin D on calcium absorption in infant rat, 158, 174
food intake signals from during long-term food loss (rat), 157, 430
CUMULATIVE SUBJECT INDEX

microflora of, influence of diet on adhesion and invasiveness (chick), 159, 276
Intimal injury
arterial response to (rabbit), 159, 473
Insulin
renal clearance of (sheep), 159, 386
ionophore
A23187, effect on renal gluconeogenesis (rat), 157, 169
effect on erythrocytes (human, sheep, and lamb), 157, 506
Iron
plasma, effect of human monocyte pyrogen on in rats and rabbits, 158, 32
turnover in rat, guinea pig, rabbit, dog, monkey, sheep, and cow, 159, 335
Islets of Langerhans
effect of somatostatin on cyclic AMP and glucose oxidation in, 158, 458
Isoantigens
A or B, enzymic activity in synthesis of (human colorectal carcinoma), 157, 411
3-Iodothyll 1-methylxanthine
role in stimulatory effect of FSH and LH on cAMP accumulation in granulosa cells (porcine), 159, 230
Isoelectric focusing
use in separation of phosphorylated and nonphosphorylated polypeptides, 158, 410
Isoproterenol
effect on β-adrenergic receptors following renal hypertension induction in rats, 158, 363
effect on β-adrenergic response in ethynyl estradiol-treated rats, 157, 18
inhibitory effects on resistance, PD, and H+ secretory rate of gastric mucosa (frog), 157, 256
Isoproterenol stress test
utilization in clinical assessment of coronary artery disease (rabbit), 159, 458
Isotope
in vitro kinetics of urea distribution between plasma and erythrocytes (human), 157, 282
J
Jejunum
bioassay, use in identification of cystic fibrotic homozgyotes and heterozygotes (rat), 157, 70
PD and taf of, cystic fibrotic and heterozygous serum effect on (rat), 157, 70
resection, effect of ligation of pancreaticobiliary duct on adaptive hyperplasia in rat following, 158, 101
K
Kallikrein
effect of renin on urinary excretion rate of in rat, 158, 196
Ketamine
anesthetic, determination of plasma prolactin levels (rats), 159, 12
α-Ketoglutarate
ionophore A23187 increased glucose production from, calcium and (rat), 157, 168
9-Ketoreductase
indomethacin effect on activity of in kidney (rat), 159, 165
Kidney
see also Renal; Urinary System
blood flow, effect of surface temperature on (dog), 159, 428
cell culture, anti-TSF serum from, use in neutralizing biological activity of TSF, 158, 557
effect of acute exposure to fluoride on function of (rat), 157, 44
effect of furosemide diuresis on albumin excretion by in rat, 158, 550
effect of furosemide on hemodynamics and prostaglandin E2 in rat, 158, 354
effect of hypoxia on hemodynamics of (dog), 159, 468
effect of lead poisoning on in rats, 158, 109
effect of vitamin D3 metabolites on tubular transport mechanisms in (dog), 159, 204
filtration rate of single nephron, effect of surface temperature (dog), 159, 428
glomerular basement membrane, effects of disease on fragility of, 159, 324
glycohydrolases, sex- and diabetes-dependent variations in (Chinese hamster), 157, 319
heterogeneity of mitochondria of (rat), 158, 595
hypertension, effect of hypersecretion of mineralocorticoid hormones (dogs), 157, 116
loops of Henle, GSH transferase activity in (rabbit), 157, 189
mechanism of PGE2 stimulation of renin secretion in (dog), 159, 249
renal function curve, relationship between systolic, diastolic and mean arterial pressure and sodium excretion (human), 159, 432
surface temperature effect on single nephron filtration rate (dog), comparison of distal and proximal sites, 159, 428
synthesis and metabolism of prostaglandin in, effect of indomethacin on (rat), 159, 165
transport of p-aminohippurate, metrazamide effect on (dog), 157, 453
tubular reabsorption competition between myoglobin and metallothioneins, 159, 321
of glucose and bicarbonate by, effect of choleratoxin (dog), 159, 48
tubular secretion of urate and insulin (sheep), 159, 386
uric acid concentration, potassium oxonate alteration of (mouse), 157, 110
uricase activity, potassium oxonate alteration of (mouse), 157, 110
Krebs-Henseleit solution
effects on isolated cardiac muscle following immersion in, 158, 561
L
Lactation
arteriovenous levels of serum insulin during (cows), 159, 394
Lactate
 effect of heart rate on levels in left ventricle of dog, 158, 230
 ionophore A23187-stimulated glucose production from, Ca levels and (rat), 157, 168
Lactate dehydrogenase
 levels of in hypertrophied left ventricle (rat), 158, 599
Lactic acidosis
 effect of sodium nitroprusside on (dog), 158, 426
Latex
 accumulation in Peyers' patches and transport of to adjacent villi and mesenteric lymph nodes (mice), 159, 298
Lead
 absorption and retention of, effect of ethanol (rat), 159, 213
Lead poisoning
 effect on erythropoietin response to hypoxia (rat), 158, 109
 serum levels of histidine-rich glycoprotein in, 158, 647
Leucinoheme
 activity, freezing of fecal specimen effect on (human), 157, 94
Leishmania donovani
 exometabolites of, isolation and characterization, 159, 105
Leucine
 effect on plasma erythropoietin levels (rat), 159, 139
Leu-5-Enkephalin
 effect on plasma levels of growth hormone and prolactin in rat, 158, 431
Leukemia
 transplantable, immunization by solubilized line I, cell antigens (mice), 157, 330
Leukocytes
 endogenous mediator, effect on hemopexin, transferin, and liver catalase, 157, 669
 extracts from, lysis of Staphylococcus aureus deficient in teichoic acid, 159, 126
 human peripheral, replication of herpes simplex virus in, 158, 263
 mononuclear, dextran sulfate effect on (dog), 157, 301
 polymorphonuclear, dextran sulfate effect on (dog), 157, 301
Leukocytic endogenous mediator from human monocytes, activity in rats and rabbits, 158, 32
L.H, see Luteinizing hormone
LHRH, see Luteinizing hormone releasing hormone
Ligandin
 renal organic anion-binding protein, activity of (rabbit), 157, 189
Ligated segment technique
 comparison of gastrointestinal absorption of methylmercury and mercury chloride (rat), 157, 57
Light scatter
 differences in erythroid precursor cells from bone marrow studied by flow analysis (rabbit), 159, 219
Lipid
 displacement of skin collagen fibers in obese Zucker rats, 157, 435
 metabolism, relationship to hyperaggregability of platelets in hypothyroid rats, 158, 577
 -related compounds, growth-promoting activities in Caenorhabditis briggsae, 158, 187
Lipolysis
 in genetically obese mice, effect of thyroxine, epinephrine and cold exposure on, 159, 116
Lipopolysaccharide
 endotoxic, effect on radiation-induced immunosuppression (mice), 157, 348
 relationship to host sensitivity to herpes simplex virus infectivity (mice), 157, 29
Lipoteichoic acid
 in prevention of bacteriolysis, 159, 126
Liquid chromatography
 high pressure, use in isolation of antinatrifreric factor from plasma of ECFV expanded dogs, 159, 463
Lithium
 effect of toxicity on pregnant swine and offspring, 158, 123
Lithium chloride
 effect on adrenocortical function (rat), 157, 163
 Lithium diiodosalicylate-phenol use in extraction of glycoproteins from human erythrocytes, 158, 530
Litter production
 increase in following high dosage of testosterone propionate in obese rat, 159, 424
Liver
 acute injury by thioacetamide intoxication, effect of dietary induction of glucose-6-phosphate dehydrogenase and levels of cAMP (rat), 159, 148
 effect of altered thyroid states on prolactin binding activity in liver, 158, 517
 effect of combined glucose and glucagon infusion into, in fasted rats, 158, 496
 effect of dietary l-histidine on cholesterol biosynthesis in (rat), 159, 44
 effect of thyroid hormone on rat nuclei ploidy as determined by flow cytometry, 158, 63
 17 β-estradiol and testosterone propionate effects on weight of (rhesus monkey), 157, 231
 fetal, use of diffusion chambers in study of erythroid differentiation in mouse, 158, 201
 inactivated hepatitis A virus vaccine from marmoset, 159, 201
 lipogenesis, enhanced in BHE rats, 157, 5
 oxygen utilization in, effect of ethanol and thyroxine interaction on (rat), 159, 226
 protein synthesis in mitochondria of, effect of nonlethal doses of cycloheximide on (rat), 158, 288
 spectrophotometric assay of catalase with sodium perborate as substrate (mice), 157, 33
 transfer of taurocholic acid to bile (newborn rat), 157, 66
Liver catalase
- effect of leukocytic endogenous mediator on activity of, 157, 669

Lizard
- glucagon secretion by pancreatic α cells, regulation and dynamics of (Anolis carolinensis), 157, 180

Lung
- age-related susceptibility to oxygen-induced injury (rat), 157, 293
- intrapulmonary vasculature, pulmonary vascular pressure changes and receptors in (canine), 157, 36
- lysosomal, microsomal, and cytoplasmic proteases of, differential centrifugation studies of (guinea pig), 159, 239
- rate of elastin biosynthesis after elastase-injury (hamster), 157, 369
- response of receptors to changes in vascular pressure of (dogs), 157, 36

Luteinizing hormone (LH)
- determination of levels of in cyclic hamster following LHRH administration, 158, 313
- effect of LHRH analogs on release of (rat), 159, 161
- episodic release in ovariectomized rats with complete hypothalamic deafferentation, apomorphine-induced inhibition of, 159, 121
- gonadotropin releasing hormone-induced release of, role of vasopressin and oxytocin (rat), 159, 444
- maintenance of pregnancy in absence of (rat), 159, 441
- relationship of release of to dose and time of exposure to estradiol and LHRH from pituitary (bovine), 159, 157
- response to luteinizing hormone releasing hormone in spontaneously hypertensive rats, 159, 394
- stimulation of following LH-releasing hormone (LHRH) injections (rat), 157, 494
- stimulatory effect on cAMP accumulation by granulosa cells, effect of phosphodiesterase inhibitor on (porcine), 159, 230

Luteinizing hormone antisera
- role in abortion of fetus, action on pituitary LH-like material (rat), 159, 441

Luteinizing hormone releasing hormone (LHRH)
- analogs of, inhibitory effects of on various estrous cycle stages (rat), 159, 161
- determination of levels of FSH and LH in cyclic hamsters following administration of, ovulatory responsiveness and, 158, 313
- dose and time of exposure effect on LH release from pituitary cells (bovine), 159, 157
- hypothalamic, hypophysectomy and anesthesia effects on (rat), 157, 235
- pituitary response to in spontaneously hypertensive rats, 159, 394
- use in pituitary stimulation of LH release in aged rats, 157, 494

Lymphocytes, see also T lymphocytes; B lymphocytes
- malignant, solubilized antigen preparation from, 157, 330

111InOx-labeled, recirculation and organ distribution of (mouse, rats), 157, 61

mitogen-stimulated, d-penicillamine inhibitory effect on (human), 157, 155

Mononuclear, sensitivity to infection and transformation with EBV after cryopreservation, 157, 326

response in BALB/c mice to RII mammary tumor virus antigen, role of age, 158, 23

response to graded concentrations of phytohemagglutinin of, 158, 5

uptake of transcobalamin II-cobalamin by, competition between apo TC II and holo TC II in, 158, 206

Lymphoid leukemia
- bearing mice and rats, thymidine phosphorylase activity in plasma and ascitic fluid of, 157, 262

Lymphokine interferon
- blocking action of gallic acid on, 157, 684

Lymphoma
- age-dependent lethality of endotoxin in irradiated old and young AKR mice, 157, 424

Lymphoma
- inhibition of [HJ]TdR and [3H]CdR incorporation into cell lines of by trypsin and Viokase, 158, 666

in vitro treatment of with anti-lymphoma antisera and complement for selective inactivation in mouse, 158, 449

Lymphoma cells
- thiol-dependent growth of, 157, 517

Lymphoreticular cells
- role in HSV replication in vivo (C3H/HeJ mouse spleen cells), 157, 29

d-(Lys8)-GnRH analog of gonadotropin releasing hormone, use in radioimmunoassay, 158, 643

Lysine
- methylation with retention of sweetness of monellia, 157, 194

Lysine vasopressin
- relationship with ACTH release and cAMP levels, inhibitory role of dexamethasone (rat), 158, 524

Lysozyme
- in serum and tears, moderate to severe malnutrition effects on (children), 157, 215

M

Macaca mulatta, see Rhesus monkey

Macrophages
- production of glucocorticoid antagonizing factor by (mouse), 159, 359

protein-calorie malnutrition effect on antiviral function of (mouse), 159, 84

pulmonary-parasite interactions, relationship to metabolic sequelae in respiratory Q fever in guinea pigs, 158, 626

response, in mHV infection of C3H mice, 159, 34

use in transport of latex to villi and enterocytic nodes following accumulation of in Peyer's patches (mouse), 159, 298

Magnesium deficiency effect on intestinal calcium transport (rat), 159, 171
ion, high concentration requirement for maximal West Nile virus attachment (CE cells), 157, 322

Malaria
T lymphocyte numbers and thymocyte migratory patterns during (mice), 159, 317

Malic enzyme
effect of feeding frequency on activity of (pig), 157, 528

Malnutrition
effect on tear proteins (children), 157, 215
role in macrophage antiviral function in WBV-infected mice, 159, 84

Mammalian cells
heparin effect on monkey kidney cells, Novikoff hepatoma cells, baby hamster kidney cells, and prepuce cells, 159, 88

Mammals
comparative study of blood coagulation factor XIII with avian species, 158, 68

Mammary gland
uptake of insulin by, in lactating cows, 159, 394

Mammary tumors
effect of BCG on development of in RIII mouse, 158, 235
pregnancy-dependent, inhibition of in neonates following administration of monosodium glutamate, 158, 128

Mammary tumor virus
- induced mammary adenocarcinoma, effect of BCG on development of in RIII mice, 158, 235
role of specificity and age to natural immunity of BALB/c mice to RIII antigen of 158, 23

Manganese
as cause of cholestasis in combination with bilirubin, 158, 283
effect on mesenteric vasoconstrictor escape (cat), 159, 390

Manganese–bilirubin cholestasis
protection against by sulfobromophthalein, 158, 283

Marmoset
inactivated hepatitis A virus vaccine from liver of, 159, 201

Mastocytoma
antibody-mediated neutralization of immunosuppression induced by ascites fluid from, 158, 238
-immunosuppression, effects on IgM versus IgG antibody formation (mice), 157, 381

Measles virus
antigen and antibody in subacute sclerosing panencephalitis brain tissue, RIA of (human, hamster), 157, 268
role of N-acytlenuraminic acid in absorption of, 157, 622

Meclofenamate
effect on estrogen-induced uterine vasodilation (rabbit), 159, 25

Medial medulla
origin of the nonbaroreceptor sympathoinhibitory system (cat), 157, 648

Megakaryocytes
humoral substance affecting size of (mice), 158, 637

Megakaryocytopenia
stimulation of by humoral factors in SI/SI² mice, 158, 637

Meiosis
oocytes, effects of protease inhibitor on (bovine), 157, 550

Melatonin
inhibition of hamster testicular regression in short daylengths, 158, 359
stimulation of adrenal 5a-reductase activity (rat), 157, 103

Melenagrostol acetate
effects on blastokinin secretion and ovarian activity (rabbit), 157, 220

Membranes
nutrient and secretory of frog stomach, cationic conductance in CI⁻free solutions, 158, 96

Meningococcal polysaccharide vaccine
groups A, C, and Y, serological and clinical testing of (human), 157, 79

D-3-Mercapto-2-methylpropanoyl-L-proline, see SQ 14.225

Mercury
inorganic and organic, sites of gastrointestinal absorption of (rat), 157, 57
Mercury chloride
gastrointestinal absorption of (rat), 157, 57

Mesenchyme
from Rathke's pouch and surrounding tissue, growth factor from, effect on GH and PRL secretion from pituitary clonal cells, 158, 224

Mesenchymoma
glycosaminoglycan composition compared to normal heart tissue GAG (human), 157, 361

Mesenteric vascular bed
vasodilatory effect of gastric inhibitory polypeptide on, 158, 446

Metabolic blockade
effects on performance of isolated cardiac muscle, 158, 561

Metabolites
effect of heart rate on levels of, 158, 230

Metal ions
effect on catalase and cinnabarinate synthase activity in normal and acatalasemic mice, 158, 398

Metallothionein
interaction with myoglobin, competition for renal tubular reabsorption (rabbit), 159, 321

Methimazole
effect on multiplication of Mycobacterium leprae in mouse, 158, 582

Methionine
effect on plasma erythropoietin levels (rat), 159, 139
D- or L-homocysteine transmethylation to, crystalline amino acid diet and (chicks), 157, 139

Methionine-enkephalin
effect on plasma levels of prolactin and growth hor-
CUMULATIVE SUBJECT INDEX

Cerebral regional acetylcholine concentration and utilization in, effect of ethanol on, 159, 69

C3H/HeJ, mechanism of resistance to HSV infection in vivo, 157, 29

Depressed splenic T lymphocyte population and thymocyte migratory patterns during malarial infections in, 159, 317

Effect of administration of monosodium glutamate on pregnancy-dependent mammary tumors in neonates of, 158, 128

Effect of age on immunosuppression by Δ9-tetrahydrocannabinol, 158, 350

Effect of erythropoietin on fetal hemopoietic tissue differentiation in, 158, 201

Effect of immunization of weanling mice on sucking following mouse cytomegalovirus infection, 157, 523

Effect of methimazole and thiabutosinate on infections caused by Mycobacterium leprae in, 158, 582

Effect of prolonged immunization with tumor-unrelated antigen on tumor growth, 157, 511

Embryonic fibroblasts, interferon-enhanced H-2 antigen expression on, 157, 456

Evaluation of broad-spectrum protection against rough mutants of Enterobacteriaceae using antisera from smooth mutants in, 158, 482

Fatty synthesis in lactating, role of dietary fat, fasting, and premature weaning on in vivo rate, 159, 308

Genetically obese (ob/ob), effect of thyroxine, epinephrine, and exposure to cold on lipolysis in, 159, 116

Genetic and dietary effects on frequency of cortisone-induced cleft palate in, 158, 618

Glucocorticoid antagonizing factor effect on hepatoma cells of, 159, 359

Healthy and tumor-bearing, thymidine phosphorylase activity in plasma and ascitic fluid of, 157, 262

Hemopoiesis in diffusion chambers, from stromium-49 marrow-ablated, 159, 260

Immunological comparison of α-fetoprotein and uterine estrogen receptor of, 157, 594

Inactivation of lymphoma cells by antisera and complement in syngeneic bone marrow transplant, 158, 449

Indium-oxine complex labeling of lymphocytes and tumor cells, 157, 61

Inhibition of diffusion chamber granulopoiesis by anti-CSF serum in, 158, 542

Inhibition of oxytocin release by morphine and its analogs on, 157, 476

In vivo effect of cholera toxin on immunocyte response in, 157, 631

Lactic accumulation in Peyer's patches and transport to adjacent villi and mesenteric lymph nodes, 159, 298

Lean and obese, body weight and oxygen consumption of, 157, 402

Liver, prolactin receptor response to estrogenic stimulation, comparison with rat, 159, 256

Methionine (rat), 158, 431

Role in stimulation of gastric secretion and gastric mucosal blood flow, 158, 156

α-Methyl-L-1-adamantane-methylamine hydrochloride, see Aminadidine hydrochloride

Methylated monellin change in conformation, retention of sweetness (fruit), 157, 194

Methylcholanthrene

Induced fibrosarcoma, effect of prolonged immunization with BSA or OA on growth (mice) 157, 511

3-Methylcholanthrene cell transformation by, inhibition of by 9-β-d-arabinofuranosyladenine (rat embryo), 159, 253
role in induction of sister chromatid exchange, 158, 269

α-Methyl demethyl-γ-amanitin

3H-labeled, competitive binding assay of to detect RNA polymerase B, 159, 98

Methylmercury
gastrointestinal absorption of (rat), 157, 57

N-Methyl-N'-nitro-N'-nitrosoguanidine

Skin tumor initiation by, 158, 1

Methylprednisolone

effect on cardiac recovery following hypoxia, 157, 580
effect of doses of on intestinal absorption of calcium in infant rats, 158, 174

Methylprednisolone sodium succinate

Induced inhibition of eosinophil migration (guinea pig), 157, 129

 METHYLSERYGLIDE

Blocking effect on growth hormone-inducing release by SHT or quipazine, 159, 210

Metrazamide

effect on p-aminohippurate transport in the intact kidney (dog), 157, 453

effect on buoyant density of scapie infectivity, 158, 513

Mevalonate

incorporation into lipids, role of L-histidine supplemented diets (rat), 159, 57

Mice

acatalasemic and normal, cinnabarinite synthase activity in, 158, 398

Acetylcholine contamination of vas deferens by interaction with muscarinic receptors, 157, 200

Age of natural immunity to RIII mammary tumor virus antigen by BALB/c strain of, 158, 23

A/NJ infection, effect of rimantadine and ribavirin therapy in, 158, 454

AKR, age-dependent lethal effects of endotoxin in leukemia, 157, 424

BALB/c anti-idiotypic response to myeloma protein of BALB/c origin, 159, 176

coxsackievirus B-3-induced cardiomyopathy, 157, 442

Pathologic characteristics of, 157, 442

BCG-infected endotoxin-induced metabolic alterations in, 159, 69
long-term subclinical effects of parainfluenza infection on immune cells of aging, 158, 326
mastocytoma-bearing immunosuppressive activity in ascitic fluid of, ability of rabbit antisera to neutralize, 158, 238
mastocytoma-immunosuppression effects on IgM- versus IgG-producing cells, 157, 381
model for characterization of transplantable myelomonocytic leukemia in (BALB), 157, 556
molecular heterogeneity of KCl-solubilized antigens from fibrosarcoma, 157, 354
mycoplasma preparation-inhibited interferon response to NDV, 157, 83
neutrophils, spontaneous and chemotactic migration under agarose of, 158, 170
obese, effects of adrenalectomy on thyroid function and insulin levels in, 159, 364
ornithine decarboxylase induction by epidermal growth factor in digestive tract of, 159, 400
potassium oxonate effects upon hyperuricemia, uricosuria, and orotic aciduria, 157, 110
pregnant and nonpregnant, use of progesterone in enhancement of vaginal infection by herpes simplex virus type II in, 158, 131
prevention and repair of radiation-induced immunosuppression with endotoxic LPS, 157, 348
protein-calorie malnutrition effect on antiviral function of macrophages, 159, 84
RIN, effect of BCG on development of virus-induced mammary adenocarcinomas in, 158, 235
role of murine leukemia viruses in suppression of lung tumors induced by diethyl nitrosamine, 159, 65
SI/ST, stimulation of megakaryocytopenia in, 158, 637
saliva immunologically identical a-subunit of 7 S nerve growth factor from salivary gland of, 158, 342
serum triiodothyronine levels in riboflavin-deficient and diabetic conditions of, 157, 690
Sindbis virus-infected, hydrocortisone-induced hepatic enzymes inhibited in, 157, 125
spectrophotometric assay of catalase with sodium perborate as substrate (liver fractions), 157, 33
T cell-deficient, role of thymopoietin, ubiquitin, and synthetic serum thymic factor in restoration of immunocompetence in, 159, 195
testosterone effect on hemopoiesis in diffusion chambers and in vivo, 157, 184
thymectomized C3H, effect on infection by mouse hepatitis virus, 159, 34
ttrue and false prophylaxis with antitrypanosomal drug in trypanosome infection, 157, 397
tryptsin-like inhibitor in uterus, quantification during early gestation and delayed implantation, 157, 175
various strains, Rauscher leukemia virus effect on plaque-forming cell response in, 157, 449
Microelectrode technique intracellular, use in determination of transmembrane potentials of lymphatic smooth muscle (bovine), 159, 350
Microspheres magnetic, model system for site-specific drug delivery in vivo, 158, 141
Mineralization role of calcium-phospholipid-phosphate complexes in, 157, 590
Mineralocorticoid excess and renal hypertension in adrenalectomized dogs with constant steroid therapy, 157, 116
Mink ontogeny of humoral immunity in, 157, 289
Mitochondria glycerol movement from cytosol to, strain differences in (rat), 157, 5
protein synthesis in, effect of nonlethal doses of cycloheximide on in liver (rat), 159, 288
variation in respiratory properties and NADH dehydrogenase lipophilicities of from different regions of kidney (rat), 158, 595
Mitochondria-rich cells isolation of from mucosal cells of urinary bladder of turtles, 158, 565
Mitosis activity in aorta following insult (rabbit), 159, 473
Mitotic spindle intact, period of cell cycle with high sensitivity to vinblastine (HeLa cells), 157, 206
Mixed lymphocyte culture inhibitory effect of cAMP in reaction of, 158, 590
MLC, see Mixed lymphocyte culture
Monkeys blood group antigens from organ tissues of extracted by n-butanol, 158, 220
iron turnover in, 159, 335
juvenile, 17β-estradiol and testosterone propionate effects on plasma lipids (Rhesus), 157, 231
kidney cells, heparin effect on growth, 159, 88
Monellin methylation of the ε-amine group of the lysyl residues of (fruit), 157, 194
Monoamine oxidase hepatic activity following coenzyme flavin replacement, 157, 466
type A and type B inhibition by N-[2-(α-chlorophenox)-ethyl-cyclopropylamine hydrochloride in rat using serotonin and phenylethylamine oxidation as indexes, 158, 323
Monocytes human, release of pyrogen from, 158, 32
replication of herpes simplex virus in, 158, 263
Mononuclear cells effect of poly Lpoly C on production of colony stimulating factor by, 158, 151
Monosodium glutamate effect of neonatal administration of on inhibition of pregnancy-dependent mammary tumorigenesis, 158, 128
Morphine analogs, inhibition of oxytocin release in lactating mice by, 157, 476
inhibition of oxytocin release in lactating mice by, 157, 476

Mortality of chicks, effects of diet on, 159, 276

Motility of cauda epididymal spermatozoa in Ca^{2+} medium (rat), 157, 54

Mouse cytomegalovirus (MCMV) central nervous system involvement following infection by, 157, 523
effect on suckling mice following immunization of weanling mice, 157, 523

Mouse hepatitis virus course of infection by in PRI and C3H mice, 159, 34
infection in thymectomized C3H mice, pathogenicity of, 159, 34

MTV, see Mammary tumor virus

Muscosa repair and defense of, role of urogastrone and epidermal growth factor (mouse), 159, 400

Mucosal cells isolation of two types from urinary bladder of turtle, 158, 565

Murine leukemia virus role in etiology of diethylaminoethylase-induced lung tumors (mouse), 159, 65

Murine sarcoma virus baboon placenta [MSV(BP)], virus production in gorilla spleen cells, 158, 304

Kirsten stain (Ki-MSV), transformation of gorilla spleen cells and recovery of nonproducer cells and noninfectious type C virus particles following induction by, 158, 304
ornithine decarboxylase activity in cells transformed by, 159, 142

Muscarinic receptors acetylcholine interaction with (mouse), 157, 200

Muscle smooth lymphatic, transmembrane potentials of (bovine), 159, 350
Muscular dystrophy hepatic purine enzyme profiles and uric acid overproduction in, 158, 332

Muscular system, see Individual entries

Mutagenesis inhibition of by ascorbic acid, 158, 85

Mycobacterium leprae effect of methimazole and thiambutosine on infections of in mice, 158, 582

Mycoplasma arthritidis, injection-suppressed the interferon response to NDV (mouse), 157, 83
membrane component-induced hyporeactivity to NDV (mouse), 157, 83

pulmonis, injection-suppressed the interferon response to NDV (mouse), 157, 83

Myeloid leukemia bearing mice and rats, thymidine phosphorylase activity in plasma and ascitic fluid of, 157, 262

Myeloma protein anti-idiotypic response of BALB/c mice to, antigen-binding capacity and susceptibility to inhibition by excess DNP-lysine, effect of booster, 159, 176

Myelomonocytic leukemia characterization of in three sublines (mice), 157, 536

Myeloperoxidase role in bacteriolysis, 159, 126

Myocardial conduction effect on low-level chronic diet of cadmium on (rat), 159, 339

Myocardial depression effects of β-adrenergic blocking agents in, 158, 147

Myocardial infarction changes in composition of glycosaminoglycans following, 158, 210
as result of administration of allopurinol, 157, 541
use of unanesthetized Rhesus monkey in study of, 158, 135

Myoglobin interaction with metallothioneins, competition for renal tubular reabsorption (rabbit), 159, 321

Myosin –actin interaction, mediation of by phosphorylation of myosin light chains in mammalian vascular smooth muscle, 158, 410

Myxoma glycosaminoglycan composition compared to GAG of normal heart tissue (human), 157, 461

N

Nadolol effect as myocardial depressant in unanesthetized atherosclerotic rabbits, 158, 147

Na-K ATPase effect on activity, of chloride, nitrate, and sulfate in renal cortex and medulla of rabbits, 158, 370

Naloxone blocking effect on inhibition of oxytocin by morphine and its analogs (mouse), 157, 476
as opiate blocking agent of action of α- and β-endorphin in rat, 158, 431

Neisseria meningitidis polysaccharide vaccine from groups A, C, Y meningococci, serological and clinical testing, 157, 79

Nephron kidney surface temperature effect on filtration rate of (dog), distal and proximal sites, 159, 428

Nephrototoxic serum nephritis morphological changes in glomerular basement membrane associated with (rat), 159, 324

Nerve growth factor 7 S, immunologically identical α-subunit from saliva of mice, 158, 342

Nerves effect of stimulation of on A-V shunt and capillary
circuits in dog hindpaw, 157, 536
vous system, see also Individual entries
eural discharge frequency and pulmonary vascular pressures of lung receptors (canine), 157, 36
ranimastase
ic acid removal by from human platelets, effect on
shape change of platelets, 159, 54
oropharyngeal hormones
role in gonadotropin releasing hormone-induced release of luteinizing hormone (rat), 159, 444
romuscular disease
um levels of histidine-rich glycoprotein in various types of, 158, 647
rophiils
uman monocyte pyrogen-induced release from bone marrow of rats and rabbits, 158, 32
se in study of spontaneous and chemotactic migration under agarose, 158, 170
vascular disease virus (NDV)
spression of interferon response by Mycoplasma preparations (mice), 157, 83
otic receptors
cetylcholine interaction with (mouse), 157, 200
ffect of on ATPase of renal cortex and medulla of rabbits, 158, 370
oglycerin
effect on ischemic S-T segment depression, comparison with dipyriramole (rabbit), 159, 458
oprase
ffect on lactic acidosis and cardiovascular hemodynamics (dog), 158, 426
osamines
atabolism of acyclic and cyclic types by cultured human colonic mucosa, 159, 111
itrosonornicotine
atabolism of in cultured human colonic mucosa cells, 159, 111
itrosopiperazine
atabolism of in cultured human colonic mucosa cells, 159, 111
itrosopiperidine
atabolism of in cultured human colonic mucosa cells, 159, 111
itrosopyrrolidine
atabolism of in cultured human colonic mucosa cells, 159, 111
oruloplasminic copper
ake of in rat brain, role of amino acids, 158, 113
producer cells
risten strain-murine sarcoma virus, induction of in gorilla spleen cells, 158, 304
epinephrine
ect of ionophore A23187 on contractile responses of vascular system to (rat), 159, 353
ect on plasma prolactin levels in ovariectomized, pituitary-grafted rats, 157, 576
acental vascular response to, effect of prostaglandin E2 and indomethacin on (sheep), 159, 281
pressor resistance following overproduction and inhibition of prostaglandin synthesis, 158, 502
lease after acetylcholine interaction with nicotinic receptors (mouse), 157, 200
response of mesenteric artery to, enhancement by tetraethylammonium and inhibition by manganese, 159, 390
role in blood flow and vascular resistance in ovary of near-term sheep, 158, 105
use of prostaglandin transport inhibitors in modifying responses of in lung, 157, 677
orfenfluramine
depletion of brain serotonin (rat), 157, 202
ovikoff hepatoma
cells, effect of heparin on growth of, 159, 88
uclear dehydrogenating clostridia
freezing of fecal specimen effect upon isolation of (human), 157, 94
ucleosides
H-labeled, trypsin- and viokase-inhibited incorporation of in human lymphoma (T4) cells, 158, 666
utrients
absorbed during long-term loss of food from the intestine, regulation of (rat), 157, 430
utrition
contributing factor in the development of squamous metaplasia in tracheal epithelium (hamster), 157, 500

O

Obesity
drenalectomy effect on (mice), 159, 364
effect on collagen and lipid composition of skin (Zucker rat), 157, 435
genetic predisposition, use of high dosage of testosterone propionate to increase litter production in male Zucker rat, 159, 424
oral and intravenous glucose tolerance (human), 157, 407
parant conditioning
use of in cigarette smoking behavior studies (baboons), 157, 672
ornithine decarboxylase
activity in murine sarcoma virus-transformed cells, 159, 142
induction of activity by epidermal growth factor in digestive tract (mice), 159, 400
rotic aciduria
induced by potassium oxonate alteration of pyrimidine metabolism (mouse), 157, 110
ouabain
effect on vascular resistance following arterial infusion into dog forelimb of, 158, 161
toxicity, inhibition by haloperidol in rabbit atria, 158, 192
transport process into hepatocytes (newborn rat), 157, 66
ovariectomy
effect on tail skin temperature after isoproterenol in
ethynyl estradiol-treated rats, 157, 18

Ovary
activity, melengestrol acetate effects on (rabbit), 157, 220
17β-estradiol and testosterone propionate effects on weight of (rhesus monkey), 157, 231
hydroxylase activity following exposure to pregnant mare's serum gonadotropin (rat), 159, 484

Ovine
age-related response of erythrocytes to ionophore-induced Ca²⁺ accumulation, 157, 506
amniotic fluid TSH and rT₃ levels as predictors of hypothyroidism, 157, 106
distribution of CRF activity and immunoreactive ACTH in hypothalamic-neurohypophyseal complex of, 158, 421
effect of angiotensin II on renal, uterine, and placental vascular resistance near term, 158, 54
effect of vasoactive drugs on ovarian blood flow near term, 158, 105
excretion of sodium following renal vasodilation by papaverine in anesthetized and conscious, 158, 250
iron turnover in, 159, 335
near-term fetus, effects of alpha and angiotensin receptor blockade on arterial pressure and umbilical vascular resistance on, 158, 166
prostaglandin E₂ and indomethacin effect on placental vascular response to norepinephrine in, 159, 281
renal tubular secretion of insulin and urate from (normal, pregnant, and toxemic), 159, 386

Ovulation
blockade, role of LH-RH analog in (rat), 159, 161
calcium absorption during, relation of vitamin D-dependent intestinal calcium-binding protein to (Japanese quail), 159, 286
responsiveness after LH-RH administration in cyclic hamster, 158, 313

Oxilophran
inhibition of oxytocin release in lactating mice by, 157, 476

Oxrenolol
effect as myocardial depressant in unanesthetized ath erosclerotic rabbits, 158, 147

Oxygen
consumption and energy metabolism in early life (lean, obese mice), 157, 402
deficiency, effect of on taunine release (rat), 157, 486
hepatic utilization of effect of interaction of ethanol and thyroxine on (rat), 159, 226
impaired transport in hypertriglyceridemia, relationship to red cell affinity for (human), 159, 437
induced lung injury, age-related susceptibility to (rat), 157, 293

Oxytocin
analogos, determination of plasma half-lives of (rat), 158, 663
inhibition of release of, by morphine and its analogs, 157, 476
role in the gonadotropin releasing hormone-induced release of luteinizing hormone (rat), 159, 444

P
PAH, see p-Aminophenurate
Pancreas
alkaline phosphatase from, isoenzyme characterization of (human, dog), 159, 192
alpha cells, effect of high protein diet on in rat, 158, 578
duct cells, metabolic parameters in fed and fasted rat, 157, 23
duct epithelium biochemistry of (rat), 157, 23
metabolic parameters of (rat), 157, 23
islets, GIP stimulation of insulin and glucagon secretion by (rat), 157, 89
secretion, effect of molecular forms of gastrin on (dog), 159, 237

Pancreas
spleenic, glucagon secretion by α cells, regulation and dynamics of (lizard), 157, 180
Pancreatic α cells glucagon secretion, regulation and dynamics of (lizard), 157, 180
Pancreatobiliary secretions role in mediating adaptive hyperplasia of rat small intestine, 158, 101
Pancreatic polypeptide human, daily fluctuations of levels of in plasma, effect of food ingestion and fasting, 159, 245

Papaverine
effects on sodium excretion following renal vasodilation by, 158, 250

Parabiosis
use in demonstration of humoral factor affecting megakaryocyte size in SI/SI' mice, 158, 637

Parainfluenza
long-term subclinical effects of infection of on immune cells of aging mice, 158, 326

Parathyroid hormone
alkaline activity in bone culture decreased by (chick embryo), 157, 358

ATPase activity in bone culture increased by (chick embryo), 157, 358
ethanol effect on secretion of (human), 159, 187
immunoreactive, N terminal similarity with synthetic peptide (human), 157, 241
long-term effect of administration of epinephrine and propranolol on secretion of (rat), 159, 266
radioimmunoassay of concurrent secretion in rat of calcitonin and, 158, 299

Parotid gland
effect of electrical stimulation of autonomic innerva tion on total salivary calcium and amylase output from (rat), 159, 478
resting, flow rate responses to radiotherapy (human), 157, 50
urition
tects of pelvic neurectomy on levels of progesterone
and prostaglandins in rats prior to, 158, 631
ic neurectomy
tect on levels of prostaglandins, progesterone in pre-
parturient rats, 158, 631
encillamine
hibitory effect on mitogen-stimulated lymphocytes
(human), 157, 155
ittelary supplement, effect on adhesion and invasion
of intestinal microflora (chick), 159, 276
tagastrin
tect of secretin on growth stimulation by in colonic
mucosa of rat, 158, 521
tamidine
ue and false prophylaxis in trypanosome infections
with (mouse), 157, 397
tobarbital
hibition of Ca2+ transport and ionophore A23187-
stimulated glucose production (rat), 157, 168
tolinium tartrate
ect on glucagon response to l-dopa (rat), 157, 1
ylene
ole in induction of sister chromatid exchange, 158, 269
er’s patches
accumulation of latex by, transport of latex to adjacent
villi and mesenteric lymph nodes (mouse), 159, 298
ntolamine
pression of glucagon response to l-dopa (rat), 157, 1
etermineation, intracellular of erythrocytes, 159, 136
effect of buffer and temperature on optimum transport
of p-aminohippurate in rabbit kidney slices, 158, 509
coyctosis
ex of, effect of hemolyzed blood (rats), 159, 418
obarbital
tect on rat liver, 158, 245
osybenzamine
ect on bovine pulmonary circulation, 158, 652
ylethanolamine N-methyltransferase
ent of in sympathetic ganglia and brain regions
in spontaneously hypertensive rats, 158, 45
ylethylamine
dration as index of in vivo inhibition of monoamine
oxidase in rat by N-[2-(o-chlorophen oxy)-ethyl]
cyclopropylamine, 158, 323
phate
le, role in inhibiting reduction of pyruvate kinase
levels in rat adipose tissue under varying meta-
boic conditions, 158, 255
sorption, effect of vitamin D3 metabolites on
(dog), 159, 204
phodiesterase inhibitor
le in stimulatory effect of FSH and LH on cAMP
accumulation in granulosa cells (porcine), 159,
30
phosphoenolpyruvate carboxykinase
cortisol-induced, blockage of synthesis of by glucocor-
tgoid antagonizing factor in hepatoma cells
(mouse), 159, 359
hydrocortisone-induced, Sindbis virus infection inhibi-
tion of (mouse), 157, 125
6-Phosphoglucose dehydrogenase
in human eosinophils, 158, 537
phospholipids
plasma, 17 β-estradiol and testosterone propionate
ffects on (rhesus monkey), 157, 231
Phosphonooxycetic acid
cytopathic effect on herpesvirus causing canine cat-
dish disease, 159, 21
Phosphorus
content of bone during progression of zinc deficiency
(rat), 157, 211
effect on urinary pCO2 (human), 157, 97
Phosphorylation
in adrenal mitochondria, effect of ACTH on, 158, 183
 Photoperiod
association between melatonin presence in hamster
and testicular regression with, 158, 359
Phototherapy
-induced riboflavin deficiency, G-6-PD effect on (hy-
berbilirubinemic infants), 157, 41
induction of hemolytic anemia by in jaundiced rats,
158, 81
Pig, see Swine
Pindolol
ffect as myocardial depressant in unanesthetized ath-
erosclerotic rabbits, 158, 147
Pituitary gland
terior cells of, effect of hypothalamic extracts on
1H]thymidine incorporation by in rat monolayer
cultures, 158, 471
effect of GABA-mediated prolactin secretion inhibi-
tion by, 158, 10
nvolvement in sustaining natural diurnal feeding
rhythms (rats), 159, 80
LH release from, effect of dose and time of exposure
to estradiol and LHRH on (bovine), 159, 157
response following administration of LH-releasing
horine (rat), 157, 494
response to luteinizing hormone releasing hormone
and thyrotropin releasing hormone in spontaneous-
ously hypertensive rats, 159, 394
transplantation of cells from to cerebral ventricles of
hypophysectomized rats, role in growth promo-
tion, 159, 409
Placenta
ascular response to norepinephrine of, effect of pros-
taglandin E2 and indomethacin on (sheep), 159,
281
Plaque assay
ensitivity of West Nile virus, pH of adsorption diluent
effect on (CE cells), 157, 322
Plaque-forming cells
assay of endotoxic LPS repair of irradiation-induced immunosuppression (mice), 157, 348
response level, Rauscher leukemia virus effect on (various mouse strains), 157, 449

Plasma
calcium levels, acute fluoride poisoning effect on (rat), 157, 363

catecholamines, effects of pregnancy on levels of in hypertensive compared to normotensive rats, 158, 242

cholesterol levels, 17β-estradiol and testosterone propionate effects on (rhesus monkey), 157, 231
corticosterone levels, lithium chloride stimulation of (rat), 157, 163

determination of half-lives by curve-fitting, 157, 584

evaluation of estrogen clearance in rat, 158, 475
 fractional turnover rate of urea in (human), 157, 282

half-lives, determination of vasopressin and oxytocin analogs (rat), 158, 663

human, anti-TSF serum from, use in neutralizing biological activity of TSF, 158, 557

phospholipids, 17β-estradiol and testosterone propionate effects on (rhesus monkey), 157, 231

proteins, heat-precipitated, effect on platelet aggregation, 158, 163

renin activity, SQ 14225 and renal artery constriction effect on (dog), 157, 245

evaluation of sodium and potassium concentration during development (rat pups), 157, 12

taurrocholic acid concentration in (newborn rat), 157, 66

thyroid hormone (healthy and tumor-bearing mice and rats), 157, 262

thyroxine levels after intraventricular and jugular TRH (rat), 157, 134

Platelet
aggregation
effect of heat-precipitated plasma proteins on, 158, 10

induction of in hypothyroid rats, 158, 577

shape change, dependence on sialic acid removal by neuraminidase (human), 159, 54

Platelet-rich plasma
aggregation by ADP, epinephrine, or collagen, potentiation of aggregation by heat-treated plasma proteins, 158, 10

PMSC, see Pregnant mare serum gonadotropin

Pneumococcal polysaccharide vaccine
polyvalent, initial and revaccination responses of adults and infants, 157, 148

PNMT, see Phenylethanolamine N-methyltransferase

Polymorphonuclear leukocytes
ability to support replication of herpes simplex virus, 158, 263

mechanisms and species differences in hydrogen peroxide disposal during phagocytosis, 158, 478

Polynucleotides
synthetic, stimulatory effects of human bone marrow colony growth in vitro by, 158, 151

Polyribosomes
hepatic, effect of tryptophan on, previously stimulated by phenobarbital or cortisol acetate, 158, 26

Porcine granulosa cell accumulation of cAMP, effect of phosphodiesterase inhibitor on stimulatory effect of FSH and LH on, 159, 230

Porphyria
serum levels of histidine-rich glycoprotein in various types of, 158, 647

Postpartum period
effect on in vitro incorporation of valine into ovudal and uterine protein, 158, 260

Potassium
age-dependent plasma concentration and urinary excretion during development (rat pups), 157, 12

excretion rate, fluoride-induced decrease in (rat), 157, 44

Potassium acetate
effect on growth of free-living nematode (Caenorhabditis briggsae), 158, 187

Potassium chloride
effect of ionophore A23187 on contractile responses of vascular system to (rat), 159, 353

Potassium oxonate
dietary, induction of hyperuricemia, uricosuria, and orotic aciduria (mouse), 157, 110

Potential difference (PD) of the jejenum, use in identification of cystic fibroc and heterozygous serum (rat), 157, 70

transmucosal, β-adrenergic amine effects on (frog), 157, 256

Prednisolone
cell growth effect in various cell types, 159, 88

effect on absorption, excretion, and serum valves of calcium, phosphate, and magnesium in adrenalectomized rats, 158, 388

Pregnancy
effect on in vitro incorporation of valine into ovudal and uterine protein, 158, 260

effect of lithium toxicity on in swine, 158, 123

maintenance of in absence of luteinizing hormone (rat), 159, 441

serum histidine-rich glycoprotein levels during, in humans, 158, 647

vitamin D metabolism during, comparison with fetus (rat), 159, 303

Pregnant mare endometrial cups
isolation of gonadotropin from, comparison of with PMSG, 158, 373

Pregnant mare serum gonadotropin
comparison with gonadotropin isolated from pregnant mare endometrial cups (PMEG), 158, 373

effect on immature ovary, associated changes in 17α-hydroxylase (rat), 159, 484

Prepuce
cells, heparin effect on growth, 159, 88
Pressor response following occlusion of anterior descending coronary artery in rhesus monkey, 158, 135
Primary secretary granules from developing eosinophilic promyelocytes (human), exocytotic release of, 159, 380
Primates effects of BK virus infection on primary cell cultures of, 158, 437
Probenecid use in modification of vasopressor responses of arachidonic acid, PGF2α, and norepinephrine in lung, 157, 677
Progesterone age-dependent hypothalamic response to administration of in female cesarean delivered rats, 158, 179 blood levels, melengestrol acetate effects on (rabbit), 157, 220 cardiovascular and hematologic responses to at high altitude (rat), 158, 658 critical levels for viral multiplication in mice, 158, 131 effects of on vasodepressor action of arachidonate, 158, 442 effect of pelvic nerveotomy on levels of in prepartum rats, 158, 631 enhancement of vaginal infection by herpes simplex virus type II in mice by, 158, 131 as inhibitor of prolactin release in vitro, 157, 605 Prolactin assays of plasma levels of, using ketamine anesthetic (rat), 159, 12 biogenic amines and dopamine on levels of in plasma effect (rat), 157, 576 corticosterone inhibition of ether-induced increase in plasma level of (rat), 157, 415 effect of α- and β-endorphin on secretion in rat, 158, 431 effect of altered thyroid states on binding of in DMBA-induced tumors and levels of in plasma, 158, 517 ether-induced increase in plasma level of (adrenal-ectomized rats), 157, 415 human, stimulation of estrogen biosynthesis by feminizing adrenal neoplastic gland (Fang-8) cells, 157, 159 receptors, species differences in response to estrogenic stimulation of in liver (mice, rats), 159, 256 release, effect of estradiol, progesterone, thyrotropin-releasing hormone, and dopamine, 157, 605 response to thyrotropin releasing hormone in spontaneously hypertensive rats, 159, 394 secretion, effect of GABA-mediated inhibition on, 158, 10 Prolactin release hormone stimulation of secretion of by growth factor from mesenchyme of Rathke’s pouch and surrounding tissue in pituitary clonal cells, 158, 224 Promastigotes exometabolites from L. donovani, isolation and characterization of, 159, 105 Promutagens, see Individual entries role in induction of sister chromatid exchange, 158, 269 n-Propanol effect on growth of free-living nematode (Caenorhabditis briggsae), 158, 187 Propranolol atrial electrophysiology in combination with quinidine on dog, 158, 337 effect on glucagon response to L-dopa (rat), 157, 1 effect as myocardial depressant in unanesthetized athlosclerotic rabbits, 158, 147 effect on oxygen consumptive in hyper- and normotensive rats, 159, 449 inhibitory effects on resistance, PD, and H+ secretory rate of gastric mucosa (frog), 157, 256 long-term effect of administration on serum calcium and parathyroid hormone and calcitonin secretion (rat), 159, 266 Propylthiouracil effect on Mycobacterium leprae infections of mice, 158, 582 Prostaglandin E1 dose-dependent effect on 3H-labeled thymidine incorporation in MLC, 158, 590 E2 activity of during parturition in rats, effect of pelvic nerveotomy on, 158, 631 effect of furosemide on and relationship with renal vascular resistance in rat, 158, 354 effect on placental vascular response to norepinephrine (sheep), 159, 281 mechanism involved in stimulation of renin secretion by (dog), 159, 249 role in vascular homeostasis in corpus luteum of near-term ovine ovary, 158, 105 umbilical responses to, effect of angiotensin II receptor blockade and alpha receptor blockade on, 158, 166 endogenous, role in modulating response of renal and uterine vascular beds to angiotensin II, 158, 54 F2α activity of during parturition in rats, effect of pelvic nerveotomy on, 158, 631 use of prostaglandin transport inhibitors in modifying responses of in lung, 157, 677 inhibition of renal synthesis and metabolism of by indomethacin (rat), 159, 165 overproduction in hypokalemia, Bartter’s syndrome, and other disorders, effects of inhibition of synthesis of on angiotensin II, 158, 502 Prostaglandin synthetase inhibitors of, as depressors of estrogen-mediated uterine vasodilation (rabbit), 159, 25 inhibitors, blocking effect on furosemide-induced changes in renin release (dog), 159, 180 Prostaglandin transport inhibitors use of in modification of vasopressor responses in
perfused lung, 157, 677
Prostate
ventral, kinetics of cholesterol, protein, and DNA synthesis after testosterone administration (castrated rats), 159, 1
Protease
subcellular distribution of determined by differential centrifugation, from lung (guinea pig), 159, 239
Protein clearance rate, following iron removal (dog), 157, 481
content of pancreatic duct cells (rat), 157, 23
metabolism, hormonal changes associated with exercise in rat, 158, 622
oviductal and uterine, effect of pregnancy and postpartum period on in vitro incorporation of valine into, 158, 260
role of deficiency on serum complement levels in rat, 158, 92
in serum and tears, moderate to severe malnutrition effects on (children), 157, 215
synthesis
effect of nonlethal doses of cycloheximide on in liver mitochondria (rat), 159, 288
kinetics of in ventral prostate of castrated rats after testosterone administration, 159, 1
in liver, enhancement by tryptophan previously stimulated by phenobarbital or cortisone acetate, 158, 245
of mitogen-stimulated lymphocytes, D-penicillamine effect on (human), 157, 155
Protein-315
BALB/c antisera to, antigen-binding capacity and susceptibility to inhibition by excess DNP-lysine, effect of booster, 159, 176
Protein-calorie malnutrition
severe and moderate, effects on proteins in lacrimal secretions (children), 157, 215
Protein kinases
role in interferon-induced reduction or restoration of initiation factor activity, 159, 453
Proteinuria
effect on fragility of glomerular basement membrane (rat), 159, 324
Proteolytic agents
as inhibitors of incorporation of tritiated nucleosides into human lymphoma cell line (trypsin, viokase), 158, 666
Pulmonary hemodynamics
influence of carotid occlusion on in dogs, 158, 215
Pulmonary hypertension
induction by phenoxybenzamine in calves, 158, 652
Pulmonary vascular resistance
in canine endotoxin shock, 157, 610
Purine nucleoside phosphorylase (EC 2.4.2.1)
activity in dystrophic and dystrophic gouty chickens, 158, 312
Purine nucleoside cycle
enzymes of, levels in normal and dystrophic muscles of chicken, 158, 406
Puromycin
effect on ACTH-stimulated steroidogenesis in adrenal mitochondria, 158, 183
Pyrazinoic acid
net effect on urate transport, reabsorption, and secretory mechanisms (rat), 159, 16
Pyrogens
production by human monocytes, effect on plasma iron and zinc blood neutrophils by, 158, 32
Pyruvate kinase
rat adipose, effect of fasting, diabetes, and hypopholectomy on levels of, 158, 255
Pyrene
role in induction of sister chromatid exchange, 158, 269
1-(Pyridyl-3)-3,3-dimethyltriazene
role in induction of sister chromatid exchange, 158, 269
Quail (Japanese)
relationship of vitamin D-dependent intestinal calcium-binding protein to calcium absorption during ovulatory cycle of, 159, 286
Quinidine
atrial electrophysiology in combination with propranolol on dog, 158, 337
Quipazine
stimulation of growth hormone release by intraventricular administration of (rat), 159, 210
Rabbit
arterial wall response to endothelial removal, 159, 473
atria, effect of haloperidol on ouabain cardiac inotropy and toxicity in, 158, 192
bacterial endocarditis in, role of dextran production in infectivity of (Streptococcus sanguis), 158, 415
blood group antigens from organ tissues of extracted by n-butanol, 158, 220
competition between myoglobin and metallothionesin for tubular renal reabsorption in, 159, 321
direct myocardial depressant effects of β-adrenergic blocking agents in unanesthetized atherosclerotic, 158, 147
effects of anions on Na-K ATPase in renal cortex and medulla of, 158, 370
effects of human monocye pyrogen on, 158, 32
effects of rotomeric conformations of dopamine and its analogs on aorta of, 158, 28
erthroid precursor cells from bone marrow of, flow analysis of light scatter differences in, 159, 219
GH transferase in proximal tubules and thiol adduct formation, 157, 189
immunization of by mastocyteoma cells and ability of antisera from to neutralize immunosuppressive activity of ascitic fluid from mastocyteoma-bearing mice, 158, 238
indomethacin and meclofenamate effect on estrogen-
induced vasodilation in uterus of, 159, 25
iron turnover in, 159, 335
isolation of low molecular weight acrosin inhibitor
during capacitation of sperm from, 158, 491
isoproterenol stress test utilization in observation of
atrial pacing in model of angina pectoris, 159, 458
Kidney (DRK₃) cells, nonpermissive, Shope fibroma
virus facilitation of VSV in, 157, 225
malignant conversion of Shope papillomas and serum
level changes of ceruloplasmin in, 157, 694
melengestrol acetate effects on blastokinin secretion
and ovarian activity, 157, 220
skeletal muscle fiber size and capillarity in, 158, 288
Radioactive microspheres
use in measurement of effects of vasoactive agents on
ovarian blood flow in near-term sheep, 158, 105
Radioallergosorbent (RAST) technique
use in determination of IgE autoantibodies in patients
with autoimmune thyroid disease, 158, 73
Radioiodotoxicity assay
in study of cytotoxicity of selected pathogens on HLA-
B27 positive fibroblasts, 159, 184
Radioimmunassay
detection of antibody to HSV-1 and HSV-2 (human),
157, 273
detection of measles virus antigen and antibody in
SSPE brain tissue (human, hamster), 157, 268
for gonadotropin releasing hormone using analog of
[α-(Lys₄)-GnRH], 158, 643
immunoreactive human parathyroid hormone, N ter-
mental similarity with synthetic peptide, 157, 241
use in evaluating concurrent secretion of parathyroid
hormone and calcitonin from thyroparathyroid complex
of rat, 158, 299
use in measurement of distribution of immunoreactive
ACTH in hypothalamic-neurohypophyseal complex
in various species, 158, 421
Radiotherapy
parotid flow after (human), 157, 50
Rana pipiens, see Frog
Rat
absorption and retention of lead, effect of ethanol,
159, 213
actinomycin D-induced embrothelial and teratogenic
effects and prevention by thyroxine in, 157, 553
acute fluoride poisoning effect on ionic and total
plasma calcium, 157, 363
S-adenosylhomocysteine metabolism in hepatomas,
159, 313
adrenal steroidogenesis, melatonin and serotonin ef-
effects on, in vitro, 157, 103
age-dependent androgenization, hypothalamic re-
sponse in caesarean delivered females treated with
androgen propionate and progesterone, 158, 179
age-dependent changes in plasma concentration and
urinary excretion of Na and K (pups), 157, 12
bone mineralization, alterations during progression of
zinc deficiency, 157, 211
brain, effects of monovalent and divalent cations and
anions on binding of ³H-labeled diazepam to,
158, 393
cardiovascular and hematologic responses to sex
hormones at high altitudes, 158, 658
cerebral regional acetylcholine concentration and utili-
zation in, effect of ethanol on, 159, 270
cholesterol storage in adipocyte, essential fatty acid
deficiency effect on, 157, 297
compensatory growth following uninephrectomy and
effect on collagen mass in, 158, 275
Dahl hypertension-resistant and hypertension-sensi-
tive, effect of cadmium concentrations following
unilateral renal artery clipping in, 158, 310
dietary l-histidine supplementation, effect on chole-
sterol biosynthesis in liver, 159, 44
differential effect of autonomic stimulation on salivary
secretion of, 158, 59
distribution of CRF activity and immunoreactive
ACTH in hypothalamic-neurohypophyseal complex
of, 158, 421
L-dopa-mediated glucagon release, characterization of,
157, 1
early heme synthesis using ¹⁴C-labeled δ-aminolevu-
linic acid and glycine in liver of, 158, 466
effect of α- and β-endorphin on prolactin and growth
hormone secretion in, 158, 431
effect of ACTH and adrenal hormones on serum and
antral gastrin levels in, 158, 609
effect of acute fluoride exposure on renal function,
157, 44
effect of age on crypt cell kinetics following partial
resection of the small intestine, 157, 572
effect of allopurinol-induced myocardial and renal
damage (nonarteriosclerotic and arteriosclerotic)
in, 157, 541
effect of BK virus infection on primary cell cultures
of, 158, 437
effect of cadmium ingestion on calcium metabolism in
developing fetus in utero, 158, 614
effect on chronic, low-level lead poisoning on eryth-
ropoietin response to hypoxia in, 158, 109
effect of dietary bran on DMH-induced colon carci-
nogenesis in, 157, 656
effect of dopamine, norepinephrine, and serotonin on
plasma prolactin level following ovariecotomy and
pituitary graft, 157, 576
effect of exogenous ATP on glucoregulation in vivo in,
158, 554
effect on fasted animals of glucose and glucagon in-
fusion into livers of, 158, 496
effect of furosemide diuresis on albumin excretion by
kidney of, 158, 550
effect of furosemide on hemodynamics of isolated
perfused kidney of, 158, 354
effect of hypo- and hyperthermia on prolactin bind-
ing activity in DMBA-induced tumors compared to
effect in liver in, 157, 517
effect of human monocyte pyrogen on, 158, 32
effect of interaction of alcohol and anxiety on circu-
cumulative subject index

effect of isoproterenol on β-adrenergic receptors following renal hypertension induction in, 158, 363
effect of oxygen deficiency on taurine release in heart of, 157, 486

effect of pelvic neurectomy on levels of progesterone and prostaglandins during parturition in, 158, 631
effect of pharmacological doses of methylprednisolone and vitamin D on in vivo intestinal absorption of calcium in infants, 158, 174

effect of secretion on colonic DNA synthesis in, 158, 521

effect of somatostatin on cyclic AMP and glucose oxidation in isolated islets of Langerhans in, 158, 458

effect of thyroid hormone on ploidy of liver nuclei in, 158, 63

effect of zinc and copper deficiencies on erythrocyte stability and superoxide dismutase activity in, 158, 279

electrocardiographic, biochemical, and morphological effects of chronic low-level feeding of cadmium on heart of, 159, 339

embryo

effect of zinc deficiency on thymidine kinase and DNA polymerase activities during development of, 159, 39
inhibition of cell transformation by 9-β-d-arabinofuranosyladenine, 159, 253
epinephrine contents in sympathetic ganglia and brain regions of spontaneously hypertensive, 158, 45
ethacrynic acid and theophylline effects on bile flow and biliary electrolytes, 157, 306
ether-induced increase in plasma prolactin after ovariectomy and PEP treatment, 157, 415
ethynyl estradiol effect on tail skin temperature after l-isoproterenol administration, 157, 18
evaluation of plasma concentrations of estradiol-17β in ovariectomized animals using two delivery systems, 158, 475
fenfluramine and norfenfluramine effect on serotonin turnover, 157, 202

food intake signals in gastrointestinal tract during long-term loss of food, 157, 430
GIP stimulation of insulin and glucagon secretion by pancreatic islets, 157, 89
glycerol metabolism in BHE and Wistar strains, differences in, 157, 5

healthy and tumor-bearing, thymidine phosphorylase activity in plasma and ascitic fluid of, 157, 262
hemolyzed blood effect on reticuloendothelial system phagocytic function and susceptibility to hemorhagic shock, 159, 418
high phosphate diet-induced skeletal and renal changes of secondary hyperparathyroidism, effect of adenectomy on, 158, 388

l-histidine-induced facilitation of cholesterol biosynthesis in, 159, 57

hypertensive, effects of pregnancy on blood pressure, heart rate, and sympatho-adrenal activity in, compared to normotensive, 158, 242

hypophysectomized, growth promotion following transplantation of pituitary cells to cerebral vessels of, 159, 409

hypophysectomy and relationship to diurnal food intake patterns, 159, 80

hypothalamic somatostatin and LH-RH levels after hypophysectomy and anesthesia, 157, 235

hypothyroid, aggregation of platelets in, 158, 577

immunized, vitamin deficiency effects on splenic antibody-forming cells, 157, 421

Indium-oxide labeling of lymphocytes and tumor cells, 157, 61

induction of cholestasis by manganese and bilirubin and prevention of by sulfobromophthalein in, 158, 283

influence of gastrin on plasma calcium, bile, and gastric calcium secretions in, 158, 40
influence of pregnancy and postpartum period on in vitro incorporation of valine into oviducal and uterine protein, 158, 260
inhibition of prostaglandin synthesis and metabolism by indomethacin, 159, 165

interaction of ethanol and thyrxine on hepatic oxygen consumption in, 159, 226
ionophore A23187 effect on contraction and relaxation of arteries and veins, 159, 353

iron turnover in, 159, 335

isolation and analysis of low molecular weight DNA fraction by electrophoresis and chromatography from hepatocytes of, 158, 117

jejenum, cystic fibrotic and heterozygous serum effect on PD and Iac of, 157, 70

Ketamine anesthetic in obtaining plasma for prolactin assays, 159, 12

Kinetics of testosterone-induced cholesterol, protein, and DNA synthesis in ventral prostate of castrated, 159, 1

lens epithelial cells, effect of alkyating agents on DNA synthesis in, 157, 688

LHRH analog, inhibitory effect of in estrous cycle, 159, 161

light therapy-induced hemolytic anemia in hyperbilirubinemia of, 158, 81

lithium chloride effect on adrenocortical function, 157, 163

liver, prolactin receptor response to estrogenic stimulation, comparison with mice, 159, 256

long-term effect of epinephrine and propranolol administration on serum calcium and parathyroid hormone and calcium secretion in, 159, 266

long-term effect of estrogen administration on metabolism on bone (male), 159, 368

magnesium deficiency effect on intestinal calcium transport, 159, 171

maintenance of pregnancy in absence of luteinizing hormone, 159, 441

major sites of gastrointestinal absorption of methyl-
mercury and mercury chloride, 157, 57
maternal and fetal differences in vitamin D metabo-
lism, 159, 303
mechanism of action of cycloctydine on cardiovascu-
lar system of, 159, 374
monolayer cultures, effect of hypothalamic extracts on
incorporation of [H]thymidine in anterior pituitary
cells, 158, 471
newborn, ouabain and taurocholic acid transport sys-
tem into hepatocytes, 157, 66
obese male, improvement of reproductive adequacy
by high dosages of testosterone propionate, 159, 424
oxygen consumption in spontaneous hypertension,
comparison with normotension, 159, 449
pancreatic duct epithelium, biochemistry and meta-
bolic parameters of, 157, 23
plasma half-life determinations of vasopressin and
oxytocin analogs, 158, 663
proteinuria and fragility of normal and diseased glo-
merular basement membrane in, 159, 324
pulmonary antioxidant enzymes, age-related suscep-
tibility to oxygen-induced injury, 157, 293
pups, increased serum calcitonin and hypocalcemia
after oral glucose, 157, 374
radioimmunoassay evaluation of concurrent secretion
of calcitonin and parathyroid hormone in, 158, 299
relationship of high protein diet to elevated levels of
glucagon secretion and effects of return to normal
diet, 158, 578
renal citrate metabolism, blood bicarbonate concen-
tration effect on, 157, 393
renal cortical tubules
ionophore A23187 effect on cAMP levels in, Ca2+
concentration and, 157, 168
ionophore A23187-stimulated glucose production
by, 157, 168
riboflavin-deficient, induction of hepatic and intestinal
flavokinase following per os administration of
riboflavin in, 158, 572
role of androgens in exercise adaptation in, 158, 622
role of cAMP in CRF-induced ACTH secretion, 159, 6
role of fat-free diets in indomethacin-induced intesti-
tinal ulcers in, 158, 19
role of germfree strain in susceptibility to 1,2-dimeth-
ylhylazine-induced enteric neoplasms, 158, 89
role of histamine and histidine on levels of anserine
and carnosine in injured and uninjured, 158, 402
role of oxytocin and vasopressin in the gonadotropin
releasing hormone-induced release of luteinizing
hormone, 159, 444
role of pancreaticobiliary secretions in adaptive hy-
perplasia of small intestine of, 158, 101
role of protein and vitamin A deficiencies in serum
complement levels of, 158, 92
role of spleen in choline-induced reticuloendothelial
system stimulation and protection against shock
caused by acute hemorrhage in, 158, 77
somatostatin effect on growth hormone secretion, 159,
346
sperm motility and fertilization, Ca2+ effect on, 157,
54
spontaneously hypertensive, pituitary response to thy-
rotropin releasing hormone (TRH) and luteinizing
hormone releasing hormone (LHRH), com-
parison with normotensive, 159, 397
stimulation of erythropoietin secretion by single amino
acids in, 159, 139
stimulation of growth hormone release by intravenous-
tricular administration of SHT or quipazine, 159,
210
stimulation of LH release from pituitary following
LH-releasing hormone injections, 157, 494
stimulatory effect of 5-azacytidine on 7 S antibody
production in, 158, 36
subcellular localization and role of glutaminase-γ-glut-
amylintranserase in acidosis, 159, 294
synthesis of liver mitochondrial proteins after nonle-
thal dosage of cycloheximide, 159, 288
tail-cupped, chromium sesquioxide as a fecal marker
in estimation of [14C]cellulose passage, 157, 418
temporal changes in ovarian 17α-hydroxylase follow-
ing exposure to pregnant mare's serum gonado-
tropin, comparison of intact and hypophysecto-
mized animals, 159, 484
tobacco protein in diet of, nutritional value, 157, 626
topical anti-inflammatory activity of salbutamol on,
159, 223
total salivary calcium and amylase output of parotid
following electrical stimulation of autonomic inn-
vervation, 159, 478
transmural citrate synthase and lactate dehydrogenase
levels in hypertrophied left ventricle of, 158, 599
TRH transport by cerebrospinal fluid, elevated thy-
roxine transport and, 157, 134
TSH and ACTH secretion and cAMP levels in follow-
ing stimulation with TRH or LVP and suppres-
sion by thyroxine and dexamethasone, 158, 524
TSH secretion in response to stress in, age dependence,
157, 144
type A and type B monoamine oxidase inhibition in
vivo by N-[2-(o-chlorophenoxyl)-ethyl]-cycloprop-
ylamine in, 158, 323
uptake of noncereuloplasminic copper into brain of,
role of amino acids, 158, 113
urate transport, reabsorption, and secretory mecha-
nisms, effect of pyrazinoic acid on, 159, 16
use of magnetic microspheres as model system for in
vivo site-specific drug delivery, 158, 141
variation in respiratory properties and NADH dehy-
drogenase lipophilities of mitochondria from
different regions of kidney, 158, 595
Zucker, obese and lean, collagen composition in skin
of, 157, 435
Rathke's pouch
growth factor from mesenchyme of, effect on GH and
PRL release from pituitary clonal cells, 158, 224
Rauscher leukemia virus
effect on level of plaque-forming cell response in various mouse strains, 157, 449
5α-Reductase
melatonin-stimulated activity of (rat adrenal slices), 157, 103
Refractoriness
elimination of in presence of melatonin following exposure to short days in hamsters, 158, 359
Renal, see also Kidney; Urinary system
blood flow, effect of Kidney surface temperature on (dog), 159, 428
filtration rate of single nephron, effect of kidney surface temperature (dog), 159, 428
Renal hypertension
effect of isoproterenol on β-adrenergic receptors following induction of, in rats, 158, 363
Renal perfusion function
effect of hypoxia on (dog), 159, 468
Renal vasodilation
by papaverine, effect on sodium excretion in anesthetized and conscious sheep, 158, 250
Renal vasodilatation
role of sympathetic cholinergic nerves in, 158, 462
Renin
effect on sodium and Kallikrein urinary excretion rate in rats, 158, 196
indomethacin and tolmetin effect on release of induced by furosemide (dog), 159, 180
levels in (dolphins and sea lions), 157, 665
secretion, mechanism of PGE₂ stimulation of (dog), 159, 249
Renin-angiotensin system
activation and increased aldosterone secretion in renal hypertension (dog), 157, 116
in the pathogenesis of one-kidney hypertension, SQ 14225 effect on (dog), 157, 245
Replication
of VSV in nonpermissive DRK₃ cells, Shope fibroma virus facility of, 157, 225
Reproduction
in GR/A mice, effect of administration of monosodium glutamate, 158, 128
Reproductive system, see Individual entries
Respiratory Q fever
metabolic sequelae associated with in guinea pigs, 158, 626
Respiratory syncytial virus
parenterally administered vaccine for, 157, 636
Respiratory syncytial virus
vaccine, clinical response to parenteral vaccination of, 157, 636
Respiratory system, see Individual entries
Reticuloendothelial system
effect of hemolyzed blood on function of and on susceptibility to hemorrhagic shock (rats), 159, 418
role of spleen in choline-induced stimulation and protection against acute hemorrhage by, 158, 77
Rhabdomyoma
glycosaminoglycan composition compared to normal heart tissue GAG (human), 157, 461
Rhesus monkey
cardiovascular changes associated with anterior descending coronary artery occlusion of unanesthetized, 158, 135
Rheumatoid factor
effects on precipitation of IgG complexes (human), 157, 75
Ribavirin
effect of on A/NJ influenza in mice, 158, 454
Riboflavin
deficient diets, effect on serum levels of triiodothyronine (mouse), 157, 690
deficiency, G-6-PD deficiency and phototherapy prevention of (hyperbilirubinemic infants), 157, 41
deficiency-induced reduction in splenic antibody-forming cells (rat), 157, 421
induction of flavokininase following per os administration of in riboflavin-deficient rats, 158, 572
Ribosomes
membrane attachment by peptides and ionic bridging (rat), 157, 660
1-β-O-Ribofuranosyl-1,2,4-triazole-3-carboxamide, see Ribavirin
Rimantadine hydrochloride
effect of on A/NJ influenza in mice, 158, 454
RNA
content of pancreatic duct cells (rat), 157, 23
double-stranded, regulatory role in interferon-impaired initiation factor activities in vitro, 159, 453
synthesis
effect of pancreaticobiliary duct ligation on, following small bowel resection, in rats, 158, 101
of mitogen-stimulated lymphocytes, β-penicillamine effect on (human), 157, 155
RNA polymerase B
detection of using amatoxin competitive binding assay, 159, 98
Rosette-forming cells
assay of endotoxic LPS repair of irradiation-induced immunosuppression (mice), 157, 348
incubation with β-penicillamine effect on mitogen-stimulated lymphocytes (human), 157, 155
S
Salbutamol
topical anti-inflammatory activity of (rat), 159, 223
Saliva
differential effect of autonomic stimulation in rats on secretion of IgG, IgA and amylase in, 158, 59
secretion of immunologically identical α-subunit of 7 S nerve growth factor from in mice, 158, 342
Salt balance
regulation of, role of renin and aldosterone (sea lions and dolphins), 157, 665
[Sar⁷, Ile⁹] Angiotensin II
use as potent angiotensin inhibitor of umbilical circulation in near-term sheep, 158, 166
Scrapie virus
effect of different gradient solutions on buoyant density of, 158, 513
Sea lions
levels of renin and aldosterone in, 157, 665
Secondary hyperparathyroidism
effect of adrenalectomy on renal and skeletal lesions induced by high phosphate diet, 158, 388
Secretagogues
synergistic action in potentiation of ACTH secretion (rat), 159, 6
Secretin
effect on colonic DNA synthesis in rat, 158, 521
synthetic, effect on gastric secretion (dogs), 157, 565
long-term subclinical effects of infections of on immune cells of aging mice, 158, 326
Serological testing
of groups A, C, Y meningococcal polysaccharide vaccine (human), 157, 79
Seronegative spondyloarthropathies
role of HLA B27 in initiation of lesions of, 159, 184
Serotonin
depression by fenfluramine and norfenfluramine (rat), 157, 202
effect of ionophore A23187 on contractile responses of vascular system to (rat), 159, 353
effects on plasma prolactin levels in ovariectomized, pituitary-grafted rats, 157, 576
effects on steroidogenesis in adrenal slices (rat), 157, 103
oxidation as index of in vivo inhibition of monoamine oxidase in rat by N-[2-(α-chlorophenoxyl)-ethyl]-cyclopropylamine, 158, 323
Serum
IgA, lysozyme, and amylinase in, protein-calorie malnutrition effects on (children), 157, 215
IgG, IgA, and IgM, ontogeny of (mink), 157, 289
Sex
dependent variations in renal glycohydrolases of inbred lines (Chinese hamster), 157, 319
Sheep, see Ovine
Shope fibroma virus
early event in replication of, VSV facilitation by (DRK₃ cells), 157, 225
Shope papillomavirus
ceruloplasmin serum levels associated with malignant conversion of (rabbits), 157, 694
Short circuit (Isc)
of the jejunum, use in identification of cystic fibrotic and heterozygous serum (rat), 157, 70
Sialic acid
removal by neuraminidase from human platelets and relationship to shape change of platelets, 159, 54
Simian sarcoma virus (SISV-1)
focus-formation titer on feline embryo fibroblasts, 157, 312
Sindbis virus
-injected mice, hydrocortisone-induced hepatic enzymes inhibited by, 157, 125
Sister chromatid exchange
induction by promutagens/carcinogens in Chinese hamsters cells in diffusion chambers, 158, 269
Skeletal system, see Individual entries
Skeletal muscle
effect of ouabain on blood flow resistance in, 158, 161
relationships between weight and fiber cross sectional area and between capillary density and fiber cross sectional area in, 158, 288
Skin
collagen and lipid composition of (obese, lean Zucker rat), 157, 435
effect of ouabain on blood flow resistance in, 158, 161
tail temperature response to l-isoproterenol in ethynyl estradiol-treated rats, 157, 18
Smooth muscle
vascular, effect of calcium ionophore A23187 on (rat), 159, 353
Small intestine
accumulation of latex by Peyer's patches in and latex transport to adjacent villi and mesenteric lymph nodes (mice), 159, 298
blood flow gradient in anesthesia (dog), 157, 390
influence of rat age on crypt cell kinetics after partial resection of, 157, 572
Sodium
age-dependent plasma concentration and urinary excretion during development (rat pups), 157, 12
blood pressure responses to extreme intake of, role of renal excretion (human), 159, 432
effect of renin on urinary excretion rate of in rat, 158, 196
excretion
effect of hypoxia on (dog), 159, 468
following renal vasodilation by papaverine in anesthetized and conscious sheep, 158, 250
fractional and absolute, differences in rate in conscious and anesthetized sheep, 158, 250
rate, fluoride-induced concentrating defect (rat), 157, 44
fractional excretion rate, effect of furosemide diuresis on, 158, 550
reabsorption, effect of vitamin D₃ metabolites on (dog), 159, 204
Sodium ion–potassium ion
biliary excretion, ethacrynic acid- and theophylline-induced changes in (rat), 157, 306
Sodium oleate
effect on growth promotion in free-living nematode (Caenorhabditis briggsae), 158, 187
Sodium perborate
as substrate for spectrophotometric assay of catalase (mouse liver fractions), 157, 33
Sodium salicylate
dose-dependent hemodynamic changes induced by
(dog), 157, 531
Sodium stearate
effect on growth promotion in free-lung nematode
(Caenorhabditis briggsae), 158, 187
Somastostatin
effect on cyclic AMP and glucose oxidation in isolated
islets of Langerhans in rats, 158, 458
effect on growth hormone secretion (rat), 159, 346
hypothalamic, hypophysectomy and anesthesia effects
on (rat), 157, 235
as inhibitor of insulin and glucagon secretion, direct
and indirect mechanisms (dog), 157, 643
Sporomycin
effect of treatment with on polyribosome attachment,
157, 660
Spectrophotometric assay
of catalase with sodium perborate as substrate (mouse
liver fractions), 157, 33
Spermatozoa
cauda epididymal, motility and fertilization rate in
Ca²⁺ medium (rat), 157, 54
isolation of low molecular weight acrosin inhibitor
from boar and rabbit, 158, 491
Spermigine
nitrosoated
as direct-acting mutagen 158, 85
mutagenic properties of, 158, 85
Spleen
role in choline-induced reticuloendothelial system
stimulation and protection against hemorrhagic
shock, 158, 77
Spleen cells
resistance to HSV infection in vivo (C3H/HeJ mice),
157, 29
Splenocytes
effects of cholera toxin on (mice), 157, 631
SQ 14,225
hemodynamic and renal vascular effects in anesthe-
tized dogs, 157, 121
Squamous metaplasia
nutritional influence in development of in organ cul-
ture (hamsters), 157, 500
Staphylococcus aureus
teichoic acid-deficient mutant, lysis of by leukocyte
extracts and myeloperoxidase, 159, 126
Steroids
effect on hypoxic hearts (rat), 157, 580
total, melanotonin and serotonen effects on (rat), 157,
103
Stomach
food intake signals from during long-term food loss
(rat), 157, 430
methylmercury and mercury chloride absorption (rat),
157, 57
stimulation of ornithine decarboxylase by epidermal
growth factor in (mice), 159, 400
Streptococcal endocarditis
dextran formation as virulence factor in rabbits in-
fected by Streptococcus sanguis, 158, 415
Streptococcal pyrogenic exotoxin
ability of antipyretics to reduce fever effect of. 157,
472
ability to enhance endotoxin shock, 157, 472
Streptococcus sanguis
dextran production by, as contributory factor in infect-
tivity in rabbits, 158, 415
Stress
age-dependent sensitivity of TSH secretion in response
to (rats), 157, 144
heat, effect on oxygen consumption in spontaneous
hypertension (rat), 159, 449
Subacute sclerosing panencephalitis (SSPE)
measles virus antigen and antibody, RIA detection in
brain tissue with (human, hamster), 157, 268
Succinate
ionophore A23187-stimulated glucose production from
Ca levels and (rat), 157, 168
Sucrose
effect on buoyant density of scrapie infectivity, 158,
513
Sudden Infant Death Syndrome (SIDS)
viral inhibitor with the properties of interferon in,
157, 378
Sulfate
effect of on ATPase of renal cortex and medulla of
rabbits, 158, 370
Sulfobromophthalein
use in protection against manganese-bilirubin choles-
tasis in rat, 158, 283
Sulfur amino acids
D and L isomers of homocysteine as sources of (chicks).
157, 139
Superoxide dismutase
effect of copper and zinc deficiencies on activity of.
158, 279
in human eosinophils, 158, 537
levels in bovine fetal ductus arteriosus, thoracic aorta
and pulmonary and umbilical arteries, 159, 30
lung, age-related development of antioxidiant defense
systems (rat), 157, 293
Superoxide ion
generation by bovine blood neutrophil, 157, 342
Suramine
qualitative effects on trypanosome infections (mice).
157, 397
Swine
blood volume changes during first week following
birth, 159, 152
distribution of CRF activity and immunoreactive
ACTH in hypothalamic-neurohypophysial complex
of, 158, 421
effect of feeding frequency on body weight and glucose
tolerance in, 157, 528
effect of lithium toxicity on, pregnant dam and off-
spring, 158, 123
Sympathetic cholinergic nerves
as mediator of renal vasodilatation, 158, 462
Sympathetic ganglia
catecholamine content in spontaneously hypertensive
rants, 158, 45
pathetic nerve discharge
relationship to nonbaroreceptor sympathoinhibitory system of the medial medulla, 157, 648
patho-adrenal activity
Tect of pregnancy on in spontaneously hypertensive and normotensive rats, 158, 242
pathoelimination
nonbaroreceptor origin, mediation by neuronal elements (cat), 157, 648
oviparous
bumin from, inhibitory role in activity of β-glucuronidase (human), 159, 403
emic lupus erythematosus
mphatic responses in, 158, 5
etness
' monellin, retention after methylation of e-amino groups of the lysyl residues (fruit), 157, 194

T

tigen
BK virus-transformed rodent cells, 158, 437
hycardia
allowing occlusion of anterior descending coronary artery in rhesus monkey, 158, 135
rine
lease of in perfused rat heart, 157, 486
rocholic acid
plasma disappearance and biliary excretion rate (new-born rat), 157, 66
II, see Transcobalamin II, apo and holol
II-Cbl, see Transcobalamin II-cobalamin
ill
efficiency in mice, role of thymopoeitin, ubiquitin, and synthetic serum thymic factor in restoration of immunocompetence in, 159, 195
modulation of response by cyclic AMP in mixed lymphocyte culture reaction, 158, 590
rs
α, lysozyme, and amylace in, protein-calorie malnutrition effects on (children), 157, 215
choleic acid
taphylococcus aureus mutant deficient in, relationship to susceptibility to lysis, 159, 126
xerapure
Tect of cold on lipolysis in genetically obese mice, 159, 116
fect on pH-dependent transport of p-aminohippurate in rabbit kidney slices, 158, 509
f kidney surface, effect on filtration rate of single nephron (dog), comparison of distal and proximal sites, 159, 428
icular regression
hibition by melatonin implantations in hamsters exposed to short daylengths, 158, 359
sterone
r cardiovascular and hematologic responses to at high altitude (rat), 158, 658
effects of on vasodepressor action of arachidonate, 158, 442
kinetics of cholesterol, protein, and DNA synthesis in ventral prostate of castrated rats, effects of, 159, 1
mechanisms of action of on hemopoiesis in vivo and in diffusion chambers (mice), 157, 184
relationship to protein metabolism during exercise in rat, 158, 622
Testosterone propionate
age-dependent hypothalamic response to administration of in female cesarean-delivered rats, 158, 179
effect on plasma cholesterol and phospholipid levels (rhesus monkey), 157, 231
high dosages of to increase litter production in genetically obese male Zucker rat, 159, 424
suppressive effect of on weight gain in male obese rat, 159, 424
Tetraethylammonium
effect on mesenteric vasoconstrictor escape (cat), 159, 390
Δ⁴-Tetrahydrocannabinol
effect of maturity on immunosuppression by in mice, 158, 350
Tetrahydrocortisosterone
secretion, melatonin and serotonin effects on (rat), 157, 103
THC, see Δ⁴-Tetrahydrocannabinol
Theophylline
dose-dependent effect on ³H-labeled thymidine incorporation in MLC, 158, 590
-enhanced bile salt-independent flow (rat), 157, 306
-induced alterations in bile salt-dependent flow (rat), 157, 306
Thiambutosine
effect on multiplication of Mycobacterium leprae in mouse, 158, 582
Thiamin
deficiency-induced reduction in splenic antibody-forming cells (rat), 157, 421
Thiazolidinone
effect on Mycobacterium leprae infections of mice, 158, 582
Thioacetamide
as causative agent in acute hepatic injury, effect on dietary induction of glucose-6-phosphate dehydrogenase (rat) and levels of cAMP, 159, 148
Thiol
growth-promoting effect of for lymphoma cells, 157, 517
Thiol adds
dults from renal proximal tubules incubated with ethacrynic acid (rabbit), 157, 189
Thrombocyte
level, dextran sulfate-induced decrease in (dog), 157, 301
Thrombocytopoiesis-stimulating factor (TSF)
nutralizing antiserum against from human urine, human plasma, and kidney cell culture, 158, 557
Thrombopoietin
- effect on megakaryocyte size in SI/SI4 mice, 158, 637

Thymectomy
- effect on infection of C3H mice by mouse hepatitis virus, 159, 34

Thymic factor
- synthetic serum, role in restoration of immunocompetence in T cell-deficient mice, 159, 195

Thymidine
- 3H-labeled, effect of hypothalamic extracts on incorporation by anterior pituitary cells of rat monolayer cultures, 158, 471

Thymidine kinase
- activity in normal and zinc-deficient developing embryos (rat), 159, 39

Thymidine phosphorylase
- activity in plasma and ascitic fluid of healthy and tumor-bearing mice and rats, 157, 262

Thymocytes
- migratory pattern in malarial infections (mice), 159, 317

Thymopoietin
- role in restoration of immunocompetence in T cell-deficient mice, 159, 195

Thyroid gland
- effect of adrenalectomy on function of (obese mice), 159, 364

Thyroid hormone
- effect on ploidy of rat liver nuclei, determination by flow cytometry, 158, 63

Thyroid-stimulating hormone (TSH)
- elevation in spontaneously hypertensive rats, 159, 449

secretion, age-dependent sensitivity to stress (rat), 157, 144

stimulation by TRH and inhibition by throxine (rat), 158, 524

Thyroparathyroid complex
- concurrent secretion of calcitonin and parathyroid hormone from, in rat, 158, 299

Thyrotropin (TSH)
- level in amniotic fluid as diagnostic tool for antenatal hypothyroidism (lamb), 157, 106

response to thyrotropin releasing hormone in spontaneously hypertensive rats, 159, 394

Thyrotrophin releasing hormone (TRH)
- as stimulator of prolactin release in vitro, 157, 605

pituitary response to in spontaneously hypertensive rats, 159, 394

transport by cerebrospinal fluid, elevated thyroxine levels and (rat), 157, 134

Thyroxine (T4)
- effect on lipolysis in genetically obese mice, 159, 116

inhibitory effect on TRH-stimulated TSH secretion and cAMP levels (rat), 158, 524

interaction with ethanol, effect on hepatic oxygen consumption (rat), 159, 226

level in amniotic fluid and antenatal diagnostic of cretin lambs, 157, 106

plasma concentration after intraventricular and jugulard TRH (rat), 157, 134

prevention of fetal malformations by (rat), 157, 553

Timolol
- effects as myocardial depressant in unanesthetized atherosclerotic rabbits, 158, 147

Tissue
- IgG, IgA, and IgM synthesis, ontogeny of (mink), 157, 289

T lymphocytes
- depressed population in malarial infections (mice), 159, 317

replication of herpes simplex virus in, 158, 263

Tobacco protein
- nutritional value in diet of weanling male rats, 157, 626

Tolmetin
- effect on furosemide-induced renin release (dog), 159, 180

Tophaceous gout
- hepatic purine enzyme profiles and uric acid overproduction in, 158, 332

Toxicity
- age-dependent lethality after endotoxin injection (old young AKR mice), 157, 424

Toxin
- production by types C and D Clostridium botulinum by phage c-str-induced conversion, 159, 61

Transcobalamin II (TC II)
- apo and holo, competition for uptake of TC II-Chl by lymphocytes and Hela cells, 158, 206

Transcobalamin II-Cobalamin (TC II-Chl)
- uptake process in Hela and lymphocytes, competition between apo TC II and holo TC II, 158, 206

Transferrin
- effect of leukocytic endogenous mediator on plasma levels of (rat), 157, 669

Transformation assay
- for SiSV-1 and HL23V in feline embryo fibroblasts, in vitro, 157, 312

Transmembrane potentials
- in smooth muscle fiber of bovine mesenteric lymphatics, 159, 350

Transmucosal resistance
- β-adrenergic amine effects on (frog), 157, 256

Transplantable tumors
- effect of BSA-anti-BSA complexes on growth of (mice), 157, 511

effect of OA-anti-OA on growth of (mice), 157, 511

TRH, see Thyrotropin releasing hormone

Triiodothyronine (T3)
- level in amniotic fluid and antenatal diagnostic of cretin lambs, 157, 106

serum levels in riboflavin-deficient and diabetic mice, 157, 690

3,3',5'-Triiodothyronine (rT3)
- level in amniotic fluid as diagnostic tool for antenatal hypothyroidism (lamb), 157, 106

Trypanosoma venezuelense
- true and false prophylaxis with antitypanosomal
drugs in trypanosomiasis (mice), 157, 397
psin
\(^{3} \) inhibitor of [\(^{3} \)H]TdR and [\(^{3} \)H]CdR incorporation
into human lymphoma (Ti) cells, 158, 666
psinization
RNA synthesis inhibition by, 158, 666
psin-like inhibitor
quantification in uterus during early gestation
and delayed implantation (mouse), 157, 175
ptophan
enhancement of hepatic protein synthesis previously
stimulated by phenobarbital or cortisone acetate,
158, 245
ptophan oxygenase
hydrocortisone-induced, Sindbis virus infection inhibi-
tion of (mouse), 157, 125
nor cells
\(^{1} \) InOx-labeled, use in determination of cytotoxicity
(mice, rats), 157, 61
northogenesis
ung, role of murine leukemic viruses in suppression
of, induction by diethylaminoamine, 159, 65
nor initiation
enhancement by croton oil, 158, 1
role of DNA replication, 158, 1
nors
steric, susceptibility of germfree rat strains to follow-
ing induction by 1,2-dimethylhydrazine, 158, 89
solution of two types of mucosal cells from urinary
bladder of, 158, 565
seen 80
effect on growth promotion in free-living nematode
(Caenorhabditis briggsae), 158, 187
seen 85
effect on growth promotion in free-living nematode
(Caenorhabditis briggsae), 158, 187
\(^{2} \) kidney Goldblatt hypertension, see Unilateral renal
artery clipping
\(^{3} \) C virus
oninfectious, production of induced in gorilla spleen
cells by Kirsten strain-murine sarcoma virus, 158, 304
osine aminotransferase
ypertcortisone-induced, Sindbis virus infection inhibi-
tion of (mouse), 157, 125
Ulcers
inhibition and activity relationships (rat), 157, 615
Umbilical cord
lymphocytes, sensitivity to infection and transforma-
tion with EBV after cryopreservation, 157, 326
Unilateral renal artery clipping
fluence of cadmium concentration on hypertension-
resistant and hypertension-sensitive Dahl rats,
158, 310
Uninephrectomy
compensatory growth following, changes in collagen
mass, 158, 275
Urate
renal tubular secretion of (sheep), 159, 386
transport, reabsorption, and secretory mechanisms,
effect of pyrazinoic acid on (rat), 159, 16
Urea
distribution kinetics between plasma and erythrocytes
(human), 157, 282
free and bound, kinetics in plasma and erythrocytes
(human), 157, 282
Uric acid
and K0x effects upon hyperuricemia, uricosuria, and
uric aciduria (mouse), 157, 110
overproduction in dystrophic and dystrophic gouty
chickens, 158, 332
Uricosuria
dietary uric acid and potassium oxonate-induced
(mouse), 157, 110
Urinary bladder
turtle, isolation of two types of mucosal cells from,
158, 565
Urinary excretion
of sodium and potassium during maturation (rat pups),
157, 12
Urinary system, see also Kidney; Renal
carbon dioxide tension, various factors influencing
(human), 157, 97
glomerular filtration rate, fluoride-induced decline in
(rat), 157, 44
medullary solute concentration, fluoride-induced de-
crease in (rat), 157, 44
pyrazinoic acid effect on urate transport in (rat), 159, 16
renal artery constriction, arterial pressure response to,
SQ 14,225 effect on (dog), 157, 245
renal blood flow increased after ACE inhibition with
SQ 14,225 (anesthetized dogs), 157, 121
rennal cortical tubules, ionophore A23187 effect on
 gluconeogenesis and cytosolic Ca\(^{++}\) in (rat), 157, 168
renal hypertension
after renal artery constriction and adrenalectomy,
constant steroid therapy effect on (dog), 157, 116
one-kidney, SQ 14,225 angiotensin blockade and
(dog), 157, 245
renal hypertension after ACE inhibition with SQ
14,225 (anesthetized dogs), 157, 121
renal proximal tubules, incubation with ethacrynic
CUMULATIVE SUBJECT INDEX

acid, GHS transferase and thiol adducts from (rabbit), 157, 189
renal vascular resistance
decreased after ACE inhibition
with SQ 14,225 (anesthetized dogs), 157, 121
urinary osmolality, fluoride-induced decrease in (rat), 157, 44

Urinary effects of furosemide diuresis on volume of, 158, 350
flow rate, effect on urinary pCO₂ (human), 157, 97
human, anti-TSF serum from, use in neutralizing bi-
ological activity of TSF, 158, 557

Urogastrone role in mucosal repair and defense, 159, 400

Uronic acid changes in levels of following myocardial infarction
(dog), 158, 210

Uterine estrogen receptor immunological comparison of with α-fetoprotein
(mouse), 157, 594

Uterus effect of angiotensin II on vascular resistance in near-
term sheep, 158, 54
estrogen effect on vasculature, and involvement of
prostaglandins in (rabbit), 159, 25
protein secretions, melengestrol acetate effects on (rabbit),
157, 220
tryptsin-like inhibitor, quantification during early gesta-
tion and delayed transplantation (mouse), 157, 175
Uteroglobin, see Blastokinase

V

Vaccination
initial and revaccination studies with polyvalent pneumo-
occocal polysaccharide vaccines, 157, 148

Vaccine
inactivated hepatitis A virus from marmoset liver, 159,
201
live virus, assessment of risk following isolation of
bacteriophage φψ-1 from, 158, 378

Valine influence of pregnancy and postpartum period on in vitro
incorporation of in oviducal and uterine
protein, 158, 260

Vascular resistance
effect of angiotensin II on in near-term sheep, modu-
latory role of prostaglandins, 158, 54
effect of ouabain on in dog, 158, 161
effects of overproduction of prostaglandins on, 158,
502

Vascular system arteriovenous levels of serum insulin in lactating cows,
159, 394
calcium ionophore A23187 effect on (rat), 159, 353

Vas deferens biphasic concentration-response curve of acetylcholine
in (mouse), 157, 200

Vasoactive drugs
effect on ovarian blood flow in near-term sheep, 158,
105

Vasoactive intestinal peptide
synthetic, dose-dependent inhibition of pentagastrin-
stimulated acid and pepsin secretion (dog), 157, 565

Vasoconstriction
potentiation by tetraethylammonium and inhibition
by manganese (cat), 159, 390

Vasoconstrictor escape
tetraethylammonium and manganese effect on (cat)
159, 390

Vasodilation
estrogen-induced in uterus, effects of prostaglandin
synthetase inhibitors on (rabbit), 159, 25

Vasodilator therapy
effect on lactic acidosis-associated hypotension in dog
158, 426

Vasopressin
analog, determination of plasma half-lives of (rat)
157, 584; 158, 663
tetraethylammonium releasing hormone-induced re-
lease of luteinizing hormone (rat), 159, 444

Vasopressor responses, plasma half-lives from (rat), 157, 584

Ventricular function
in canine endotoxin shock, 157, 610

Vesicular stomatitis virus (VSV)
replication in nonpermissive cells, Shope, fibroma vi-
rus facilitation of (DRK₃ cells), 157, 225

Vinblastine
multinucleation of HeLa cells, region for intact microtubule
spindle formation detected by, 157, 206

Viral infection
alteration of immune indexes following, 158, 326

Virus
cellular transformation by, relationship to ornithine
decarboxylase activity, 159, 142
influenza types A/Victoria and A/New Jersey, human
and nonhuman primate serological response, 159,
414
interferon induced by, kinetics of activation of, 159,
94

Vitamin A
effect of on frequency of cortisone-induced cleft palate
in congenic and inbred mice, 158, 618
role of deficiency on serum complement levels in rat
158, 92

Vitamin D comparison of maternal and fetal metabolism of (rat)
159, 303
effect of doses of on intestinal absorption of calcium
in infant rats, 158, 174

Vitamin D₃ metabolites and analogs of, effect on renal tubular
transport mechanisms (dog), 159, 204
W

Water intake, effect on daily fluctuations of pancreatic polypeptide in plasma (human), 159, 245

Weaning premature, effect on in vivo rates of fatty acid synthesis in lactating mice, 158, 308

West Nile virus
attachment to chick embryo cells, Mg²⁺ requirement for, plaque assay for, 157, 322

Wesselbron virus (WBV)
infection in mice, effect of protein-calorie malnutrition on antiviral function of macrophages against, 159, 84

Woolly monkey lymphocytes, effect of EBV transformation, 157, 489

X

Wound healing
myocardial, changes in composition of glycosaminoglycans during, 158, 210

Xanthine oxidase
inhibition of activity by allopurinol (rat), 157, 541

Z

Zinc deficiency
effect on bone mineralization (rat), 157, 211
effect on thymidine kinase and DNA polymerase activities in developing embryos (rat), 159, 39
effect on red cell membrane stability and superoxide dismutase activity, 158, 279
plasma, effect of human monocyte pyrogen on in rat and rabbits, 158, 32

Statement of ownership, management and circulation required by the Act of October 23, 1962, Section 4369, Title 39, United States Code, of

PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE

Published monthly (except August) by Academic Press, Inc., 111 Fifth Avenue, New York, N.Y. 10003. Number of issues published annually: 11. Editor: M. R. Nocenti, 630 West 168th St., New York, N.Y. 10032. Owned by Society for Experimental Biology and Medicine, 630 West 168th St., New York, N.Y. 10032. Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages, and other securities: None. Paragraphs 2 and 3 include, in cases where the stockholder or security holder appears upon the books of the company as trustee or any other fiduciary relation, the name of the person or corporation for whom such trustee is acting, also the statements in the two paragraphs show the affiant's full knowledge and belief as to the circumstances and conditions under which stockholders and security holders who do not appear upon the books of the company as trustees, hold stock and securities in a capacity other than that of a bona fide owner. Names and addresses of individuals who are stockholders of a corporation which itself is a stockholder of bonds, mortgages or other securities of the publishing corporation have been included in paragraphs 2 and 3 when the interests of such individuals are equivalent to 1 percent or more of the total amount of the stock or securities of the publishing corporation.

Total no. copies printed: average no. copies each issue during preceding 12 months: 7316; single issue nearest to filing date: 7193. Paid circulation (a) to term subscribers by mail, carrier delivery or by other means: average no. copies each issue during preceding 12 months: 6419; single issue nearest to filing date: 6100. (b) Sales through agents, news dealers or otherwise: average no. copies each issue during preceding 12 months: 0; single issue nearest to filing date: 0. Free distribution by mail, carrier delivery, or by other means: average no. copies each issue during preceding 12 months: 164; single issue nearest to filing date: 164. Total no. copies distributed: average no. copies each issue during preceding 12 months: 6853; single issue nearest to filing date: 6264.

(Signed) M. R. Nocenti, Editor
Membership Directory

Society for Experimental Biology & Medicine

630 West 168 Street, New York, N. Y. 10032

1979
that, Herman T., Psychobiology Res Laboratory, Dept
yology, Washington Univ, St Louis, MO 63130
J., Dept of Anatomy, Bowman Gray Sch of Med, n: Forest Univ, Winston-Salem, NC 27103
G., Roswell Park Memorial Inst, 666 Elm St, Jo, NY 14203
Avd B, Haukeland Sykehus, N-5000, Bergen, ay
James N., Dept of Pharm, Univ of North Dakota, d Forks, ND 58202
Emanuel M., Dept of Physiology, Med Coll of nia, PO Box 608, Richmond, VA 23298
ane R., Univ of Pittsburgh, Dept of Medicine, surg, PA 15261
avid F., Dept of Physiology, Univ of Michigan, Ann r, MI 48104
, Robert E., Medical Center, University of Kansas, a City, KS 66103
. J., Dept of Med, SUNY, Downstate Med Ctr, 450 son Ave, Brooklyn, NY 11203
, Hooshang, Dept of Surg, Jackson Memorial Hospital, of Miami Sch of Med, 1700 NW 10th Avenue, Miami, 3152
, Curtis C., Dept of Physiology, Med Coll of Georgia, sta, GA 30902
udth S., Dept of Biochem, Med Coll of Virginia, Box Richmond, VA 23298
ctor P., Medical Dept, Medical Res Ctr, Brook- 1 National Lab, Upton, NY 11973
. Philip K., 9 Chestnut Lane, Woodbridge, CT 06525
amedee, Jr, Hahnemann Medical College, 235 N 15th hiladelphia, PA 19102
, Roy W., Cornell Univ, Med Coll, 1300 York Ave, York, NY 10021
ime J. U., Los Alamos Medical Center, Los Alamos, 75544
Frank W., Dept of Physiology, Univ of Texas Med PO Box 20708, Houston, TX 77025
icholas H., 430 Sandstone Dr, Athens, GA 30605
, Raymond, Dept of Biochemistry & Nutr, Universitywaska, Lincoln, NE 68583
, Neurology Serv, VA Hosp, West Haven, CT , Herbert L., Dept of Pharmacology, Dartmouth Med ge, Hanover, NH 03755
, Aleck, ER Squibb & Sons Inc, PO Box 191, New swick, NJ 08803
e, George R., Dept of Surgery, La State Univ Sch of New Orleans, LA 70112
, Joseph L., Purdue Univ, Sch of Pharmacy, West rette, IN 47907
, Henry, 2663 Tallant Rd, Santa Barbara, CA 93105
, Joseph P., Department of Pharmacology, Medical ge of Virginia, Health Science Division, Richmond, 32901
Adele L., 4 Winding Way, N Caldwell, NJ 07006
, Gerald D., Dept of Vet Physiol & Pharm, School rinary Medicine, Purdue University, West Lafayette, 9007
, Robert J., Univ of Miami Med Sch, PO Box 520875, yne Annex, Miami, FL 33152
, Jacques, Nephrology Div, U of Miami, Sch of Box 520875, Biscayne Annex, Miami, FL 33152
, Cyril Y., Department of Medicine, Tulane Medical 1430 Tulane Avenue, New Orleans, LA 70112
, D. E., Ind Univ Med Sch, Indianapolis, IN 46202
Bowman, Edward R., Department of Pharmacology, Medical College of Virginia, 12th & Clay Streets, Richmond, VA 23298
Beyarsky, Louis L., Dept of Natural Sci, Transylvania Univ, Lexington, KY 40508
Beyarsky, Saul, Washington Univ, Sch of Med, 4960 Audubon Avenue, St Louis, MO 63110
Boy, E. E., Dept Pharm & Toxicology, University of Rochester, 260 Crittenden Blvd, Rochester, NY 14620
Boyd, M. John, Dept of Biological Chem, Hahnemann Med College, 235 N 15th St, Philadelphia, PA 19102
Boyd, William C., Gundersen Clinic Ltd, 1836 South Ave, La Crosse, WI 54601
Beyer, Georgia S., 500 E Rudasill Rd, Tucson, AZ 85704
Betjeman, John W., Chief of Staff, VA Hosp, Newington, CT 06111
Beyta, Edwin J., Preventive Med Sect, Medical Univ of So Carolina, 80 Barre St, Charleston, SC 29401
Brackett, Benjamin G., Sect of Clinical Reprod, Sch of Veterin Med, New Bolton Ctr Rd #1, Kennett Square, PA 19348
Bradford, Reagan Howard, Oklahoma Med Res Found, 825 NE 13th St, Oklahoma City, OK 73104
Brak, S. Gaylen, Dept Microb, Medical College of Virginia, Egyptian Bldg, Richmond, VA 23219
Bradley, Stanley E., 116 Pinehurst Avenue, New York, NY 10033
Braun, Fankowen, Div of Biochem, Physiol & Pharm, Univ of S Dakota Sch of Med, Vermillion, SD 57069
Branch, Roncove Owen, Jr, Bid 10 Rm 3D03, National Inst of Health, Bethesda, MD 20894
Brandt, Pietro O., 3307 Craig Ave, El Paso, TX 79904
Brand, Gerhard K., Dept of Microbiology, 1060 Mayo Mem Bldg, Univ of Minnesota, Minneapolis, MN 55455
Brandt, J. Leonard, Jewish General Hospital, 3755 St Catherine Rd, Montreal, PQ, Canada
Brandi, Richard B., Dept of Biochem, Med Coll of Virginia, Box 727 MCV Station, Richmond, VA 23298
Brannan, E. D., Jr, Dept of Med, Med Coll of Georgia, Augusta, GA 30902
Brande, M. C., 2410 Parkway, Cheverly, MD 20785
Brans, Ralph W., Inst of Marine Biomed Res, 7205 Wrightsville Ave, Wilmington, NC 28401
Breaker, Arthur S., Dept of Chemistry, Bowling Green State Univ, Bowling Green, OH 43402
Brecher, George, Div of Lab Medicine, Univ of Calif Sch of Med, San Francisco, CA 94143
Bredemann, Paul J., Comparative Animal Res Lab, 1299 Bethel Valley Rd, Oak Ridge, TN 37830
Brennan, Michael J., 4811 John R St, Detroit, MI 48201
Brent, Robert L., Dept of Pediatrics, Jefferson Med Coll, 1025 Walnut St, Philadelphia, PA 19107
Breuer, G. J., Dept of Human Genetics, Univ of Michigan Med Sch, M3194 Buhi Bldg, Ann Arbor, MI 48109
Bricker, Neil S., Univ of Calif, Los Angeles, Sch of Med, Inst of Kid Dis, 1000 Veteran's Ave, Los Angeles, CA 90024
Briggs, Arthur H., University of Texas School of Medicine, San Antonio, TX 78229
Briggs, George M., Dept of Nutrition Science, College of Natural Resources, 119 Morgan Hall, Univ of California, Berkeley, CA 94720
Brin, Myron, Dept of Biochem Nutrition, Hoffmann-La Roche Inc, 340 Kingsland Street, Nutley, NJ 07110
Brinkhous, K. M., Dept of Pathology, North Carolina Unv, Chapel Hill, NC 27514
Briscoe, Anne M., Dept of Med, Harlem Hosp Ctr, New York, NY 10037
Brittinger, G., Div of Hematology, Dept of Med, Univ of Essen, Hufelandstrasse 55, 4300 Essen I, Germany
Brockman, R. W., Southern Research Inst, 2000 9th Ave So, Birmingham, AL 35205
Brodky, William, Department of Physiology, Mt Sinai School of Med, 100th St & 5th Ave, New York, NY 10029
Brodsky, Michael J., Dept of Pharmacology, College of Medicine, State Univ of Iowa, Iowa City, IA 52242
Brotzman, S. A., Dept of Microbiol, Boston Univ Sch of Med, 80 E Concord St, Boston, MA 02118
Brooner, Felix, Dept of Oral Biology, Univ of Conn Health Ctr, Farmington, CT 06032
Brooks, Frank Pickering, Dept of Physiology, Hosp of the Univ of PA, 36th and Spruce, Philadelphia, PA 19104
Broome, John D., Dept of Pathology, Downstate Med Ctr, SUNY, 450 Clarkson Ave, Brooklyn, NY 11203
Brooke, Edwin A., Dept of Microbiol, Calif State Univ, Long Beach, CA 90840
Brown, G. O., St Louis Univ Med Sch, 1325 South Grand Boulevard, St Louis, MO 63110
Brown, Arthur, Dept of Microbiol, University of Tennessee, Knoxville, TN 37916
Brown, Elise A., 6811 Nesbitt Pl, McLean, VA 22101
Brown, Elmer B., Medical School, Washington University, St Louis, MO 63110
Brown, Ernest B., Jr, Dept of Physiology, Oral Roberts Univ Med Sch, Tulsa, OK 74102
Brown, George W., The Anchorage, Route 3, Solon, IA 52333
Brown, Harold, Dept of Med Coll of Med, Baylor University, 1200 Moursund Blvd, Houston, TX 77030
Brown, Ivan W., Jr, The Watson Clinic, 1600 Lakeland Hills Blvd, Lakeland, FL 33802
Brownell, George H., Dept of Cell and Molecular Biol, Med Coll of Georgia, Augusta, GA 30902
Browning, Henry C., Texas Med Ctr, PO Box 20068, Houston, TX 77025
Bruner, Dorsey W., New York St Veterinary Coll, Cornell University, Ithaca, NY 14853
Brunner, K. Theodor, Swiss Inst for Experimental Cancer Research, ISREC, CH-1066 E Palinges, Switzerland
Brunzell, John D., Dept Med-Metabolism RG-20, U of Washington, Seattle, WA 98195
Bryer, Morton S., 1070 Park Ave, New York, NY 10028
Bryson, Vernon, Dept of Biochem & Microbiol, Lipman Hall, Cook Coll, Rutgers State Univ, Box 231, New Brunswick, NJ 08903
Buchblinder, William C., 1860 Berkshire Rd, Highland Park, IL 60035
Buckley, Joseph P., Dept of Pharmacology, Coll of Pharmacy, Univ of Houston, Houston, TX 77004
Budy, Ann M., Dept of Genetics, University of Hawaii, 1960 East West Road, Honolulu, HI 96822
Bukantz, S. C., 4940 San Rafael, Tampa, FL 33609
Bumpus, E. Merlin, Clin of Medicine, E 93rd & Euclid, Cleveland, OH 44106
Bunce, G. E., Dept of Biochemistry & Nutrition, Virginia Polytechnic Inst, Blacksburg, VA 24061
Bunde, Carl A., 3738 Donegal Dr, Cincinnati, OH 45236
Bunge, Raymond G., Department of Urology, University Hospital, University of Iowa, Iowa City, IA 52242
Burchenal, Joseph H., Memorial Hosp, 1275 York Ave, New York, NY 10021
Burde, Walter J., 239 Chimney Rock Rd, Houston, TX 77024
Burger, Denis R., Dept of Surgical Res, VA Hosp, Portland, OR 97207
Burkman, Allan M., College of Pharmacy, Ohio State University, Columbus, OH 43210
Burka, Thomas F., Department of Pharm, Univ of Texas Med School, Texas Medical Center, Houston, TX 77025
Burnett, J. W., Dept of Medicine, Univ of Maryland, Lombard & Green Sts, Baltimore, MD 21201
Burns, Charles P., Department of Medicine, University of Iowa Hospital, Iowa City, IA 52242
Burns, John J., Vice Pres for Research, Hoffmann-La Roche Inc, Nutley, NJ 07110
Burroughs, Wise, Dept of Animal Husbandry, Iowa State University, Ames, IA 50010
Busch, Harris, Dept of Pharmacology, Baylor Coll of Medicine, Rm 319D, 1200 Moursund Ave, Houston, TX 77025
Bustad, Leo K., Coll of Vet Med, Washington St Univ, Pullman, WA 99163
Butcher, Brian T., Dept of Med, Tulane Med Ctr, 1700 Perdido St, New Orleans, LA 70112
Butcher, Roy L., Dept Ob & Gyn, West Virginia Univ Med Ctr, Morgantown, WV 26505
Butler, John E., Department of Microbiology, University of Iowa, Iowa City, IA 52242
Butler, Thomas C., Ctr for Res in Pharm & Tox, Univ of NC Sch of Med, Chapel Hill, NC 27514
Butler, W. T., Dept of Microbiology & Med, Baylor College of Medicine, Texas Medical Ctr, Houston, TX 77025
Butterworth, Charles E., Dept of Nutrition, Univ of Alabama Med Sch, Birmingham, AL 35294
Byerly, T. C., 63 Ridge Road, Greenbelt, Washington, MD 20770
Byerum, Richard U., College of Natural Science, Michigan State University, East Lansing, MI 48824
Byers, Sanford Oscar, Harold Brunn Ins, Mt Zion Hosp Med Ctr, POB 7921, San Francisco, CA 94120

Caddell, Joan, Lab 205, St Louis Univ Med School, 1402 S Grand Blvd, St. Louis, MO 63104
Caddapanorpharnai, Pravit, Renal Div, Detroit Gen Hosp, 138 St Antoine, Detroit, MI 48226
Cagen, Robert H., Monell Chem Senses Ctr, Univ of Pa, 330 Market St, Philadelphia, PA 19104
Cahill, George F., Jr, 170 Pilgrim Road, Boston, MA 02215
Calisea, Relda, Breast Tumor Serv Dept, MD Anderson Hospital & Tumor Institute, Houston, TX 77030
Cain, Stephen M., Dept of Med, Univ of Alabama Med Ctr, University Station, Birmingham, AL 35294
Caldwell, P. R., Briggs, Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032
Caldwell, Robert W., Dept of Pharmacology, Univ of Tennessee, Ctr for Hist Sciences, Memphis, TN 38163
Caen, Benjamin, Div of Human Pharmacology, Hahnemann Medical College, 235 North 15th Street, Philadelphia, PA 19102
Callan, Merritt R., 55 Horseshoe Ll, Carmel, IN 46032
Camiens, Merritt N., 1606 Warren Lane, Newport Beach, CA 92660
Campbell, Edmund W., 511 SW 10th St, Suite 414, Portland OR 97205
Campbell, Gilbert S., Department of Surgery, University of Arkansas Medical Center, Little Rock, AR 72201

Jose L., Inst of Metabolism, Velasquez 144, Madrid, Spain

Nancy L., Dept of Nutrition, Univ of California, CA 95616

P. G., Bacteriological Division, USAMRIID, Fort Detrick, MD 21701

Marc, Dept of Pathology, University of Montreal, 604 Case Post 6128, Montreal, PQ, Canada

William F., Pharmacology Department, University nessee, 874 Union Ave, Memphis, TN 38103

John Vito, Dept of Internal Med, Univ of Calif Sch of ian Francisco, CA 94143

Paul T., Dept of Veterinary Science, University of Georgia, Athens, GA 30602

S. B., Dept of Pharmacology, Univ of Tenn Med 874 Union Ave, Memphis, TN 38103

B. J., Jr, Bioresearch Laboratory, University of Ver- 655 Spear Street, South Burlington, VT 05401

James R., Dept of Animal Scis, Washington State Fullman, WA 99163

Warner W., 123 Marian Ave, Glenshaw, PA 15116

William G., Dept of Pathology, School of Med, for Hlth Sciences, Los Angeles, CA 90024

Charles W., Millard Hall 228, University Minn, Min- nisota, MN 55455

Gaspar, Health Sci Center, Univ of Louisville, ille, KY 40201

Guillermo, Dheeser Ftnd Hosp, 1516 Jefferson New Orleans, LA 70121

O. A., Hypertension Research Lab, Henry Ford Hospital, 2790 West Grand Boulevard, Detroit, MI 48202

Lee, Dept of Immunol & Microbiol, Wayne St Univ c, 540 E Canfield, Detroit, MI 48201

Annie Cohen, Department of Medicine, Downstate Hlth Center, State Univ of New York, Brooklyn, NY

Oba R., Inst of Pathology, School of Medicine, Case Reserve Univ, Cleveland, OH 44106

Barry K., Tulane Univ Sch of Med, 1430 Tulane Ave, New Orleans, LA 70112

G. F., 1704 DOE Road, Kalama, WA 98801

Michael J., College of Medicine, University of Neb- 42nd & Dewey, Omaha, NE 68105

Net, J., Yale Arbovirus Res Unit, Dept of Epidemiol Pub Health, 60 College St, New Haven, CT 06510

George W., Dept Rad Biol & Biophysics, Univ of Mich Med & Dentistry, PO Box 287, Rochester, NY

Joseph, Dept of Biology, Univ of Calif, Los Angeles, CA 90024

E., 2011 Southwood Rd, Birmingham, AL 35216

William A., Dept of Bacteriology, Wodruff Bldg, University, Atlanta, GA 30322

Marie M., Dept of Physiology, George Washington 4th Ctr, 2300 I St NW, Washington, DC 20039

Issac, Dept of Physiology, College of Med, Univer- Florida, Gainesville, FL 32601

Donald O., Dept of Medicine, National Naval Med. Bethesda, MD 20014

William, Dept of Internal Medicine, Medical Sch Univer- ty, Ann Arbor, MI 48104

A. H., Physiology/Rm 263 Freeman Bl, Houston, TX 77030

Cate, Thomas R., Dept of Micro & Immunobiol, Baylor Coll of Med, 1200 Moursund, Houston, TX 77030

Cate, Boris, 435 N Roxbury Dr, Beverly Hills, CA 90210

Cave, William T., Dept of Med, 89 Genesse St, Rochester, NY 14611

Cawley, L. P., Dept of Pathology, Wesley Med Res Found, Wichita, KS 67214

Chaffer, R. J., Dept of Ergonomics, University of Califor- nia, Santa Barbara, CA 93106

Chakrabarti, Saroj Kumar, Dept of Pharmacology, University of Montreal, PO Box 6128, Montreal 101, Quebec, Canada

Chalmers, Thomas C., Pres & Dean, Mt. Sinai Med Ctr, Gustave Levy Place, New York, NY 10029

Chan, Peter S., Biological Res Dept, Lederle Labs, Pearl River, NY 10965

Chan, Stephen Wing Chak, Dept Biology SUNY Med Sch, Brockport, NY 14420

Chan, W. Y., Department of Pharmacology, Cornell University Med Coll, New York, NY 10021

Chanana, Arjun D., Brookhaven Natl Lab Med Dept, Upton, NY 11973

Chandler, A. M., Dept of Bioch & Molecular Biology, Univ of OK Hlth Sci Ctr, 800 NE 13th St, Oklahoma City, OK 73190

Chandras, Pradeep, Med Dept, 30 Bell Ave, Upton, NY 11973

Chang, Albert Y., Diabetes & Atherosclerosis Res, Upppin Co, Kalamazoo, MI 49001

Chang, Med L. W., Carbohydrate Nutr Lab, Nutrition Inst, ARS, USDA, Agricultural Res Ctr, East Beltsville, MD 20705

Chang, Robert Shihman, Dept of Med Micro, School of Medicine, Univ of California, Davis, CA 95616

Chang, Tsun, Parke-Davis Co, 2800 Plymouth Rd, Ann Arbor, MI 48106

Channing, Cornelius P., Dept-Physiology, University of Maryland, 660 Redwood Street, Baltimore, MD 21201

Channock, Robert M., 7001 Longwood Drive, Bethesda, MD 20034

Chapman, A. L., Anatomy Department, Medical Center, University of Kansas, Kansas City, KS 66103

Chart, J. J., Geigy Pharmaceutical, Ciba Geigy Corp, Ardsley, NY 10502

Chaudry, I. H., Yale Univ Med Sch, Dept of Surgery, 333 Cedar St, New Haven, CT 06510

Chaucey, Howard H., 30 Falmouth Rd, Wellesley Hills, MA 02181

Charvin, Walter, Dept Biology, Wayne State Univ, Detroit, MI 48202

Chen, K. K., 7975 Hillecrest Road, Indianapolis, IN 46240

Chen, Michael G., Dept of Therapeutic Rad, Yale Univ Sch of Medicine, 333 Cedar Street, New Haven, CT 06510

Chenkin, Theodore, Dept of Biol Psychiatry, New York State Psychiatric Inst, 722 W 168 St, New York, NY 10032

Chenoweth, Maynard B., Chemical Biology Research, Dow Chemical Company, Midland, MI 48640

Chernick, Sidney S., Bldg 10, RM 8D07 NIH, Bethesda, MD 20014

Chernoff, A. I., University of Tennessee, Memorial Res Ctr Library, Alcoa Highway, Knoxville, TN 37901

Cherry, James D., Dept of Pediatrics, UCLA Sch of Med, Los Angeles, CA 90024

Cheriak, R. J., CARL., 1299 Bethel Valley Rd, Oak Ridge, TN 37830

Chien, Shu, Rm 17-454, Lab of Hemorheology, Dept of Physiology P & S, 630 W 168th St, New York, NY 10032

Chiga, Masahiro, Dept Pathol & Oncol, Univ Kansas Med Ctr, Rainbow Blvd at 39th St, Kansas City, KS 66103
Chernoff, Collin F., Lab Environmental Biophysics, Nat'l Inst of Environ Health Sciences, PO Box 12233, Research Triangle Park, NC 27709
Ch'In, John J., Dept Biological Chem, Hahnemann Med Coll, 235 N 15th St, Philadelphia, PA 19102
Chinard, Francis P., Dept of Medicine, Coll of Med & Dent of NJ, 100 Bergen Street, Newark, NJ 07103
Chou, Chung Yih, Dept of Pharm, U of Florida, Med Sch, Gainesville, FL 32610
Chirigu, Michael A., National Cancer Inst, Bldg 37 Rm 10-19, National Inst of Health, Bethesda, MD 20014
Cho, Cheng T., Univ of Kansas Med Ctr, Rainbow Blvd at 39th, Kansas City, KS 66103
Choppin, Paul W., Rockefeller Inst, 66th St & York Ave, New York, NY 10021
Chow, Anthony W., Div Infect Dis, Harbor General Hosp, 1000 W Carson St. Torrance, CA 90410
Christensen, H. D., Dept of Pharm, Univ of Oklahoma Health Sci Ctr, PO Box 26901, Oklahoma City, OK 73190
Christian, C. L., Cornell Univ Med Coll, 535 E 70th St, New York, NY 10021
Christian, John J., Box 24, Starlight, PA 18461
Christie, Nicholas P., Dept of Medicine, The Roosevelt Hospital, 428 W 59th St, New York, NY 10019
Chrysantheopoulos, S. G., VA Hosp 111B4, 921 NE 13 St, Oklahoma City, OK 73104
Chryssanthou, C., Beth Israel Med Ctr, 10 Perlmun Pl, New York, NY 10003
Cho, Jen-Yih, Cardinal Glennon Hosp for Children, 1465 South Grand Blvd, St Louis, MO 63104
Cho, Richard C., Nutrition Lab 151E, VA Hosp, Albany, NY 12208
Chung, Raphael Shing-Kwan, Department of Surgery, Medical Center, University of Iowa, Iowa City, IA 52242
Churchill, P. C., Dept of Physiology, Wayne St Univ Sch of Med, 540 E Canfield, Detroit, MI 48201
Chauld, Joseph G., Neurological Division, St Vincents Hosp, 145 West 11th Street, New York, NY 10011
Chvapil, Milos, Department of Surgery, University of Arizona, Health Sci Ctr, Tucson, AZ 85724
Clauder, B., Inst of Immunology, Univ of Toronto—Med Sci Bldg, Toronto, Ontario, Canada, M5S 1A1
Claman, Hans George, 310 S Seguin, Converse, TX 78109
Clancy, Richard L., University of Kansas Med Ctr, Rainbow Blvd at 39th Street, Kansas City, KS 66103
Clarenburg, Rudolf, Dept of Physiological Sciences, VMS Bldg, Kansas State Univ, Manhattan, KS 66506
Clark, Dale A., USAF SAM/NGP, Brooks AFB, TX 78235
Clark, H. Fred, The Wistar Inst, 36 St & Spruce, Philadelphia, PA 19104
Clark, Irwin, Department of Surgery, New Jersey College of Medicine & Dentistry, Piscataway, NJ 08854
Clark, Jolla B., Department of Pharmacology, Indiana Univ School of Med, 1100 West 10th Street, Indianapolis, IN 46220
Clark, Leland C., Jr, 364 Compton Hills Drive, Cincinnati, OH 45215
Clarke, Donald A., RD 2 Geneva Road, Norwalk, CT 06850
Clarkson, Thomas B., Dept Comparative Med, Bowman Gray Sch of Med, Winston-Salem, NC 27103
Clason, Raymond Adolph, 3440 Parthenon Way, Olympia Field, IL 60461
Claude, Albert, Rue des Champs Elysees 62, 1050 Brussels, Belgium
Claycomb, Wm. C., Dept of Biochem, LSU Sch of Med, 1542 Tulane Ave, New Orleans, LA 70112
Clayton, Frances E., Department of Zoology, University of Arkansas, Fayetteville, AR 72701
Clary, Paul P., Dept Microbiology, U Minnesota Med Sch, 1060 Mayo Box 196, Minneapolis, MN 55455
Cleeland, Roy, Jr, Dept of Chemotherapy, Hoffmann-La Roche Inc, Nutley, NJ 07110
Clifton, James A., Dept of Internal Medicine, State Univ of Iowa, Iowa City, IA 52242
Clifton, Kelly H., Department of Radiology, Medical School, Univ of Wisconsin, Madison, WI 53706
Closed, George H. A., Sears Surg Lab, Boston City Hosp, 81 Harrison Ave, Boston, MA 02118
Chaff, L. E., Johnson Foundation, PO Box 2316, Princeton, NJ 08540
Clyde, Wallace A., Jr, Dept of Pediatrics, Univ of No Carolina School of Medicine, Chapel Hill, NC 27514
Coonan, Jacqueline J., Dept Pathology, 940 NE 11th, Rm 451, U OK. Oklahoma City, OK 73190
Coohman, Kenneth W., Dept of Epidemiology, Univ of Michigan, Ann Arbor, MI 48109
Code, Charles F., CUR-Building 115, Veterans Admin Center, Wiltshire & Sawtelle Blvd, Los Angeles, CA 90073
Colbo, J. B., Anx, U stats, Dr. Clinical Res, Ayerst Labs, 685 Third Ave, New York, NY 10017
Coggin, J. H., Jr, Dept of Microbio, Coll of Med, Univ of S. Alabama, Mobile, AL 36688
Cohen, Alan S., Dept of Med, Evans Mem Univ Hosp, 730 Harrison Ave, Boston, MA 02118
Cohen, Allen B., Chief, Pulmonary Sect, Temple U Hosp, 3401 N Broad St, Phila, PA 19140
Cohen, Arthur J., Apt 1512, 100 Wellesley St, Ontario, Canada M4Y 1H5
Cohen, Bertram I., Dept of Lipid Res, Pub Health Res Inst, 455 First Ave, New York, NY 10016
Cohen, David H., Dept Physiology, U Virginia Med Sch, Charlottesville, VA 22903
Cohen, Herman, Half Acre Rd, Cranbury, NJ 08512
Cohen, Julian J., Univ of Roch Med Sch, Room 4-533, 601 Elmwood Ave, Rochester, NY 14642
Cohen, Louis, Univ of Chicago, 950 E 59th St, Chicago, IL 60637
Cohen, Margo P., Dept of Med, Wayne State Univ Sch Med, 540 East Canfield, Detroit, MI 48201
Cohen, Marlene L., Div of Pharmacological Res, Lilly Res Labs, MC 304, Indianapolis, IN 46206
Cohen, Sheldon G., NIAID—NIH Program, Rm 7A52, Bldg 31, NIH, Bethesda, MD 20014
Cohen, Sidney, Dept of Microbiol, Michael Reese Hosp Med Res Ins, 29th & Ellis Ave, Chicago, IL 60616
Cohn, George, Psychiatric Dept 116C, VA Hospital, West Haven, CT 06516
Cole, Benjamin T., Dept of Biology, Univ of So Carolina, Columbia, SC 29208
Cole, H. H., Dept of Animal Science, University of California, Davis, CA 95616
Coleman, Philip H., Box 847, Medical College of Virginia, HSD—Virginia Commonwealth Un, Richmond, VA 23298
Collings, W. D., Dept of Physiology, Michigan State Univ, East Lansing, MI 48824
Collins, Elliott J., Dept of Endocrinology, Schering Corp, 18 Orange St, Bloomfield, NJ 07003
Collins, R. James, The Upjohn Company, Dept of Pharmacology, 324 Henrietta Street, Kalamazoo, MI 49001
Collins, William F., Jr, School of Medicine, Yale University, 333 Cedar St, New Haven, CT 06510
Colombetti, Lello G., Nuclear Med Dept, Michael Reese Hos and Med Ctr, 2900 Ellis Ave, Chicago, IL 60616
DABLECH, DANIELE, Dept of Biochemistry, Wayne St Univ Coll of Med. 540 East Canfield, Detroit, MI 48201

DA COSTA, ESTHER, 3539 S Hayne, Chicago, IL 60609

DAFNY, NACHUM, Dept Neurobiol, Univ of Texas Med Sch. Houston Medical Ctr, Houston, TX 77025

DAHI, RUSHE MA, Department of Pharmacology, University of Louisville, PO Box 1055, Louisville, KY 40201

DAJANI, ADAM S, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201

DALMASO, A. P., Veterans Admin Hospital, 54th & 48th Ave South, Minneapolis, MN 55417

DAMRON, BOBBY L, Dept of Poultry Sci, U of Florida, 11 Mehrhof Bldg, Gainesville, FL 32611

DANFORTH, D. N., 636 Church St, Evanston, IL 60201

DANIEL, THOMAS M, Dept of Medicine, University Hospitals, Cleveland, OH 44106

DANIELS, JERRY L, Dept of Med, Univ of Texas Med Branch, Galveston, TX 77550

DANNENBERG, ARTHUR M., Johns Hopkins Sch of Hygiene, 615 W Wolfe St, Baltimore, MD 21205

DANNENBURG, WARREN R, AH Robin Co, 1211 Sherwood Ave, Richmond, VA 23220

DANOWSKI, T., Shadyside Hospital, Pittsburgh, PA 15224

DAO, THOMAS L., Dept of Breast Surgery, Roswell Park Memorial Inst. 666 Elm St, Buffalo, NY 14203

DARBY, THOMAS D., Travenol Labs, Inc, 6301 Lincoln Ave, Morton Grove, IL 60053

DAU, B. R., 6717 Hoford La, Springfield, VA 22152

DAULER, WALDENER, 4047 N. Lawler Ave. Chicago, IL 60641

DAVANZO, JOHN P., Dept of Pharm, East Carolina Univ Sch of Med. Greenville, NY 27834

DAVENPORT, HORACE W., Dept of Physiology, 7744 Medical Science II, Univ of Michigan, Ann Arbor, MI 48104

DAVID, JOHN R., Robert B Brigham Hospital, 125 Parker Hill Ave, Boston, MA 02120

DAVIDSON, ISRAEL, 3150 North Lake Shore Dr, Chicago, IL 60657

DAVIDSON, CHARLES S., MIT Clinical Research Ctr, 50 Ames Street, Cambridge, MA 02142

DAVIDSON, IVAN W. P., Dept of Pharmacology, Bowman Gray School of Med, Wake Forest University, Winston-Salem, NC 27103

DAVIS, B. K., Worcester Foundation for Experimental Biology, 222 Maple Avenue, Shrewsbury, MA 01545

DAVIS, GEORGE K., Nutrition Lab, University of Florida, Gainesville, FL 32611

DAVIS, H. A., 16640 Akron, Pacific Palisades, CA 90272

DAVIS, JAMES O., Dept of Physiology, Sch of Medicine, Univ of Missouri, Columbia, MO 65201

DAVIS, JOHN H., Jr, College of Med, Univ of Vermont, Gwin Bldg, Burlington, VT 05401

DAVIS, LARRY D., Dept of Physiology, Univ of Wisconsin. Madison, WI 53706

DAVIS, LLOYD E., Department of Physiology, Colorado State University. Fort Collins, CO 80521

DAVIS, RICHARD B., Hema Div/Coll of Med, University of Nebraska, 42nd and Dewey Avenue. Omaha, NE 68105

DAVIS, RICHARD L., Cajal Lab of Neuropathology, USC/USC Med Ctr, 1200 North State St, Los Angeles, CA 90033

DAVIS, ROBERT, Hahnemann Medical College, 230 No Broad St, Philadelphia, PA 19102

DAWSON, CHRISTOPHER A., Research Service, Wood VA Center. Milwaukee, WI 53193

DAWSON, EARL B., Biloxi Div, Univ of Texas Med Branch. Galveston, TX 77550

DAY, CHARLES E., Diabetes and Atherosclerosis Res. Upjohn Co, Kalamazoo, MI 49001

DAY, PAUL L., 5405 West Cedar Lane, Bethesda, MD 20014

DAYTON, PETER G., Department of Medicine, Emory University. Atlanta, GA 30322

DAYTON, SHERWOOD, Wadsworth Vet Adm Hosp, Los Angeles, CA 90073

DEANE, NORMAN, NY Nephrology Foundation, Manhattan Kidney Center, 40 East 30th Street, New York, NY 10016

DEAVERS, S. I., Dept of Physiology, Baylor Coll of Med, 1200 Moursund Ave, Houston, TX 77030

DE BAKKE, MICHAEL E., Baylor University College of Medicine. 1200 Moursund Ave, Houston, TX 77025

DEBU B, L. E., Dept of Pathology, Univ of Iowa/Coll of Med. 500 Newton Rd, Iowa City, IA 52242

DE BULD ADOLFO, Dept of Pathology, Hotel Dieu Hosp, Kingston, Ont, Canada K7L 3H6

DE CLERQ, ERICK, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium

DE GOVIN, RICHARD L., Dept of Medicine, College of Medicine. University of Iowa, Iowa City, IA 52242

DE GRAFT, A. C., RD 3, Pond Brook Rd, Newtown, CT 1670

DE LABARDS, FREDERICH M., Max v. Pettenkofer Inst, Pettenkoferstr 9A, 8000 Munich 2, Germany

DE GRECO, FRANCESCO, Dept of Res, Northwestern Memorial Hospital, 300 E Chicago Ave, Chicago, IL 60611

DELENBACK, ROBERT J., Dept of Biochem, Fairleigh Dickinson U Dental Sch. 110 Fuller Pl, Hackensack, NJ 07601

DEL RIO, ROBERT T., The Noble Foundation, Inc. Roud, Ardmore, OK 73401

DELUCAS, HECTOR F., Dept of Biochem, Univ of Wisconsin. 430 Henry Mall, Madison, WI 53706

DE MELLO, JOSEPH L., The Salk Inst, Gov't Service Div. P.O. Box 250, SFR, PA 18370

DE MELLO, RAUL FRANCISCO, Lab of Endocrinology, AV Paulista 1919. Sao Paulo, Brazil

DEOSS, LAWRENCE M., Department of Pathology, MS Hershey Medical Center, Pennsylvania State Univ, Hershey, PA 17033
Downey, H. Fred., Cardiopulmonary Inst, PO Box 5999, Dallas, TX 75222
Drake, Miles E., 947 N Main Rd, Vineland, NJ 08360
Dray, Sheldon, Dept of Microbiology, Univ of Ill at the Med Ctr, 835 S Wolcott Ave, Chicago, IL 60612
Dreiling, David A., Mt Sinai Sch of Med, Dept of Surgery, 100th St & Fifth Ave, New York, NY 10029
Drell, Wm, CALBIOCHEM, PO Box 12087, San Diego, CA 92112
Drewinko, Benjamin, Dept of Lab Med, Anderson Hosp & Tumor Inst, 6723 Bertain Ave, Houston, TX 77030
Drill, Victor A., Div of Biol Res. Searle & Co, PO Box 5110, Chicago, IL 60680
Drummond, K. N., Dept of Pediatrics, Children's Hosp, 2300 Tupper St, Montreal, PQ, Canada, H3H 1P8
Dujovne, Carlos A., 3800 Cambridge, Kansas City, KS 66103
Dulin, William E., Dept of Endocrinology, The Upjohn Co, Kalamazoo, MI 49001
Dumm, Mary E., Department of Pathology, CMDNJ Rutgers Medical School, Piscataway, NJ 08854
Dumont, Allan E., School of Med, Dept Surgery, New York University, 550 First Ave, New York, NY 10016
Duncan, Gordon W., Battelle Seattle Res Ctr, 4000 NE 41st, Seattle, WA 98105
Dungan, K. W., Dept of Biological Res, Med Johnson Research Ctr, MJP, Evanston, IN 47721
Dunn, Christopher D., Univ of Tennessee Mem Res Ctr, 1924 Alcoa Hwy, Knoxville, TN 37920
Duquennoy, Rene J., Milwaukee Blood Ctr, 763 N 18 St, Milwaukee, WI 53233
Dustan, Harriet P., Dept CVRTC, Univ of Alabama Med Ctr, Univ Station, Birmingham, AL 35294
Dvornik, Dusan M., Dept of Biochemistry, Ayerst Res Laboratories, 1025 Laurentian Blvd, Montreal, PQ, Canada, H4R 1S6
Dworetzky, Murray, 115 E 61st St, New York, NY 10021
Dych, Walter P., Chief of Sect of Gastroenterology, Scott & White Clinic, 2401 S 31st St, Temple, TX 76501
Dziwatkowski, Dominic, Dept of Oral Biology, Sch of Dentistry, Univ of Michigan, Ann Arbor, MI 48104
Eades, Charles H., Jr, 50 Hillcrest Rd, Mountain Lakes, NJ 07046
Eagle, Harry, Albert Einstein Coll of Med. Eastchester Rd MorrisPkAv, Bronx, NY 10461
Eaton, John W., Dept of Med, Box 480, Mayo Mem Bldg, Univ of Minnesota, Minneapolis, MN 55455
Eaton, R. Philip, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
Ebbe, Shirley, Donner Lab, Univ of California, Berkeley, CA 94720
Ebbs, John N., Dow Chemical Company, PO Box 68511, Indianapolis, IN 46284
Eckert, Edward A., Univ of Mich, Dept of Epidemiology, Ann Arbor, MI 48104
Eckstein, John W., College of Medicine, State Univ of Iowa, Iowa City, IA 52242
Eckstein, Richard W., University Hospitals, Cleveland, OH 44106
Edberg, Stephen C., Montefiore Hosp & Med Ctr, 111E 210 St, New York, NY 10467
Edelman, Chester M., Jr, Albert Einstein Coll of Med, Eastchester Rd & MorrisPk, Bronx, NY 10461
Ederstrom, Hege E., School of Medicine, Univ of North Dakota, Grand Forks, ND 58201
Edgern, Richard A., Medical Dept, A2-280 Syntex Lab Inc, 3401 Hillview Ave, Palo Alto, CA 94304
Edstrom, Ronald D., Dept of Biochem, Univ of Minnesota, 425 Delaware St. SE, 227 Millard Hall, Minneapolis, MN 55455
Edwards, Hardy M., Jr, Graduate School, University of Georgia Graduate Studies Prog, Athens, GA 30601
Eggers, Hans J., Institut Fuer Virologie, Furst Puckler Str 5, 5 Kolin 41, Germany
Eleh, Allen, Res Division, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44106
Elhol, Herbert J., 225 W Rittenhouse Sq (2414), Philadelphia, PA 19103
Elholm, Bernard, Miller Med Mem Voh's Hosp, 2500 Overlook Terr. Madison, WI 53705
Ellicher, Edward, Suite No 712, Severance Med Arts Bldg, Cleveland Heights, OH 44118
Ellicher, Edward R., Sect of Hemotol, Univ of Oklahoma Health Sci Ctr, PO Box 26901, Oklahoma City, OK 73198
Elchwald, Ernest, Dept of Pathology, Univ of Utah Med Ctr, Salt Lake City, UT 84132
Eigelsbach, H., 13 W 13th St, Frederick, MD 21701
Eisenberg, Michael, Box 422, Mayo. University of Minnesota Hospitals, Minneapolis, MN 55455
Eisenstein, A. B., Brooklyn VA Hosp, 800 Polyp Pt, Brooklyn, NY 11209
Eisenstein, Ruben, VA Lakeside Hosp, 333 E Huron St, Chicago, IL 60611
Eisinger, Robert P., Dept of Medicine, Rutgers Medical Sch, Raritan Valley Hospital, Green Brook, NJ 08812
Eknoyan, Garned, Dept of Medicine, Baylor Coll of Med, Houston, TX 77025
Ekstrand, Kenneth E., Dept of Radiology, Bowman Gray Sch of Med, Winston-Salem, NC 27103
El, Ronald J., 11401 Marrcliff Rd, Rockville, MD 20852
Eklinton, J. Russell, Univ of Pa Hosp, 36th & Spruce St. Philadelphia, PA 19104
Ellem, K. A. O., Inst for Med Res, Putnam Memorial Hospital, Dewey Street, Bennington, VT 05201
Ellenberg, Leon, Lederle Labs Div, American Cyanamid Co, Pearl River, NY 10965
Elliot, Howard C., PO Box 8912, Birmingham, AL 35213
Elliot, Joseph R., Dept of Pathology, St Luke's Hospital, Wornall Rd at Forty Fourth, Kansas City, MO 64111
Elliot, William H., Department of Biochemistry, Sch of Med/St Louis Univ, 1402 South Grand Boulevard, St Louis, MO 63104
Ellis, Charles H., 411 Lakeshore Dr, Chapel Hill, NC 27514
Ellis, Fred W., Dept of Pharmacology, Med Sch, Univ of N Carolina, Chapel Hill, NC 27514
Ellis, John T., Dept of Pathology, Cornell Univ Med Coll, 1300 York Ave, New York, NY 10021
Ellis, K. O., Norwich Pharmacal Co, PO Box 191, Norwich, CT 13815
Ellis, LeGrande C., Department of Zoology, Utah State University, Logan, UT 84321
Ellis, Sydney, Dept of Pharm & Toxicol, Univ of Texas Med Branch, Galveston, TX 77550
Ellison, Theodore, 9 Elmwood Rd, White Plains, NY 10605
Finch, Clement A., BB 1229 Health Sciences, Room 10, Univ of
Washington, Seattle, WA 98195
Fine, Donald L., Frederick Cancer Res Ctr, PO Box B, Freder-
ick, MD 21701
Fine, Leon G., Dept of Med, Univ of California Sch Med Ctr
for the Hlth Sci, Los Angeles, CA 90024
Finkgold, Sydney M., Dept of Med Serv, Wadsworth VA Hos-
pital, Los Angeles, CA 90073
Finerty, John C., School of Medicine, Louisiana State Univer-
sity, 1440 Canal St, New Orleans, LA 70112
Fink, Mary Alexander, Natl Institute of Health, Westwood
Bldg 848, Bethesda, MD 20014
Finkel, Asher J., 10314 South Oakley Ave, Chicago, IL 60643
Finkel, Miriam P., Exper Radiation Pathology, Argonne Na-
tional Laboratory, 9700 South Cass Ave, Argonne, IL 60439
Finkelstein, James D., VA Hospital, 50 Irving St NW, Wash-
ington, DC 20422
Finland, Maxwell, Boston City Hospital, Boston, MA 02118
Finlayson, John S., Bureau of Biologies FDA, 8800 Rockville
Pike, Bethesda, MD 20014
Fischel, Edward E., The Bronx Hosp, Bronx, NY 10456
Fishein, William N., Biochem Bureau Room 3001, Armed
Forces Inst Path, Washington, DC 20306
Fischberg, Ella H., 910 Park Ave, New York, NY 10021
Fischel, C. W., 12901 North 30th St, Tampa, FL 33612
Fisher, Edwin R., Director of Labs, Shadyside Hospital,
5230 Centre Avenue, Pittsburgh, PA 15232
Fisher, J. W., Dept of Pharmacology, Tulane Univ Sch of
Med, 1430 Tulane Ave, New Orleans, LA 70112
Fitz, Annette E., Rm E-PE-27, VA Hospital, Iowa City, IA 52240
Flamenco, Walter, Chief of Renal Section, VA Hospital,
150 S Huntington Ave, Boston, MA 02130
Flach, Jerome H., Dept of Pharm Res, Lilly Res Labs,
MC04, Eli Lilly and Co, Indianapolis, IN 46206
Fleming, William W., Dept of Pharmacology, W Virginia
Univ, Morgantown, WV 26505
Fleisch, Bertram, The Cleveland Clinic Foundation, 9500
Euclid Ave, Cleveland, OH 44106
Fletcher, James W., St Louis VA Hosp, 115-JC, St Louis, MO
63125
Fletcher, Mary A., Dept of Med, Univ of Miami Med Sch, PO
Box 320873, Biscayne Anx, Miami, FL 33152
Fletcher, T. Lloyd, Room 408 Eklind Hall, Fred Hutchinson
Cancer Ctr, 1102 Columbia, Seattle, WA 98104
Flick, Donald F., Food & Drug Admin/HEW, 930 South 19th
St, Arlington, VA 22202
Fleidner, Theodor M., Abt fur Klinische Physiol, Zentrum fur
Klin Grundlagen, Univ Ulm, Parkstrasse 10, 11D 7900 Ulm,
Germany
Fink, Edmund, Univ of W Va Med Sch, Morgantown, WV
26505
Beach, CA 90804
Flourney, Day J., 10305 Fawn Canyon Dr, Oklahoma City,
OK 73142
Flynn, R. J., Dept of Biol & Med Res, Argonne National
Laboratory, 9700 South Cass Ave, Argonne, IL 60439
Fox, Pietro P., Dept of Research, Sinai Hosp of Detroit, 6767
W Outer Dr, Detroit, MI 48235
Fogh, Jorgen E., Div of Experimental Biology, Sloan-
Kettering Inst/Cancer Res, 145 Boston Post Rd, Rye, NY
10580
Foglia, V. G., Callao 1695 Piso 12 B, Capital Federal, Buenos
Aires, Argentina
Folds, James D., Dept Bacteria & Immune, Univ of NC, Chapel
Hill, NC 27514
Foley, C. W., Dept—Anatomy & Physiology, Coll of Veter-
inary Med, 4 Vet Sci—Univ Missouri, Columbia, MO 65201
Foley, Edward J., Biological Res Lab, Schering Corp, 40
Orange St, Bloomfield, NJ 07003
Fong, Jack S-C., 390 Glengarry Ave, Mt Royal, Que, Canada
H3R 1A8
Foratt, Ursulade F., Sch of Hyg & Public Hlth, PO Box 8099, U
of Sao Paulo, Sao Paulo SP, Brazil
Forbes, Thomas R., Medical School, Yale Univ, New Haven,
CT 06510
Ford, John J, US Meat Animal Res Ctr, Clay Center, NE
68933
Foreman, Harry H., Ctr for Population Studies, Box 395,
University Hospitals, Minneapolis, MN 55455
Forker, Edson Lee, Dept of Physiol & Biophy, University of
Iowa, Iowa City, IA 52242
Forrest, Irene S., Biochem Research Lab, Menlo Park Divi-
sion, VA Hospital, Palo Alto, CA 94304
Forsham, Peter R., Univ of Calif Sch of Med, San Francisco,
CA 94143
Forsyth, Ben R., College of Medicine, University of Vermont,
Burlington, VT 05401
Fortier, Claude, Physiologie Dept—Fac de Med, Universite
Laval, Quebec, G1K 7P4 Canada
Fournire, Gary J., USDA, ARS, Human Nutr Lab, 2420 Sec-
ond Ave, North, Box 7166 Univ Sta, Grand Forks, ND
58201
Fos, Donald C., Bioresearch Lab, Univ of Vermont, 635
Spear St, Burlington, VT 05401
Foster, John W., Center for Disease Control, VDBR, Tre-
ponematoses Section, 1600 Clifton Rd, Atlanta, GA 30333
Fouilkes, E. C., Dept of Environmental Health, Univ Cincin-
atti Coll of Med. Eden and Bethesda Ave, Cincinnati, OH
45267
Fotsis, James R., Pharmacology Br, Natl Inst of Environmen-
tal Health Science, Box 12233, Res Triangle Park, NC 27709
Fowkes, William L., Dept of Ophthalmology, Box 387 Mayo
Building, Univ of Minnesota, Minneapolis, MN 55455
Fox, Clement A., Wayne State University School of Medicine,
Detroit, MI 48201
Fox, Irwin, Univ of Minnesota, 424 Millard Hall, Minneapolis,
MN 55455
Fox, John P., Dept of Epidemiology, SC 36, University of
Washington, Seattle, WA 98195
Fox, M. R. S., Div of Nutrition, Food & Drug Admin, Wash-
ington, DC 20204
Fox, Richard R., The Jackson Lab, Bar Harbor, ME 04669
Francis, F. E., Apartment D902, 40 Plaza Square, St Louis,
MO 63103
Frank, Howard A., 319 Longwood Ave, Boston, MA 02115
Frankel, Harry M., Department of Physiology, Rutgers Col-
lege, New Brunswick, NJ 08903
Frankel, Jack, Dept of Med Micro, College of Med, Univ of
Fla, 12901 N 30th St, Tampa, FL 33566
Franko, Bernard V., AH Robins Co Inc, 1211 Sherwood Ave,
Richmond, VA 23220
Fratall, Victor P., NCS/BF/FDA (HFF-200) 200 C St, SW,
Washington, DC 20204
Frazier, Loy W., Jr, Dept of Physiol, Baylor Coll of Dentistry,
3302 Gaston Ave, Dallas, TX 75246
Free, A. H., Res Lab, Miles Labs Inc, Elkhart, IN 46514
Freedland, Richard A., PSEM, Sch of Veterinary Med, Univ
of Calif, Davis, CA 95616
Friedman, Henry H., Bio-Medical Research, ICI United
States, Wilmington, DE 19897
Larson, Robert E., Dept of Pharm & Toxic, Sch of Pharmacy, Oregon State Univ, Corvallis, OR 97331
Laskin, Daniel M., Dept of Oral Maxillofac Surg, Un of Ill Coll of Dentistry, 801 S Paulina, Chicago, IL 60607
Lathers, Claire, Med. Coll. of Penn, 3300 Henry Ave, Philadelphia, PA 19129
Lauber, Jean K., Dept of Zoology, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada
Lauffer, Max A., Jr, Univ of Pittsburgh, Pittsburgh, PA 15213
Laussu, Henry D., Leather Hill Rd, Wingdale, NY 12594
Laute, Carl J., Bldg 10, Rm 3D-04, Lab of Neurochemistry, NINCDS, NIH, Bethesda, MD 20014
La Via, Mariano, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
Law, Lloyd W., Laboratory of Biology, National Cancer Inst, Bethesda, MD 20014
Lawrence, A. M., Assoc Chf Staff for Educ, Box 455, Veterans Admin Hospital, Hines, IL 60141
Lawrence, Addison Lee, Department of Biology, University of Houston, Houston, TX 77004
Lawrence, H. Sherwood, NYU Coll of Med, 550 First Ave, New York, NY 10016
Lawson, David M., Dept of Physiology, Wayne St Univ Med Sch, 540 E Canfield Ave, Detroit, MI 48201
Layton, Jack M., Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ 85724
Layton, Laurence L., Western Regional Res Lab, 800 Buchanan St, Albany, CA 94706
Lenders, Floyd E., Jr, Pennwalt Corporation, Pharmaceutical Division, 735 Jefferson Road, Rochester, NY 14623
Le Blanc, Jacques A., Ecole de Medicine, Univ Laval, Quebec, PQ, Canada, G1K 7P4
Le Blond, Charles P., Dept of Anatomy, McGill University, PO Box 6070—Station A, Montreal, Quebec, H3C 3G1 Canada
Le Brie, Stephen J., Ohio State University College of Medicine, Columbus, OH 43210
Lee, Cheng Chun, Pharmacology & Toxicology, Midwest Reserach Institute 425 Volker Boulevard, Kansas City, MO 64110
Lee, George, NIH, Bldg 4, Rm B1-35, Bethesda, MD 20014
Lee, J. S., Dept of Physiology, Univ of Minn Med Sch, Minneapolis, MN 55455
Lee, Melvin, School of Home Economics, Univ of British Columbia. Vancouver, British Columbia, V6T 1W5 Canada
Lee, Robert, JOHP, 16 Hawthorne Dr, Hawthorne Woods, IL 60047
Lee, Stanley L., Downstate Med Ctr, Box 12A, 450 Clarkson Ave, Brooklyn, NY 11203
Lee, Y. Chul, Roche, 3420 Belden Drive, Minneapolis, MN 55418
Leese, Chester E., 704 Butternut St NW, Washington, DC 20012
Leey, C. M., NJ College of Medicine, 100 Bergen St, Newark, NJ 07103
Lefer, Allan M., Department of Physiology, Jefferson Medical College, 1020 Locust St, Philadelphia, PA 19107
Le Freel, M. E., Brookhaven Natl Lab, Dept of Med, Upton, NY 11973
LeFkowitz, S. S., Dept of Microbiology, Texas Techn Sch of Med, Lubbock, TX 79409
Lehman, R. A., Ophthalmos Div, Ayerst Labs, 685 Third Ave, New York, NY 10017
Levy, David, New York Medical College, BSB Rm 514, Valhalla, NY 10595
Lehrer, Samuel B., 1700 Perdido St, New Orleans, LA 70112
Lein, Allen, Sch of Med, Univ of Cal, San Diego, La Jolla, CA 92093
Lein, Joseph, Painless Inc, PO Box 81, Fayetteville, NY 13066
Leonard, Paul, Institute of Microbiology, PO Box 100, Laval-des-Rapides, PQ, Canada, H7N 423
Leopold, Claude, Nail Heart & Lung Inst, Bldg 31 Rm 5A 29, Natl Inst of Health, Bethesda, MD 20014
Lennette, Edwin H., Viral & Rickettsial Dis Lab, Cal State Dept of Publ Hlth, 2151 Berkeley Way, Berkeley, CA 94704
Leon, Arthur S., Lab of Physiological Hygiene, School of Public Health, University of Minnesota, Minneapolis, MN 55455
Leonards, Jack R., 2665 East Overlook, Cleveland Heights, OH 44110
Lepow, Irving H., Health Center, University of Conn, Farmington, CT 06032
LeQuire, V. S., Dept of Pathology, Vanderbilt Univ Med Sch, Nashville, TN 37230
Lerner, A. Martin, Wayne State University, Dept of Medicine, 1400 Chrysler Freeway, Detroit, MI 48207
Lerner, Leonard J., Dept Pharmacol, Thomas Jefferson Univ, Jefferson Alumni Hall, Rm. 349, 1020 Locust St, Philadelphia, PA 19107
Lerner, Robert Gibbs, New York Med Coll, 1249 Fifth Ave, New York, NY 10029
Le Roy, E. Carville, Div of Rheumatology & Immunology, Med Univ of SC, 171 Ashley Ave, Charleston, SC 29401
Leskowitz, Sidney, Dept of Pathology, Tufts Univ Sch of Med, 136 Harrison Ave, Boston, MA 02111
Lesker, Milton A., Dept of Physiology, Ohio State Univ, 1645 Neil Ave, Columbus, OH 43210
Leu, Richard W., The Noble Foundation Inc, Route 1, Ardmore, OK 73401
Levren, Harry H., Brooklyn Veterans Hospital, 900 Poly Place, Brooklyn, NY 11209
Levelle, Gilbert A., Dept of Food Science & Human Nutrition, Fd Sci Bldg, Michigan State University, East Lansing, MI 48824
Levere, Richard B., Dept of Medicine, NY Med Coll, Valhalla, NY 10595
Levy, G. S., Dept of Med, Univ of Miami School of Medicine, PO Box 875, Biscayne Annex, Miami, FL 33152
Levin, Jack, Blalock 1002, The Johns Hopkins Hosp, Baltimore, MD 21205
Levin, William C., Medical School, University of Texas, Galveston, TX 77550
Levine, Milton, 116 So Medio Dr, Los Angeles, CA 90049
Levine, Philip, Ortho Res Foundation, Raritan, NJ 08869
Levine, S., Dept of Microbiology, Wayne St Univ Sch of Med, 540 East Canfield, Detroit, MI 48201
Levine, Seymour, 147 Wood Rd, Engelwood Cliffs, NJ 07632
Levy, Barnett M., Univ of Texas Dental Branch, PO Box 20068, Houston, TX 77025
Levy, David A., Dept Radiological Sci, John Hopkins Univ, Sch Hygiene & Publ Health, Baltimore, MD 21205
Levy, Gerhard, Sch of Pharmacy, H 547 Cook-Cochetetter Complex, SUNY, Amherst, NY 14260
Levy, Hilton B., Lab of Infectious Diseases, Natl Inst of Health, Bethesda, MD 20014
Levy, Joseph V., Insts of Medical Sciences, Heart Research Inst, PO Box 7999, San Francisco, CA 94120
MINNEAPOLIS, Minn., Oct. 6. - Dr. John A. Johnson, 51, of the Mayo Clinic, died today after a long illness.

Dr. Johnson, who was born in 1882, was a leading figure in the field of medicine and was widely respected for his contributions to the study of tuberculosis.

He is survived by his wife, Dr. Sarah Johnson, and a number of other family members.

Services will be held in the Mayo Clinic, with burial at a later date.

MORRIS, Minn., Oct. 5. - A leading physician in the area, Dr. John A. Johnson, 51, died today.

Dr. Johnson, who was born in 1882, was a pioneer in the development of modern medicine and was widely respected for his contributions to the field.

He is survived by his wife, Dr. Sarah Johnson, and a number of other family members.

Services will be held in the Mayo Clinic, with burial at a later date.

MORRIS, Minn., Oct. 4. - A leading physician in the area, Dr. John A. Johnson, 51, died today.

Dr. Johnson, who was born in 1882, was a pioneer in the development of modern medicine and was widely respected for his contributions to the field.

He is survived by his wife, Dr. Sarah Johnson, and a number of other family members.

Services will be held in the Mayo Clinic, with burial at a later date.

MORRIS, Minn., Oct. 3. - A leading physician in the area, Dr. John A. Johnson, 51, died today.

Dr. Johnson, who was born in 1882, was a pioneer in the development of modern medicine and was widely respected for his contributions to the field.

He is survived by his wife, Dr. Sarah Johnson, and a number of other family members.

Services will be held in the Mayo Clinic, with burial at a later date.
Poncy, Leon, Dept of Nutrition. Food and Drug Admin Dept H EW HFF 268, 200 C Street SW, Washington, DC 20204
Prudden, John F., 57 E 73 St, New York, NY 10021
Pruyn, T. P., McNeil Lab Inc, Camp Hill Rd, Fort Washington, PA 19034
Pullman, Theodore N., 5407 Greenwood Ave. Chicago, IL 60615
Punchett, Jules, 320 E North Ave, Pittsburgh, PA 15212
Punkin, Elena G., Hematology Div Montefiore Hosp and Med Ctr, 111 E 210 St, Bronx, NY 10467
Quadd, S. Kaleem, Dept Anatomy-Physiology. Kansas State Univ, Manhattan, KA 66506
Quay, W. B., Dept. Anatomy U Texas Med Br, Galveston, TX 77550
Queen, Sherry I. F., VA Hosp, 1481 W 10 St, Indianapolis, IN 46202
Quevedo, Walter C., Jr, Div of Biological & Medical Sciences, Brown University, Providence, RI 02912
Quile, Paul G., Univ of Minnesota Hospital, Minneapolis, MN 55455
Rabili, Jamshid, Dept Physio, Nelson Biologi Labs, Rutgers Univ, Piscataway, NJ 08854
Rabinovitch, Michael, Dept of Cell Biology, NYU School of Medicine, 550 First Ave, New York, NY 10016
Rabinovitz, Marco, Bldg 37, Rm GB-05, National Cancer Institute, Bethesda, MD 20014
Rabinovitz, J. L., Radiosotope Service, Veterans Adm Service, 40th & Spruce Streets, Philadelphia, PA 19104
Rabson, Alan S., Natl Cancer Inst, Bldg 10, National Inst of Health, Bethesda, MD 20014
Radda, G., Dept of Physiology, Bangalore Univ, Bangalore 560001, Karnataka, Stale, India
Raddhakrishnamurthy, B., Dept of Med, Louisiana State Univ Sch Med, 1542 Tulane Ave, New Orleans, LA 70112
Rahn, Hermann, Dept of Physiology, Univ of Buffalo Sch of Med, 3435 Main St, Buffalo, NY 14214
Rai, Kantil R., Long Island Jewish—Hillside Med Ctr, New Hyde Park, NY 11040
Rajam, P. C., Box 363 A, RFD #1, Easthampton, MA 01027
Rakita, Louis, Dept of Medicine, Cleveland City Hospital, 3395 Scramton Rd, Cleveland, OH 44109
Rakoff, A. E., Dept of Ob, Gyn, Jefferson Med College, Philadelphia, PA 19107
Rai, David P., Natl Inst of Envi Health Sciences, NIH Research, Triangle Park, NC 27709
Rahston, H. J., School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115
Ram, J. Sri, Room 206 Westwood Bldg. NIH 4/425, Bethesda, MD 20014
Ramaley, Judith A., Dept Physiol & Biophysics. Univ Nebraska Medical Ctr. Omaha, NE 68105
Ramirez, Victor D., Physiol and Biophysics, University of Illinois, 524 Burrill Hall, Champaign, Urbana, IL 61801
Ramp, Warren K., Dental Research Ctr. Univ of North Carolina, Chapel Hill, NC 27514
Rampone, Alfred J., Medical Sch. Univ of Oregon, 3181 SW Sam Jackson Pk Rd, Portland, OR 97201
Ramsey, Allan G., Dept of Medicine, Mary Imogene Bassett Hosp, Cooperstown, NY 13326
Suri, E., 530 E 72nd St, New York, NY 10021
Michael B., Univ of Calif at San Diego Sch of Med, 2129 Med & Comm Med, La Jolla, CA 92037
Thomas K., Toxicol Center, Department of Pharm, University of Iowa Med Sch, Iowa City, IA 52242
Ray L., Department of Animal Husbandry & Nutri-
University of Florida, Gainesville, FL 32611
L. W., Gerontology Res Ctr, Baltimore City Hospital, Orion, MI 48392
Richard L., Dept of Physiol & Biophysics, Univ of Chicago, Univ Station, Birmingham, AL 35294
William, Department of Surgery, Harbor General Hospi-
al, 1000 West Carson, Torrance, CA 90509
Roy G., Mayo Clinic & Foundation, Rochester, MN

Philipppe, Eppley Inst for Cancer Res, University of sk, 42nd and Dewey Ave, Omaha, NE 68105
Sidney, Dept of Microbiology, New York Med Col-
view York, NY 10029
y, Herschel, Department of Pathology, University of Florida College of Medicine, Tampa, FL 33620
Robert W., Div of Virology, ICN Nucleic Acid Res
727 Campus Dr, Irvine, CA 92664
enjamin V., Dept of Pathology, Med School, Univ of n, Portland, OR 97201
Edward, Dept of Radiology, Vanderbilt Univ, nile, TN 37232
Marion J., Dept of Physiol, Jefferson Med Coll, 1020 t St, Philadelphia, PA 19107
Michael, Department of Microbiology, School of ine, University of Miami, Miami, FL 33152
elvin R., Biology Dept, Battelle Northwest, Richland, JS52 william, Beth Israel Hospital, 330 Brookline Avenue, 1, MA 02215
Queens Hosp Ctr, 82-68 164th St, Jamaica, NY
n, Myron S., Dental Res Ctr, Sch of Dentistry, Univ
Carolina, Chapel Hill, NC 27514
in, Emmanuel, Dept of Medicine, SUNY Downstate
505 Clarkson Avenue, Brooklyn, NY 11203
ne, Leon M., Div of Cardiology, Univ of Iowa Coll of rgy, Iowa City, IA 52242
Jouannoise, Nicole, Biochem Dept, Ayerst Res Labs, Laurentien St, Laurent, Quebec, H4P 1J6
a, Florindo A., Dept of Surgery, The Miriam Hospital, mmitt Ave, Providence, RI 02906
Benjamin, Suite 1200, 6200 Wilshire Blvd, Los a, CA 90048
David J., 4960 Audubon Avenue, St Louis, MO
n, Richard L., Univ of Minnesota Hosp, Univ of Min-
Med School, Box 185, Minneapolis, MN 55455
sa, VA Hospital 111C1, 54 St & 48 Ave S, Min-
iss, MN 55417
Charles F., Agricultural Experimental Sta, Univ of a, Gainesville, FL 32601
American Medical Assn, 553 No Dearborn Street, po, IL 60610
Leon, Univ of Minnesota, 18-104 Health Sci Bldg A, apolis, MN 55455
Marean, Dept Anatomy, Sch of Med, Case Western re U
2190 Adelbert Rd, Cleveland, OH 44106
Dharm Vir, 12019 Cheviot Dr, Herndon, VA 22070
Singer, Maanjit, Gastroenterology Res Labs, VA Hosp FHD, Augusta, GA 30909
Sinha, Y. N., Scripps Clinic, 476 Prospect St, La Jolla, CA 92037
Superstein, Marvin D., Chief Metab Sect Med Service, VA Hospital, 4150 Clement, San Francisco, CA 94121
Sirilutla, S., Dept of Microb, Mahidol Univ, Faculty of Sci, Rama VI Rd, Bangkok, Thailand
Siroti, Jonas H., 60 N 13th St, San Jose, CA 95112
Skaidreg, Gregory W., Cornell Univ Med Sch, 1300 York Ave, New York, NY 10021
Siz, Erich W., Dept of Microbiology, Univ of Iowa, Iowa City, IA 52242
Sjoerdama, Albert, Merrill Natl Labs, 110 E Amity Rd, Cin-
cinnati, OH 45215
Skelton, Frederick S., Dept of Pharm, Fac of Med, Univ of Montreal, Montreal, Quebec, Canada H3C 3J7
Skinner, N. S., Jr, Dept of Medicine, Bowman Gray Sch of Med, Wakeforest University, Winston-Salem, NC 27103
Skipper, Howard E., Southern Research Inst, Birmingham, AL 35205
Skoyerna, Stanley C., McGill University, Montreal, Quebec, Canada
Skultety, F. Miles, Dept of Surgery, Univ of Neb Coll of Med, 42nd St & Dewey Ave, Omaha, NE 68105
Sladek, N. E., Dept of Pharm, Univ of Minn Med Sch, Min-
neapolis, MN 55455
Suga, Thomas J., Cancer & Tox Program, Biol Div, PO Box Y, Oak Ridge Natl Lab, Oak Ridge, TN 37830
Slatter, Irvin H., Dept of Pharmacology, Eli Lilly Res Labs, Indianapolis, IN 46207
Slavik, Harold C., Gerontology Biochem 321, Univ of Southern Calif, Los Angeles, CA 90007
Sleeman, H. Kenneth, Div of Biochemistry, Walter Reed Army Inst Res, Washington, DC 20012
Smith, Arthur Hamilton, Dept of Animal Physiology, Univ of California, Davis, CA 95616
Smith, Carl C., Dept of Environ Health, Kettering Lab, Univ of Cin Med Center, 3223 Eden, Cincinnati, OH 45267
Smith, Carol A., Montefiore Hosp, 111 E 210 St, Bronx, NY 10467
Smith, Charles W., Dept of Physiology, Ohio St Univ Coll of Med, Columbus, OH 43210
Smith, Donn L., College of Medicine, Univ of So Florida, Tampa, FL 33620
Smith, Edwin L., Dental Branch, Univ of Texas, PO Box 20068, Houston, TX 77025
Smith, Ian Maclean, 915 Oakcrest, Apt. 2, Iowa City, IA 52240
Smith, J. Graham, Jr, Department of Dermatology, Medical College of Georgia, Augusta, GA 30902
Smith, J. J., Dept of Physiology, Sch of Med, Marquette Univ,
Milwaukee, WI 53233
Smith, Joseph E., Department of Pathology, Sch of Med, Ball State University, Indianapolis, IN 46222
Smith, Kendall Q., Dept of Microbiology, Univ of Texas Med Sch at San Antonio, San Antonio, TX 78229
Smith, Lawton H., Biology Div, Oak Ridge Natl Lab, PO Box Y, Oak Ridge, TN 37830
Smith, Leonard C., Dept of Chemistry, Indiana State University, Terre Haute, IN 47809
Smith, N. Ty, Dept of Anaesthesia, Veterans Adm Hosp, 3350 La Jolla Village Dr, San Diego, CA 92161
Smith, Q. T., Div of Oral Biology, Univ of Minn Sch of Dent, 17-226C Health Sciences Unit A, Minneapolis, MN 55455
Westfeld, W. W., Dept Biochemistry, Syracuse Univ Med School, Syracuse, NY 13210

Westerman, Maxwell P., Dept of Med, Mt Sinai Hosp, 15th & California Ave, Chicago, IL 60608

Westfall, Thomas C., Dept of Pharmacology, School of Med, Univ of Virginia, Charlottesville, VA 22904

Westmoreland, Nelson P., Dept Anatomy, Colorado St Univ, Fort Collins, CO 80523

Westphal, Ulrich, Dept of Biochemistry, Univ Louisville Sch Med, Health Sciences Center, Louisville, KY 40201

Wexler, B. C., May Inst for Med Res, 421 Ridgeway Ave, Cincinnati, OH 45229

Whalen, William J., Director of Research, St Vincent Charity Hosp, 2351 East 22nd Street, Cleveland, OH 44115

Wheeler, Clayton E., Univ of North Carolina, Division of Dermatology, North Carolina Mem Hospital, Chapel Hill, NC 27514

Wheeler, Henry, Dept of Med, Univ Hosp, 225 W Dickinson St, San Diego, CA 92103

Wheelock, E. Frederick, Dept of Microbiology, Jefferson Med College, Thos Jefferson Univ, Philadelphia, PA 19107

White, Abraham, 580 Asraruder Road, Apt 507, Palo Alto, CA 94306

White, Alan G. C., Biology Dept, Virginia Military Institute, Lexington, VA 24450

White, Clayton S., Oklahoma Med & Rsch Found, 825 Northeasteenth St, Oklahoma City, OK 73104

White, Gary L., Vet Med Unit 151B, VA Hosp, 921 NE 13 St, Oklahoma City, OK 73104

White, Thomas T., Dept of Surgery, Sch of Med, Univ of Washington, RF-25, University of Washington, Seattle, WA 98195

Whitehair, C. K., Dept of Pathology, A52613 Fee Hall, Michigan State University, East Lansing, MI 48824

Whitehorn, William V., 13612 Sherwood Forest Dr, Silver Spring, MD 20904

Whitehouse, Frank, Dept of Microbiology, 5818 Med Sci Bldg II, The University of Michigan, Ann Arbor, MI 48109

Whitford, Gary M., Dept of Oral Biol-Physiol, Med Coll of Georgia, Augusta, GA 30902

Whitemore, Carrie E., Microbiological Associates, 5221 River Rd, Bethesda, MD 20016

Whitney, John E., University of Arkansas School of Medicine, Little Rock, AR 72201

Whitney, Albert J., Department of Research, Sinai Hospital of Detroit, 6767 West Outer Drive, Detroit, MI 48235

Wiegman, David L., Dalton Res Ctr, Univ of Missouri, Research Park, Columbia, MO 65201

Wienker, S. L., Chairman, Dept of Med, East Tennessee St Coll of Med, Johnson City, TN 37601

Wiese, Alvin C., Dept Bact & Bioch, Ag Sci Bld, University of Idaho, Moscow, ID 83843

Wigodsky, Herman S., 420 E Houston, San Antonio, TX 78205

Wilkinson, Brian J., Dept Med, Mayo Mem Bldg, Box 52, U Minnesota, Minneapolis, MN 55455

Wilkinson, David S., 4113 Tulare Dr, Silver Springs, MD 20906

Wilkoff, L. J., Dept of Chemotherapy, Southern Research Inst, 2000 9th Ave So, Birmingham, AL 35205

Williams, David D., 18312 Roberta Circle, Huntington Beach, CA 92646

Williams, Gary M., Chief, Div of Exp Pathology, Naylor Dana Inst, Valhalla, NY 10595

Williams, Gerald Albert, VA West Side Hospital MP 115, 820 S Damen Ave, Chicago, IL 60680

Williams, John Andrew, Dept of Physiol, Rm S762, Univ of Calif, San Francisco, CA 94143

Williams, Mary A., Dept of Nutritional Sciences, U of Calif, 119 Morgan Hall, Berkeley, CA 94720

Williams, Ralph C., Department of Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87106

Williams, Robert H., Dept of Med, Univ of Washington, Univ Hosp, Seattle, WA 98105

Williams, Roger J., Univ of Texas, Austin, TX 78712

Williams, T. Franklin, Monroe Cnty Hosp, 435 E Henrietta Rd, Rochester, NY 14607

Williams, W. L., Department of Anatomy, University of Mississippi Medical Center, Jackson, MS 39216

Williamson, Harold E., Dept of Pharmacology, State Univ of Iowa, Iowa City, IA 52242

Wills, W. D., Marine Bio Institute, 200 University Blvd, Galveston, TX 77550

Wills, J. H., 9706 Bellevue Dr, Bethesda, MD 20014

Wilson, Donald E., Dept Medicine, U Illinois, AISM, 840 S Wood St, Chicago, IL 60612

Wilson, Henry R., Poultry Science Dept, University of Florida, Gainesville, FL 32611

Wilson, Jean, Southwestern Med Sch, Dallas, TX 75235

Wilson, Joe Bransford, Dept of Bacteriology, Univ of Wisconsin, Madison, WI 53706

Wilson, M. F., Assoc Chief of Staff, Research, VA Hospital, 921 NE 13 St, Oklahoma City, OK 73104

Wilson, Merlin R., Sect Allergy & Immunology, Tulane Med Ctr, 1700 Perdido St, New Orleans, LA 70112

Wilson, Raphael, Univ of Portland, 5000 N Willamette Blvd, Portland, OR 97203

Wilson, Russell H., 6218 Walnut Hill Lane, Dallas, TX 75230

Wischelha, Hary S., Medi-Physics Inc. 5855 Christie Ave. Emervilye, CA 94608

Windhager, E. E., Dept Physiology, Cornell U Med Sch, 130 York Ave, New York, NY 10021

Winet, Howard, Physiology Dept, Southern Illinois University, Carbondale, IL 62901

Wingo, William J., Dept of Biochemistry, Medical College, University of Alabama, Birmingham, AL 35294

Winick, Myron, Inst of Human Nutr, Columbia Univ Coll of P & S, 701 W 168 St, New York, NY 10032

Winters, Wendell, Dept Microbiol, Univ of Texas, HSC, 7703 Floyd Curl Dr, San Antonio, TX 78284

Wiseman, Charles L., Jr, Dept of Microbiology, Howard Hall, Univ of Md, Rm 345, 660 W Redwood St, Baltimore, MD 21201

Wiasler, Robert, Dept of Pathol, Univ of Chicago, Chicago, IL 60637

Witolsch, Raphael J., Med Coll of Va, Va Commonwealth Univ, Box 608 MCV Station, Richmond, VA 23298

Witschi, Hanspeter R., Department of Pharmacology, Universit of Montreal, Montreal, Quebec, Canada, H3C 3J7

Witte, C. L., Department of Surgery, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ 85724

Witte, Marlys Hearts, Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724

Withorn, Robert L., Dept Nutr & Food Sci, Bldg 56, Rm 227, Mass Inst of Tech, Cambridge, MA 02139

Wolf, Ahner, Coll of Phy & Surgmen, Columbia Univ, 630 W 168th St, New York, NY 10032

Wolf, Richard C., Dept of Physiology, University of Wisconsin, Madison, WI 53706

Wolf, Stewart, RFD #1, Box 1262, Bangor, PA 18013
Zajac, Ibor, L-37, Dept Micro/Res Development, Smith Kline French Labs, 1500 Spring Garden St, Philadelphia, PA 19101

Zakheim, Richard M., 10220 SW 70th Ave, Miami, FL 33156

Zaki, F. George, 23 Eggers Street, East Brunswick, NJ 08816

Zander, Helmut A., Dastman Dental Dispensary, 800 Main St E, Rochester, NY 14603

Zarafonnetis, Chris J. D., Simpson Memorial Institute, Univ of Michigan, Ann Arbor, MI 48104

Zehman, Fred W., Jr, Dept Physiology & Biophysics, MS-507 University of Kentucky, Lexington, KY 40506

Zee, Yuan Chung, Dept of Vet Microbiology, Univ of California, Davis, CA 95616

Zeleznicz, Lowell D., 6413 Poco Ct, Fort Worth, TX 76133

Zeman, Frances, Dept Nutrition. University of California, Davis, CA 95616

Zegar, Robert, Veterans Admin Hospital, Coral Gables, FL 33134

Ziegler, Ekhard E., Dept of Pediatrics, Univ of Iowa Hosps, Iowa City, IA 52242

Zieve, Leslie, 2321 Parklands Rd, St Louis Park, MN 55416

Ziffren, Sidney E., Medical School, Univ of Iowa, Iowa City, IA 52242

Zilversmit, Donald B., Sch of Nutrition, Cornell Univ, Ithaca, NY 14853

Zimmerman, B. G., Dept of Pharmac, Univ of Minn, 105 Millard Hall, Minneapolis, MN 55455

Zimmerman, Bernard, Dept Surgery West Virginia Univ Medical Center, Morgantown, WV 26506

Zimmerman, E., Dept of Anatomy, UCLA Sch of Med, Los Angeles, CA 90024

Zimmerman, George R., 424 North Street, Burlington, IA 52601

Zimmerman, Hyman J., 7913 Charleston Court, Bethesda, MD 20034

Zinnerman, Horace H., 1826 Beechwood Ave, St Paul, MN 55116

Zuckier, Marjorie B., Dept of Pathol, NYU Med Ctr, 550 First Ave, New York, NY 10016

Zukowski, C. F., Dept Surgery, Univ of Arizona, Coll of Medicine, Tucson, AZ 85721

Zwefach, B. W., AMES Bioengineering Box 109, Univ of Calif, San Diego, Box 109, La Jolla, CA 92093

Zwieg, Sack, 10 Perlmun Pl, New York, NY 10003

Zygmun, W. A., Dept of Biochemistry, Mead Johnson Research Ctr, Evansville, IN 47721
Friends of the Society

Our members are requested to note the following list of Friends. We wish to express our thanks to each of them. Their contributions help materially in meeting the very sharp increase in costs of publication.

FRIENDS

Burroughs Wellcome Co., Inc.
Ciba Pharmaceutical Products, Inc.
E. I. du Pont de Nemours & Co.
Hoffmann-LaRoche, Inc.
Eli Lilly and Co.
Mead Johnson & Co.
Merrell-National Laboratories
Chas. Pfizer and Co., Inc.
Ortho Pharmaceutical Corporation
Rogoff Foundation
Damon Runyon Memorial Fund
Sandoz Pharmaceuticals

Schering Corporation
G. D. Searle and Co.
Sharp and Dohme, Division of Merck & Co., Inc.
Smith Kline and French Laboratories
Squibb Inst. for Medical Research
Sterling-Winthrop Research Institute
Syntex USA, Inc.
Wallace Laboratories, Division of Carter Products, Inc.
Warner-Lambert Laboratories
Wyeth Laboratories
NOTICE TO CONTRIBUTORS

General Instructions

Manuscripts should be written in clear, concise and grammatical English, and should conform to the style of the Journal and the specific instructions listed below. Manuscripts which are not adequately pre pared to be returned to the authors, since it is not feasible for the Editors to undertake extensive revision or re manuscipts submitted. Contributors, particularly those unfamiliar with English usage, are encouraged to help of colleagues in the preparation and review of manuscripts prior to submission. This practice will reduce the time required for review and will avoid delays in the publications of the manuscript.

SUBMIT MANUSCRIPTS IN DUPLICATE (ONE ORIGINAL AND ONE COPY). A $10.00 CHARGE will COVER THE MS TO COVER COSTS FOR ALL MSS RECEIVED.

All manuscripts should be submitted to Dr. M. R. Nocenti, 630 W. 168th Street, New York, N.Y.

EDITORIAL OFFICE IS CLOSED DURING AUGUST.

Authors submitting manuscripts containing data from experiments involving recombinant DNA molecules should provide a statement for each of the two reviewers which certifies that their experiments complied with guidelines on physical and biological containment procedures.

1. Only original papers will be considered. Manuscripts are accepted for review with the understandin that work has not been and will not be published nor is presently submitted elsewhere, and that all personnel authors have given their approval for the submission of the paper, further, that any person cited as a personal communications has approved such citation. Written authorization may be required at the discretion. Articles and any other material published in the Proceedings of the Society for Experimental Medicine and Science represent the opinions of the author(s) and should not be construed to reflect the opinion of the Editor(s), the Society, or the Publisher.

Authors submitting a do so on the understanding that if it is accepted for publication, the article, including the right to reproduce the article in all forms and media, shall be assigned exclusive Society. The Society will not refuse any reasonable request by the author for permission to reproduce any other contributions to the journal. Send requests for permission to reproduce items published in Proceeding Society for Experimental Medicine and Science to: Dr. Mero R. Nocenti, Managing Editor, Society for Experimental and Science, 630 W. 168th St., N.Y., N.Y. 10032.

A manuscript rejected by the PSEBM should not be re-submitted. All manuscripts will be given a qua by the two reviewing editors; those manuscripts with low priority ratings will not be accepted even though have been classed as generally acceptable. Split decisions will be decided on the basis of the two priority.

2. Manuscripts should be as concise as possible, yet sufficiently detailed to permit critical appraisal. Manuscripts (including tables, legends, and footnotes) should be double or triple spaced.

C. The first page of the manuscript should contain the complete title of the paper, category for the category (select from list in item 20), names of authors (without degrees), affiliations (incl. Codes), and a running title consisting of no more than 40 characters (including spaces). The second page should give the name and complete address of the author to whom ALL CORRESPONDENCE should be sent. Please include Zip Code.

d. Units of weights, measures, etc., when used in conjunction with numerals, should be abbreviated punctuated, e.g., 6 R, 3 g, 5 ml, 8% (see No. 20 below).

3. Manuscripts of nonexperimental research, or those with inadequate controls, are not acceptable.

4. Unnecessary subdivision of a research into several manuscripts is not acceptable.

5. Manuscripts devoted to improvement of procedure or of apparatus may be accepted when a new is involved or when decidedly superior biological results are obtained. Evidence of such superiori be given.

b. Confirmatory or negative results will not be accepted unless they are of obvious biological sig

6. Length of manuscripts should average 3 printed pages, including tables, charts, and references. The length allowed is 7 printed pages. All manuscripts exceeding 17 typed pages (including tables, et references) will be returned to authors.

7. Title should be limited to 15 words. Manuscripts should contain an Introduction, Materials and Methods, Results, Discussion and a Summary.

8. Conclusions should be based upon experimental data submitted.

9. Figures. All figures should be cited consecutively by Arabic numerals in the text with figure legends separate sheet. These should contain sufficient experimental detail to permit the figure to be interpreted reference to the text. Units should be clearly indicated in the figures themselves. Wherever possible, each figure should be combined into a single figure in order to keep the number of illustrations to a minimum.

PLEASE NOTE: All figures and illustrations are to be submitted in such form as to permit photopl reproduction without retouching or redrawing. This includes the lettering, which is reproduced as a photoengraving and is not set in type. Line drawings should be carefully drafted with black India ink drawing paper or blue drafting cloth, no larger than 8.5 x 11.5 inches overall (21 x 27.5 cm). The lettering be large enough to allow a reduction of two-thirds off. High quality glossy prints are acceptable.

10. Tables. These should be numbered with Roman numerals and cited consecutively in the text. Should be titled and typed double-spaced on a separate sheet. Refer to current issues of the Proceeding acceptable style of tables. The title of each table shall clearly indicate the nature of the contents, and experimental detail should be included in footnotes to the entries to permit the reader to interpret the Units must be clearly indicated for each of the entries in the table. To save space, repetition of similar entry and columns which can be calculated from other entries in the table should be avoided wherever possi
1. **Footnotes.** Footnotes in the text should be identified by superscripts consisting of Arabic numerals and should be typed on separate sheet; footnotes in the tables should be identified with superscript lower-case letters a, b, etc., and placed at the bottom of the table.

2. **References.** Only essential citations should be submitted, and they should be arranged numerically at the end of the manuscript. References to the literature should be cited in the text by Arabic numerals in parentheses, set on the text line. Abbreviations of journal titles should follow the style used in Chemical Abstracts (Vol. ACCESS, Key to the Source Literature of the Chemical Sciences, 1969 Edition. Please note the style of capitalization and punctuation for journal articles, books, and edited books in the following examples:

4. “Personal communication,” “unpublished,” “submitted” and numerous abstracts should be excluded from the reference list. If the manuscript has been accepted for publication, include it in the reference list, giving journal, year, etc. If not accepted do not include it in the reference list.

3. **Trade or popular name or abbreviation** of a chemical may be used only when preceded by the chemical or stintic name; thereafter, any of these names or abbreviations may be used. Trade names should begin with a vital letter.

4. **Structural formulas** of chemicals should be used only when absolutely necessary.

5. The Proceedings is copyrighted by the Society for Experimental Biology and Medicine.

6. a. Authors are expected to discourage circulation of reprints for commercial purposes.

 b. Reprints are limited to 1300.

17. Changes in galley proof should be absolutely minimal. Authors will be charged for excessive changes.

18. **Sponsor** is held responsible for non-member's manuscript. The sponsor should write stating (a) how vital he is with the author and his research, (b) whether the author is scientifically reliable, (c) that the manuscript conforms to Notice to Contributors, (d) that he has critically examined the manuscript, (e) wherein the manuscript is a significant contribution to science, and (f) that he assumes financial responsibility involved. The sponsor should be in the same laboratory as the author. Where not of the same or recent past laboratory, he should specify why such letter comes from a member at another laboratory.

19. The authors are required to pay a part of the cost of publication in the form of a page charge of $20.00 per page. Notify the General Secretary at least one month before change of address.

21. **Abbreviations.** Contributors are requested to use the following abbreviations:

<table>
<thead>
<tr>
<th>Term</th>
<th>Symbol</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>calorie</td>
<td>cal</td>
<td>millimeter</td>
</tr>
<tr>
<td>centimeter</td>
<td>cm</td>
<td>milliosmole</td>
</tr>
<tr>
<td>counts per minute</td>
<td>cpm</td>
<td>minute</td>
</tr>
<tr>
<td>cubic centimeter</td>
<td>cm³</td>
<td>molal (concentration)</td>
</tr>
<tr>
<td>Curie</td>
<td>Ci</td>
<td>molar (concentration)</td>
</tr>
<tr>
<td>degree Celsius (Centigrade)</td>
<td>°C</td>
<td>mole</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>°F</td>
<td>molecular weight</td>
</tr>
<tr>
<td>diameter</td>
<td>diam</td>
<td>nanogram</td>
</tr>
<tr>
<td>gram</td>
<td>g</td>
<td>nanometer</td>
</tr>
<tr>
<td>hour</td>
<td>hr</td>
<td>normal (concentration)</td>
</tr>
<tr>
<td>inch</td>
<td>in.</td>
<td>osmole</td>
</tr>
<tr>
<td>inside diameter</td>
<td>i.d.</td>
<td>ounce</td>
</tr>
<tr>
<td>intramuscular</td>
<td>im</td>
<td>outside diameter</td>
</tr>
<tr>
<td>intraperitoneal</td>
<td>ip</td>
<td>parts per million</td>
</tr>
<tr>
<td>intravenous</td>
<td>iv</td>
<td>percent</td>
</tr>
<tr>
<td>kilocalorie</td>
<td>kcal</td>
<td>picogram</td>
</tr>
<tr>
<td>kilogram</td>
<td>kg</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>liter</td>
<td>spell out</td>
<td>specific activity</td>
</tr>
<tr>
<td>meter</td>
<td>m</td>
<td>square centimeter</td>
</tr>
<tr>
<td>microliter</td>
<td>µl</td>
<td>square meter</td>
</tr>
<tr>
<td>micrometer</td>
<td>µm</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>milligram</td>
<td>mg</td>
<td>volt</td>
</tr>
<tr>
<td>milliliter</td>
<td>ml</td>
<td>volume</td>
</tr>
</tbody>
</table>
"...this series is invaluable for workers at all levels of cell biology."

—NATURE

METHODS IN CELL BIOLOGY
Edited by DAVID M. PRESCOTT

METHODS IN CELL BIOLOGY (formerly Methods in Cell Physiology) presents detailed descriptions of methods and techniques now in use in the field of cell biology research—techniques which have not been published in full detail elsewhere in the literature. Each volume features state-of-the-art reviews that bring the reader up to date on the most current innovations and refinements of prevailing techniques, as well as discussions of standardized methods that frequently reveal a more efficient means of studying current problems. Descriptions of each technique are so complete that even cell biologists with little or no experience in a particular area can apply the technique to their work.

"The editor, D. M. Prescott, is to be congratulated on the production of a thoroughly useful volume."

—NATURE

"...will be gladly received not only by those working in the field of physiology of the cell but ... will become a useful manual for all cytologists and biologists."

—FOLIA MORPHOLOGICA

"Something new or hard to find is included in nearly every chapter. Altogether the volume makes quite a useful collection and is recommended for advanced graduate students, research scientists, and any library which tries to keep an up-to-date working collection for cell biologists or microbiologists."

—ASM NEWS

Complete information on each volume in the series is available on request.

Take advantage of the convenience of our Continuation Order Plan:
Your CONTINUATION ORDER authorizes us to ship and bill each volume automatically, immediately upon publication. This order will remain in effect until cancelled. Please specify volume number with which your order is to begin. Please direct all inquiries and orders to the Sales Department.

AP 7404

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers
111 FIFTH AVENUE, NEW YORK, N.Y. 10003
24-28 OVAL ROAD, LONDON NW1 7DX
Society for Experimental Biology and Medicine
630 West 168 Street, New York, N. Y. 10032

Submit in duplicate

Name of nominee .. Date
(Please print last name first)

Mailing address ...

title now held ..

Highest Degrees (give data and institution)

Highest positions held in last 10 years in experimental biology and medicine, including post-doctoral fellowships (name of institution, title, dates)

Honors, awards, etc.

First membership in national scientific societies devoted to experimental biology and medicine

The undersigned members of the Society agree that the above nominee is eligible for membership

Signatures of 2 sponsoring members: 1. ...
2. ...

(over—for instructions)
Eligibility. “An applicant who has independently (not under direct supervision of another scientist) published original meritorious investigations in experimental biology or experimental medicine... and who is actively engaged in experimental research may be elected a membership.” In general, applicants should be at least 2 years beyond their doctorate degree and beyond postdoctoral training.

Sponsorship. The application must be sponsored i.e., signed, by at least two members of the society. One detailed and factual letter from one of the member-sponsors describing the basis for eligibility must accompany this application. This letter should point out the contribution to science made by the applicant.

Bibliography. Submit on separate sheets a complete list of publications, listing authors, title of publication in full, journal, year, volume and pages. Do not include articles not yet accepted for publication. Abstracts, reviews and books must be listed separately.

Reprints. Submit one copy of each of three of your reprints.

Address. Send this application in duplicate and supporting data to the Secretary, Society for Experimental Biology and Medicine, 630 W. 168th Street, New York, N. Y. 10032. Applicants will be notified of action taken as soon as the application has been processed (usually within a few months).

Do not use this side of form. Use separate sheet if needed.