GEO. S. HUNTINGTON.
LEHRBUCH

DER

ANATOMIE DES MENSCHEN.
LEHRBUCH
DER
ANATOMIE DES MENSCHEN
VON
C. GEGENBAUR
O. O., PROFESSOR DER ANATOMIE UND DIRECTOR DER ANATOMISCHEN ANSTALT ZU HEIDELBERG.
MIT 558 ZUM THEIL FARBIGEN HOLZSCHNITTEN.
LEIPZIG
VERLAG VON WILHELM ENGELMANN
1883.
Alle Rechte vorbehalten.

Druck von Breitkopf & Härtel in Leipzig.
VORWORT.

So gewann die Auffassung des Menschen als eines in seinem Körperebau keineswegs isolirt dastehenden, sondern mit anderen verwandten Organismus, von verschiedenen Seiten her festere Begründung und dem

Der Zweck des Buches als eines einführenden, bestimmte den Umfang des Ganzen wie der einzelnen Abschnitte. Vieles konnte daher nur in der Kürze gegeben, Manches nur angedeutet werden. In den
kleiner gedruckten Noten fand auch Wichtiges eine Stelle, so dass der Kleindruck häufig nur einer Räumersparniss gedient hat.

So übergebe ich denn das Buch seinem Interessenten-Kreise, mit dem Wunsche, dass es nach jenen Gesichtspunkten, die mich bei seiner Abfassung leiteten, beurtheilt werden möge, und seinen Zweck erfülle.

Heidelberg, Mittsommer 1883.

C. Gegenbaur.
NACHWEIS ZU DEN HOLZSCHNITTTEN.

Die übrigen hier nicht angeführten Figuren sind mit ganz wenigen Ausnahmen von mir selbst entweder nach Präparaten gezeichnet, oder, soweit sie Schemata sind, nach verschiedenen Vorbildern entworfen.
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Einleitung.</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begriff, Stellung und Aufgabe (§ 1–4)</td>
<td>1</td>
</tr>
<tr>
<td>Die Organe (§ 5–9)</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Von den Formelementen</td>
</tr>
<tr>
<td>1. Von der Zelle (§ 10–12)</td>
</tr>
<tr>
<td>2. Von den Geweben (§ 13–31)</td>
</tr>
<tr>
<td>A. Vegetative Gewebe (§ 14–25)</td>
</tr>
<tr>
<td>1. Epithelgewebe (§ 14–18)</td>
</tr>
<tr>
<td>2. Stützgewebe (§ 19–25)</td>
</tr>
<tr>
<td>B. Animale Gewebe (§ 26)</td>
</tr>
<tr>
<td>1. Muskelgewebe (§ 27, 28)</td>
</tr>
<tr>
<td>2. Nervengewebe (§ 29–31)</td>
</tr>
<tr>
<td>B. Vom ersten Aufbau des Körpers (Entwickelungsgeschichte, Ontogenie)</td>
</tr>
<tr>
<td>I. Von den Veränderungen des Eies bis zur ersten Anlage des Körpers (§ 32–35)</td>
</tr>
<tr>
<td>1. Ei und Befruchtung (§ 33)</td>
</tr>
<tr>
<td>2. Theilung des Eies (Furchungsprocess) (§ 34)</td>
</tr>
<tr>
<td>3. Keimblase und Keimblätter (§ 35)</td>
</tr>
<tr>
<td>II. Differenzierung der Anlage (§ 36–41)</td>
</tr>
<tr>
<td>Erstes Gefäßsystem (§ 39)</td>
</tr>
<tr>
<td>Äußere Gestaltung des Embryo (§ 40, 41)</td>
</tr>
<tr>
<td>Entwicklung des Kopfes</td>
</tr>
<tr>
<td>Rumpf und Gliedmaßen (§ 41)</td>
</tr>
<tr>
<td>III. Entwicklung der Embryonal- oder Fruchthüllen (§ 42–45)</td>
</tr>
<tr>
<td>Postembryonale Entwicklung (§ 45)</td>
</tr>
<tr>
<td>IV. Bedeutung der Entwicklung (§ 46)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zweiter Abschnitt. Vom Skeletsystem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeines (§ 47)</td>
</tr>
<tr>
<td>A. Vom Baue der Skelettheile (§ 48)</td>
</tr>
<tr>
<td>B. Von der Entwicklung der Knochen (§ 49, 50)</td>
</tr>
<tr>
<td>I. Ossification knorpeliger Skelettheile</td>
</tr>
<tr>
<td>1. Bildung langer Knochen</td>
</tr>
<tr>
<td>2. Ossification an kurzen Knochen</td>
</tr>
<tr>
<td>II. Knochenbildung bei nicht knorpelig präformirten Skelettheilen</td>
</tr>
</tbody>
</table>
C. Von der Gestaltung der Knochen (§ 51) .. 108
D. Von den Verbindungen der Knochen (§ 52—56) 109
 Von den Gelenken (§ 53) .. 111
 Entstehung der Gelenke (§ 53) ... 111
 Allgemeine Bau der Gelenke (§ 54) ... 113
 Formen der Gelenke (§ 55) ... 116
 Von den Bändern (§ 56) ... 118
E. Von der Zusammensetzung des Skelets (§ 57—94) 119
 I. Vom Rumpfskelet (§ 58—70) .. 120
 A. Wirbelsäule (§ 58—66) ... 120
 Die einzelnen Wirbelgruppen (§ 59—63) 124
 Variationen an der Wirbelsäule (§ 64) 135
 Verbindungen der Wirbel unter sich (§ 65) 137
 Die Wirbelsäule als Ganzes (§ 66) 139
 B. Rippen und Brustbein (§ 67—70) .. 142
 Verbindungen der Rippen (§ 69—70) 149
 Thorax (§ 70) ... 152
 II. Vom Kopfskelet (§ 71—83) .. 153
 1. Anlage des Kopfskelets — Primordialcranium (§ 71) 153
 2. Knöchernes Kopfskelet (§ 72—83) 156
 a. Knochen des Schädels (§ 72—76) 158
 I. Hirnkapsel des Schädels (§ 73) 159
 1. Hinterhauptbein (Occipitale) 176
 2. Keilbein (Sphenoidal) ... 181
 3. Schlafenbein (Temporal) .. 184
 II. Nasenregion des Schädels (§ 75) 187
 6. Siebbein (Riechbein, Ethmoidale) und untere Muschel. — 190
 7. Thranenbein (Lacrymale) 193
 8. Nasenbein (Nasale) .. 196
 9. Pfugscharbein (Vomer) ... 199
 III. Knochen der Kieferregion des Schädels (§ 76) 202
 11. Oberkiefer (Maxillare superius) — 12. Gaumenbein (Palat
 tinales) — 13. Jochbein, Jugale (Os zygomaticum, Os malae) 205
 b. Knochen des Visceralskelets (§ 77) 197
 Gehörgürtelchen .. 199
 Unterkiefer (Mandibula, Maxilla inferior) 200
 Kiefergelenk (Art. craniao-mandibularis) 203
 Zungenbein (Os hyoides, Hyoid) 204
 Verbindungen des Schädels und der Wirbelsäule (Art. occipitalis s. craniao-vertebralis) (§ 78) 205
 c. Der Schädel als Ganzes (§ 79—83) 208
 Außenfläche und Binnenräume 209
 Fontanellen und Schaltknochen (§ 80) 219
 Menschen- und Thierschädel (§ 81) 220
 Altersverschiedenheiten des Schädels (§ 82) 224
 Schädelformen und Schädelmessung (§ 83) 225
 III. Vom Skelet der Gliedmaßen (§ 84—94) 226
 A. Obere Gliedmaßen (§ 85—89) ... 228
 a. Schultergürtel (§ 85) ... 228
 Verbindungen der Knochen des Schultergürtels 232
 b. Skelet der freien Extremität (§ 86) 234
 1. Oberarmknochen .. 234
 Schultergelenk (Art. humeri) 237
 2. Knochen des Vorderarmes Radius und Ulna (§ 87) 238
 Verbindung der Vorderarmknochen unter sich und mit dem Humerns- Ellbogengelenk 240
 3. Skelet der Hand (§ 88, 89) .. 243
 a. Carpus ... 244
 b. Metacarpus ... 248
 c. Phalangen ... 249
Inhalts-Verzeichnis.

Verbindungen des Handskelets (§ 89) .. 250
Radio-carpal-Verbindung (Art. radio-carpalis) 251
Metacarpo-carpal-Verbindung .. 253
Bandapparat der Hand .. 253
Metacarpo-phasisgealverbindung .. 255
Interphalangealverbindung ... 256
B. Untere Gliedmaßen (§ 90—94) .. 257
a. Beckengürtel (§ 90) .. 257
Hüftbein ... 257
Verbindungen des Hüftbeins ... 260
Das Becken als Ganzes ... 262
b. Skelet der freien Extremität (§ 91, 92) 265
1. Oberschenkelknochen Femur .. 266
Verbindung des Femur mit dem Becken Hüftgelenk 268
2. Knochen des Unterschenkels (Tibia und Fibula (§ 92) 270
Verbindung der Tibia mit dem Femur (Kniegelenk) 274
Tibio-Fibularverbindung .. 278
c. Skelet des Fußes (§ 93, 94) ... 279
1. Tarsus .. 279
2. Metatarsus ... 283
3. Phalangen ... 283
Verbindungen des Fußes .. 284
Art. pedis, Art. talo-cruralis (oberes Sprunggelenk) 285
Art. talo-calcaneo-navicularis (unteres Sprunggelenk) 286
Art. calcaneo-cuboidea ... 288
Metatarsophalangeal- und Interphalangeal-Verbindungen 290

Dritter Abschnitt. Vom Muskelsystem.

Allgemeines (§ 95) ... 293
A. Vom Baue der Muskeln (§ 96—99) ... 296
Muskel und Nerv (§ 98) .. 300
Wirkung der Muskeln (§ 99) .. 301
B. Von den Hilsapparaten des Muskelsystems (§ 100) 306
C. Von der Anordnung des Muskelsystems (§ 101—128) 307
A. Muskeln des Stammes (§ 102—119) .. 310
I. Muskeln des Rückens (§ 102—105) .. 310
a. Gliedmaßenmuskeln des Rückens (Spino-humerale Muskeln) 293
(§ 103) .. 311
1. Erste Schichte ... 311
2. Zweite Schichte ... 312
b. Spino-costale Muskeln (§ 104) .. 311
c. Spino-dorsale Muskeln (§ 105) .. 316
1. Lange Muskeln der Wirbelsäule ... 316
1. Spino-transversalis (Splenius), — 2. Sacrospinalis, — 3. Spina-
2. Muskel zwischen Hinterhaupt und den ersten Halswirbeln 323
3. Muskeln des äußeren Ohres .. 334
II. Muskeln des Kopfes (§ 106—108) .. 326
a. Muskeln des Antlitzes und des Schädeldeckes (§ 107) 326
1. Platysma myoides .. 327
2. Muskeln der Mundöffnung ... 328
3. Muskeln der Nase ... 332
4. Muskeln der Augenlider .. 334
5. Muskeln des äußeren Ohres .. 334
6. Muskeln des Schädeldeckes .. 335
b. Muskeln des Viserali skelets (Muskeln des Unterkiefers und des Zungenbeins) (§ 108) ... 337
1. Muskeln des Unterkiefers (Kammuskeln) 337
2. Muskeln des Zungenbeins (oberen Zungenbeinmuskeln) 340
Inhalts-Verzeichnis.

III. Muskeln des Halses (§ 109—112).
 a. Vordere Halsmuskeln (§ 110, 111).
 b. Hintere Halsmuskeln (§ 112).

IV. Muskeln der Brust (§ 113—116).
 a. Gliedmäßenmuskeln der Brust (§ 114).
 b. Muskeln des Thorax (§ 115).
 c. Zwischenbrustmuskel (Diaphragma) (§ 116).

V. Muskeln der Bauchwand (§ 117—119).
 a. Vordere Bauchmuskeln (§ 117).
 2. Bauchmuskeln mit schrägem oder querem Verlaufe (breite Bauchmuskeln).
 b. Hintere Bauchmuskeln.

B. Muskeln der Gliedmäßen (§ 120—128).

I. Muskeln der oberen Gliedmäßen (§ 120—123).
 a. Muskeln der Schulter (§ 120).
 1. Oberflächliche Schichte.
 2. Tiefe Schichte.
 b. Muskeln des Oberarms (§ 121).
 1. Vordere Muskeln.
 2. Hintere Muskeln.
 c. Muskeln des Vorderarms (§ 122).
 1. Muskeln der Beugefläche des Vorderarms.
 Erste Gruppe.
 Zweite Gruppe.

II. Muskeln der unteren Gliedmäßen (§ 121—128).
 A. Muskeln der Hüfte (§ 124).
 a. Innere Hüftmuskeln.
 b. Äußere Hüftmuskeln.
 B. Muskeln des Oberschenkels (§ 125).
 a. Vordere Muskeln.
 b. Mediale Muskeln.
 c. Hintere Muskeln.
 Fossa ilio-pectinea und Schenkelringe (§ 126).
 C. Muskeln des Unterschenkels (§ 127).
 a. Vordere Muskeln.
 b. Laterale Muskeln.
 c. Hintere Muskeln.
 D. Muskeln des Fußes (§ 128).
 a. Dorsale Muskeln.
 b. Plantare Muskeln.
 1. Muskeln des medialen Randes (Großzehenseite).
 2. Muskeln des lateralen Randes (Kleinzehenseite).
 3. Muskeln der Mitte der Fußsohle.

Vierter Abschnitt. Vom Darmsystem. (Nutritions- und Respirationsorgane.)
 Allgemeines (§ 129).
 Von den Schleimhäuten (§ 130, 131).
 Von den serösen Häuten (§ 132).
 Von der Mundhöhle (§ 133—143).
Inhalts-Verzeichnis.

I. Schleimhaut der Mundhöhle (§ 134—140) .. 440
 Organe der Mundschleimhaut (§ 135—140) .. 442
 a. Drüsen (§ 135) ... 442
 1. Kleine Drüsen (sog. Schleimdrüsen) .. 442
 2. Große Drüsen (Speicheldrüsen) .. 443
 b. Zähne (§ 136—140) ... 446
 1. Bau der Zähne .. 446
 2. Entwickelung der Zähne (§ 137) .. 448
 3. Milchzahngewebe und bleibende Zähne (§ 138—140) 451

II. Muskulöse Apparate der Mundhöhle .. 456
 a. Zunge (§ 141, 142) ... 456
 Schleimhaut der Zungenoberfläche .. 457
 Muskulatur der Zunge (§ 142) .. 461
 b. Gaumensegel (§ 143) .. 464
 Muskulatur des Gaumensegels ... 465

Von der Nasenhöhle (§ 144) .. 467
Vom Pharynx (§ 145) .. 471
Vom Darmkanal (§ 146—159) .. 477
 Allgemeine Übersicht (§ 146) ... 477
 1. Vom Vorderdarm (§ 147—149) .. 479
 a. Speiseröhre (Oesophagus) (§ 147) 479
 b. Magen (§ 148, 149) .. 480
 2. Vom Mittel- oder Dünndarm (Intestinum tenue) (§ 150, 151) . 485
 3. End- oder Dickdarm (Intestinum crassum) (§ 152, 153) .. 490
 Große Drüsen des Darmkanals (§ 154—158) 494
 1. Banchspeicheldrüse (Pancreas) .. 495
 2. Leber (Hepar) (§ 155—158) ... 496
 Bau der Leber (§ 157) .. 500
 Verhalten der Leber zum Peritoneum (§ 158) 505
 Peritoneum (§ 159) ... 509
 Mesenterium und Omentum (§ 159) .. 509
Von den Luftwegen und Lungen (Atemorgane) (§ 160—168) 512
 Vom Kehlkopf (Larynx) (§ 161—163) .. 514
 Skelet des Kehlkopfes .. 514
 Muskeln des Kehlkopfes (§ 162) .. 518
 Schleimhaut und Binnewebe des Kehlkopfes (§ 163) 522
Von der Luftöhre und ihren Ästen (Trachea und Bronchi) (§ 164) 525
Von den Lungen (§ 165—167) .. 527
 Bau der Lungen. Bronchialverzweigung (§ 166, 167) 529
Pleurahöhle ... 534
Von der Schilddrüse (Glandula thyreoides) (§ 169) 537
Von der Thymus (§ 170) .. 539

Fünfter Abschnitt. Vom Uro-genitalsystem. (Harn- und Geschlechtsorgane.)
 Allgemeines (§ 171, 172) .. 541
 Uretere und Keimdrüse ... 541
 A. Von den Harnorganen (§ 173—175) .. 543
 Anlage der Niere (§ 173) ... 543
 Bau der Niere und ihrer Ausführwege (§ 174—178) 545
 Niere (§ 174—176) .. 545
 Ausführwege der Niere (§ 177) ... 545
 Harnblase (Vesica urinaria) (§ 178) 552
 B. Von den Geschlechtsorganen (§ 179—193) 556
 Anlage des indifferenten Zustandes (§ 179) 556
 1. Von den männlichen Geschlechtsorganen (§ 180—185) .. 558
 Differenzierung derselben (§ 180) 558
 Hoden (§ 181) ... 559
 Nebenhoden und rudimentäre Gebilde an demselben (§ 182) 562
Inhalts-Verzeichnis.

Sechster Abschnitt. Vom Gefäßsystem. (Organe des Kreislaufs.)

Allgemeines (§ 202) .. 611
Blut und Lymph (§ 203) 614
Vom Herzen (§ 204—209) 615
 Ausbildung desselben aus einer einfachen Form (§ 204) 615
 Äußere Gestalt des Herzens (§ 205) 617
 Allgemeiner Bau des Herzens (§ 206) 618
 Die einzelnen Binnenräume (§ 207) 621
 Bau der Herzwand (§ 208) 625
 Pericardium (Herzbeutel) und Lage des Herzens (§ 209) 628
Vom Blutgefässysteme (§ 210—214) 630
 Allgemeines Verhalten der Blutgefäße und Struktur ihrer Wände 630
Vom Arteriensysteme (§ 215—236) 638
 Anlage der großen Arterienräume (§ 215) 638
 Anordnung des Arteriensystems (§ 216—236) 643
I. Arterien des Lungenkreislaufs (§ 216) 643
II. Arterien des Körperkreislaufs (§ 217—235) 644
 Aorta (§ 217) .. 644
 Äste der Aorta ascendens, Kranzarterien des Herzens (§ 218) 646
 Äste vom Arcus aortae (§ 219) 647
 Art. carotis communis (§ 220) 648
 Art. carotis externa (§ 221) ... 649
 Art. carotis interna (§ 222) ... 657
 Art. ophthalmica .. 657
 Gehirnäste der Carotis interna 659
 Art. subclavia (§ 223) ... 660
 Aste der Art. subclavia (§ 224) 661
 a. Aufsteigende Äste ... 661
 b. Lateral verlaufende Äste 665
 c. Abwärts verlaufende Äste 667
 Art. axillaris und ihre Verzweigung (§ 225) 668
 Art. brachialis und ihre Verzweigung (§ 226) 670
 Art. radialis und ulnaris (§ 227, 228) 672
 Aste der Aorta descendens (§ 229—231) 678
 A. Äste der Aorta thoracica (§ 229) 678
 B. Äste der Aorta abdominalis (§ 230) 679
 C. Endäste der Aorta (§ 231) 686
 Art. iliaca communis (§ 232) 687
 Art. iliaca interna (hypogastrica) 688
Inhalts-Verzeichnis.

Seite

Art. iliaca externa (femoralis) [§ 233] .. 693
Art. femoralis cranialis [§ 234] .. 694
Art. poplitea [§ 235] .. 697
Arterien des Unterschenkels und des Fußes [§ 236] 698
Artt. tibiales [§ 236] .. 698

Vom Venensysteme [§ 237—245] .. 704
Anlage der großen Venenstämmie [§ 237] 704
Anordnung des Venensystemes [§ 238] 709
I. Venen des Lungenkreislaufs [§ 238] 709
II. Venen des Körperkreislaufs [§ 239] 710
A. Venen der Herzwand .. 710
B. Gebiet der oberen Hohlvene [§ 240—242] 712
Vena jugularis interna .. 713
Venen der Schädelhöhle .. 713
Vena jugularis externa .. 717
Vena subclavia [§ 241] .. 718
Vena ayzygos [§ 242] .. 720
C. Gebiet der unteren Hohlvene [§ 243—245] 722
Vena portae (Pfortader) [§ 244] 723
Venae iliacaen und ihr Gebiet [§ 245] 726

Vom Lymphgefäßen Systeme [§ 246—251] 728
Allgemeine Übersicht [§ 246] .. 728
Lymphbahnen [§ 247] .. 729
Lymphfollikel und Lymphdrüsen [§ 248, 249] 731
Anordnung des Lymphgefäßen Systems [§ 250, 251] 735
Milz (Splen, Lien) [§ 251] .. 740

Siebener Abschnitt. Vom Nervensystem.

Allgemeines [§ 252] .. 743
A. Centrales Nervensystem [§ 253—278] 744
Anlage und Entwicklung [§ 253] .. 744
I. Vom Rückenmark (Medulla spinalis) [§ 253—258] 745
1. Differenzirung der Anlage [§ 253, 254] 745
2. Äußeres Verhalten des Rückenmarks [§ 255] 749
3. Innere Struktur des Rückenmarks [§ 256—258] 751
a. Graue Substanz .. 753
b. Weiße Substanz [§ 257] 755
c. Die Wurzeln der Spinalnerven [§ 258] 758
II. Vom Gehirn (Cerebrum) [§ 259—274] 760
1. Differenzirung der Anlage [§ 259] 760
2. Structur des Gehirns [§ 260—274] 767
a. Hinterhirn [§ 260—265] 767
1. Medulla oblongata (Verlängertes Mark. Nachhirn) 767
2. Brücke (Pons Varolii) [§ 262] 775
4. Vierter Ventrikel und Decke der Rautengrube [§ 265] 782
b. Mittelhirn. Vierhügel und Hirnstiele [§ 266] 784
c. Zwischenhirn. Schädel und dritter Ventrikel [§ 267, 268] 787
d. Vorderhirn (Großes Gehirn) [§ 269—274] 793
1. Übersicht des Ganzen [§ 269] 793
3. Seitenventrikel und Streifenkörper [§ 271] 799
4. Oberfläche des Großhirns [§ 273] 802
5. Graue und weiße Substanz im Innern des Großhirns [§ 274] ... 806
III. Hüllen des centralen Nervensystems (Meninges) [§ 275—278] 811

B. Peripherisches Nervensystem [§ 279—300] 817
Allgemeines Verhalten [§ 279] .. 817
I. Gehirnnerven (Nervi cerebrales) [§ 280—288] 820
i. N. olfactorius [§ 281] 822
ii. N. opticus [§ 282] .. 822

Vom Lymphgefäßen Systeme [§ 246—251] 728
Allgemeine Übersicht [§ 246] .. 728
Lymphbahnen [§ 247] .. 729
Lymphfollikel und Lymphdrüsen [§ 248, 249] 731
Anordnung des Lymphgefäßen Systems [§ 250, 251] 735
Milz (Splen, Lien) [§ 251] .. 740
Inhalts-Verzeichnis.

Trigeminusgruppe (§ 283—285) .. 823
 iii. N. oculomotorius ... 823
 iv. N. trochlearis ... 824
 v. N. trigeminus (§ 281) ... 824
 vi. N. abducens (§ 285) ... 825
 vii. N. facialis ... 833
 viii. N. acusticus .. 836
Vagusgruppe (§ 286—288) ... 837
 ix. N. glossopharyngeus ... 837
 x. N. vagus (§ 287) ... 839
 xi. N. accessorius ... 843
 xii. N. hypoglossus (§ 288) ... 844
II. Rückenmarksnerven (§ 289—296) ... 846
 Cervicalnerven (§ 290) ... 848
 Plexus cervicalis (§ 291) .. 849
 Plexus brachialis (§ 292) ... 851
 Thoracalnerven (§ 293) .. 859
 Lendennerven und Plexus lumbalis (§ 294) 864
 Sacral- und Caudalnerven (§ 295, 296) 864
 Plexus sacralis .. 865
III. Sympathische Nerven (§ 297—300) 871
 Geflechte der sympathischen Nerven (§ 299) 877
 Von den Nebennieren (§ 300) .. 879

Achter Abschnitt. Vom Integument und den Sinnesorganen.

Allgemeines (§ 301) ... 881
 A. Vom Integument (§ 302, 303) .. 882
 Struktur der äußeren Haut ... 882
 Von den Epidermoidalgebilden (§ 304) 886
 1. Verhornete Organe (§ 304—306) 886
 2. Nägel (§ 306) ... 891
 11. Drüsen der Haut (§ 307—310) .. 892
 1. Knäueldrüsen der Haut (§ 308) 892
 2. Acinöse Drüsen (§ 309, 310) 894
 B. Vom Sinnesorganen (§ 311—313) 900
 Allgemeiner Bau (§ 311) .. 900
 A. Niedere Sinnesorgane (§ 312, 313) 901
 1. Organe des Hautsinnes (§ 312) 901
 2. Gernuchsorgan und 3. Geschmackssorgan (§ 313) 902
 B. Höhere Sinnesorgane (§ 314—336) 904
 1. Vom Schorfangane (§ 314—325) 904
 2. Bau des Schorfangs (§ 315) 907
 3. Der Augapfel in seiner Zusammensetzung (§ 316) 908
 1. Sklera und Cornea. — 2. Chorioides und Iris. — Gefäß-
 system der Aderhaut. — 3. Retina und Tapetum. —
 Hilfsorgane des Auges (§ 323—325) 926
 — c. Thränenapparat.
 11. Vom Gehörorgan (§ 326—336) 934
 1. Aufbau des Gehörorgans (§ 326) 934
 2. Labyrinth (inneres Ohr) (§ 327) 935
 1. Gestaltung desselben (§ 327—329) 935
 2. Feinerner Bau des Labyrinths (§ 330—332) 943
 3. Hilfsapparate des Gehörorgans (§ 333—336) 948
 a. Paukenhöhle (mittleres Ohr) (§ 333—335) 948
 b. Äußerer Gehörgang und Ohrmuschel (§ 336) 956

Register ... 960
Einleitung.

Begriff, Stellung und Aufgabe.

§ 1.

Die Anatomie ist die Lehre vom Baue oder der Structur der lebenden Körper. Sie ist Structurlehre. Ihr Object sind die geformten Theile, welche den Körper räumlich zusammensetzen. Behufs Erforschung dieser Zusammensetzung nimmt sie die Zergliederung der Körper vor, wird somit Zergliederungskunde. So entstand ihr Name (von ἀντίγραφω). Die Zergliederung selbst ist also nur Mittel, während das durch diese gewonnene Ergebniss, der Einblick in die Zusammensetzung und deren Verständniß, der Zweck ist.

Die den Körper zusammensetzenden geformten Theile sind die Träger während des Lebens an ihnen sich äußernder Vorgänge, sie sind die materiellen Substrate für Verrichtungen, welche im Organismus sich vollziehen und in ihrem Wechselspiel das Leben bedingen. Damit erscheinen die Körpertheile als Werkzeuge, Organe. Indem die Anatomie den Körper aus solchen Organen zusammengesetzt darstellt, zeigt sie uns denselben als einheitlichen Complex von Organen: als Organismus.

In der Structur eines Organismus lehrt die Anatomie formale Befunde kennen, die Formbeschaffenheit der Theile in ihrer räumlichen Anordnung und ihrem gegenseitigen Bedingtsein. Damit bildet sie einen Theil der Morphologie, der Wissenschaft von dem Zusammenhange der Formerscheinungen. Von dieser wird ein anderer Theil durch die Entwickelungsgeschichte vorgestellt. Diese hat die Vorgänge der allmählichen Veränderung des Organismus im Auge, sowohl bei seinem individuellen Werden, als in Bezug auf die Entstehung der engeren oder weiteren Abtheilung, welcher der Organismus angehört. Darnach gliedert sie sich wieder in Ontogenie, Entwicklungsgeschichte des Individuums aus seinem Keime (Keimesgeschichte), und Phylogenie, Entwicklungsgeschichte der Organismen aus anderen Organismen, somit Abstammungslehre (Stammesgeschichte).

Diesen morphologischen Disciplinen stellt sich die Physiologie gegenüber, welche die Prüfung der an den Organen sich äußernden, zur Erhaltung des
Einleitung.

Lebens des Individuums, oder zur Erhaltung der Fortdauer der Art dienenden Funktionen und deren gesetzmaassigen Ablauf zur Aufgabe hat. Wie die Aufgabe verschieden, so ist es auch die Methode der Forschung.

§ 2.

Das Verhältniss der Anatomie des Menschen zur praktischen Medicin hat nicht nur die Ausbildung dessen, was ersterer heute noch angehört, gefördert, sondern führte
Begriff, Stellung und Aufgabe.

auch allmählich zur Entstehung selbständiger Disziplinen, die mit der Anthropotomie gemeinsamen Boden und lange Verbindung besassen. So verhält es sich mit der pathologischen Anatomie, die längst sich zu selbständiger Wissenschaft gestaltetete und damit ihre besonderen Ziele anstrebt.

Andere Behandlung des anatomischen Stoffes charakterisirt die topographische Anatomie. Sie hat zum Zwecke genaue topographische Orientirung, sieht daher von der Behandlung des Körperbaues nach den Organystemen ab, so dass sie diese vielmehr als schon bekannt voraussetzt, und sich wesentlich an die Beschreibung aller in bestimmten Körperabschnitten oder an gewissen Regionen vorkommenden Einrichtungen hält, bei denen die verschiedensten Organysteme concurriren können. Mit Bezug auf operativ wichtig werdende Regionen wird sie zur chirurgischen Anatomie, die mehr oder minder mit der topographischen zusammenfällt. Diese beiden Abzweigungen der Anthropotomie haben durch ihre exclusiven Beziehungen zur praktischen Medicin für diese die größte Wichtigkeit, und können von diesem Gesichtspunkte aus auch als eigene Disziplinen gelten, denen aber die Bedeutung selbständiger Wissenschaf- ten in dem Maße abgeht, als sie nur die Anwendung der Anatomie auf rein praktische Zwecke vorstellen.

§ 3.

Bau und Entwicklung des Menschen geben den Charakter der Vertebraten und unter diesen den der Mammalia kund. Innerhalb dieser Klasse zeigen die einzelnen Ordnungen wiederum nähere oder entferntere Beziehungen zur menschlichen Organisation, und von den die Abtheilung der placentalen Säugethiere zusammensetzenden Ordnungen ist es die der Quadrupumana, an welche die meisten

§ 4.

Die Entwicklung als ein innerhalb des Breitegrades des Normalen Neugestaltungen produirender Vorgang, sistirt also nie. Sie leitet allmählich in Processe über, die gegen den Ausgang des Lebens zur Rückbildung führen. Wenn selbst die Anatomie sich also auch nur auf den erwachsenen Organismus beschränken wollte, müßte sie doch auch mit jenen Vorgängen rechnen, die, wie unscheinbar sie sich auch darstellen mögen, doch aller-
Einleitung.

orths verkünden, dass es im Organismus keinen Stillstand gibt. Auch eine beschränktere Auffassung der Anatomie kann also die Rücksicht auf Entwicklungsvergänge nicht zurückweisen. Noch dringender wird aber das Eingehen auf die Entwicklung durch die Thatsache, dass der ausgebildete Organismus zahlreiche Einrichtungen besitzt, welche für sich betrachtet völlig unverständlich erscheinen. Es gibt Theile von Organen, ja selbst ganze Organe, welche ihre Bedeutung nur in früheren Zuständen aufweisen, während welcher sie in Function standen. Die Entwicklungsgeschichte zeigt diese Organe in ihrer Thatigkeit, bringt sie damit zu näherem Verständniss und deckt die Bedingungen auf, unter denen sie sich umgestaltetten, um in veränderter Form fortzubestehen oder die Rückbildung anzutreten. Aber auch die Gesammttheit des Organismus als ein auf dem Wege der Entwicklung Gewordenes, fordert zu einem Einblick in seine Genese auf. Diese zeigt uns das Complicirte in seinen einfachen Anfängen, lehrt sonst unverständliche Befunde der Lage und der Verbindung der Theile verstehen, und lässt die Anatomie, die auf dieses Fundament sich stellt, eine wissenschaftlichere Gestaltung gewinnen, weil sie causale Beziehungen aufdeckt.

Unmittelbarer ist die zweite Beziehung der vergleichenden Anatomie. Wenn es sich in der Anthropotomie nicht blos um reine Beschreibung, sondern auch um erklärende Beurtheilung der Befunde handelt, so ist für diese Beurtheilung ein Maßstab zu suchen. Dieser kann im Objecte selbst nicht gefunden werden, denn kein Ding ist ans sich selbst beurtheilbar, sondern nur aus den Beziehungen, die es zu andern bietet. Wir suchen jenen Maßstab also in andern, dem Objecte verwandten Organisationen, und bringen so den menschlichen Organismus in den Bereich der vergleichenden Anatomie. Damit gewinnen wir eine neue Grund-
lage für die Beurtheilung seiner Organisation und es erschliessen sich uns neue und wichtige Kategorien für die Erscheinung der Organe. Wir vermögen dieselben als mehr oder minder ausgebildet, oder auch rückgebildet zu denken, wir erkennen sie auf vollkommener oder unvollkommener, höherer oder niederer Stufe, und nicht wenige anatomiche That-sachen klären sich erst durch Verbindungen auf, welche die vergleichende Anatomie ihnen zuweist. Aus der hieraus entspringenden Erkenntniß erweitert sich der anatomiche Gesichtskreis und die Summe der an sich zusammensetzunglosen Einzeltheilchen gestaltet sich zu einem wohlgegliederten Ganzen.

So erscheinen Ontogenie und vergleichende Anatomie als *wissenschaftliche Grundlage* für die Anatomie des Menschen. Wenn diese nicht von Anbeginn an auf diesen Grundlagen fußte, sondern erst allmählich, und zwar nach Maßgabe der successiven Ausbildung jener mit ihnen in Verbindung gelangte, so liegt der Grund hierfür darin, dass auch die Wissenschaft nicht abschließt, sondern gleichfalls sich entwickelnd, nur allmählich zu höheren Stufen der Vervollkommnung gelangt.

Die Organe.

§ 5.

Jeder tierische Organismus bietet im Beginne seiner individuellen Existenz Zustände ausserordentlich einfacher Organisation.

Die Organe.

indem das Ganze entweder in eine Anzahl verschiedener Abschnitte sich theilt, oder auch nur ein neuer Abschnitt auftritt, der vom ursprünglichen Ganzen verschieden ist. Im Weiterschreiten dieses Processes erfährt der Organismus immer bedeutendere Veränderungen. Aus einer Anzahl einfacher Organe, die den Hauptfunctionen gemäß sich anfänglich anlegten und damit als Primitivorgane erscheinen, ist eine grössere Summe von Organen entstanden, welche mit Bezug auf erstere, von denen sich enhalten, Secundivorgane vorstellen. Jedes Primitivorgan ist so in einen Organcplex übergegangen, der mit Bezug auf die sowohl functionelle wie auch morphologische Zusammengehörigkeit seiner Be-

standtheile ein "Organsystem" bildet. Diese Differenzirung von Organen — von primären aus dem indifferenten Organismus, und von secundären aus den pri-

mären Organen — wandelt den einfachen Organismus in einen complicirteren um, und zwar in dem Maße, als jener Vorgang um sich greift. So kann jedes Primitivorgan in eine Anzahl untergeordneter Organe und jedes derselben wieder in andere noch niedrigerer Ordnung etc. gesondert werden. Die Reihenfolge dieser Sonderungsvorgänge am Organismus bezeichnet den Weg seiner Entwicklung, Die Ausbildung der Organe und die dadurch bedingte Complication des Orga-

nismus wird aber immer von einer Arbeitsteilung begleitet. Eine Verrichtung, die in ihrer Gesamtheit durch Ein Primitivorgan vollzogen ward, wird nach aufgetretener Differenzirung in ihren einzelnen Componenten von gesonderten Organen geleistet. Je ausschließlich ein solches Organ eine Function besorgt, desto mehr wird die Einrichtung des Organes dem Dienste der Verrichtung ge-

mäß sich gestalten können, und desto vollkommener wird die Function von ihm geleistet werden. Die Leistungsfähigkeit eines Organs in bestimmter Richtung steigt sich mit der Minderung der Ansprüche, welche von andern Verrich-

tungen an das Organ gestellt werden.

Durch die Theilung der physiologischen Arbeit auf verschiedene Organe, deren jedes der einzelnen Verrichtung gemäß sich ausbildet und dieser sich an-

paßt, wird also eine höhere Leistungsfähigkeit des Organs erzielt. Die Com-
plication des Organismus führt so zu einer organologischen Vervollkommnung
deselben. Demgemäß unterscheiden wir auch höhere und niedere Organismen,
und an diesen selbst wieder höhere und niedere Grade der Ausbildung. Der aus-
gebildete Organismus ist somit das Produkt einer an ihm allmählich zum Vollzug

gelangten Differenzirung, die in einer Theilung der physiologischen Arbeit ihre Unterlage hat.

Aus der Bedeutung der Function für das Organ ergibt sich die Stellung der

Physiologie als Functionslehre zur Anatomie. Die Function ist an das Organ

geknüpft, eine Äusserung derselben, derart, dass weder das Organ ohne Func-
tion, noch die Function ohne Organ vernünftigerweise gedacht werden kann. Die Physiologie bedingt also den Werth der Organe für den Organismus.

Die Leistung eines Organs steht aber mit dem morphologischen Befunde dasselben, mit der Gestaltung und Structur im innigsten Connexe; sie ist das zene bestimmende. Da der Organismus durch die Verrichtungen der Organe existirt und mit der Sistirung
Einleitung.

Hier liefert ihr die Physiologie das wissenschaftliche Moment, indem sie vereinzelte Thatsachen in Zusammenhang bringt. Anders gestaltet sich die Stellung zur Physiologie, wenn deren Normen nicht mehr den ausschließlichen Maßstab der Beurtheilung anatomischer Verhältnisse abgeben, indem man von den letzteren auch die Beziehungen würdigt, welche mit anderen Organisationszuständen erkennbar sind. Damit stellt sich die Anatomie auf den morphologischen Boden, dessen Umfang und Bedeutung im vorhergehenden § dargelegt wurde.

§ 6.

Wir lernen daraus das Bestehen von Organen kennen, welche im mensch-
Der Einfluß des Cessirens der Function auf das Organ darf jedoch nicht als ein plötzlicher oder auch nur als rasch auftretender gedacht werden. So wenig ein Muskel verschwindet, wenn er bei einem Individuum selbst lange Zeit hindurch außer Thätigkeit steht, ebenso wenig erfährt irgend ein anderes Organ eine sofortige Rückbildung. Wie bei der Ausbildung der Organe wirkt auch hier ein mächtiger Factor, die Zeit. Lange Zeiträume sind es, innerhalb derer die phylogenetische Entfaltung im Organismus erfolgte, und ähnlich lange Abschnitte erfordert auch die Rückbildung. Daher gehen sich rückbildende Organe nicht mit dem Individuum zu Grunde, sondern sie vererben sich mit den übrigen Einrichtungen, um erst durch Generationsfolgen dem gänzlichen Schwinden entgegen zu gehen.

Die rudimentären Organe verweisen uns also auf Zeiträume, in denen sie auch im ausgebildeten Organismus fungirten und in ausgebildeter Form bestanden. Sie sind damit Zeugnisse für die Verwandtschaft des menschlichen Organismus mit niederer stehenden, in denen jenen Organen eine Bedeutung zukam.

Die Beziehungen der rudimentären Organe zu anderen Thieren sind außerordentlich mannigfaltig. Es bestehen solche, die auf sehr entfernt stehende Abtheilungen, andere die auf nahe verwandte, und wieder andere die auf nächst verwandte schließen lassen; die ersteren sind als in früheren, die anderen in späteren Zuständen erworbene Einrichtungen anzusehen.

§ 7.

In letzterer Hinsicht können diese Befunde, soweit sie genauer geprüft sind, nach zwei Gesichtspunkten gesondert werden. Ein Theil davon bezieht sich auf niedere Entwicklungsstadien. Ontogenetisch verzügliche Einrichtungen persistiren und erlangen in einzelnen Fällen sogar eine mächtige Ausbildung. Man kann diese Befunde als embryonale Varietäten von anderen unterscheiden. Sie beruhen entweder auf einer Hemmung der Weiterentwicklung eines Organs oder Organtheiles, oder die an ihnen sich kundgebende Weiterentwicklung schlägt nicht die Richtung ein, die zur normalen Ausbildung führt. In manchen Fällen gehen sie allmählich zu Mißbildungen, Deformitäten über.

§ S.

Die durch Sonderung aus einer gemeinsamen Anlage entstehenden Organe behalten ihren Zusammenhang mehr oder minder vollständig auch im ausgebildeten Zustande. Aber selbst wenn sie anatomicisch sich vollständig trennen, erscheint doch in Bezug auf ihre Leistungen das Gemeinsame, und es verknüpft sie auch dann noch die Verrichtung, welcher sie dienen. Solche in gleicher Richtung fungirende, oder bei verschiedenen Functionen doch in Bezug auf die letzteren zusammengehörenden Complexe von Organen bezeichnet man als Organ- systeme, Organapparate.

Die Organsysteme bieten sich naturgemäß zur Eintheilung und Ordnung der den Organismus zusammensetzenden Theile dar. Wir unterscheiden folgende:

3. Das **Darmsystem** umfaßt einen wesentlich die Nahrungsaufnahme und die Veränderung der Nahrung besorgenden Canal, der mannigfaltig differenzirt das Darmrohr vorstellt. Von seinem ersten Abschnitte ist ein besonderes, der Athmung dienendes Hohlraumsystem abgezweigt, die Lungen mit den Luftwegen, welche die Athmungsorgane bilden.

4. Das **Urogenitalsystem** umfaßt die Organe der Ausscheidung unbrauchbarer stickstoffhaltiger Stoffe aus dem Blute (Excretionsorgane, Nieren), sowie jene, welche der Fortpflanzung dienen (Geschlechtsorgane). Beide sind von ihrer ersten Sonderung an in inniger morphologischer wie physiologischer Verbindung.

5. Das **Gefäßsystem** leitet vor allem den Umlauf und die Vertheilung der aus dem Nahrungsmaterial gewonnenen ernährenden Flüssigkeit (Blut) im Körper, in welchem es überall seine Verbreitung hat (Kreislaußorgane).

6. Das **Nervensystem** regulirt durch seinen Zusammenhang mit den übrigen Systemen die Thätigkeit derselben, nimmt durch die Sinnesorgane Eindrücke von außen her und erzeugt Vorstellungen und Willensimpulse.

7. Das **Integumentsystem** bildet die äußerliche Abgrenzung des Körpers. Außer mancherlei Schutzorganen sind seine wichtigsten Differenzierungsprodukte die Sinneswerkzeuge, welche mittelbar oder unmittelbar von ihm abstammen.

Mit den Bezeichnungen »animal« und »vegetativ« ist nur das Allgemeinste der Verrichtungen der Organe gegeben, das Vorwaltende der Funktionen im Thier- und Pflanzenreiche. Auf die Organe als solche, ihr morphologisches Verhalten, nimmt jene Unterscheidung keine Rücksicht, denn der Pflanze kommt keines der vegetativen Oursysteme in der Gestaltung zu, wie wir sie bei den Thieren unterscheiden, und die animalen Systeme sind bei den niedersten Thieren noch indifferent.

In einer älteren Auffassungsweise der Organe ergab sich eine andere Behandlung der Systematik derselben, welche zum Theil auch gegenwärtig Verwendung findet. Man trennte die Skelettlehre in eine Osteologie (Knochenlehre) und Syndesmologie (Bänderlehre), von denen die letztere jeglicher Selbständigkeit entbehrt, da die »Bänder« nur durch das, was sie zu verbinden haben, Bedeutung erhalten, nur aus dem Skelette verständlich sind. Das Darmsystem brachte man mit dem Urogenitalsystem unter den Begriff der »Eingeweide« (να υφέγγυα), als solche alle Theile die in Körperhöhlen liegen zusammenfassend. So theilte man der »Splanchnologie« auch das Herz zu, und rief es damit aus seinem morphologischen und physiologischen Verbande mit den Ge-
Einleitung.

§ 9.

An den Gliedmaßen sind wieder in Bezug auf die Mediantebene des Stammes mediale und laterale Theile unterscheidbar, wobei man sich die Gliedmaßen in ruhender Stellung am stehenden Körper denkt. Auch die Bezeichnungen sagittal, frontal und transversal sind in ähnlichem Sinne wie am Stamme verwendbar. Durch das Abtreten der Gliedmaßen vom Rumpfe, mit dem sie zusammenhängen, ergeben sich nene Bezeichnungen, für welche andere Termini nöthig sind. An den Gliedmaßen wie an ihren Theilen wird demgemäß die dem Stamme nähere Strecke als *proximale*, die entferntere als *distale* unterschieden.
Erster Abschnitt.

Von der feineren Zusammensetzung und vom ersten Aufbau des Körpers.

A. Von den Formelementen.

I. Von der Zelle.

§ 10.

Jede Zelle (Fig. 1) besteht aus einem Klümpchen weicher lebender Substanz, dem Protoplasma, welches ein festeres Gebilde, den Kern (Nucleus) einschließt. In Zustande der Indifferenz und bei mangelnder Druckwirkung benachbarter Formelemente kommt der Zelle eine sphärische Form zu. Das Protoplasma ist eine homogen erscheinende, auch wohl feine Molekel führende eiweißhaltige Substanz von pellucider Beschaffenheit. Ob sie völlig gleichartig ist, mag als zweifelhaft gelten, zumal in manchen Fällen sich eine Zusammensetzung aus sich verschieden verhaltenden Theilen angedeutet erscheint. Der Kern bildet einen scharf abgegrenzten, kugeligen oder auch ländlichen Körper, der stets größere Resistenz als das ihn

§ 11.

Die Zelle äußert Lebenserscheinungen, die theils vom Protoplasma, theils vom Kern ausgehen. Diese geben sich in ähnlicher Weise kund, wie wir sie am gesammten Organismus sehen. Wir nehmen an den Zellen Bewegungen wahr, indem wir die Zelle ihre Form verändern sehen, wie sie da einen Fortsatz ihres Protoplasma hervortreibt, dort eine Einbuchtung zeigt, durch welche Vorgänge sogar ein Ortswechsel, eine Locomotion, zu Stande kommen kann. Solche Bewegungen heissen amöboide, da einzellige Organismen, die Amöben, sie in gleicher Weise kundgeben. Auch am Kern sind Bewegungsvorgänge nachgewiesen, wenn sie auch bei der Resistenz der Kernmembran zu keinem so intensiven Gestaltwechsel führen, wie solcher am Protoplasma sich kundgibt.

Der Zellbegriff wurde anfänglich vorzugsweise auf die Annahme eines Höhlgebildes, eines mit Flüssigkeit gefüllt gedachten Bläschens gegründet, daher der Name. Dabei kam begreiflicher Weise der Membran eine bedeutende Rolle zu, sie war integrierender Bestandtheil der Zelle, obgleich schon von mehrfachen Seiten auf das Bestehen von Verhältnissen, wie sie heute gelten, hingedeutet war Fr. Arnold. Allmählich gelangte man.
dazu, die indifferenten und damit membranlosen Formelemente der Zelle allgemeiner als die das Wesentliche darbietenden Zustände anzusehen, und damit gewann das den Zellenleib darstellende Protoplasma die ihm zukommende Bedeutung. Mit der Membranbildung tritt am Zellkörper ein äußerer Abschluß auf, der vor allem die Bewegungser scheinungen einschränkt, oder sie, soweit sie locomotorisch wirken, gänzlich aufhebt.

Die durch Kerntheilung eingeleitete Zellvermehrung und die ihr verwandte Vermehrung durch Sprossung sind die einzigen, sicher erkannten Vermehrungsweisen, welche die früher allgemeiner angenommene freie Zellbildung — eine Generatio aequivoca der Zelle — immer weiter zurückgedrängt haben, so dass wir sie heute als noch unerwiesen gelten lassen dürfen. — Die Theilung des Zellkerns führt nicht unter allen Umständen
A. Von den Formelementen.

Hinsichtlich der eigenthümlichen Vorgänge bei der Kerntheilung sind die Schriften von Auersbach, Butschli, O. Hertwig und Strasburger maßgebend, vorzüglich aber W. Flemming, Arch. f. mikroskop. Anatomie Bd. XVI u. XVIII.

An dem oben dargelegten Zellbegriffe festhaltend, haben wir die vom Protoplasma different gewordenen, also nicht mehr Protoplasma darstellenden Stoffe, die folglich nicht mehr dem Protoplasmaleib der Zelle angehören, als »Abscheidungen« bezeichnet, weil der Begriff präziser ist als Differenzierung und die Benennung kürzer als »chemische und physikalische Umwandlung« des Protoplasmas, welche Umwandlung dieser Abscheidung allerdings zu Grunde liegt. Den Proceß selbst halten wir um so weniger fundamental von der in den Drüsenzellen auftretenden Absonderung verschieden, als ja hier ebenfalls ein Verbrauch von Protoplasma stattfindet, wie das zu Grundegehen dieser Formelemente und ihr Wiederersatz beweist.

§ 12.

Alle an der Zelle sich kundgebenden Vorgänge lassen dieselbe als ein lebendes Gebilde nicht nur, sondern auch als einem Organismus vergleichbar erscheinen Elementarorganismus, Brücke. Dieselben Lebensvorgänge vollziehen sich an diesen Formelementen, wie sie an einem complicirten Körper durch dessen Organe besorgt werden. Diese Bedeutung der Zelle tritt klarer hervor, wenn wir die Thatsache in Betracht nehmen, dass der gesammte Organismus nicht nur seinen Aufbau aus jenem Material empfängt, sondern dass er anfänglich sogar selbst auf einer die Zelle repräsentirenden Stufe sich darstellt. Das ist die Eizelle. Obwohl diese keineswegs in ihrer ausgebildeten Form als absolut indifferenter Zustand einer Zelle beurtheilt werden kann, so ist sie doch mit allen wesentlichen Attributen einer Zelle ausgestattet, und es ist nirgends ein fundamentaler Unterschied von indifferenteren Zellformen erweisbar. Was sie an Differenzierungsproducten in ihrem Protoplasma enthält, sind dem Zellbegriff nicht zuwider laufende Verhältnisse, es sind vielmehr nur Einrichtungen, die mit dem besonderen Werthe dieser Zelle in Zusammenhang stehen. Dieser Werth ergibt sich aus der Bedeutung der Eizelle für den künftigen Organismus, zu dessen Anlage
Erster Abschnitt.

sie durch allmähliche Zerlegung (Theilung) in kleinere Formelemente, die widerum Zellen sind, das Material darbietet.

Bei niedersten Organismen erhält sich der indifferentste Zustand der den gesammten Körper repräsentirenden Zelle zeitlebens, sie bestehen ausschließlich in dieser Form, die sich aber unendlich compliciren kann durch Differenzirungen, die an und in dem Protoplastma des Zellenleibes sich geltend machen (Protisten). Das was bei höheren Organismen als eine Vermehrung der Formelemente erscheint, aus denen der Organismus sich zusammensetzt, ist hier Vermehrung der Individuen, Fortpflanzung der Art. Von solchen einfachsten Lebensformen an sehen wir allmählich complicirtere Organismen durch Aggregate von Zellen entstehen. Mehr oder minder gleichartige Zellen in geringerer oder grüsserer Zahl bleiben zu einem Organismus vereinigt. Von da an erscheint das organbildende Prinzip der Arbeitstheilung (s. S. S) in hervorragender Weise thätig, und differente Theile des aus Zellen zusammengesetzten Körpers übernehmen verschiedene Leistungen. Demzufolge treten die Zellen aus dem indifferenten Zustand. Entsprechend der Function des durch sie gebildeten Organes, gehen sie in verschiedene Form- und Verbindungsverhältnisse über, lassen neue, chemisch und physikalisch vom indifferenten Protoplastma verschiedene Substanzen hervorgehen. Wir haben es dann sowohl mit Zellen als auch mit einer nicht etwa aus Zellen zusammengesetzten, aber durch Zellen producirten Substanz zu thun, die einen anderen Zustand als das Zellprotoplastma besitzt.

II. Von den Geweben.

§ 13.

Bei der Organbildung verwendete Complexe für sich gleichartig differenzirter, d. h. die gleichen Sonderungsprodukte ihres Protoplastma liefernder Zellen und ihrer Derivate stellen Gewebe (Telae) vor. Die gewebliche Differenzirung der Zellen knüpft also an die Sonderung der Organe an, beherrscht diese. Sie ist wie die Organbildung selbst das Resultat einer Arbeitstheilung. Diese Differenzirung der Zelle bringt also etwas hervor und ist damit eine Erscheinung von der größten Wichtigkeit für den Organismus. Die in den Geweben sich ausdrückende Art der Verbindung der Formelemente sowie ihrer Derivate unter einander, und damit in Zusammenhang die Beschaffenheit jener Theile in Bezug auf die Zusammensetzung aus Zellen, entsprechen der Textur. Sie repräsentirt den morphologischen Befund der Gewebe, wie die Struktur jener des Organs vorstellt.

Die Gewebe sind nach der Qualität der in sie eingehenden, sie zusammensetzenden Zellen, sowie der aus dem Protoplastma der Zellen differenzirten Substanzen verschiedene und danach gliedert sich auch ihre functionelle Bedeutung für den Organismus. Wir unterscheiden deren folgende vier: das Epithelialgewebe, das Stützgewebe (Gewebe der Bindesubstanzen), das Muskel- und Nervengewebe. Die beiden letztern finden ausschließlich im tierischen Organis-

Da alle Gewebe aus Zellen hervorgehen, gleichviel wie groß die Veränderungen sind, welche diese erfahren, gründet sich die Gewebelehre auf die Lehre von der Zelle, die als »Zelltheorie« zum Verständnifs der Gewebe dient.

Die Gewebelehre wird meist mit mikroskopischer Anatomie vereinigt behandelt. Solche Hand- oder Lehrbücher sind:

Kölleker, Mikroskop. Anatomie Bd. II. 1, 2. Leipzig 1850—52.
Derselbe, Handb. der Gewebelehre. 5. Aufl. Leipzig 1867.
Krause, W., Allgemeine und mikroskopische Anatomie. Hannover 1876.
Orth, Cursus der normalen Histologie. 2. Aufl. Berlin 1881.
Für die Zellenlehre gleichfalls von Wichtigkeit:
Erster Abschnitt.

A. Vegetative Gewebe.

1. Epithelgewebe.

§ 14.

Als Epithelien bezeichnet man continuirliche Zellenlagen, welche äussere oder innere Flächen des Körpers bedecken. Die Formelemente dieser Lagen sind die Epithelzellen, das durch sie gebildete Gewebe ist das Epithelgewebe.

Die Zellen dieses Gewebes verhalten sich nach stattgehabter Sonderung eines Epithels sowohl in formaler Beziehung als auch in Hinsicht ihrer feineren Zusammensetzung und ebenso in ihren Leistungen für den Organismus in differentem Befunde. Der Kern der Epithelzellen bleibt in der Regel bestehen, und erscheint von einem Protoplasmarest umgeben, indes gegen die Oberfläche zu eine differente, eine Zellmembran vorstellende Substanzlage vorhanden ist. Die Zelle erscheint dadurch räumlich schärfer abgegrenzt. Mit Bezug auf ihre Form, sowie auf ihre Anordnung ergeben sich verschiedene Abtheilungen des Epithelgewebes. Wachsen die aneinander gereihten Zellen nach der Fläche aus, so dass die Breitedurchmesser allmählich jenen der Höhe übertreffen, so stellen die Zellen allmählich Platten dar, sie bilden ein Plattenepithel (auch Pflasterepithel benannt) (Fig. 5, 6). Geht das Wachsthum der Zellen vorwiegend in die Höhe vor sich, so dass sie als längere Gebilde erscheinen, so bezeichnet man sie als Cylinderzellen (Stäbchenzellen) (Fig. 7). Liegen die Zellen in einer einzigen Schichte bei einander, so repräsentiren sie ein einschichtiges Epithel (Fig. 6, 7). Haben sich die Zellen derart vermehrt, dass sie nicht immer in einer Schichte Platz haben, sondern mehrere übereinander liegende Zellschichten bilden, so bezeichnet man es als mehrschichtiges.

In beiden Zuständen können platte oder Cylinderzellen vorkommen, aber in den mehrschichtigen Epithelien bilden diese ausgesprochenen Zellformen nicht die ausschließlichen Elemente, sie nehmen vielmehr nur die oberflächlichste Lage ein. In der tiefsten Lage sind meist indifferente Zellformen vorhanden (Fig. 8 a), von rundlicher oder durch gegenseitigen Druck polyedrischer Gestaltung. Darauf folgen Lagen, in welchen die Zellen (b) allmählich eine den Zellen der obersten Schichte ähnliche Gestalt gewinnen. Längere Formen, bis zur Spindelform, erscheinen in mehrfach geschichtetem Cylinderepithel, abgeplattete...
Gestalten zeigen die Zellen des Plattenepithels. Endlich schließt sich die für das bezügliche Epithel charakteristische Zellenform in der obersten Schicht an. Beim Plattenepithel bilden die charakteristischen Plättchen meist mehrfache Lagen (Fig. 9). Beim Cylinderepithel ist die oberste aus sogenannten Cylinderzellen gebildete Lage immer einfach. Ihre Zellen greifen aber mit oft langen Fortsätze zwischen die Spindelzellen der tieferen Schichten ein (Fig. 8).

Eine besondere Form bildet das Wimperepithel. Auf der freien Oberfläche der Zellen erheben sich verschieden lange, stets fein auslaufende Fortsätze (Cilien, Wimperhaare), welche während des Lebens der Zelle Bewegungen ausführen (Flimmerzellen). Meist besitzt eine Zelle eine größere Anzahl solcher Cilien (Fig. 10).

Als Bedingungen für die mannigfachen Formen der Epithelzellen wirken Wachsthum und gegenseitiger Druck. Da wir es bei den Epithellen mit Zellen zu thun haben, und zwar mit solchen, die relativ geringe Veränderungen erfordern, stellen sie die einfachste Gewebsform vor. Diese ist zugleich ontogenetisch und gewiß auch phylogenetisch das älteste Gewebe, denn die Anlagen der ersten oder Primärorgane des Körpers erscheinen in Gestalt von Epithelien als Keimblätter (Ecto- und Entoderm). Da von diesen aus die secundäre Entwickelung der Organe hervorgeht, in denen andere Gewebsformationen erfolgen, bildet das Epithel auch den Mutterboden für die übrigen Gewebe, welche aus ihm entstanden sind. Die einzelnen Gewebe bilden somit keine einander gleichwertigen Abteilungen. Auch für die übrigen werden in dieser Hinsicht noch Unterschiede hervorzuheben sein.

Der Begriff des Epithels entspricht eben nur einem gewissen Zustande der Zellen und ihrer Anordnung, ihrem Verhalten zu einander, und wo immer dieses Verhalten ausgesprochen ist, hat die Bezeichnung Epithel eine Berechtigung.

Das Wort *Epithel* sollte ursprünglich den Überzug einer nicht mehr durch die Lederhaut (das *Derma*) des Integumentes gebildeten Schichte an dem Lippeurande (den Probabien) bezeichnen, welche Schichte nur aus Wärzchen (*brüll*, die Brustwarze, Papille) bestehen sollte. Es ist also die Überkleidung einer Erhebungen darbietenden Gewebsschichte, welche nicht mehr durch das Derma gebildet wird, so dass die Bezeichnung *Epidermis*, wie sie der Überkleidung der Derma zukommt, nicht mehr anwendbar war.

§ 15.

In den Epithelien erscheinen die Zellen meist als leicht isolirbare Gebilde. Daraus entstand die Vorstellung, dass sie auch innerhalb jenes Gewebes von einander bestimmt abgegrenzt und, weil der festeren Verbindung entbehrend, isolirte Bildungen seien. Diese Vorstellung hat einer anderen Platz zu machen. Eine zwischen den anscheinenden Zellgrenzen der Epithelien, und zwar bei den mehrschichtigen in den jüngeren Schichten derselben vorkommende Substanz, die man als *Kittsubstanz* auffaßte, ergab sich grobentheils durch Protoplasmafäden dargestellt, welche die benachbarten Zellen unter einander in Zusammenhang setzen. Es besteht also keine vollständige Sonderung dieser Formelemente. Sie stehen an ihrer gesamten Oberfläche unter sich in Verbindung. Wo an dazu geeigneten Objecten das Gefüge jüngerer Epithelzellen bis jetzt zur genauerer Prüfung gelangte, hat sich dieser Befund erwiesen, so dass wir eine allgemeinere Verbreitung desselben für begründet halten dürfen. An den differenzirteren oberflächlichen Schichten geht diese Einrichtung in dem Maße verloren, als der Zellkörper eine chemische Umwandlung erfährt (z. B. Verhornung in der *Epidermis*). Doch scheint in den zuweilen verzweigten Fortsätzen mancher Cylinderzellen (Fig. 8) noch etwas auf solche Verbindungen Hindentrentes fortzubestehen. Wenn wir nun auch den Begriff einer Kittsubstanz bedeutend einschränken müssen, so wird er doch zunächst noch nicht ganz aufzugeben sein. Auch in jenen Fällen der Protoplasmaverbinding besteht zwischen den Fäden noch eine wohl flüssige oder halbflüssige Zwischensubstanz.

Während bei den indifferenteren Elementen der Epithelien demnach ein continuirlicher Zusammenhang vorkommt, der mit der Differenzierung verloren geht, äußert sich die letztere auch in einer schärferen Abgrenzung der Formelemente. Daran knüpft sich die materielle Umwandlung der äußersten Protoplasmaschichte, die sich zu einer Zellmembran gestaltet. Dersehe Proceß führt zu *partiellen Verdickungen*. Die oberflächlichen Schichten gewisser Epithelien (des Darmrohrs) bieten an jeder Zelle eine deren obere 'freie' Fläche einnehmende, oft mächtig verdickte Strecke, welche bei seitlicher Betrachtung wie ein homogener »Saum« erscheint (Fig. 11). Dieser verdickte Theil der Zellhülle, also die aus dem Protoplasma entstandene Membrau, kann sich von letzterem und damit von der Zelle selbst ablösen und stellt sich damit wie

Während die \textit{Cuticularbildungen} im Organismus der Wirbelthiere eine wenig hervortretende Rolle spielen, gehen aus ihnen bei den Wirbellosen bedeutend wichtige Einrichtungen hervor, in welcher Beziehung nur auf das aus ihnen gebildete Hautskelet der Gliederthiere gewiesen zu werden braucht.

\textbf{§ 16.}

Diese \textit{secretorische Thätigkeit} der Epithelzellen erscheint an einzelnen Strecken von Epithelien localisiert, womit sich eine Differenzierung des Epithels verbunden zeigt. An den der Secreton bestimmten Strecken bildet sich eine Oberflächenvergrößerung aus, durch welche die Leistungsfähigkeit des secre-

Durch die Einsenkung von secretorischen Epithelzellengruppen unter das benachbarte Niveau erscheinen zunächst Buchtungen und Grübchen (Fig. 12, a b), die bei fernerer Ausbildung in dieser Richtung blind geendigte Schläuche (c) vorstellen. Diese bilden somit aus den Epithellagen hervorgegangene, wesentlich durch das Epithel constituirte Organe, die entweder einfach bleiben, oder sich durch Ramificationen mannigfach compliciren und als Drüs en, Glandulae, bezeichnet werden.

Nach Maßgabe der Complication der Drüse folgt derelschen die ursprünglich subepitheliale Gewebsschichte (Bindegewebe), bildet für die einzelnen Theile der Drüse die äußere Abdungnung und wird so, als Membrana oder Tunica propria, der Drüse, selbst zugehörtl. Dieses Gewebe ist bei der Differenzierung der Drüsen gleichfalls in Thätigkeit, so daß die Vegetationsvorgänge bei jenem Processe sich keineswegs ausschließlich am Drüsengewebe vollziehen. Auch dadurch treten die Drüsen in die Reihe von Organen ein. Die durch die Einsenkung des zur Drüse sich gestaltenden Epithels bewirkte Flächenvergrößerung und die dadurch bedingte Steigerung der Function ist nicht die einzige Leistung jener Erscheinung.

Das secernirende Epithel wird durch die Einsenkung unter das Niveau der indifferenteren Epithellschichte äußeren Einwirkungen entzogen und beginnt damit in eine geschütztere Lage, unter der die Function des Drüsenepithels keinen Störungen ausgesetzt ist. Die Einsenkung sichert also die Function.

Wenn es auch bei der secretorischen Thätigkeit der Zellen das Protoplasma ist, dessen Veränderung bei der Secretbildung wesentlich betheiligt erscheint, so kommt bei jener Thätigkeit doch auch dem Einfluß des Nervensystems, sowie dem Gefäßapparate eine wichtige Rolle zu. Der Vorgang selbst ist also stets in Beziehung der Drüsen zu jenen Organsystemen sich vorzustellen. Dadurch wird jedoch die Aktivität des Zellprotoplasma im Allgemeinen nicht geschmälert, da ja, wie oben (S. 20) bereits hervorgehoben, dieselbe Erscheinung der Abscheidung an dem Protoplasma niederer Organismen besteht, bei denen der gesammte Körper nur durch eine einzige Zelle repräsentirt wird und von jenen Organsystemen keine Rede sein kann. Die Kenntniss dieser Thatsachen verbietet längst in den Epithelen der Drüsen Filtrirapparate und Diffusionsmaschinen zu sehen, wie sehr auch Diffusion und Filtration bei der Secretbildung in höheren Organismen betheiligt erscheinen.
§ 17.

Die Drüsen sind aus dem Vorhergehenden als Differenzierungen des Epithelgewebes aufzufassen, die sie zusammensetzenden Epithelzellen, innere Auskleidungen vorstellend, als das Drüsengewebe.

Mit dem Erscheinen dieser Gebilde als discreter Organe wird an ihnen eine fernere Differenzierung wahrnehmbar. Wenn wir annehmen, dass bei der einfachsten Schlauchform das ganze, den Schlauch bildende Epithel gleichartig geformt ist und gleichartig fungirt, d. h. in gleicher Weise sich an der Lieferung eines Secretes betheilt, so tritt dagegen eine Sonderung ein, sobald etwa das blinde Endstück des Schlauches allein die secretorische Funktion übernimmt, indes der vordere Theil des Schlauches nur zur Ausleitungen des Secretes dient. Indem diese physiologische Arbeitstheilung auch morphologisch sich ausprägt, erscheint der auffällig gleichartige Drüsenschlauch in zwei Abschnitte differenziert, in einen secretorischen Abschnitt und einen Ausführungsgang (Fig. 12 d e f). Das Epithel des drüsigen Abschnittes bietet andere Verhältnisse, so wohl in Bezug auf Größe, Gestalt und feinere Zusammensetzung der Zellen, als das Epithel des Ausführungs- oder in der äußeren Gestaltung des Drüsenschlauches. Der secretorische Abschnitt gestaltet sich umfänglicher und stellt sich dadurch in einen Gegensatz zum engen Ausführungs- oder denen sich darstellt. Dieser Verschiedenheit entsprechen häufig noch andere Veränderungen, und zwar in der äußeren Gestaltung des Drüsenschlauches. Der secretorische Abschnitt gestaltet sich umfänglicher und stellt sich dadurch in einen Gegensatz zum engen Ausführungs- oder Differenzierungen, der diese Strecke knäuelförmig gestaltet; er bildet einen Glomus (z. B. die Schweifdrüsen der Haut). In anderer Weise wird eine Vermehrung des drüsigen Epithels durch Verzweigungen des Schlauches geboten. Am blinden Ende des einfachen Schlauches entstehen Sprossungen (Fig. 12 e), aus denen ähnliche Schläuche wie der zuerst gebildete hervorgehen. An diesen kann derselbe Proceß von Neuen erfolgen, und aus dem Fortschreiten desselben gehen neue Complicationen hervor (Fig. 12 f). Der Ausführungsgang nimmt eine Anzahl von Schläuchen auf (zusammengesetzte schlauchförmige Drüse), oder der Drüsenschlauch verzweigt sich allmählich nach einer oder nach verschiedenen Richtungen (ramifizirte tubulöse Drüse). Treten die einzelnen Zweige einer solchen verästelten tubulösen Drüse untereinander in

<table>
<thead>
<tr>
<th>Fig. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema für die Drusenbildung.</td>
</tr>
</tbody>
</table>

A. Von den Formelementen.
Erster Abschnitt.

Die aecinösen Drüsen zeigen vorzüglich Complicationen durch Verzweigungen, welche wieder aus Sprossungen des Drüsenepithels entstehen (Fig. 12 cf.). In einer solchen Drüse sehen wir je eine Anzahl von Acinis mit ihren Ausführungsgängen zu einem gemeinsamen Ausführungsgang vereinigt, welcher dann entweder unmittelbar nach außen mündet, so dass das Ganze eine einzige Drüse vorstellt, oder doch einer Summe von Acinis gemeinsame Ausführungsgang verbindet sich mit andern zu einem auch für diese gemeinsamen, und so können im Weitergreifen dieses Verhaltens die reichsten Verzweigungen dargestellt sein. Diese Formen repräsentiren den einfacheren gegenüber die zusammengesetzten trauigen Drüsen. Bei diesen stellen Complexen der Acini mit ihren Ausführungsgängen wieder Unterteilungen dar. Eine Anzahl in einen Ausführungsmündender Acini bildet ein Drüsenläppchen (Lobulums.), deren wieder eine Summe mit ihren Ausführungsgängen verbunden sich vorstellen lässt, woraus größere Läppchen hervorgehen, bis allmählich, bei umfanglicheren Drüsen nicht nur dem bloßen Auge unterscheidbare, sondern sogar recht ansehnliche Abschnitte oder Lappen ('Lobi') der Drüse sich bilden.

Diese Verschiedenheiten finden jedoch eine Ausgleichung durch die relativ kurze Lebensdauer, welche auch den nicht durch einmalige Secretbildung unter-

Erster Abschnitt.

§ 18.

2. Stützgewebe.

§ 19.

Die wesentlichste Eigenschaft dieses Gewebes besteht in der Bildung einer, die ursprünglich wie in anderen Geweben indifferenten Zellen von einander trennenden Interzellularsubstanz. Die letztere, an Volum gegen die Zellen überwiegender, stellt die Hauptmasse des Gewebes vor (Fig. 14). Sie ist die Trägerin der Function dieses Gewebes, in welchem die Formelemente eine nur in Bezug auf die Bildung und Ernährung der Interzellularsubstanz wichtige Rolle spielen. Dem entspricht ebenso die Indifferenz dieser Formelemente wie die große Mannigfaltigkeit der Befunde der Interzellularsubstanz, die als der functionell wichtigere Theil des Gewebes erscheint. Die Zellen selbst bewahren, wie auch ihre Gestaltung modifizirt sein mag, mit ihrem Protoplasma einen indifferenten Charakter, dagegen zeigen sich an der Interzellularsubstanz vielerlei Modificationen, auf welche die einzelnen Abtheilungen dieses Gewebes zu begründen sind.

So stellt sich das Stützgewebe dem Epithel gegenüber, bei welchem Interzellularsubstanz eine untergeordnete Bedeutung besaß, wogegen die Zelle selbst in der größten Mannigfaltigkeit der äußeren Gestaltung wie auch der inneren Beschaffenheit Drüsenzellen auftrat. Diese große Verschiedenheit beider Gewebe steht im engsten Zusammenhange mit ihrer Leistung für den Organismus. Bei dem Epithelgewebe beruht die Function in der Zelle und
äußert sich an ihr: bei dem Stützgewebe geht die Leistung des Gewebes als Ganzes auf die vom Protoplasma different gewordene Intercellularsubstanz über, deren Eigenschaften sie vor allem als Stütze für die die Organe zusammen- setzenden übrigen Gewebe wirksam sein lassen. Durch seine Verbreitung im Körper kommt dem Stützgewebe eine wichtige Rolle zu. Es bildet überall die Unterlagen für die Epithelformationen, begleitet die Bahnen der ernährnden Flüssigkeit, verbindet die Formelemente des Muskel- und Nervengewebes zu räumlich abgegrenzten Organen und lässt endlich seine stützende Funktion in dem von ihm geleisteten Aufbau des Skeletes zum vollkommensten Ausdruck gelangen. In diesen verschiedenen Beziehungen trägt die Beschaffenheit der Intercellularsubstanz den verschiedenen Ansprüchen Rechnung, und nach den in ihr sich aus- drückenden Besonderheiten unterscheiden wir das Bindegewebe, Knorpel- und Knochengerüst als besondere Formzustände des Stützgewebes.

a. Bindegewebe (Tela conjunctiva).

§ 20.

In diesem Gewebe behält die Intercellularsubstanz eine mehr oder minder weiche Beschaffenheit und ist meist, besonders bei älteren Formationen, in reichlichem Masse vorhanden. Die Zellen selbst sind in solchen nur spärlich vertheilt und können sehr verschiedene Formen besitzen. Das weitere Verhalten der Zellen wie der Intercellularsubstanz lässt wiederum Unterabteilungen unterscheiden, als welche wir folgende aufführen:

1. Gallertiges Bindegewebe. Gallertgewebe, Schleimgewebe, wird durch

Im ausgebildeten Organismus trifft es sich nur in sehr mo difizirtem Zustande im Glaskörper des Auges. Bei niederen Thie ren kommt ihm eine große Verbreitung zu und bei vielen bildet es den größten Theil des Körpers derselben.

2. Faseriges Bindegewebe wird durch die Zusammensetzung der Interzellu lar substanz aus stärkeren oder feineren Fasern (Fibrillen) charakterisirt, die in verschiedenen Lagerungs beziehungen zu einander vorkommen. Zwischen den oft in Bündel vereinigten Fibrillenzügen finden sich die Bindegewebszellen, von sehr verschiedener Gestalt. Besonders in jüngeren Zuständen des Gewebes erscheinen sie spindelförmig (Fig. 16) oder verzweigt, an ältere mehr in flächenhafter Entfaltung und stellen dann Plättchen vor (Fig. 17), deren spezielle Form der Gestaltung den Interstitien der Fibrillenbündel angepaßt, daher überaus mannigfaltig ist. Die Ent wickelung dieses Gewebes aus seiner embryonalen Form zeigt die Entstehung der Interzellulärs substanz theils aus einer Differenzierung oder Zerklüftung der vorher bestehenden Gallerte, theils aus einer Differenzierung der Zellen selbst, deren Ausläufer in Faserbündel oder Fibrillen zu übergehen. Wenn die mit dem Protoplasma der Zellen zusammenhängenden Fortsatzbildungen der letzteren Differenzierungs produkte der Zellen selbst, aus ihrem Protoplasma entstandene Gebilde sind, sind auch die Fibrillen und Fasern als Sonderungsprodukte der Zellen anzusehen. Aber diese Entstehung von Fasern aus dem Protoplasma der Zellen ist keineswegs als der dominirende Bildungsproceß der faserigen Theile anzusehen, vielmehr bestehen an diesen Wachsthums- und Spaltungs vorgänge, ohne dass das Proto plasma dabei direct betheiligt wäre. Bei Behandlung mit Säuren oder Alkalien erfolgt ein Aufquellen der Interzellulärs substanz. Durch Kochen in Wasser gibt sie Leim. Das Gefüge der Fasern und ihre Anordnung läßt dieses Gewebe nach verschiedenen Zuständen in lockeres und straffes trennen, welche beide vielfach in einander übergehen.

a) Lockeres Bindegewebe enthält in seiner Interzellulärs substanz nach
verschiedenen Richtungen sich durchkreuzende Faserzüge. Bündel von Fasern, die sich in feinere auflösen und sich vielfach durchsetzen. Zwischen den Bündeln und Faserzügen finden sich Spalträume, die ein Auseinanderziehen des Gewebes ermöglichen.

Es findet sich in der Schleimhaut des Tractus intestinalis in Verbreitung, kommt an einzelnen Strecken zwischen dem gewöhnlichen fibrillären Bindegewebe vor; in der Umgebung dieser Stellen gehen die Bälkchen unmittelbar in Bindegewebszüge über. Die nicht mit Zellen gefüllten Lücken werden von Lymeph durchströmt und die gesamte Bildung steht in nächster Beziehung zum Lymphgefässystem, wie sie denn auch in der Struktur der Lymphdrüsen eine wichtige Rolle spielt, daher: adenoides Bindegewebe.

Da das Gefüge des Bindesgewebes zum Theil in dem Vorkommen größerer oder kleinerer Spalträume beruht, die man beim Auseinanderziehen der Lamellen oder Bündel, wenn auch gewaltsam und in unnatürlichem Verhalten darzustellen vermöge, hat man das Bindegewebe früher als »Zellgewebe«, »Tela cellulosa« bezeichnet. Die »Zellen« werden dabei durch jene Spalträume oder durch künstliche Risse dargestellt, haben also durchaus nichts mit den Zellen als Formbestandtheilen zu thun. Die somit nur Mißverständnisse veranlassende Bezeichnung dürfte daher gänzlich aufzugeben sein.

Die Bindegewebszellen nehmen an den Begrenzungsfäden von Spalträumen oder anderen im Bindegewebe auftretenden Lösungen der Continuität einen anderen Charakter

GEGENBAUR, ANATOMIE.

§ 21.

Durch die an den Zellen wie an der Interzellularsubstanz auftretenden Veränderungen erleidet das lockere Bindegewebe Modifikationen, die anscheinend neue Gewebsformen hervorrufen. Durch das Auftreten elastischer Gebilde in der Interzellularsubstanz entsteht das sogenannte elastische Gewebe. Zwischen den Faserzügen der Interzellularsubstanz finden sich bald feinere, bald gröbere, netzartig
unter einander verbundene Fasern, die durch ihren Widerstand gegen Säuren und Alkalien, auch durch stärkeres Lichtbrechungsvermögen, aber vorzüglich durch bedeutende elastische Eigenschaften vor den Bindegewebsfasern sich auszeichnen. Die feinsten dieser *elastischen Fasern*, ehemal Fernfasern benannt, finden sich in großer Verbreitung. Sie zeigen Übergänge zu stärkeren Fasern, welche dichtere Netze herstellen und in dem Maße, als sie im Bindegewebe vorwiegen, dasselbe elastisch erscheinen lassen. Tritt die fibrilläre Interzellulargewebsnetze gegen die elastischen Netze zurück, so zeigen sich größere Gewebskomplexe fast ausschließlich aus den elastischen Maschenwerk gebildet und daher kam die Aufstellung dieser Form als eines besonderen, dem Bindegewebe gleichwerthigen Gewebes.

Das elastische Gewebe tritt in bindegewebsigen Membranen auf, in den Fascien, in der Grundlage der Schleimhäute etc. In reichlicherem Vorkommen bildet es elastische Bänder, die durch gelbliche Färbung sich auszeichnen (Ligg. flava!). Auch elastische Membranen formt es, z. B. in der Arterienwand. Bei flächenhafter Ausbreitung elastischer Netze können die Fasern bedeutend an Breite gewinnen auf Kosten der von ihnen umschlossenen Maschenräume. Diese sinken so auf unanschneidliche in weiten Abständen angeordnete Lücken oder Spalten herab, welche als Durchbrechungen einer elastischen Membran erscheinen. Daraus gehen die *gefensterten Hüte* hervor, die gleichfalls in der Arterienwand vorkommen. [Fig. 22].

Die Entstehung des *elastischen Gewebes* leitet sich auf die differenzierende Thätigkeit des Protoplasma der Bindegewebszellen zurück. In ähnlicher Weise wie aus diesem die Bindegewebsfasern hervorgehen, entstehen die elastischen Gebilde als Sonderungen aus dem Protoplasma. Es wiederholen sich also hier die bei der Entstehung der Interzellularsubstanz des Bindegewebes auftretenden Vorgänge, indem die erste Bildung der elastischen Fasern aus einer Umwandlung des Protoplasma der Zellen erfolgt, während weitere Wachstumsvorgänge an den elastischen Fasern nicht mehr so direkt von den Zellen sich ableiten lassen. Bezüglich der Geneese dieses Gewebes im Knorpel siehe

Erster Abschnitt.

§ 22.

Außer den formalen Veränderungen der Zellen des Bindegewebes treffen sich noch materielle, für welche das Protoplasma der Zelle den Träger und den Vermittler abgibt. Diese Veränderungen geben sich in der Entstehung von Stoffen im Zellenkörper kund, die vom Protoplasma different sind. So erscheinen Farbstoffe im Innern von Bindegewebszellen, meist in Gestalt feiner Molekel sich ablagernd, und lassen die Zelle als Pigmentzelle (Fig. 23) erscheinen. Wo solche Pigmentzellen in größerer Menge auftreten, können Strecken von Bindegewebe in bestimmter Färbung, bräunlich, schwärzlich sich darstellen (Pia mater, Suprachorioidea des Augapfels). Die Zellen bieten meist räumliche Formen, aber auch regelmäßig gestaltete kommen vor.

Eine ferner hierzu zählende Modifikation der Bindegewebszellen bilden die Fettzellen (Fig. 24). Diese entstehen in dem Blutgefäß (feinere Arterien) begleitenden, die Gefäßscheide derselben bildenden Bindegewebe. In dem Protoplasma der Zellen dieses Gewebes treten reichliche Körnchen auf, durch welche anfänglich die Form der Zelle nicht alterirt wird. Sie bleibt auch noch in ihrem ursprünglichen, von anderen Bindegewebszellen nicht verschiedenen Verhalten, nachdem größere Fetttröpfchen im Innern sich gebildet haben. Diese Tröpfchen vergrößern sich, fließen auch wohl zusammen, und bilden allmählich den Körper der Zelle zu einem voluminosen Theile um.

Je nachdem so ein größerer Fett tropfen oder deren mehrere das Innere der Zelle füllen, ist deren Gestalt verschieden. Meist aber bilden sich mehr rundliche Formen aus, indem die beim Beginne der Fettbildung vorhandenen Fortsätze der Zelle unschächer werden und verschwinden. Das Protoplasma wird bei der zunehmenden Vergrößerung der Fetttröpfchen zu einer derselben überkleidenden Schichte umgestaltet, in welche auch der Kern gedrängt erscheint. Es wird so zu einer den Fett tropfen umschließenden Membran, ohne jedoch seine Eigenschaften dabei einzuüben, denn bei eintretendem Schwund des Fettes (Fig. 25) gelangt wieder der frühere indifferenten Zustand der Zelle zur Erscheinung (Fig. 25 g).

Die Fettzellen finden sich meist gruppenweise beisammen, bilden Träubchen, die von einem Blutgefäbsnetze umspunnen sind. Da ihr Verkommen ans Bindegewebe geknüpft ist, finden sie mit diesem eine weite Verbreitung im Körper, wenn auch viele Binde-

§ 23.

b) Straffes Bindegewebe. Ist von dem lockeren durch seine bedeutendere Festigkeit verschieden, die mit einer mehr oder minder parallelen Anordnung der zu Bündeln gruppierten Fasern verknüpft ist. Feine elastische Fibrillen fehlen auch hier nicht.

S. RANVIER, Lehrbuch. GRÜNHAGEN, Arch. f. mikroskop. Anatomie, Bd. IX.
b. Knorpelgewebe.

§ 24.

Bei jüngerer Geweben grenzen die Kapseln, die Intercellularsubstanz repräsentirend, zwar an einander, sind aber auch mehr oder minder deutlich von einander getrennt. Bei älterem Knorpel sind oft Schichtungen in der Kapsel wahrnehmbar, durch welche die allmähliche Differenzierung der Intercellularsubstanz aus dem Protoplasma der Zellen bezeugt wird. Die äußersten Schichten gehen in homogene Intercellularsubstanz über.

Das Wachsthum des Knorpels erfolgt durch eine Vermehrung der Intercellularsubstanz und eine Vermehrung der Zellen durch Theilung. Die Theilungsprodukte (Tochterzellen) liegen anfänglich in einem gemeinsamen Hohlräume der Intercellularsubstanz. Nach und nach bildet jede der Zellen um sich herum eine Kapsel, oder es fließt die von ihnen gebildete Intercellularsubstanz mit der schon vorhandenen zusammen. Stets aber werden damit die beiden Theilungsprodukte von einander getrennt. Wiederholt sich derselbe Vorgang an jeder der beiden Zellen und setzt sich in dieser Weise fort, so gehen daraus Gruppen von Zellen hervor, die ihre Abstammung von einer Zelle durch ihre Lagerung kundgeben (Fig. 28). Ist die Intercellularsubstanz noch in Kapseln gesondert, so vermag man in dem Verhalten der in einander geschachtelten Kapselsysteme den Gang der allmählichen Entstehung der Zellgruppe zu beobachten. Die Theilung der Zelle kann auch in einer einzigen Richtung vor sich gehen. Dann entstehen Reihen von Zellen, säulenförmige Bildungen, durch welche die Richtung des Knorpelwachsthumes sich ausspricht.

Wenn auch vom Protoplasma different geworden, darf die Intercellularsubstanz doch nicht als eine außerhalb der Lebensvorgänge stehende betrachtet

In den Knorpelzellen gehen nicht selten Veränderungen durch Bildung von Fetttröpfchen vor sich, wodurch an die Fettzellen des Bindegewebes erinnert wird. Im Ganzen trifft das ältere Formationen. — Bezüglich der Durchsetzung der Intercellularsubstanz von feinen, von den Knorpelzellen ausgehenden Canälichen, s. J. Arnold, Arch. für path. Anat. Bd. LXXXIII. A. Budge, Arch. f. mikroskop. Anatomie Bd. XVI.

Erster Abschnitt.

Gewebsform erhalten, die in allen übrigen Organen durch höhere Stützgewebsformen verdrängt ist.

Der Hyalinknorpel läßt die Interzellulärrsubstanz homogen erscheinen; dem blosen Auge stellt er sich von weißlicher oder leicht bläulicher Farbe dar, auf dünnen Schnitten durchscheinend. Die oben erwähnten, von dem Zellenprotoplasma differenzierten Knorpelkapseln sind in verschiedenem Maße deutlich. Es ist die verbreitetste Form des Knorpelgewebes und bildet zugleich den Ausgang für andere Formen.

Die Verkalkung des Knorpelgewebes bildet für letzteres eine Vorbereitung für die Ossification, wenn auch eine direkte Umwandlung von Knorpel nur in seltenen Fällen vorkommt. Sehr verbreitet ist die Verkalkung als Alterserscheinung des Knorpels.

Der Faserknorpel besitzt verschiedene Ausgangspunkte für seine Genese, und stellt dem entsprechend auch differente Bildungen vor. Eine Form des Faserknorpels steht durch Umwandlung der Interzellulärrsubstanz des Hyalinknorpels. Sie erscheint von feinstreifigen Zügen durchsetzt oder bietet gröbere fibriläre Bildungen dar. Wie an diesen die Knorpelzellen beteiligt sind, bleibt ungewiss, doch scheint eine unmittelbare Beziehung dazu nicht stattzufinden. Vom Faserknorpel aus finden sich die zahlreichsten Übergänge zum Bindegewebe, besonders zu dessen straffer Form, so dass alsdann die Zugehörigkeit dieses Gewebes zum Knorpel nur durch die mehr den Knorpelzellen sich anreihenden Formelemente bestimmbar wird. Ein solches
Verhalten stellt sich in Fig. 30 dar. Noch entschiedener tritt das Knorpelgewebe hervor, wenn in die fibrilläre Grundsubstanz Gruppen von Knorpelzellen vertheilt sind, deren Interzellularsubstanz keine Fibrillen führt, wenn sie auch in solche sich fortsetzt. Solche Übergangsbeurteilungen erläutern die nahe Verwandtschaft des Knorpels und des Bindegewebes.

Endlich ist noch des elastischen Knorpels zu gedenken, in dessen Interzellularsubstanz feine und größere elastische Faserblät Netze bilden (daher Netznorpel) (Fig. 31). Bei vorwaltenden elastischen Fasern empfängt der Knorpel gelbliche Färbung (gelber Knorpel).

Bezüglich der Genese der elastischen Fasern siehe die oben bei der elastischen Modification des Bindegewebes citirten Autoren.

c. Knochengeweb.

§ 25.

Im trockenen Zustande des Knochengewebes ist das Protoplasma meist zerstört und Luft füllt die Räume sowohl der Knochenzellen [Knochenhöhlen], als auch der davon ausgehenden Ausläufer, die damit als feinste Canäldchen erscheinen (Fig. 32). Dieses gesammte
Hohlraumsystem erscheint daher an Schlüssen trockener Knochen bei durchfallendem Lichte dunkel, bei auffallendem weiß.

Für die Genese des Knochengewebes bildet Bindegewebe den Ausgangspunkt; fast überall da, wo ersteres entsteht, gibt das letztere, wenn auch in seiner mehr embryonalen Form, die Bildungsstätte dafür ab. Bindegewebszellen in reichlicher Vermehrung und in ihrer indifferensten Gestalt formiren Stränge oder Schichten zwischen der Interzellularsubstanz des Bindegewebes, oder finden sich einem anderen Gewebe (Knorpel) aufgelagert. In beiden Fällen geht durch die Thätigkeit dieser Zellen (Osteoblasten), von deren Protoplasm ein Theil different wird, eine Schichte von Knochensubstanz hervor. Gleich mit der ersten Bildung derselben erstrecken sich in sie seine Proteplasmaauläuf der sie producirenden Zellen. Indem jene Schichte durch von neuem ihr angelagerte Schichten der von den Zellen abgeschiedenen (d. h. different gewordenen) Substanz an Dicke zunimmt, entfernt sich die als Matrix erscheinende Zelllage immer mehr von der ersten Schichte, aber einzelne Zellen bleiben liegen (Fig. 33 a', b b') und werden von der von ihnen selbst und von den benachbarten Zellen gebildeten Knochen substanz umschlossen.

Das Knochengewebre repräsentirt durch seine Eigenschaften — Festigkeit verbunden mit einem gewissen Maße von Elasticität — die höchste Form der Stützgewebe. Die von ihm geformten Organe (Knochen) dienen bei relativ geringeren Volum vollkommener ihrer Leistung als aus Knorpel gebildete Theile. Wie es die höchste Form des Stützgewebes ist, ist es auch ontogenetisch und phylogenetisch die jüngste. Sie greift am Knorpelskelet Platz, ersetzt dieses allmählich unter Verdrängung des Knorpelgewebes, welches nur an beschränkten Localitäten sich forterhält, und läßt auch Skelettheile ohne jene knorpelige Präformation hervorgehen, womit sich die Selbständigkeit des Gewebes, seine Unabhängigkeit vom Knorpelgewebe kund gibt.

Bei der die Regel bildenden, schichtenweisen Absetzung des Knochengewebes kommt es stets auch zu einer directen Beheiligung des Bindegewebes an der Knochengewebsbildung, sobald die letztere im Bindegewebe vor sich geht (perichondrale Verknöcherung). Ossifizierende Bindegewebsbündel werden in die Knochenschichten mit eingeschlossen, durchsetzen somit letztere (durchbohrende Fasern). Dagegen fehlen diese Gebilde, wo die Knochengewebsbildung im Knorpel stattfindet (enchondrale Ossifizierung).

Siehe auch unten beim Skelet.

B. Animale Gewebe.

§ 26.

Erster Abschnitt.

A. Von den Formelementen.

45

1. Muskelgewebe.

§ 27.

a. Muskelzellen.

Jedes Element geht aus einer mehr oder minder verlängerten Zelle hervor, die ihre contractile Substanz peripherisch differenzirt, so dass der Kern eine cen-
erste Lage behält. Sie unterscheiden sich wieder in glatte und quergestreifte Formen.

\(\text{α Glatte Muskelfelder, contractile Faserzellen sind spindelförmige, drehrunde oder wenig abgeplattete Fasern, welche an dem dickeren Theile einen stäbchenförmigen Kern umschießen (Fig. 33). An beiden Enden der letzteren setzt sich in der Länge der Faser Protoplasm substanz mit einer Reihe feiner Körnchen fort. Die contractile Substanz bildet den größten Theil der Faser und erscheint häufig homogen, an der glatten Oberfläche matt glänzend. Doch sind zuweilen feine Längsstreifungen in ihr wahrnehmbar. Querstreifungen in regelmäßiger Folge kommen als Ausdruck localer Contractionen vor.}

Die glatten Muskelfelder sind zuweilen gabelig getheilt, oder zeigen Andeutungen von Verästelungen. Ihre Länge beträgt meist 0,04—0,00 mm., doch kann sie bis zu 0,2 mm und darüber steigen, die Dicke beträgt 0,007—0,015 mm. Unter einander sind sie durch eine dünne Lage von Kittsubstanz verbunden. Ihre Anordnung stellt sich in Lammern oder in Bündeln dar, wobei sie mit ihrer Längsaxe einander parallel liegen. Häufig bilden sie im Bindegewebe zerstreute Züge. Aber auch eine geschlechtartige Anordnung mit sich durchkreuzenden Bündeln kommt vor. — Die Verbreitung dieses Gewebes findet sich in den Wandungen des Darmrohrs und des Gefäßsystems in den Ausführwegen des Urogenitalsystems und im Integument des Körpers.

Der Zusammenhang mit Nerven wird auf verschiedene Weise angegeben, ist aber noch nicht sicher bekannt. Sich wiederholt theilende Nervenfasern bilden feine, die Muskelfasern begleitende Gefässe. Die Auslösung der diesen Muskelfasern übertragenen Reize erfolgt durch langsame Contractionen, die aber länger andauern.

\(\text{β Quergestreifte Muskelfelder zeigen die oberflächlich gebildete contractile Substanz mit einer ähnlichen Differenzierung ausgestattet, wie sie die vielkernigen Muskelfasern besitzen, mit denen man sie deshalb zusammengegelt hatte. Die bei den glatten Muskelfasern mehr gleichartig erscheinende Schicht ist daher hier weiter differenziert. Diese Elemente kommen aus-}

schließlich der Muskulatur der Herzwand zu.

Bei niederer Wirbelthieren (Fischen, Amphibien, Reptilien), besitzen sie noch die Spindelform, zuweilen mit einer Andeutung einer Verzweigung; die Querstreifung ist oft wenig ausgeprägt (vergl. Fig. 35). Sie sind zu Zügen und Strängen inniger untereinander vereinigt. Bei warmblütigen Wirbelthieren und so auch beim Menschen stellen die kürzeren aber dickeren Zellen, in dem sie mit ihren breiten Endflächen unter einander verbunden sind, Faserzüge her.
Diese bieten eine netzförmige Anordnung, indem eine oder die andere Zelle terminal sich gabelig theilt, und so mit zwei Zellen, resp. zwei Fasern in Verbindung steht. Diese Elemente lösen Reize rascher aus als die sogenannten glatten.

Da zwischen den glatten Muskelzellen und den beschriebenen quergestreiften ganz allmähliche Übergänge, z. B. am Arterienbulbus der Amphibien zu erkennen sind, werden sie nicht mehr mit den Muskelfasern zusammengestellt werden dürfen. Sie repräsentirenten einen besonderen Differenzierungszustand der glatten Faserzellen, mit denen sie ebenfalls im Verhalten zu Nervenfasern Übereinstimmung besitzen, wenn diese auch zunächst nur darin besteht, dass die Nerven feinste Theilungen eingehen und keinesfalls jene Endplatten bilden, wie sie den Muskelfasern zukommen.

b. Muskelfasern.

§ 28.

Die Muskelfasern sind nicht völlig gleichartig. Außer einer Verschiedenheit in ihrer Stärke besteht noch eine solche in der Färbung und in der grösseren oder geringeren Zahl der Kerne. Die Stärke der Fasern schwankt zwischen 0,011—0,055 mm, die Fibrillen messen 0,001—0,0097 an Dicke. Die Länge der einzelnen Fasern kommt nicht immer jener der Muskeln gleich. Nur in den kürzeren Muskeln entspricht sie derselben. In den längern ist sie relativ gering, nach manchen Angaben sogar sehr bedeutend, so dass innerhalb des Muskels Fasern beginnen und endigen.

Wie in diesen Formelementen das Eigenthümliche nicht bloß in dem Auswachsen einer Zelle und der Bildung von spezifisch contractiler Substanz besteht, sondern auch in der mit dem Auswachsen erfolgenden Vermehrung der Kerne, durch welche die Fasern einer Summe von Zellen gleichwertig werden, so findet sich das gleiche auch in den Muskelfasern mancher wirbelloser Thiere, bei denen aber die contractile Substanz auf derselben Stufe wie bei den glatten Muskelzellen stehen bleibt. Es gibt also auch glatte Muskelfasern, die eine niedere Stufe des quergestreiften vorstellen.
Von den Formelementen.

Was das Sarcolemma betrifft, so ist es fraglich, ob dasselbe einfach als eine Ausscheidung der Muskelfaser als eine Differenzierung aus dem Protoplasma der Zelle aufzufassen sei. Manche erklären es, freilich ohne positiven Nachweis, für Bindegewebe.

Der Umstand, dass das Neurilemma in es übergeht, würde in dieser Richtung verwertbar (s. unten) sein, wenn dessen Auffassung völlig sicher gestellt wäre. Auch bezüglich der contractilen Substanz bestehen noch manche Eigentümlichkeiten, von denen nur einige hier anzuführen sind. Die oberflächlich als dunkle Querstreifen erscheinenden Abschnitte der Muskelfaser sind doppelt lichtbrechend (daher diese Theile Disdiaklasten benannt), während die hellen Streifen einfach lichtbrechend sind. Man unterscheidet daher die ersteren als anisotrope, die letzteren als isotrope Substanz. In Mitte der letzteren ist noch eine dünnere Schichte, — im Flächenbild Querlinien — von anisotroper Substanz vorhanden (Mittelscheibe). Das Alternieren dieser so geschichteten Substanzen lässt die Faser bei gewissen Behandlungsweisen der Quere nach in «Scheiben» zerfallen, was auch künstlich bewirkt werden kann. Differente Angaben über weitere Complicationen müssen hier übergegangen werden.

§ 29.

Die dieses Gewebe zusammensetzenden Formelemente sind in zwei morphologisch wie physiologisch einander sehr ungleichwerthigen Zuständen...
Erster Abschnitt.

a. Ganglienzellen. Sie finden sich vorwiegend in den zentralen Apparaten des Nervensystems, aber auch in dessen peripheren Bahnen und erscheinen wohl allgemein durch Fortsätze ausgezeichnet, nachdem die Annahme fortsatzloser Ganglienzellen immer mehr in den Hintergrund gedrängt wird. Der Körper dieser in Größe sehr verschiedenen Zellen läßt eine kugelige Grundsubstanz unterscheiden, welche einen kuglichen Kern mit deutlichem Kernkörperchen umschließt (Fig. 40). Sie ist ebenso wenig als Protoplasma zu deuten, als die Substanz der Nervenfasern. Es liegen uns demnach in diesen Zellen differenzirte Zustände vor. Die in einer keineswegs homogen erscheinenden Grundsubstanz eingebetteten Körnchen sind bald größer, bald feiner, zuweilen an einzelnen Stellen dichter gehäuft. Auch Pigmente kommen vor (Fig. 41) und sind für einzelne Zellengruppen charakteristisch. Die Grundsubstanz hat eine Art von Faserung, hin und wieder deutliche, aber nicht scharf sich abgrenzende Züge erkennen lassen, über deren speziellere Verhältnisse sehr differente Meinungen bestehen. Im Allgemeinen werden die fibrillären Bildungen und Züge mit den Fortsätzen der Zellen in Zusammenhang stehend betrachtet.

Nach der Zahl der Fortsätze unterscheidet man unipolare, bipolare und multipolare Ganglienzellen. Die beiden ersteren senden ihre Fortsätze in Nervenfasern über, lassen diese aus ihnen hervorgehen, und bei den bipolaren besteht die Einschaltung einer Zelle in den Verlauf einer Nervenfaser. Am complicirtesten ist das Verhalten der multipolaren Ganglienzellen, deren Fortsätze an Zahl sehr verschieden sind (Fig. 41). Die am genauesten erforschten (im Rückenmark) lassen zwei differente Fortsatzformen erkennen. Erstlich solche, die sich allmählich verästeln und schließlich in feinste Fibrillen übergehen. Diese bilden die Mehrzahl. Die Fibrillen- züge der Grundsubstanz sind auch in diesen Fortsätzen unter-
scheidbar, bis allmählich eine mehr homogene Beschaffenheit auftritt. Man hat sie »Protoplasmafortsätze« benannt. Die sie bildende Substanz ist aber sicher kein Protoplasma, wena sie auch in ihrem Verhalten einige Ähnlichkeit damit hat. Die zweite Fortsatzform bleibt unverzweigt. Sie bietet gleichfalls eine fibrilläre Zusammensetzung, geht aber in größerer oder geringerer Entfernung vom Körper der Zelle in eine Nervenfaser über (Nervenfortsatz) (Fig. 41 a). Die Größe dieser Elemente ist außerordentlich verschieden, je nach den Apparaten die von ihnen hergestellt sind. Die größeren Formen messen 0,01—0,09 mm.

Eine andere Faser entsteht von der Oberfläche der Substanz der Ganglienzelle aus besonderen Faserzügen, welche auch in netzförmiger Anordnung beschrieben sind (J. Arnold). Die hieraus gebildete, zuweilen streckenweise doppelte Faser umspint die andere bei ihrem Hervortreten aus der Zelle in Spiraltouren (Fig. 42), um dann von ihr sich zu trennen. Dieser complicirteren Form stellen sich die einfachen gegenüber, bei denen aber wieder im Verhalten zu den abgehenden Nerven Verschiedenheiten ob-walten. In dem einen Falle setzt sich die Nervenfaser mit ihren wesentlichen Attributen in die Substanz der Ganglienzelle fort, während im anderen Falle nur der axiale Theil (Axencylinder) der Faser dorthin verfolgbar ist.

Da die Ganglienzellen nur durch ihren Zusammenhang, sei es mit anderen, sei es mit Nervenfasern in Funktion gedacht werden können, erhellt die Wichtigkeit der fortschreitenden Kenntnißnahme von Fortsatzbildungen. Immerhin jedoch sind anscheinend

§ 30.

1. Die marklosen Nervenfasern schließen sich zum Theil unmittelbar an die Fortsatzbildungen der Ganglienzellen an und werden in diesem Verhalten in den Centralorganen des Nervensystems getroffen. Außerhalb der letzteren finden sich gleichfalls solche Fasern reichlich vor, allein diese besitzen noch eine feine glashelle Scheide, das Neurilemm, in welchem von Stelle zu Stelle ovale und etwas abgeplattete Kerne einlagern (Fig. 43). Dadurch gewinnen diese zylindrischen oder bandartigen Fasern Beziehungen zu Zellen, von deren Protoplasma sich nur spärliche Reste an den Polen des Kernes erhalten haben. Die vom Neurilemm umschlossene Substanz ist scheinbar homogen, mit leichter Streifung, der Substanz der Nervenfortsätze der Ganglienzellen ähnlich. Diese Fasern sind vorzugsweise im sympathischen Nervengebiete verbreitet, daher auch sympathische Fasern benannt, ihres Äußeren wegen auch blasse oder grane Nervenfasern.

In frühen embryonalen Zuständen zeigt sich das gesamte peripherische Nervensystem aus solchen Fasern gebildet, und bei manchen niederen Wirbelthieren (Cyclostomen) beharren sie in diesem Stadium, indes sie bei den Anderen in einen differenzierteren Zustand übergehen. Sie bilden somit für die andere Form der Nervenfasern den Ausgangspunkt. Ihre Breite beträgt 0,003—0,006 S mm, die Dicke 0,001 S—0,002 mm.

2. Die markhaltigen Nervenfasern lassen die in der früheren Form den Haupttheil der Faser bildende Substanz von einer stark lichtbrechenden Schichte umgeben erscheinen, die man als Mark (Myelin) bezeichnet hat. Sie umschließt dann die in der Axe der Faser befindliche Substanz, den Axencylinder, welcher den leitenden Theil der Faser vorstellt (Fig. 41). Das Mark erscheint also als ein Hohleylinder, dessen Binnenraum der Axencylinder ausfüllt. Es theilt viele Eigenschaften mit Fetten, und gerinnt bei seinem Austritte aus der Faser meist in Form unregelmäßiger Tropfen. In der lebenden Faser hat man es sich samm der Substanz des Axencylinders in halbfliüssigem Zustande vorzustellen. Durch äußere Einwirkungen geht bei den zur Untersuchung kommenden markhaltigen Fasern eine Veränderung der oberflächlichen Schichte des Markes vor sich, so dass die Faser jederseits doppelte Contourlinien aufweist (doppelt contourierte Nervenfasern). Diese Contourlinien bieten jedoch in ihrem Verlaufe durch die Gerinnung des Markes viele Unregelmäßigkeiten (Fig. 45 a b). Am meisten treten solche an den im centralen Nervensystem vorkommenden Fasern auf, an denen knotige Stellen, Varicositäten, mit dünneren Partien abwechseln (varicöse Nervenfasern) (Fig. 55 e). Das Mark veranlasst endlich auch die weiße Färbung der aus Summen solcher Fasern zusammengesetzten Theile, daher man die markhaltigen Fasern als weiße den marklosen, grauen, gegenüberstellte.

Axencylinder continuirlich in der gesammten Faser sich fortsetzt. Doch ist auch ihm eine Unterbrechung zugeschrieben worden. Die Stärke der feinen markhaltigen Fasern beträgt 0,001—0,005 mm, die der dickeren 0,01—0,02 mm.

Diesen schließen wir die Pacini'schen Körperchen (Vater'sche Körperchen) an, in denen das Ende einer Nervenfaser von einem Systeme geschichteter, aus Bindegewebe bestehender Lamellen umgeben ist. Diese Lamellen sind durch Zwischenräume von einander gesondert und umschließen einen länglichen Raum mit dem modifizierten Faserende. Da diese Gebilde auch im Verlaufe von Nervenfasern vorkommen, so dass eine Faser in ein Paciniisches Körperchen eintritt, dann wider daraus zum Vorschein kommt, um dann in einem zweiten Körperchen zu enden, dürfte die ganze Einrichtung nicht ausschließlich auf die Nervenendigung Bezug haben, womit auch die Eigen tümlichkeit des Vorkommens dieser Gebilde harmonirt.

Über die Formelemente des Nervensystems siehe M. Schultz in Stricker's Handbuch. Ranvier, in dessen Traité technique (op. cit.).

§ 31.

Die den Organen zukommenden Verrichtungen sind auf die erstere zusammensetzenden Gewebe vertheilt, so dass schliesslich jedem Bestandtheile der letzteren an der Gesammtleistung des Organes ein Antheil zukommt. So sind die Lebensvorgänge am Organismus auf Prozesse zurückzuführen, die von den Formelementen ausgehen. Man könnte daraus zu der Vorstellung einer selbständigen Action jener Elemente gelangen, zur Vorstellung von der Abgeschlossenheit des Lebens, der individuellen Existenz derselben. Eine solche Auffassung der differenzierten Formelemente empfängt durch die Thatsache der Verbindung der Formelemente, durch ihren Continuitätsbefund, eine angemessene Beschränkung. Die Einheit des Organismus wird also nicht durch die Vielheit seiner Formelemente beeinträchtigt, denn jedes derselben hat seine Existenzbedingung in den Verbindungen und Beziehungen, die es im Organismus und durch derselben besitzt. —

Diese Lebensthätigkeiten der Gewebe gehen nicht zu allen Zeiten in denselben Formelementen vor sich, die Lebensdauer derselben ist nicht jener des Organismus gleich, den sie zusammensetzen. Von einem Theile der Gewebe ist

B. Vom ersten Aufbau des Körpers.

(Entwicklungsgeschichte, Ontogenie).

§ 32.

Das gesammte vorzuführende Material sondert sich in drei größere Abteilungen. Die erste handelt von den Veränderungen des befruchteten Eies bis zur ersten Anlage des Körpers. Der zweite Theil umfaßt die fortschreitende Differenzierung der Körperanlage und die daraus entstehende Anlage der Organe; der dritte hat die gleichzeitig mit der Körperanlage und aus ihr hervorgehenden Fruchthüllen zum Gegenstand.

I. Von den Veränderungen des Eies bis zur ersten Anlage des Körpers.

1. Ei und Befruchtung.

§ 33.

Das im Eierstock entstehende weibliche Zeugungsmaterial bildet das materielle Substrat für die Anlage des neuen Organismus. Es wird je durch eine Zelle dargestellt, die Eizelle, welche anfänglich anderen gleichartig, sich in besonderer Richtung ausbildet. Das Protoplasma einer Eizelle läßt eine, größere Körnchen führende Substanz, den Dotter (Vitellus) entstehen. Dabei wächst die Eizelle, und zeichnet sich bald durch ihre Größe aus. Der Kern der Eizelle wird als Keimbläschen (Vesicula germinativa) bezeichnet, bietet aber im Wesentlichen dieselben Verhältnisse, die wir als Eigenthümlichkeiten des Zellkerns (§ 12) kennen lernten. Das Kernkörperchen hat man als Keimschale (Macula germinativa) unterschieden. Damit wäre also nur die Größe, und etwa noch der größere Reichthum an Körnchen (Dotterkörnchen) als Verschiedenheit von einer indifferenten Zelle anzusehen. Das Protoplasma bildet zugleich die Oberfläche der Eizelle und läßt hier eine etwas dichtere
Schiechte erkennen, die jedoch nicht als eine selbständig darstellbare Membran erscheint.

Auf dieser niedersten Stufe kommen alle thierischen Organismen mit einander überein. Wie sehr auch in der Größe der Eizelle und damit in Zusammenhang in der Menge des Dotters und der speziellen Gestaltung und feineren Constitution seiner oben als «Körnchen» bezeichneten Formbestandtheile bedentende Verschiedenheiten in den Abtheilungen der Thiere zum Ausdruck kommen, überall ist die Eizelle der Ausgangspunkt für die sexuelle Vermehrung.

Auch der Vorgang der Befruchtung des Eies durch Spermatozoën ist im Thierreiche allgemein verbreitet und steht der geschlechtlichen Fortpflanzung vor. Diese theilt sich in den niedersten Thierstämmen mit verschiedenen Formen ungeschlechtlicher Vermehrung in die Erhaltung der Art, wird aber in den höheren Abtheilungen zur ausschließlichen Fortpflanzungsweise. Das ist sie z. B. bei den Wirbelthieren. Der ganze Vorgang leitet sich von einem sehr niederen und damit auch viel einfacheren ab, der bei den niedersten Organismen Verbreitung findet. Dieser erscheint in der Verbindung (Conjugation) zweier solcher Organismen, die ihr Körpermaterial zu einem einzigen verschmelzen. Der daraus entstandene Körper läßt dann durch Thellung seiner Substanz eine größere Anzahl neuer Organismen entstehen. Bei nicht mehr durch eine einzige Zelle vorgestellten, sondern aus Zellenelementen bestehenden Organismen übernimmt je eine Zelle die Rolle, die in dem niederen Zustande dem ganzen Organismus zukam. Es ist also hier eine Differenzierung eingetreten. Diese schreitet weiter, indem die beiden sich verbindenden Formelemente allmählich sich verschieden gestalten. Das eine entwickelt einen aus seinem Protoplasma gebildeten beweglichen Anhang, wandelt sich in eine Geisselzelle um und fungirt als Spermatze, Spermatozoid, während das andere als ruhende Zelle sich fort- erhält und damit ist das wesentlichste der geschlechtlichen Zeugungsstoffe gegeben. Im Thierreiche werden bestimmte Stellen des Körpers anfänglich zu Bildungsstätten solcher Formelemente und komplettieren sich allmählich zu Organen, den Geschlechtswerkzeugen. Die geschlechtliche Fortpflanzung ist also aus einer Art von ungeschlechtlicher Vermehrung hervorgegangen, bei der aber, zum Unterschiede von anderen ungeschlechtlichen Vermehrungsweisen, zwei Organismen sich verbunden hatten, so dass die Thellungs-
producte des durch diese Verbindung gebildeten neuen Organismus je aus dem Materiale zweier vorher diskret existirenden Organismen hervorgerungen. Diese Vermischung des Körpermaterials zweier Organismen gleicher Art erhält sich in der Befruchtung des Eies durch Spermatozoen und wenn es mit der fortschreitenden Complication des Organismus immer mehr nur ein Theil, ein kleiner und schließlich ein kleinster Theil des Organismus wird, der zum Aufbau eines neuen Verwendung findet, so entspricht dieses nur der auf der physiologischen Arbeitstheilung basirenden Differenzierung der Organismen. Was ursprünglich der ganze Organismus geleistet hat, wird später nur von Bestandtheilen desselben vollzogen, die dann nur in dieser einen Richtung thätig sind.

Auch das allmähliche Verschiedenwerden von beiderlei anfänglich gleichartigen, die Zeugung vollziehenden Gebilden beruht auf denselben Prinzip. Das eine dieser Gebilde wird, zum Ei sich umwandeln, wesentlich zum Träger des Materials für den künftigen neuen Organismus, indem das andere in eine Samenzelle und dann in ein Spermatozoïd sich ausbildend, nur einen minimalen Beitrag zum Volum des neuen Organismus liefert, dafür aber, dadurch dass es sich mit dem Kern der Eizelle verbindet, in der Bedeutung dieses Kerns wie in allen seinen Abkömmlingen eine Rolle spielt, deren Umfang aus dem freilich noch nicht vollständig erkannten Werthe des Kernes für das Leben der Zelle sich bemüht.

Die specielleren Verhältnisse der Befruchtung sind bis jetzt nur im Bereiche niederer Thiere genauer geprüft worden. Selbst in sehr differenten Abtheilungen stellte sich eine Übereinstimmung im Wesentlichen heraus, so dass die bezüchlichen Erscheinungen fundamentale Bedeutung erkennen lassen. Es sind folgende: Am reifen Ei tritt vor der Befruchtung eine Lösung des Keimblaschens auf. Es bilden sich an der Stelle des letzteren, und theilweise auch aus dessen Materiale zwei kernartige Gebilde, eines zum Austritte aus dem Ei bestimmt ist. Dasselbe rückt der Oberfläche zu, und wird mit etwas Protoplasm ausgestoßen. Diese Körper sind als »Richtungsblaschen« bekannt. Der andere Rest des Keimblaschens bleibt im Ei und formt sich wohl gleich-
B. Vom ersten Aufbau des Körpers.

Somit ist dem Ei männliches Material einverleibt. Bei den vom Keimbläschen ausgehenden mannigfachen Neugestaltungen erscheint das Material derselben jeweils als Attractionscentrum, um welches radiär geordnete Molekel eine Sternfigur bilden.

2. Theilung des Eies (Furchungsproceß).

§ 34.

Von dem Oolemma (Zona pellucida) umgeben und über diesem noch von einer Eiweißschicht umhüllt, welche im Eileiter abgesondert wurde, erfährt das befruchtete Ei einen Theilungsproceß, durch den es in eine größere Anzahl kleinerer Gebilde zerlegt wird. Wie das Ei selbst aus einer Zelle entstand, sind auch jene Derivate wieder Zellen. Der Theilungsvorgang ist für die Säugethiere folgender. Der im befruchteten Ei neugebildete Kern sondert sich in zwei allmählich sich von einander entfernende Kerne. Senkrecht auf einer Linie, welche man sich diese beiden Kerne verbindend vorstellen kann, entsteht eine

Fig. 49—52.

Theilungsstadien eines Hunde-Eies, mit Oolemma und darin befindlichen Spermatozoen.

die Oberfläche des Dotters umkreisende Furche, welche allmählich tiefer eingegrift. Die beiden Hälften des Eies formiren dann nach und nach zwei kugelförmige Gebilde, deren jedes einen Kern umschließen, die ersten sogenannten Furchungskugeln (Fig. 49). An jeder derselben wiederholt sich derselbe Proceß, so dass dann vier jener Gebilde und bei fortgesetzter Theilung deren acht, sechzehn etc. vorkommen. Das Endergebnis ist ein Haufen von kleineren Theilungsproducten der Eizelle: das Zellenmaterial für den Aufbau des embryonalen Körpers. Mit Beziehung auf diese Bedeutung erscheint der geschilderte Vorgang in teleologischem Lichte als eine Differenzirung, welche das folgende
Stadium einzuleiten hat. Es erklärt sich daraus wohl das später Erfolgende, insofern es sich davon ableitet, nicht aber der Vorgang selbst. In einer anderen Bedeutung jedoch lernen wir diesen Vorgang kennen, wenn wir ihn bei niederen Organismen [Protisten] antreffen, bei denen er die einzelnen im Thierreich allgemein nur vorübergehenden Stadien als dauernde Zustände entstehen läßt. Solche Organismen, die nur aus zwei, oder aus vier oder mehr gleichartigen Zellen bestehen, erscheinen als die Vorstufen des im Thierreich weiter geführten Theilungsprocesses des Eies, und bilden die ersten Anfänge für eine in's Thierreich fortgesetzte fundamentale Erscheinung.

Die Befruchtung kann nicht als Causalmoment für die Eitheilung im strengsten Sinne gelten, da bei vielen Thieren die Theilung des Eies auch am unbefruchteten Ei wenigstens einige Stadien hindurchläuft, sie ist es aber für die fernere Entwicklung.

Das Endresultat des Theilungsprocesses ist ein Haufen von Zellen, welche anfänglich noch ihre sphärische Gestalt besitzen, so dass die oberflächliche Lage dem Complex ein unebenes Ansehen verleiht (Morula). Allmählich platten sich die äußeren etwas ab und bilden eine gleichmäßige Oberfläche, während die inneren sich gleichfalls inniger berühren und damit in polyedrische Gestaltung übergehen. Damit sind zwei, sowohl durch ihre Lagerung als auch durch einige andere Verhältnisse (z. B. Form) verschiedene Zellpartieen entstanden: eine oberflächliche
äußere Schichte und eine centrale Masse, von welcher beiden wieder neue Umgestaltungen ausgehen. Der aus diesen Zellen gebildete Körper hat sich aber zu einem einheitlichen Ganzen gestaltet, in welchem die Theilungsprodukte der Eizelle aufgingen.

§ 35.

Zwischen der oberflächlichen Zellschichte (dem Ectoderm), und den inneren Zellen (Entoderm) entsteht, von einer bestimmten Stelle aus, ein mit Flüssigkeit sich füllender Raum, durch dessen Vergrößerung das Ectoderm im größten Theile seiner Ausdehnung immer weiter von der Zellmasse des Entoderms abhebt (Fig. 53 A). Da dieser Vorgang nicht in der ganzen Ausdehnung des Ectoderms stattfindet, so bleibt diesem die centrale Zellmasse an einer Stelle angelagert. So geht aus dem anfangs soliden ein blasenförmiges Gebilde hervor, dessen Wand an einer Stelle durch eine nach innen vorspringende Zellmasse verdickt wird (B). Dieses Gebilde ist die Keimblase, Ihre Wand ist die Keimhaut, das Blastoderm. Die verdickte Stelle, die sich allmählich erweitert und eine zweite Schichte bildet, ist der schiebenförmige Fruchthof (Area germinativa).

In der Entstehung eines blasenförmigen Gebildes, dessen Inneres mit Fluidum gefüllt ist, liegt eine bemerkenswerthe Eigenthümlichkeit für die Entwicklung der Säugethiere. Es erscheint darin eine Art von Gegensatz zu den bei anderen Wirbelthieren be-
Erster Abschnitt.

Die Keimblase besitzt also anfänglich eine größtentheils einschichtige, vom Ectoderm dargestellte Wandung. An der Stelle, an welcher sie mehrschichtig ist, ward dieses von dem primären Entoderm hervorgerufen. Die weiteren Vorgänge sind noch nicht in übereinstimmender Weise erkannt; bestimmt ist für jetzt nur die vom Fruchthofe ausgehende Bildung neuer Schichten erwiesen. Eine innere Zelllage breitet sich über die Grenzen des Fruchthofoes aus und folgt der Innenfläche des Ectodermes (Fig. 53 C). Ob sie nur aus einem Theile der primären Entodermzellenmasse, oder der Gesamtheit derselben entsteht, ist unsicher. Jedenfalls geht aus ihr eine erst sehr dünne, ans platten Zellen geformte Schichte hervor, welche das sekundäre Entoderm bildet, das wir einfach als Entoderm ferner aufführen. Endlich entsteht zwischen beiden noch eine dritte Schichte, das Mesoderm, welches zwar nicht ganz gleichmäßig über den Fruchthof verbreitet ist (s. darüber weiter unten), aber von da aus sich später gleichfalls im Umfange der Keimblase ausdehnt. Gerade bezüglich der Geneße dieses Mesoderms waltet eine bedeutende Differenz der Meinungen, so daß es bald vom Ectoderm, bald vom primären Entoderm, bald auch von beiden abgeleitet wird. So gestaltet sich also jedenfalls zuerst am Fruchthofe eine dreischichtige Wandstrecke der Keimblase und nachdem zuerst das Entoderm an der Innenfläche der letzttern sich weiter erstreckt hat, folgt auch das Mesoderm nach. Die Wand der Keimblase ist also außerhalb des Fruchthofes zuerst doppelschichtig und wandelt sich allmählich in eine dreischichtige um. Inzwischen sind am Fruchthofe selbst bedeutende Veränderungen vor sich gegangen, noch bevor das Entoderm den Aequator der Keimblase erreicht hat, Veränderungen, die der folgende § zu schildern hat.

Wenn wir bisher die Keimblase in ihrer Gesammttheit als embryonalen Leib aufgefaßt haben, so ist diese Vorstellung mit der schärferen Sonderung des Fruchthofes von dem übrigen peripherischen Theile der Keimblase einzuschränken, denn nur auf jenem bildet sich die Anlage des späteren Körpers, während der übrige, bei weitem gröberer Theil der Keimblase zu vergänglichen Bildungen, den sogenannten ‚Fruchthüllen‘ verwendet wird. Die Peripherie der Keimblase gehört nichts destoweniger zum embryonalen Körper, denn auch jene ‚Fruchthüllen‘ sind ursprünglich nichts anderes als Körpertheile, Strecken der Leibeswand, die bei den höheren Wirbelthieren allmählich zu accessorischen, nur eine Zeitlang fungirenden Bildungen geworden sind. Da ihre Funktionen für das Fötalleben eingerichtet sind, gehen sie auch mit dem letzteren zu Ende, und stellen hinfällige Organe vor. Mit der Bildung des Fruchthofes ist also eine Sonderung an der Keimblase eingetreten, welche von jener Umbildung eines Theiles der Keimblase zu fötalen Organen abhängig erscheint.

Erster Abschnitt.

denen ein Theil seiner Elemente Epithelien liefert, so dass die beiden anderen Keimblätter keineswegs ausschließlich die Quellen der Epithelialbildungen sind.

Für die gesammte, durch das Blastoderm dargestellte Anlage des Organismus besteht nicht bloß in der Gleichartigkeit der Gewebsformation ein Zustand der Indifferenz. Es ist zwar jetzt schon ein Oben und Unten unterscheidbar, indem der Fruchthof die obere Fläche charakterisiert, aber es ist damit nur eine Axe, die dorso-ventrale, differenziert und weder vorn noch hinten, folglich auch noch rechts und links unterscheidbar.

II. Differenzierung der Anlage.

§ 36.

Wachstumsvorgänge im Bereiche des Fruchthofes rufen an demselben zunächst eine Formveränderung hervor. Aus der Scheibengestalt geht er in eine mehr ovale Form über, indem er in der Richtung einer Axe sich vergrößert. Ein peripherischer Theil des Fruchthofes hat sich dabei vom centralen gesondert, und dieser ist es, der uns zunächst interessirt, da er die Körperanlage vorstellt, jenen Theil also, der von dem gesammten Blastoderm in den Körper des Embryo übergeht. Wir unterscheiden diesen Theil des Fruchthofes als Embryonalanlage. Auf der Oberfläche der letzteren beginnt dann eine leichte Vertiefung zu erscheinen in Gestalt eines bei durchfallendem Lichte dunkleren Streifens, der von einem Pole der Längsaxe bis gegen die Mitte des Fruchthofes sich erstreckt. Die Ränder der Vertiefung bilden leichte Erhebungen über das Niveau des Fruchthofes (Primitivvalten). Diese Einsenkung oder Rinne mit ihren seitlichen Begrenzungen ist der Primitivstreif (Fig. 54 A pr). Damit ist zugleich eine Orientirung der Embryonalanlage gegeben. Man unterscheidet nun den mit dem Primitivstreif versehenen Theil derselben als den hinteren Abschnitt, den davor liegenden als den vorderen und die beiden seitlichen als rechte und linke Hälfte. Die freie Oberfläche entspricht der Rückenfläche. Der Organismus ist damit zu
jener Formenstufe gelangt, die man als bilateral symmetrisch zu bezeichnen pflegt.

Das Auftreten des Primitivstreifs ist an eine Vermehrung der Formelemente der bezüglichen Strecke des Ectoderm geknüpft. Die Zellen des letzten bilden im Bereiche des Primitivstreifs mehrfache Schichten, besonders in der seitlichen Begrenzung der Rinne. Längs des Primitivstreifs besteht ein Zusammenhang des mehrschichtigen Ectoderms mit dem Mesoderm, die Axenplatte (Fig. 55 b. ax). Die Bedeutung dieser Bildung ist noch nicht völlig klar gestellt. An ihrer Stelle findet sich bei niederer Wirbelthiere gleichfalls eine Einsenkung (Blastoporus), die aber nicht rinnenförmig auswächst, so dass letztere Gestaltung mit einer größeren Ausdehnung des Fruchthofes resp. der Körperanlage in Zusammenhang zu stehen scheint und das ganze Verhalten auf sehr niedere Zustände verweist, welche bei den Wirbelthieren nur andeutungsweise, bei den höheren sogar mit bedeutenderer Modification zum Ausdruck gelangen.

Vor dem Primitivstreif, also in der vorderen Hälfte der Körperanlage gibt sich bald eine breitere Rinnenbildung kund, die sich bis zum vorderen Ende der Körperanlage ausdehnt und daselbst gerundet abschließt. Wir nennen sie Medullarrinne.

Ihre gleichfalls erhobenen seitlichen Ränder laufen hinten gegen den Primitivstreif aus, dessen Ränder zwischen sich fassend, doch so, dass Medullarrinne und Primitivstreif sich nicht in einander unmittelbar fortsetzen, obwohl sie in einer und derselben Körperaxe liegen (Fig. 54 B mr). Beiderlei Bildungen nehmen nun einen differenten Entwicklungsgang. Die Medullarrinne, welche ausfänglich nur in der vorderen Hälfte der Embryonalanlage bestand, erstreckt sich unter fortschreitender Vergrößerung der letzteren auf die hintere Hälfte, und im gleichen Maße tritt der Primitivstreif seinen Rückzug an. Er wird kürzer, immer mehr auf das hintere Ende der sich verlängernden Embryonalanlage beschränkt, bis er mit der Nähерung der Medullarrinne an jenes Ende allmählich verschwindet. Die früher am Primitivstreif erschienene Veränderung des primären Ectoderms tritt auch an der Medullarrinne und ihrer Nachbarschaft auf. Die Zellen vermehren sich und bilden dadurch eine mehrschichtige Lage. Den Boden der Medullarrinne bildet ein mehrschichtiges Epithel, welches auch noch an den erhobenen Rändern der Medullarrinne besteht, hier aber in die dünnere periphere Ectodermanslage unmittelbar übergeht. Die den Boden der Medullarrinne vorstehende verdickte Ectodermstrecke ist die Medullarplatte. Sie ist die Anlage des centralen Nervensystems. Ihre seitlichen Erhebungen sind die Medullarwülste (Rückenwülste). Das Ectoderm hat sich also in ein axiales Organ, die Medullarplatte und in das seitlich aus dieser fortgesetzte periphere Ectoderm gesondert. Letzteres wird
Hornblatt benannt, weil aus ihm die verhornende Theile liefernde Oberhaut des Körpers (die Epidermis) hervorgeht.

Während dieser Sonderungsvorgänge hat der Fruchthof und die von ihm umgebene Embryonalanlage eine größere Ausdehnung gewonnen und die Embryonalanlage erscheint daher vorne wie hinten breiter als in der Mitte: in Bisquitform (Fig. 56). Beide Körperenden sind damit ausgeprägt als Kopftheil und Schwanztheil und deutet durch reichlicher in ihnen angesammeltes Material an, dass das Wachsthum vorwiegend nach diesen Richtungen hin stattfindet. In der ganzen Ausdehnung der Anlage beginnt inzwischen ein peripherischer Abschnitt vom centralen, die Medullarrinne und auch den Primitivstreif umfassenden unterscheidbar zu werden. Der erstere ist bei durchfallendem Lichte ein dunklerer Samm, welcher hinten breiter als vorne ist: die Parietalzone (Fig. 56). Der davon umfasste Theil ist am vorderen Abschnitte der Embryonalanlage an ausreichendsten und verschmäler sich nach hinten zu, es ist die Stammzone. Diese Sonderung hat ihren Grund vorwiegend im Mesoderm, an welchem bedeutende Wachsthumsvorgänge erfolgten und zwar zumeist in der Nähe der Medullarrinne. Das Mesoderm ist mit der Ausdehnung des Fruchthofes mit diesem verbreitert worden, so dass die Keimblase in weiterem Umkreise sich dreiflättrig darstellt. Die Ausbreitung des Mesoderms entspricht einer kreisförmigen dunkleren Fläche, in der von einem helleren Hofe umgeben die Embryonalanlage liegt. In dieser Area findet die erste Anlage des peripherischen Gefäßsystems statt, sie ist der Gefäßhof (Area vasellosa).

Bisher erschien die Anlage der Körpers einheitlich ohne Anderung jener Gliederung in gleichwertige Abschnitte, wie sie für den Wirbelthierorganismus charakteristisch ist. Bald aber zeigt sich im Bereiche der Stammzone eine Metamerie, indem hinter dem Kopftheile zur Seite der Medullarplatte dunklere in der Flächenansicht quadratische Felder mit scharfer, heller Abgrenzung sichtbar werden (Fig. 57 uv). Auf ein erstes Paar folgt ein zweites, und so fort bis gegen den Schwanztheil zu. In dem Masse, als die Körperanlage nach dieser Richtung hin auswächst, erfolgt eine Vermehrung jener Theile, die Urwirbel benannt sind. Mit den als Wirbel bezeichneten Skeletgebilden haben sie nichts als die Aufeinanderfolge gemein, dagegen sind sie von hoher Bedeutung als die ersten Spuren einer Sonderung des Körpers in Polgestücke, Metamere. Aus einem Theile ihres Materials geht allerdings später unter Anderem die Anlage der Wirbel hervor, während die oberflächliche Schichte sich zur Körpermuskulatur ausbildet.
§ 37.

In der Embryonalanlage und dem Fruchthöhle sind während der vorhin geschilderten äußeren Veränderungen noch andere Neugestaltungen zum Vorschein gekommen, die vorwiegend an das mittlere Keinblatt (Mesoderm) ankündigen. Im Bereich der Stammzone bildete das Mesoderm eine bedeutende Verdickung, welche von dem Mesoderm der Parietalzone sich sonderte, wodurch eben die Unterscheidung jener Zonen in der Flächenansicht sich ausgeprägt hatte. Die Mesodernschichte der Stammzone des Kopftheils stellt die Kopfplatten vor; jene des Rumpftheils die Urwirbelplatten, denn aus dieser Strecke des Mesodermes sind die Urwirbel hervorgegangen und sondern sich fernerhin aus dem hinteren noch continuiirlichen Abschnitte dieser Platten. Unter Zunahme des Wachsthums nach hinten zu, vergrößern sich auch die Urwirbelplatten in dieser Richtung und geben vorne Material zur Bildung neuer Urwirbel ab. Diese stellen von der Fläche gesehen quadratisch geformte Massen von Zellen dar, welche medial verjüngt unter die Medullarplatte reichen und im Inneren durch Auseinanderweichen der Zellen die Bildung eines Hohrraums, die Urwirbelöhle, erkennen lassen (Fig. 60 a b). Die äußere obere Wand dieser Höhle bildet die Muskelplatten, die oben erwähnten Anlagen der Muskulatur. Es nimmt also auch das Muskelsystem von metamerer Anlage seinen Ausgang. Der der Parietalzone angehörige Theil des Mesodermes stellt die Seitenplatten vor, die ungegliedert und auch mit den Kopfplatten in Zusammenhang bleiben. Die Urwirbelplatten wie die aus ihnen hervorgenden Urwirbel sind median von einander getrennt, indem die Medullarplatte sich rinnenförmig zwischen sie einsenkt (Fig. 60). Unterhalb dieser Rinne ist ein neues Gebilde entstanden, welches zwischen die medialen Ränder der Urwirbel sich einbettet. Das ist ein aus Zellen gebildeter platter Strang, der vom Entoderm sich gesondert hat, die Anlage der Rückensäule, *Chorda dorsalis* (Fig. 59 a, b, ch). Vorne erstreckt sich dieser Strang in den Kopftheil der Anlage. Anfänglich abgeplattet, nimmt er später eine cylindrische Form an. *Es ist die erste Anlage eines Axen skeletes.*

Zwischen den Urwirbeln und der Seitenplatte, und zwar durch eine Ablösung von Elementen der letzteren ist ein Theil des Mesodermes in die Anlage eines
neuen Organsystemes übergegangen, indem daselbst und zwar in oberflächlicher Lage unter dem Ectoderm, jederseits ein Zellenstrang sich geformt hat (Fig. 60 b, u.) Durch ein in seinem Innern auftretendes Lumen wird er zu einem Canale umgewandelt, dem Urnierengang. Endlich ist nach dem Auftreten der ersten Urwirbel noch für ein anderes Organsystem die Anlage gebildet worden. Seitlich im Kopftheile ist nämlich die Spaltung der Seitenplatten gleichfalls erfolgt. Der dadurch gebildete, als eine Fortsetzung des Coeloms erscheinende Raum wird aber zum großen Theile von einer nach außen gegen die Hautplatte vorgebuchteten Falte der Darmplatte eingenommen, welche mit ihren Umhüllerändern nach innen gegen das Ectoderm zu vorspringt (Fig. 61). In dieser Falte liegt ein Schlauch eingeschlossen, welcher schräg von vorne nach hinten sich erstreckt, mit seinem vorderen Ende gegen das vordere Ende des Kopftheils tritt, mit seinem hinteren über die Parietalzone hinaus in den Gefäßhof ragt. Diese beiderseits bestehende Bildung stellt die Anlage des Herzens vor, die aus dem paarigen Verhalten durch spätere Verschmelzung in ein einheitliches Organ übergeführt wird.

Der innere Schlauch (Endocardialrohr) ist durch einen Zwischenraum von der durch die Darmplatte gebildeten Röhre getrennt, verschmilzt aber später mit ihr, so dass nur das Lumen des Endocardialischlauches (innere Herzhöhle) fortbesteht und jener Zwischenraum (äußere Herzhöhle) schwindet.

Nachdem so für eine ganze Reihe von Organsystemen die Anlagezustände dargestellt worden, erübrigt noch der Anlage des Darmes zu gedenken, der eigentlich durch den gesammten, vom Entoderm umschlossenen Raum repräsentirt wird. Da aber von diesem Ramme nur ein sehr kleiner Theil zu dem vom embryonalen Leib umschlossenen Darm verwendet wird, handelt es sich vielmehr um diesen. Mit Bezug hierauf ist die vom Entoderm ausgekleidete Fläche der Embryonalanlage als Anlage des Darmes zu bezeichnen, dessen Wand dann in jener Ausdehnung vom Entoderm und der aus dem Mesoderm entstandenen Darmplatte vor-
gestellt wird. In der Medianlinie, unterhalb der Chorda dorsalis, bildet diese Darmanlage eine Rinne, deren Entstehung vorzüglich durch die Verdickung der Urwirbelplatten und Kopfplatten und den dadurch jederseits erzeugten ventralen Vorsprung bedingt ist.

Im Bereiche des Kopftheiles wird noch durch die beiderseits nach innen, resp. abwärts vorspringenden Herzanlagen eine seitliche Begrenzung der Darmanlage geboten, welche Strecke die Anlage der Kopfdarmhöhle (Fig. 61 s r) repräsentirt.

§ 38.

An den bisher in ihrer ersten Anlage geschilderten Organen beginnen nunmehr weitere Veränderungen Platz zu greifen, welche auch für die äußere Gestaltung des Embryo von großem Einflusse sind. Vor allem gilt das von der Anlage des centralen Nervensystemes. Während die Medullarrinne nach hinten zu noch flach anläuft, sind vorn deren Ränder stark erhoben. Im Kopftheile der Anlage ist sie bedeutend verbreitert und läßt hier mehrere weitere Stellen wahrnehmen, welche durch engere Strecken von einander geschieden sind. Der ganze, vor den Urwirbeln gelegene Abschnitt der Medullarrinne repräsentirt die durch größere Breite ausgezeichnete Anlage des Gehirns (Fig. 63 g), während der übrige Theil jene des Rückenmarks vorstellt. Damit sind die zwei Hauptabschnitte des centralen Nervensystems gesondert. An der Gehirnanlage ist stärkeres Breitewachsthum besonders am vordersten Theile der Medullarplatte mit einer größeren Abflachung verknüpft. Von den nach und nach aufgetretenen Erweiterungen ist die vorderste, die zugleich den breitesten Abschnitt umfaßt, die Anlage der Vorderhirne, eine zweite stellt das Mittelhirn vor, und die hinterste, längste, wird als Nachhirn bezeichnet. Die fortgesetzte Erhebung der Ränder und ihr Gegeneinanderwachsen wandelt die Rinne allmählich zu einem Rohre um (Fig. 60 a b). Der Verschluß der Medullarrinne geht am Gehirntheile von hinten nach vorn vor sich; bevor er das Vorderhirn erreicht hat, ist an dessen Seitentheilen eine ansehnliche Verdickung aufgetreten, woran sich eine seitliche Ausbuchtung dieses Abschnittes schließt. Das sind die Augenbucht, Anlagen der Augenblasen (Fig. 66 g).

Nach hinten setzt sich die Umbildung der Medullarrinne zu einem Rohre auf das Rückenmark fort. Während dessen findet aber eine stete Vergrößerung der Embryonalanlage nach hinten zu und damit auch eine entsprechende Ausdehnung der Medullarplatte in der gleichen Richtung statt. Somit bleibt ein indifferenter Zustand am hinteren Leibesende länger bestehen und da tritt man die Medullarplatte noch flach, während sie nach vorne schon zum Rohre sich umgebildet hat. Beim Schluß der Rinne zum Rohre geht der Zusammenhang der Medullarplatte mit dem Hornblatt allmählich verloren. Die beiderseitigen Ränder des letzteren verschmelzen an der Umgebung in die Wand des Medullarrohrs unter einander und das Hornblatt liegt unmittelbar über dem Medullarrohr. Später wachsen
von den Kopfplatten und von den Urwirbeln her Gewebslagen zwischen Hornblatt und Medullarrohr und lassen letztere damit eine tiefere Lage gewinnen.

Der Schluß der Medullarrinne hat eine bedeutende Erhebung an der Rückenfläche der Embryonalanlage hervorgebracht. Anscheinliches Wachsthum des gesamten Medullarrohres bedingt eine Krümmung des Embryo nach der ventralen Fläche zu. Das bedeutende Übergewicht, welches die Gehirnanlage über die anderen Gebilde des Kopftheils gewinnt, läßt letzteren mit seinem das Vorderhirn enthaltenden Theile abwärts gekrummt erscheinen.

Schon vorher war am vorderen Rande der Körperanlage eine nach unten und hinten umgeschlagene Stelle aufgetreten, indem der Vordertheil sich mächtiger entwickelt und damit die Kopfanlage frei hervortreten läßt (Fig. 61 a. K.). Dieses macht sich allmählich in höherem Maße geltend (Fig. 61 b. e. K'), und ähnlich zeigt sich auch eine Umschlagsfalte am hinteren Körperende, die der vorderen entgegengerichtet ist. Diese hat ihren Grund in einer mächtigeren Entwicklung des Hintertheils, der sich gleichfalls frei über die benachbarten Theile der Keimblase erhebt. Beide Umschlagstellen wachsen allmählich einander entgegen Fig. 61 d.; die vom Kopfe ausgehende läßt mit ihrem Wachsthum auch die Seitenränder der Kopfanlage daran theilnehmen und ruft so die Entstehung eines im Kopfe blind geendeten Hohlraums hervor, der hinter der Falte mit der Keimblase (Fig. 61 b. Kbl.) kommunizirt. Das ist die Kopfdarmöhle (Vorderdarmöhle). Durch das Hervorwachsen des hinteren Körperendes wird eine ähnliche Cavität abgegrenzt. Wie die Kopfdarmöhle mit der weiteren Ausbildung des Kopfes sich vergrößert, so wird auch die zuletzt erwähnte Höhle mehr und mehr vertieft, sie bildet die Beckendarmöhle.

Die vordere und die hintere Falte setzen sich immer weiter auf den seitlichen Rand des Körpers fort und treten so durch seitliche, medianwärts vorspringende Faltenbildungen, welche die nebenstehende Figur 65 a. b. c. versinnlicht, unter einander in Zusammenhang.

Durch diese Vorgänge wird der Embryo von der Keimblase mehr und mehr abgeschnürt. Das von der Keimblase aus in den embryonalen Körper sich fortsetzende Entoderm bildet in letzterem die Auskleidung der in den Kopf wie in das hintere Körperende sich ausbuchtenden Darmanlage, deren äußere Wand von der aus der Spaltung der Seitenplatten entstandenen Darmfaserplatte gebildet ist. Damit ist also an der ursprünglich einheitlichen Anlage eine Sonderung eingetreten. Der embryonale Leib hat sich nicht über die ganze Keimblase ausgedehnt, sondern aus einem Theile ihrer Wand entwickelt, einen Theil ihres Raumes als Darmöhle in sich aufnehmend, indess die übrige Keim-

Mit dieser Abschnürung des Embryo von dem als Dottersack übrig bleibenden Theile der Keimblase tritt also zuerst das vordere, dann aber auch das hintere Körperende hervor (vergl. Fig. 61) und führt zu einer Sonderung des Kopfes und des hinteren Körpertheiles.

Noch zur Zeit des völligen Getrenntseins beider Herzhälften sind an derselben einzelne Abschnitte unterscheidbar, die auch später eine Rolle spielen. Der lateral in den Gefäßhof sich fortsetzende und desselbst in die Vena omphalo-mesenterica (s. § 39) übergehende Abschnitt jedes Herzschlanges ist der Vorhof (Atrium), der folgende, weiter vorne liegende Theil ist die Kammer (Ventrikel), und ein dritter noch weiter vorne und medial sich findender bildet den Bulbus arteriosus, welcher sich in einem unter dem vorderen Ende des Kopfes über die Kopfdarmhöhle verlaufenden Gefäßkanal, die Aorta, fortsetzt. Jede Herzhälfte geht so in eine Aorta über. Bei eintretender Concrescenz der Herzhälften sind es die entsprechenden Abschnitte, welche sich unter einander verbinden. Die beiden Aorten bleiben dagegen getrennt.

Erstes Gefäßsystem.

§ 39.

Mit der Entstehung eines Gefäßsystemes gelangt der Embryo auf eine höhere Stufe seiner Entfaltung. Jenes Organsystem besorgt ihm die für die Entwicklung bedeutsamste Function, die Ernährung, und ist das erste, welches aus der blossen Anlage heraus in wirklich Thätigkeit tritt und damit in leistungsfähigem Zustande erscheint. Es bezeichnet für den gesamten Entwicklungsgang ein wichtiges Stadium, welches zumal wegen der in ihm gebotenen Anknüpfungspunkte für spätere Darstellungen nähere Betrachtung erheischt. Die höchst
mangelhafte Kenntnis dieses Stadiums beim Menschen läßt auch hiefür ein Beispiel von genauer gekannten Entwicklungszuständen der Säugethiere entnehmen.

Das Herz ist bereits ein einheitlicher, an der ventralen Seite des Kopfes gelegener Schlauch geworden (Fig. 66 d), der seine charakteristische Krümmung besitzt. Vom vorderen Ende des Herzens entspringen zwei Gefäße, die bogenförmig die Kopfdarmhöhle unziehen und dann nach hinten umgebogen parallel mit einander seitlich von der Chorda dorsalis verlaufen. In der vorstehenden Zeichnung ist nur die im Rumpftheile verlaufende Strecke dieser Gefäße von unten her sichtbar durch die offene Stelle, an der die Keimblasenhöhle mit der Darmanlage im Körper des Embryo kommunizirt. Jene beiden Gefäße sind die primitiven Aorten. Jede derselben sendet lateral eine Anzahl von Arterien im rechten Winkel ab. Sie gehen unverzweigt über die Körperanlage hinweg in den Gefäßhof über. Es sind die Arteriae omphalo-mesentericae. Im Gefäßhof lösen sie sich in ein oberflächlich liegendes Netz von Gefäßen auf. Die hinteren Enden der primitiven Aorten setzen sich gegen die
Wand des Enddarmes fort und gewinnen daselbst Beziehungen zur Anlage der Allantois (§ 12).

Mit dem oberflächlichen, im ganzen Gefäßhofe ausgebreiteten arteriellen Gefäßnetze steht ein zweites, tieferes, d. h. näher dem Entoderm zu gelegenes in Zusammenhang (vergl. Fig. 66). Es repräsentirt den venösen Abschnitt, da aus ihm die zum Herzen zurückkehrenden Gefäße, die beiden *Venae omphalo-mesentericae*, hervorgehen. Jede derselben setzt sich im Gefäßhofe aus einem vorderen und einem hinteren Gefäß zusammen. Das vordere (*b*) kommt von der den gesammtten Gefäßhof umziehenden Randvene (*a*), welche überall mit dem Gefäßnetze anastomosirt, das hintere (*c*) sammelt sich aus jeder Hälfte des Gefäßhofes. Dieser Gefäßapparat besitzt also seine größte Verbreitung außerhalb des embryonalen Körpers, auf dem später zum Dottersack sich gestaltenden Theile, und behält selbst da wo er im Bereiche der Körperanlage sich findet, vorwiegende Beziehungen zur Darmwand, aus der auch die Anlage des Herzens entstand.

Äußere Gestaltung des Embryo.

Entwicklung des Kopfes.

§ 40.

Von den im Kopftheile des Körpers angelegten Gebilden ist es vornehmlich das Gehirn, durch welches ein bedeutender Einfluß auf die äußere Form ausgeübt

Der Eingang in die Mundbucht wird anfänglich oben von dem durch das Vorderhirn eingenommenen Kopftheil begrenzt und unten jederseits durch ein von hinten und oben herabtretendes, wulstförmiges Gebilde umzogen, welches mit dem andererseits in der Medianlinie sich vereinigt. Solcher Bogen finden sich bei Säugthieren hinter dem vorderen noch zwei, an Größe abnehmend. Es sind
die Kiemenbogen, welche ähnlichen bei Fischen und Amphibien Kiemen tragenden Bildungen entsprechen. Die zwischen den Bogen befindlichen Furchen, durch welche eben die Bogen als Wulste oberflächlich hervortreten, senken sich gegen die Kopfdarmöhle ein. Im Grunde dieser Furchen entstehen Durchbrechungen der seitlichen Wand der Kopfdarmöhle, die Kiemenspalten, so dass also hier die Grundzüge einer Einrichtung sich wiederholen, welche bei niederen Wirbelthieren mit dem Bestehen einer besonderen Art der Atmungswerkzeuge (der Kiemen) zusammenhängt. Da diese von den Reptilien an nicht mehr zur Ausbildung gelangen, tritt uns in dem Vorkommen einer beschränkteren Bogenzahl ein Rest einer ursprünglich reichere Organisation entgegen, welcher Rest aber um so bedeutungsvoller ist, als er für die Beziehungen der höheren Formen zu niederen Zeugniß ablegt.

Ventral ist anfangs nur der erste Bogen zu einer medianen Verbindung mit dem andern seitigen gelangt. Zwischen die ventralen Enden des zweiten und dritten dringt sich das Herz hervor. Erst das allmäßliche Herabtreten desselben gestattet auch den anderen Bogen eine ventrale Vereinigung, womit freilich auch ein Verschwinden dieser Gebilde verbunden ist.

Der gesammte Apparat der Kiemenbogen und der dazwischen befindlichen Spalten erscheint nicht erst bei den höheren Wirbelthieren reduziert. Bei manchen Haien bestehen noch 8—9 solcher Bogen, bei anderen nur 7. Eine noch geringere Zahl bei Knochenfischen und auch bei Amphibien. Im Innern der Bogen entwickeln sich Skelettheile, bogenförmig an einander gereiht gliedern, die Stützen der Kiemen: das Kiemenkelet. Die Rückbildung erscheint allgemein von hinten nach vorn zu und ergreift früher den Kiemenbesatz der Bogen als die Bogen selbst, so dass letztere bereits ihre funktionelle Beziehung zur Atmung verloren haben und rudimentär geworden sind, bevor sie ganzlich verschwinden. Aus den drei entwickelten Bogen höherer Wirbelthiere bilden sich gleichfalls Skelettheile aus (Scheibe beim Kopfskelet), die freilich ganz andere Funktionen übernommen haben. Somit gehen Theile der embryonalen Kiemenbogen in bleibende Bildungen über, und wohl diesem Umstände verdanken diese Bogen ihre Erhaltung, sowie der Mangel einer deutlich gesonderten größeren Anzahl aus dem Umstande begreiflich wird, dass eben von den, den hintersten Bogen der niederen Formen zuktommenden Skeletgebilden gar nichts in den ausgebildeten Organismus der höheren mit übergenommen wird. Die vierte Kiemenspalte, sowie das Verhalten von Arterienbogen lehren
jedoch, dass auch von einem vierten und einem fünften Bogen gewisse Theile selbst bei Säugenthiern bestehen.

Kopfes gerückten Riechgruben haben dann eine äußere Öffnung, die zur äußeren Nasenöffnung wird und eine innere die in die primitive Mundhöhle leitet. Im weiteren Verlaufe der Ausbildung dieser Theile gestaltet sich aus dem Stirnfortsatze die äußere Nase, die vom unteren Rande des letzteren sich absetzend, diesen in die bleibende Begrenzung des oberen Mundrandes mit eingehen läßt. Der mediane Theil der Oberlippe, sowie der Zwischenkiefer (s. Skelet) nehmen daraus ihre Entstehung. Je weiter jene Gesichtstheile sich ausbilden, um so tiefer treten die Riechgruben ins Innere des Gesichtstheiles des Kopfes an der Schädelbasis zurück. Mit der durch die Bildung des Gaumens beginnenden Scheidung der primitiven Mundhöhle in zwei Etagen, deren obere durch eine mit dem Stirnfortsatze zusammenhängende Scheidewand in zwei seitliche Räume getheilt, die Nasenhöhlen vorstell, gehen die inneren Nasengänge in die Wandungen der letzteren auf und die jeder Nasenhöhle zukommende Riechgrube findet sich ohne scharfe Grenze im oberen Räume derselben, die Regio olfactoria der Nasenhöhle vorstellend.

Unvollständige Verwachsungen der oben beschriebenen Fortsatzbildungen sind es, die in höheren Grad an auch die inneren Theile betreffen und auf verschiedene Art kombiniert als Mißbildungen vorkommen (Gaumen-, Kiefer- und Lippenpalte). In geringerem Grade machen sich solche Entwicklungsthefe in der »Hasenscharte« geltend, in der ein kleiner Rest nicht vollständiger Verschmelzung des medialen Nasenfortsatzes mit dem Oberkieferfortsatze, oder ein Defect der in die Oberlippe eingehenden Theile des Stirnfortsatzes wahrzunehmen ist.

Mit der Beendigung der vorhin geschilderten, im Bereiche des Gesichtes stattfindenden Vorgänge ist die Gestaltung dieses Körpertheils dem späteren Verhalten zwar um vieles näher gebracht, aber noch immer bestehen vorzüglich in den Proportionen der Theile viele Eigenthümlichkeiten. Am gesammten Kopfe ist es die vom Nackenhöcker bis gegen den Scheidenhöcker sich erstreckende Region, welche nicht in dem gleichen Maße wie der vordere Theil des Kopfes fortwächst, so dass der Kopf allmählich die Neigung zur Bauchfläche des Rumpfes abmindert. Die untere Begrenzung des Mundrandes tritt als Unterkieferregion nach und nach etwas hervor und läßt so durch das dadurch bedingte Zurücktreten der Region der folgenden Kiemenbogen, die mit ihren Derivaten unter den Unterkiefer gelegen, die Sonderung des Kopfes in ein neues Stadium treten. Vom Kopfe wird ventral ein Hals abgesetzt. Damit ist ein noch weiteres Herabtreten des Herzens verbunden, welches allmählich aufhört am Körper des Embryo eine äußere Vor-
ragung zu bilden, und mit der ferneren Ausbildung des Rumpfes in den Brusttheil desselben zu liegen kommt.

Rumpf und Gliedmaßen.

§ 11.

Während der die erste Differenzirung des Kopfes bildenden Vorgänge hat der übrige Theil der Körperanlage gleichfalls bedeutende Veränderungen erfahren, die jedoch mit der Bildung der Fruchthüllen in engem Concomitance stehen. Wir gehen in der Darstellung dieser Verhältnisse von einem Zustande aus, in welchem die Anlage des Rumpfes die Entstehung des Ectoderm's und damit zugleich die Sonderung der Seitenplatten in Hautplatten und Darmplatten darbietet (Fig. 69). Mit der Abhebung der ersteren von den letzteren tritt der Rand der ersteren einwärts gegen die Darmplatte vor und erhebt sich von da aus wieder aufwärts, so dass auch außerhalb der zum Körper sich gestaltenden Anlage eine Sonderung des Mesoderms in zwei Schichten Platz gegriffen hat. Der außerhalb des embryonalen Körpers befindliche Theil des Entoderms mit der inzwischen um ihn gewachsenen Mesodermsschichte, die im Bereiche der Körperanlage die Darmplatte vorstellte, repräsentirt den Dottersack (Sacculus vitellinus) (Fig. 69, 70 Ds). Die von den Hautplatten aus in den Umfang des Blastoderms sich erstreckende Schichte wird vom Ectoderm und (wenigstens beim Hühnchen) gleichmässig auch vom Mesoderm, als der Fortsetzung der Seitenplatten, gebildet. Bei Säugethieren soll das Mesoderm nur eine Strecke weit in die Hautplatte fortgesetzt sein, so dass letztere im Übrigen nur vom Ectoderm vorgestellt wäre. Stellen wir uns nun eine von jenem peripherischen Theil der Hautplatte zur Seite des embryonalen Körpers gebildete Erhebung vor, die sich bedeutender vom Dottersack abhebt, als die Hautplatte am Körper selbst mit der Coelombildung von der Darmplatte sich entfernte.
Diese Erhebung stellt eine Falte vor, aus der das Amnion sich bildet, wie bei den Fruchthüllen angegeben wird. Für unsere Zwecke ist der von den Hautplatten der Leibesanlage an der Umbiegestelle in die proximale Partie jener Amnionfalte gebildete, nach dem Dottersack sehende Vorsprung von Wichtigkeit (Fig. 69 Bf) . Wir können ihn, da er in der That gleichfalls eine Umschlagestelle vorstellt und somit faltenähnlich erscheint, als Bauchfalte bezeichnen. Diese von der Hautplatte und dem Ectoderm gebildete Bauchfalte erstreckt sich längs des ventralen Randes der Anlage des Rumpfes und geht am hinteren Ende desselben in einen von der vorderen Wand der Enddarmhöhle von der hier bedeutend verdickten Darmplatte gebildeten Wulst über, den Allantoiswulst (Fig. 76). Hier erscheint die Anlage der Hautplatten mit der die Darmplatten darstellenden Mesodermanschichte in unmittelbarem Zusammenhange und damit in einem Zustande der morphologischen Indifferenz.

Der hinterste Theil des Rumpfes läuft in einen sich allmählich verjüngenden Fortsatz aus, der, sobald die Hintergliedmaßen aufzutreten beginnen, sich als Caudaltheil des Körpers darstellt, und wesentlich gleiche Verhältnisse, wie die Anlage des Schwanzes der Säugethiere bietet. Mit der Ausbildung der hinteren Gliedmaßen, vor Allem der Hüftregion des Beckens, tritt jener Theil allmählich.
zurück und erscheint nur als Höcker (Caudal- oder Steißhöcker), der mit der Entfaltung der Gesäßregion gleichfalls schwindet. Im Integumente erhalten sich noch Spuren des früheren Zustandes.

Die äußeren Verhältnisse des embryonalen Körpers fanden vielfache bildliche Darstellung. Von älteren führe ich an:

S. Th. SÜMMERING, Ícones embryonum humanorum. Francforti 1799.

III. Entwicklung der Embryonal- oder Fruchthüllen.

§ 42.

Zur speziellen Darstellung der Genese dieser Hüllen greifen wir auf ein frühes Stadium zurück, in welchem die Embryonalanlage noch wenig vom Blasto-
derm sich abgehoben hat und der Kopf in der ersten Ausbildung begriffen ist. In der dem Kopftheile entsprechenden Strecke des Blastodermis ist in einem bestimmten Umkreise nur Ecto- und Entoderm vorhanden. Das Mesoderm hat sich nicht in diesen Bezirk erstreckt. Demgemäß bleibt auch dieser Theil später mit der Entwicklung des ersten Gefäßsystems gefäßlos, wie er als solcher in Fig. 66 leicht erkannt werden kann. Im übrigen Umkreise ist die Mesodermbildung nicht nur vorhanden, sondern es ist auch bereits eine Sonderung derselben in Hautplatte und Darmplatte eingetreten. Die letztere folgt überall dem Entoderm. In dem vorhin beschriebenen mesodermlosen Bereich der Kopfregion des Blastoderm erfolgt durch ungleiches Wachsthum der hier vorhandenen beiden Schichten eine Trennung derselben. Das Ectoderm erhebt sich vor dem Kopfe in eine Falte, welche größer werdend, den letzteren von vorne her oben bedeckt. Dieser Kopfscheide entspricht eine später auftretende Bildung am hintern Körperende, die aber durch Ectoderm und eine Mesodermlage vorgestellt wird (Schwanzscheide). In dem Maße des fortschreitenden Wachsthum des Körpers nehmen diese gegen einander wachsenden Falten an Ausdehnung zu und treten durch lateral vom Embryo sich erhebende longitudinale Falten unter einander in Zusammenhang. Dieser seitlichen Erhebungen ist als Amnionfalten (Fig. 73 a f) oben (S. 80) gedacht worden. Indem sich so über dem Rücken des Embryo eine Erhebung ringsum gebildet hat, wird von derselben ein Hohlraum umschlossen, welcher an einer Stelle hinter der Mitte des Rückens nach außen communicirt. Das ist die Amnionhöhle. Aber auch innerhalb der Falten, von ihnen umschlossen, besteht ein Hohlraum, die Blastodermöhle (KÖLLIKER), welche einen nach der Entstehung des Amnion außerhalb des Körpers befindlichen Abschnitt des Cöloms vorstellt. Der Eingang in die Amnionhöhle verkleinert sich immer mehr zu einer engeren Öffnung, deren Ränder gegen einander wachsend einen Verschluss der Amnionhöhle herbeiführen (Fig. 74). An der Schließungsstelle geht dann eine Trennung der hier verbundenen Theile in der Art vor sich, dass die innere Membran von einer äußeren, oberflächlichen, sich ablößt. Die innere Membran geht den Körper direct umschliessend, ventral, beim Menschen sehr weit hinten, nahe am Caudalende in dessen Wandungen über, und stellt das Amnion (die Schaffhaut) vor. Beim Menschen scheint die von vorne nach hinten wachsende, also zuerst den Kopf überkleidende Falte bedeutendes Übergewicht über die hintere zu besitzen, so dass wohl der größte Theil des Amnion aus ihr entsteht (Fig. 75).
Die äußere Membran folgt zwar eine Strecke weit dem Amnion, tritt aber von diesem ab, wo es sich zur Bauchhöhle des Embryos wendet, und überzieht dann den Dottersack. Sie ist dann eine völlig geschlossene Blase, die *seröse Hülle* v. Baer’s (Fig. 74 sh). Die Entstehung des Amnions hat somit die Bildung der serösen Hülle zur Folge, beide entstehen aus einer und derselben Membran, die anfänglich in der Anlage der Bauchwand des Körpers sich fortsetzte.

Da in die Amnionfalten außer dem Ectoderm noch eine Mesodermischichte (die Hautplatten) einging, sind am geschlossenen Amnion auch diese beiden Schichten wieder zu finden. Nur an dem von der einschichtigen Kopfscheide gebildeten Abschnitte wird die Mesodermahlage fehlen müssen, welcher Mangel wohl mit dem fernen Wachsthum ausgeglichen wird.

Ob die Hautplatten der Amnionfalte nur bis zu deren Erhebung reichen und sich an der Umschlagstelle der Falte nicht nach außen fortsetzen, ist noch nicht ganz sicher. Im ersteren Falle würde die seröse Hülle nur durch das Ectoderm vorgestellt.

Der durch die Bildung eines Amnion und einer serösen Hülle charakterisierte Vorgang beschränkt sich auf die höheren Wirbeltiere, die man daran als *Amniota* zusammenfaßt (Reptilien, Vögel, Säugethiere). — Wenn wir davon ausgehen, dass das Blastoderm in seiner ganzen Ausdehnung die Anlage des embryonalen Körpers vorstellt, von welcher Anlage freilich nur ein Theil zum Körper, ein anderer zu den Eihüllen wird, so ist in der Anlage des Amnion ein Theil der primitiven Bauchwand zu sehen. Noch bevor sie sich der bleibenden Bauchwand ähnlich differenziert und bevor noch in den Muskelpflatten einwachsen können, geht diese Amnionanlage von der Bauchfalte aus empor in die Amnionfalte über.

Dass diese Theile nicht einfach dem Integument entsprechen, geht aus der Beobachtung einer dem späteren Peritonealepithel ähnlichen Zellschichte an der Wandung der Blastodermhöhle hervor.

§ 43.

Das Amnion erscheint nach seinem Abschluss als eine die Leibesoberfläche unmittelbar bedeckende Membran, welche nach Maßgabe der Ausbildung der Bauchwandungen des Embryos und des daran sich knüpfenden Abschluss der Leibeshöhle sich auch ventralwärts in größerer Ausdehnung erstreckt und da am Nabel in die Körperwand übergreift. Der einerseits vom Amnion, andererseits von der Körperoberfläche begrenzte Raum — die Amnionhöhle — vergrößert sich allmählich unter Zunahme des sie füllenden Fluidwassers (Fruchtwasser), und so geht das Amnion in die Gestalt einer Blase über, welche sich überall bis an der Übergangsstelle in die Bauchwand des Embryos weit vom letzteren abhebt. Noch bevor diese Ausdehnung des Amnion stattfindet, ist ein anderes Fötalorgan
entstanden, die Allantois, und auch am Dottersack sind Veränderungen eingetreten, deren hier gedacht werden muss.

Eine Wucherung des Materials der Darmplatte an der vorderen Wandung der Anlage des Enddarms nimmt einen hohlen Fortsatz des Entoderms auf und erscheint dadurch als ein zum Enddarm gehöriges Gebilde. Diese Anlage der Allantois wächst weiter am Körper des Embryo vor und gestaltet sich zu einem mit dem Enddarm kommunizierenden Hohlgebilde. Seine Lage ist zwischen Dottersack und Amnion (Fig. 76,77).

Am Dottersack (Fig. 78 ds) macht sich mit der Volumzunahme des embryonalen Körpers und dem Schlusses der Leibeshöhle eine Sonderung bemerkbar, indem der terminale Theil nur durch eine engere Strecke sich mit dem embryonalen Körper, resp. mit der Darmanlage verbindet. Diese intermediäre Strecke wächst mehr in die Länge und bildet den Dottergang (Ductus omphalo-entericus). Der dem Dottersack eine Zeitlang zukommende Gefäßapparat (S. 74) hat sich inzwischen rückgebildet und es bleiben auf ihm nur noch vereinzelte Gefässe bestehen. Die Entfaltung des Dotterganges gestattet dem Dottersack eine peripherische Lage, in der er um so mehr erhalten bleibt, als die schon oben besprochene Ausdehnung der Amnionhöhle um den Embryo ihn von diesem abdrängt (Fig. 79).

Mit dem Auswachsen der Allantois nach der Peripherie der Frucht hat sowohl ihre functionelle Bedeutung als auch ihr formaler Befund Modificationen erfahren. Hinsichtlich der ersteren ist zu bemerken, dass sie ursprünglich zur
Aufnahme des Secretes der primitiven Excreptionsorgane, der Urmieren, dient und dem entsprechend auch als »Harnsack« benannt ist. Diese Leistung geht ihr später verloren, aber nicht ganz, da ein Theil von ihr in der definitiven Harnblase fortbesteht. Im Zusammenhange mit der Ausdehnung der Amnionhöhle und auf ähnliche Weise wie am Dottersack zwei Abschnitte sich sondern, wird auch an der Allantois ein distaler, blasenförmig erscheinender Theil von einem proximalen unterscheidbar (Fig. 78 B. Fig. 79 A. B.). Dieser ist ein engerer, die Verbindung des distalen Abschnittes mit dem Enddarm vermittelnder Canal, der Urachus (Harngang). Der distale Abschnitt der Allantois (Fig. 79 A.) geht nun eine Verbindung mit der erreichten serösen Hülle ein, längs deren Innenfläche die äußere, von der Darmplatte gebildete Schicht der Allantois wuchert. Die von jener Schicht getragenen Blutgefäße der Allantois gewinnen damit die gleiche Verbreitung und wachsen in zottenartige Fortsätze ein, welche aus der durch die seröse Hülle und jener von der Allantois gelieferten Gewebschicht gebildeten Membran nach außen hervorsprengen. So entsteht ein neues, den Embryo umhüllendes Gebilde, eine gefäßführende, zottentragende Haut, das Chorion. Die Fortsätze dieser Zottenhaut besetzen die gesamte Oberfläche; anfangs einfach, verzweigen sie sich nach und nach und stellen schließlich Bäumchen vor (Fig. 80), in denen die Blutgefäße der Allantois, also die Nabelgefäße, sich verzweigen. Die von der serösen Hülle stammende Ectodermsschicht bildet an der gesamten Oberfläche des Chorion und dessen Zottenbäumchen einen epithelialen Überzug, die äußerste Grenze der embryonalen Fruchthüllen.

B. Vom ersten Aufbau des Körpers.

89

in der That aber außerhalb des Amnion liegt, welches einen Überzug für ihn abgibt (Fig. 80). Das ist der Nabelstrang (Funiculus umbilicalis), der sonach seine Entstehung von der Ausdehnung der Amnionhöhle ableitet.

Die oben dargestellten Gebilde erfahren bis zur letzten Fötalperiode manche Veränderungen. Das Amnion erleidet mit seiner fortschreitenden Ausdehnung die mindeste Modification, die beiden es in der Anlage bildenden Schichten bestehen auch nachher fort: eine dünne einfache Epithelschichte, von einer dünnen gefäßlosen Bindegewebsschichte umgeben. Am Nabelstrang geht das Epithel des Amnion in eine mehrfache Schichtung über, die sich zur gleichfalls mehrschichtigen Oberhaut (Epidermis) des Embryo fortsetzt, sowie die Bindegewebsschichte am Nabelstrang dessen Hülle bildend, in die Lederhaut des Embryo verfolgbar ist.

Von der Allantois erhält sich nach geschehener Chorionbildung nur noch die aus dem Entoderm stammende Schichte des Urachus eine Zeitlang, während die äußere gefäßtragende Lage mit benachbarten Theilern (siehe Chorionbildung) Verbindungen eingeht, und damit ihre Selbständigkeit aufgibt. Reste jener epithelialen Schichten bleiben im Nabelstrang nicht selten bestehen, und sind da selbst bis zur Geburt nachgewiesen worden. Die äußere (bindegewebige) Schichte des Urachus geht in das die Nabelgefäße umhüllende Gatt'erte Gewebe die »Wharton'sche Sülze« über, sowie dieselbe Schichte am peripherischen Theile der Allantois, und von da aus längs der Innenseite des Chorion eine ähnliche gallertige Lage herstellt, welche mit der Außenfläche des Amnion in lockeren Zusammenhang tritt.

Unter fortschreitender Vergrößerung der gesamten Frucht gewinnt der Zottenbesatz des Chorions eine reichere Entfaltung (Chorion frondosum), die aber bald nicht mehr die gesamte Oberfläche betrifft. Nur an jener Strecke der letzteren, mit welcher die Frucht der Uteruswand anliegt, findet der Sprossungsproces an den Zotten auch ferner noch statt, indess er an der übrigen Oberfläche anscheinend einem Rückbildungsproces Platz macht. So kommt es, dass an der letzteren Stelle nur noch spärliche Zotten vorkommen, während an der ersteren der Reichthum des Besatzes sich vermehrt hat. Das Chorion frondosum wird reducir und die zottenarme Fläche stellt das Chorion laeve vor.

Erster Abschnitt.

Amnion, als sie in der Harnblase der Amphibien einen früheren Zustand besitzt, von dem sie sich ableiten läßt. Daraus ergibt sich ein Grund zur Annahme, dass eine bedeutende Entwicklung der Allantois mit der Amnionbildung in Causal nexus stehe.

§ 44.

stoff seine Kohlensäure um, so dass die Placenta sowohl als nutritorisches wie als respiratorisches Organ für die Entwicklung des fotalen Organismus von größter Wichtigkeit ist. Mit der Einleitung des Placentarkreislaufs ist es also mütterliches Material, aus dem der junge Organismus seinen Aufbau gestaltet. Somit geht nur die erste Anlage des Körpers und seiner Organe aus dem der Eizelle entstammenden Material hervor und schon mit der Entfaltung des Chorions wird die Bedingung zu einer von außen her erfolgenden Ernährung des Embryo angebahnt; die Chorionzotten mit ihren Gefäßen stellen die Wege dar, auf denen die Aufnahme von Ernährungsmaterial aus der Schleimhaut des Uterus erfolgt, bis mit der Ausbildung der Placenta für die Ernährung des Embryo die grünstigsten Verhältnisse sich gestalten. Die Entstehung der gesammten mütterlichen embryonalhüllen aus der Schleimhaut der Uteruswand lässt die speciellere Betrachtung dieser Verhältnisse zweckmäßiger mit jenem Organe verknüpfen, so dass in dieser Beziehung auf die den weiblichen Geschlechtsapparat behandelnden §§ verwiesen wird.

Postembryonale Entwicklung.

§ 45.

Mit der Geburt haben die Vorgänge, welche während des embryonalen Lebens thätig waren, keineswegs ihren Abschluss erreicht. Wie schon gegen das Ende der Fötalperiode die Gestaltungsprocesse an Intensität abnahmen und mehr und mehr untergeordneten Umfanges sich zeigten, noch am meisten in der Volumszunahme der Theile vor sich gehend, in einem Wachsthume des Körpers sich aussprechend, so erscheinen auch nach der Geburt noch langsamer, aber stetige Veränderungen in der Organisation. Wir meinen damit nicht etwa die Umwandlungen, welche durch die mit der Geburt auftretenden Änderungen im Gebiete

Bis zur Geburt sind es wesentlich ererbte Einrichtungen, die zur Anlage oder auch zur Ausbildung kommen. Nach der Geburt werden die zahlreichen, von der Außenwelt gegebenen Bedingungen wirksam und geben Anlass zu neuen Veränderungen. Es entstehen Anpassungen des Körpers an mannigfache auf ihn wirkende Einflüsse. Minimale Wirkungen summieren sich bei längerer Dauer und kommen schließlich mit bedeutsendem Gewichte zur Geltung. Es ist die volle, den Organen gewordene Funktion, unter deren Einfluss die weitere Ausbildung sich anbahnt und vollendet.

IV. Bedeutung der Entwicklung.

§ 46.

Die Gleichartigkeit der Entwicklung der Individuen einer und derselben
Art oder Gattung und die Beständigkeit der Folge der einzelnen Stadien erscheinen als etwas Gesetzmäßiges. Da gestaltende, von außen her wirksame Impulse absolut ausgeschlossen sind, muß das die Entwicklung leitende Princip im sich entwickelnden Organismus liegen. Man kann dasselbe im Endzweck suchen, welches durch die Entwicklung angestrebt wird, aber dabei bleibt vor Allem der Weg, den die Entwicklung durchläuft, eben so dunkel wie vorher. In anderer Weise erscheint uns dieser, sobald wir die Entwicklung des Organismus als eine ihm durch Vererbung übertragene Eigenschaft ansehen. Wir nehmen keinen Anstand in der Annahme der Vererbung körperlicher wie geistiger Eigenschaften. Wenn das Besondere der Organisation so beurteilt werden kann, so kommt das dem Allgemeinen derselben mit noch viel größerem Rechte zu. Die Vererbung leitet uns also zu einem früheren Zuzustande. Der Organismus entwickelt sich auf dieselbe Weise, wie der, von dem er abstammt, weil er von letzterem mit dem materiellen Substrate auch die Function der Entwicklung ererbt hat.

Das für den Organismus als Ererbtes sich Darstellende ist für die Vorläufer desselben einmal Erworbenes gewesen, welches auf dieselbe mechanische Weise entstand, wie auch im entwickelten Organismus durch zahlreiche Anpassungen neue Einrichtungen hervorgehen. Aus solchen in der unendlichen Reihe früherer Zustände nach und nach erworbenen Einrichtungen summierte sich allmählich der Betrag an Organisationsbefunden, den der Organismus als Erbschaft übernahm und ihn auf seine Descendenten sich fortsetzen läßt. In dieser Auffassung verknüpft also die Ontogenie den Organismus mit unter ihm stehenden Organisationen und lehrt damit dessen Stammesgeschichte (Phylogenie), wenn auch nur in ihren Umrissen kennen, indem sich das Wesentliche jener Organisationen wiederholt. Da aber der ausgebildete Körper mit allen seinen Bestandtheilen auf dem Wege der Ontogenie entsteht, wird durch diese auch eine Verknüpfung des entwickelten Zustandes mit den in Bezug auf die menschliche Organisation niederer stehenden Formen bedingt. So bildet die Entwicklung das Band, welches alle Organisationen unter einander verbindet und die Komplikationen höherer Zustände durch deren stufenweise Entfaltung verstreicht lehrt, die sie von jeweils niederer Zuständen ableitet.

Man kann also die Annahme einer Vererbung auch nicht durch den Nachweis im Embryo bereits gegebener Entwicklungsbefindungen beseitigen wollen, denn diese Bedingungen selbst bis zur chemisch-physikalischen Constitution der Eizelle zurückverfolgt, leiten auf Beziehungen der Eizelle zum mütterlichen Organismus, von dem sie einmal einen Bestandtheil vorstellte. Wenn die Eizelle nun besondere Eigenschaften besitzt, so hat sie diese eben aus dem mütterlichen Organismus und damit ist man bei der »Vererbung« angelangt.
Zweiter Abschnitt.

Vom Skelettsystem.

Allgemeines.

§ 47.

Bestandtheile für die gesammte Anatomie, für welche die Skeletlehre eben so eine Grundlage abgibt, wie ihr Object es für den ganzen Körper ist. Am Skelete stellen sich aber auch die näheren oder entfernteren Beziehungen zu anderen Wirbelthierorganismen am anschaulichsten dar und verleihen ihm damit eine besondere morphologische Bedeutung.

A. Vom Baue der Skelettheile.

Wie der knöcherne Zustand des Skeletes der spätere ist, so ist er auch der vollkommene dem knorpeligen gegenüber. Ein relativ geringeres Volum der Knochen ist mit größerer Leistungsfähigkeit verbunden als das Knorpelgewebe besaß. Daraus entspringt auch die reichere Gestaltung des Reliefs, welches vielseitige Beziehungen der Knochen abspiegelt und damit wieder die Knochen weit über die sie vorher darstellenden knorpeligen Gebilde erhebt.

und das aus compacter Substanz gebildete Mittelstück einen längeren und weiteren Markraum umschließt (Röhrenknochen). Diese große Marköhle der Röhrenknochen setzt sich in die kleineren Markräume der Endstücke fort und wie ihre Entstehung durch Resorption von Knochenbälkchen und damit durch Zusammenfließen der kleineren Räume erfolgt ist, gibt sich häufig durch die von der Wand der Marköhle hereinragenden Knochenlamellen und manngflächen Reste von Bälkchen zu erkennen. Ähnliche Verhältnisse bezüglich der Vertheilung der compacter und spongiosis Substanz bieten sich auch bei den platten Knochen (z. B. den Knochen des Schädeldaches), bei denen eine äußere und eine innere Lamelle compacter Substanz eine dünne Lage spongiosis Substanz, die sogenannte Diploë zwischen sich fasst.

Außer diesen größeren, mit Mark erfüllten Binnenräumen besitzt der Knochen noch feinere Canäle, welche vorwiegend die compacter Substanz durchziehen, Blutgefäße führen, und als Havers'sche Canälchen (Fig. 51 c) bezeichnet werden. Sie bilden das Knochengewebes in verschiedenen Richtungen durchsetzende Maschennetze, und kommen sowohl auf der Oberfläche wie gegen die markführenden Räume hin zur Mündung. Die Gestalt der von ihnen gebildeten Maschen steht mit der Längsausdehnung der Knochen in Verbindung, und bei den langen Knochen sind sie vorwiegend in die Länge entwickelt. Ganz dünne Knochenplättchen fehlen sie. In der die Havers'schen Canälen umgebenden Knochensubstanz bietet das Knochengewebes eine Anordnung in Gestalt concentrischer Lamellen (Havers'sche Lamellen systeme), mit welchen die Knochenkörperchen eine meist den Lamellen parallele Stellung zeigen. Dieses auf Querschnitten als concentrische Schichtung erscheinende Verhalten findet sich mit verschiedenen bedeutenden Resten von Lamellensystemengemischt und soll seine Erklärung bei der Entwickelung der Knochen (§ 49) finden. Außer den um die Canälen geordneten Lamellen und den zwischen den Havers'schen Systemen befindlichen Fragmenten von Lamellen gruppen sind auch solche Lamellen an der Oberfläche von Knochen vorhanden. Sie sind der Oberfläche parallel geschichtet und werden als Generallamellen (Fig. 51 a b) von den Havers'schen oder Speciallamellen unterschieden. In den Lamellen oder auch an der Grenze von solchen finden sich die Formelemente des Knochengewebes vertheilt, die Knochenkörperchen.
Wie die Havers'schen Canälchen mit den größeren Binnenräumen kommunizieren, und ebenso an der Oberfläche zur Mündung gelangen, so steht auch das durch die Ausläufer der Knochenkörpereichen gebildete feinste, am trockenen Knochen leere Canalsystem, sowohl an der ganzen Oberfläche wie an den Wänden der Havers'schen Canälchen Fig. S2 a, und der Markräume offen, so dass also der gesamte Knochen durch ein aus verschiedenen Bildungen dargestelltes Hohlraumsystem durchzogen wird, und darin Weichteile verschiedener Art umschließt.

Die im Knochengerewe enthaltene anorganischen Bestandtheile können durch Behandlung des Knochens mit Säuren (Salzsäure) entfernt werden, so dass nur die organische Substanz des Knochens (Osseln), genau die Form des Knochens wiedergebend, übrig bleibt. Ähnlich ist die organische Substanz entfernt durch Glühen (Calciniren) des Knochens, wobei die anorganische Substanz erhalten bleibt. Durch die organische Grundlage empfängt der Knochen ein gewisses für die einzelnen Skeletttheile verschiedenes Maß von Elasticität. A. Rauber, Elasticität und Festigkeit der Knochen. Leipzig, 1876.

Die anorganischen Bestandtheile bilden von getrockneten Knochen etwa 44—60% nach den verschiedenen Knochen, und bei diesen selbst wieder nach dem Alter variirend. Mit dem Alter vermehrt sich die anorganische Substanz, die organische nimmt ab.

Was die anorganische Substanz betrifft, so ergab dieselbe nach Heintz an dem compacten Knochengerewe eines Femur folgende Zusammensetzung:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorsaurer Kalk</td>
<td>83,62</td>
</tr>
<tr>
<td>Kohlensaurer Kalk</td>
<td>9,06</td>
</tr>
<tr>
<td>Fluorecalcium</td>
<td>3,57</td>
</tr>
<tr>
<td>Phosphorsaure Magnesia</td>
<td>1,75</td>
</tr>
</tbody>
</table>
§ 45.

In der Zusammensetzung der Beinhaut sind zwei Schichten unterscheidbar; eine äußere aus fibrillärem Bindegewebe, dessen Bündel sich in verschiedenen Richtungen durchziehen, und eine innere, auf mikroskopischen Querdurchschnitten heller erscheinende, die gleichfalls eine fibrilläre Grundlage, aber in fein netzförmiger Anordnung und mit zahlreichen spindelförmigen oder rundlichen Zellen besitzt. Zu innerst an dieser Schichte des Periostes lagert bei noch wachsenden Knochen eine continuirliche Zellen-schichte, die Osteoblastenschichte, unmittelbar dem Knochengewebe an (S. S. 142).

B. Von der Entwicklung der Knochen.

§ 49.

Der knorpelige Zustand des embryonalen Skeletes ist der Vorläufer des knöchernen und entspricht damit einer niederen Bildungsstufe, welche durch die »Verknöcherung« überwunden wird. Die Produkte dieses Processes sind die »Knochen«. Der knöcherne Zustand der Skelettheile bildet sich aber nicht nur an knorpel präformirten Theilen, sondern auch an nur bindegewebigen Bildungen aus, so dass man in genetischer Hinsicht zwei Kategorien von Knochen unterscheidet: solche, die bereits im knorpeligen Skelete vorgebildet sind, und solche, welche nur eine solche, bindegewebige Grundlage besitzen. Wenn man erstere als primäre, letztere als secundäre Knochen auffassst, so hat dies nur in soweit Berechtigung, als damit eine bestehende oder fehlende Beziehung zum knorpeligen Skelete ausgedrückt ist, denn bei genauerer Prüfung ergibt sich, dass das Gewebe von beiderlei Knochen ganz auf dieselbe Weise entsteht, sowie dass der primäre Zustand jedes knöchernen Skelettheiles keine direete Beziehung zum Knorpelgewebe besitzt, sondern dieselbe sich erst allmählich erwirbt.

Betrachten wir den Vorgang der Entstehung der Knochen an einigen Beispielen, die zugleich für die wichtigsten Modificationen als Typus gelten können:

I. Ossification knorpeliger Skelettheile.

1. Bildung langer Knochen.

An der knorpeligen Anlage, welche im Wesentlichen die Form des späteren knöchernen Zustandes wiedergibt, erscheint das erste Knochengewebe als eine am Mittelstücke

Querschnitte des Femur von Embryonen verschiedenen Alters.
Die in der gebildeten Knochenmasse aufgetretenen, größtentheils longitudinal verlaufenden und mit einander communicirenden Canäle, werden bis auf die äußerlichsten jüngsten, durch parietal angelagerte Knochenlamellen verengt. und stellen endlich nur noch Blutgefäße und Bindegewebe umschliessend, Haverssche oder Gefäß-Canäle vor. Von dem dem erst umschlossenen Knorpel zunächst gelagerten Canälen aus wird ein Wucherungsprozess in dem primitiven Knorpel eingeleitet, der durch in ihn einwachsendes Gewebe zerstört wird. Fig. 83 B C zeigen solche an der Stelle des früheren Knorpels entstandene Knochenbälkchen. In den dadurch entstandenen Räumen wird theils wieder parietal Knochengewebe abgelagert, theils gehen diese Lücken in zusammenfließende Markräume über, aus denen allmählich unter Resorption eines Theiles des gebildeten Knochengewebes die große Marköhle der Knochenehre entsteht. Die Ossification ist demgemäss hier enchondral, hat aber von der perichondralen Schichte her ihren Ausgang genommen.

Die Verlängerung des knöchernen Mittelstückes geht nun auch auf Kosten der bis jetzt knorpelig gebliebenen Endstücke vor sich. Nachdem im Inneren des Mittelstückes der Knorpel theils in Markräume umgewandelt, theils durch Knochen ersetzt ist, wachsen von dem ossificirten Mittelstücke her, mit der Volumszunahme des gesamten Skelettheiles an Zahl sich mehrende, Blutgefäße führende Canäle, gegen die knorpeligen Endstücke, wodurch unter Zerstörung des vorher verkalkten Knorpels, wohl auch mit Unter- gang der Knorpelzellen die von diesen eingenommenen Räume unter einander in verschiedenen Grade zusammenfließen. Die Knorpelzellen haben schon vorher eine dem Längewachsthum entsprechende Anordnung gewonnen, bilden Säulen (Fig. 84). An den Wänden der unregelmäßig gestalteten, meist vielfach gebuchten Räume (e) lagert eine wahrscheinlich mit den Gefäßen eingewucherte Osteoblastenschichte Knochenlamellen (o) ab. So geht der ossificirende Rand immer weiter in die inzwischen fortwachsenden knorpeligen Enden (eh) vor und zieht diesen zugehörige Theile zum knöchernen Mittelstück. Während dessen sind in den knöchernen Theilen des Mittelstückes neue Veränderungen vor sich gegangen, die weiter unten gewürdigt werden sollen, nachdem die in den Endstücken erscheinenden Ossificationen vorgenommen worden sind. Die dem ossificirten Mittelstücke verbundenen, längere Zeit knorpelig bleibenden Endstücke werden Epiphysen, das Mittelstück selbst Diaphyse be- nannt (vergl. Fig. 85).

Die Verknöcherung der Epiphysen erfolgt stets viel später als jene des Mittelstückes. Die Vorbereitung dazu geschieht durch blutgefässführende Canäle, welche vom Perichondrium her an verschiedenen Stellen gegen die Mitte der knorpeligen Epiphysen einwachsen. Der Knorpel wird dadurch vasculärisirt (Fig. 85 d d). In der Umgebung der innersten, ein Netzwerk bildenden, dem bloßen Auge leicht wahrnehmbaren Knorpelcanäle tritt eine Knorpelverkalkung ein, die auch hier den Vorläufer der Verknöcherung bildet, in sofern als bald durch Wucherungen der Gefäßcanäle der verkalkte Knorpel größentheils zerstört und an die Wandung der dadurch gebildeten, mit jenen Canälen zusammenhängenden Hohlräume wiederum Knochenlamellen abgesetzt werden. So bildet sich im Inneren des Knorpels ein Ossificationsspunkt (Fig. 85 e), der an seiner ganzen Peripherie um sich greift, auf Kosten des Epiphysenknorpels sich vergrößert, und schließlich den größten Theil des Epiphysenstückes in spongöse Knochenmasse umwandelt. Es bleibt dann noch an der Oberfläche der Epiphyse eine Knorpelschichte übrig, der »Ge-

Mit dem vollendeten Wachsthum des Knochens werden vom Periost keine Längs-
Zweiter Abschnitt.

Leisten mehr gebildet, vielmehr finden sich dann äußerlich concentrische, größere Strecken der gesamten Circumferenz des Knochens umfassende Schichtungen (Generallamellen). Auch innerlich von der Marköhle her sind solche Lamellenbildungen wahrnehmbar (vergl. Fig. 81).

Wie bei der beginnenden Verknöcherung der knorpeligen Diaphyse der Knorpel die Unterlage abgibt, auf welcher das Knochengewebe sich ablager, so verhält es sich auch im Innern der Epiphyse, nur dass es hier nicht mehr die äußere Oberfläche des Knorpels ist, welche den abzulagernden Knochenschichten als Unterlage dient. Es sind die Wandflächen durch Resorptionsvorgänge im Knorpel gebildeter Räume; der Knorpel dient also auch hier noch in seinen Resten dem Aufbau des Knochens. Er erhält sich noch einige Zeit, nachdem an dem von ihm (Fig. 86 a a) gebildeten Gerüste bereits Knochenlamellen (b b) abgelagert sind. Mit dem Fortschreiten dieses Ablagerungsvorhabes und der dadurch entstehenden Verengerung jener Räume treten neue Resorptionsvorgänge auf. Wucherungen der Osteoblasten bilden neue Räume nach verschiedenen Richtungen unter erneuter Zerstörung des interstitiellen Knorpels (a), und so verhält allmählich der letzte Rest jenes Knorpels dem Untergang.

2. Ossification an kurzen Knochen.

Die beiden zur Herstellung eines Knochens führenden Vorgänge können bei nur oberflächlicher Betrachtung als recht verschieden sich darstellen; der eine geschieht nur durch das Periost, *periostale Ossification*, der andere durch Bedeckung des Knorpels: *endochondrale Ossification*. Fasst man hiebei zunächst die Thatsache auf, dass bei der endochondralen Ossification keineswegs das Knorpelgewebe als solches ossifieirt, d. h. sich in Knochengewebe umwandelt, dass es vielmehr *vor* dem Auftreten von Knochengewebe, nach vorausgangener Verkalkung seiner Intercellularsubstanz gerade an jenen Stellen völlig zerstört wird, an welchen die ersten Knochenlamellen abgelagert werden, so wird der in jenen beiden Ossificationsmöglich erscheinende Gegensatz bedeutend gemindert. Das Knorpelgewebe wird bei der endochondralen Ossification durch Knochengeewebe substituirt. Beachtet man weiter, dass die endochondrale Ossification jedesmal von Außen her durch die einwachsenden, perichondrale Gewebe einführenden Canäle eingeleitet wird, dass also der Anstoß zur Knochenbildung jedenfalls von einer dem Periost gleichwertigen Gewebschichte gegeben wird, so muss jedes Bedenken an der Gleichwerthigkeit beider Vorgänge vollends schwinden, und es
wird nur in der Verschiedenheit der Localität der Vorganges, nicht im eigentlichen Wesen derselben die einzige Verschiedenheit gefunden werden können.

II. Knochenbildung bei nicht knorpelig präformirten Skelettheilen.

Für die Entstehung dieser vorwiegend in den platten Schädelknochen repräsentirten Theile bildet meist wenig differenziertes Bindegewebe den Ausgangspunkt. In den Lücken einer verhältnissmässig spärlichen, faserartig angeordneten Intercellularsubstanz finden sich Gruppen von Zellen, welche vielfache Thellungszustände aufweisen. Nun folgt eine eigen thümliche Veränderung der Faserzüge, indem eine Strecke derselben sklerosirt, d. h. durch Imprägnation von Kalksalzen fest wird, worauf dann die den Faserzug umlagernden Zellen eine Schichte von Knochensubstanz sich differenziren lassen, für die sie theilweise selbst zu Knochenkörperchen werden, ganz wie es aus dem im § 25 Dargestellten hervorgeht. Zuweilen tritt die erste Knochen substanz, ohne dass eine bindegewebige Grundlage besonders unterscheidbar wäre, einfach zwischen mehreren Zellen auf, und die Zellen verhalten sich gleich denen im ersterwähnten Falle wie osteoblasten, wie denn auch das Weiterwachsen dieser zuerst entstandenen Knochentheilen wesentlich durch die Thätigkeit der Osteoblasten vor sich geht. In der Nachbarschaft eines solchen Knochenstückchens sind meist gleichzeitig mehrere aufgetreten, die unregelmässige Fortsätze aussendend, mit denen sie sich allmählich unter einander verbinden. Ebenso findet an der Peripherie eine Neubildung jener kleinen Knochenstückchen statt, die durch den vorerwähnten Vorgang mit dem bereits bestehenden Netze von Knochengerweb verschmelzen (vergl. Fig. S7). Die Massen dieses Netzes werden an der Stelle des ersten Auftretens allmählich enger in dem Maße, als die Knochenbälkchen durch fortschreitende Anlagerung neuer Knochensubstanz sich verdicken und die Anlage des gesamten knöchernen Plättchens durch peripherische

Aus diesen Vorgängen ist ersichtlich, wie die Entstehung der nicht knorplig präformirten Skelettheile mit jener der knorplig präformirten in allem Wesentlichen zusammentrifft. Was bei letzteren das Perichondrium, dann die Periostschichte leistet, wird hier durch eine dieser gleichwertige Bindegewebslage vollbracht, die nach dem Auftreten der ersten Anlage selbstverständlich gleichfalls zum Periosteste wird. — Bei allem sind aber diese Skeletheile von den knorplig präformirten als wesentlich differente zu betrachten, insofern diese aus einem bereits ursprünglich bei niederen Wirbeltieren (z. B. Selachiern) knorplig bleibenden Zustande des inneren Skeletes stammen, indess jene im äußeren Integumente auftretende Ossificationen zu Verräumern haben.

Man kann daher die ohne knorplige Unterlage entstehenden Knochengebilde auch als Hautknochen bezeichnen. Auch Deck- oder Belegknochen werden sie benannt, insofern manche von ihnen auf für sich ossifizierenden Knorpeln entstehen.

Durch die Ableitung dieser Knochen von Ossificationen des Integumentes, oder wie das für einen anderen Thell dieser Knochen der Fall ist, von Ossificationen, die in der Auskleidung (Schleimhaut) der Kopfwimperöhle entstehen, stellt sich dieser Ossificats-prozess als der älteste dar. Er besteht bereits im Integumente, während das innere Skelet noch vollständig knorplig ist (Selachier).

§ 50.

Mit der Vollendung der Ossification sind die Lebensvorgänge im Knochen keineswegs abgeschlossen. Das einmal gebildete Knochengewebe bleibt als solches nicht bestehen, sondern ist einem Resorptionsprocesse in verschiedenem Maße unterworfen. Im Innern der Knochen spielt dieser bei der Bildung der Marköhle wie der engeren Röhren eine wichtige Rolle, und ebenso findet er in Combination mit inneren Veränderungen auch an der Oberfläche der Knochen statt. Die Vergleichung von Knochen verschiedener Altersstufen zeigt aufs deutlichste, wie da Substanzschichten verschwunden, dort wieder andere angefügt sein müssen, um die eine Form in die andere überzuführen. Dass auch für diese Resorptionsvorgänge den Osteoblasten eine Hauptrolle zukommt, ist durch Beobachtungen wahrscheinlich gemacht worden.

Für ein interessanteres Wachsthum, d. h. für Zunahme der Intercellularsubstanz des bereits gebildeten Knochensgewebes, wie sich diese durch Auseinanderrücken der Knochenzellen äußern würde, bestehen keine gesicherten Angaben. Jedenfalls aber erscheinen die Knochen, wie starr sie auch in trockenem Zustande uns entgegentreten mögen, durch die mannigfachen ihre Struktur und Textur betreffenden Verhältnisse als nichtsdestoweniger intensive und mannigfaltige Lebensvorgänge offenbarendes Bestandtheile des Organismus.

C. Von der Gestaltung der Knochen.

§ 51.

Der hieraus resultirende Theil des Oberflächenreliefs gewinnt mit dem vor- schreitenden Alter schärferen Ausdruck. Gleiches gilt von Verziehungen, Furchen etc., die durch die Anlagerung von Weichteilen, z. B. von Blutgefäßen, Sehnen etc. entstehen. Bei diesen Reliefgebäudlichkeiten bilden die durch die Gelenkverbindungen bedingten Einrichtungen eine ganz bedeutende Instanz, indem die Art des Mechanismus der Bewegung sich darin äußert. Durch dieses Relief empfängt der Knochen auch noch während des als ausgebildet betrachteten Zustandes eine Modification seiner Gestaltung, die, wenn auch minder fundamental, doch nicht ohne Bedeutung ist. Aus ihr sind die verschiedenen Alterszustände erkennbar, und dabei zeigt sich zugleich, wie der Entwickelungsgang fortschreitend neue Zustände schafft und, wenn auch an anscheinend untergeord-
nen Merkmalen, das scheinbar Abgeschlossene in steter Umwandlung begriffen erkennen lässt.

So ist die Gestalt des Knochens ein Product von dessen Beziehungen.

Die spezielle Form der einzelnen Knochen wie der Skeletgebilde überhaupt, steht mit der funktionellen Bedeutung für den Organismus in engstem Zusammenhang und daher concurriren sehr mannigfaltige, nach den verschiedenen Ab schnitten des Skeletes wechselnde Momente. Eine Aufstellung rein auf die äußere Gestalt gegründeter Kategorien ist daher wissenschaftlich wertlos.

Aus all' diesem folgern wir, dass auch die ererbten Einrichtungen einmal auf niederer Stufen erworben waren. Deshalb sind die am Skelet während des postembryonalen Lebens allmählich hervortretenden Eigenthümlichkeiten von so grober Bedeutung, weil sie den Weg kennen lehren, auf welchem Umgestaltungen in langsam, aber stetig fortschreitender Weise sich ausbilden.

Aus den bei seiner allmählichen Entstehung thätigen Prozessen geht der Knochen somit als ein komplettiertes Organ hervor, an welchem jeder Theil der Oberfläche seine bestimmte Beziehung zu anderen Körpertheilen, und damit zum gesamten Organismus besitzt, und ebenso ist wieder das Innere des Knochens bedeutungsvoll für die dem Knochen zukommende Leistung, sei es durch die Wichtigkeit der compacten Kindschicht, sei es durch die Architektur der Spongiosa, die in den einzelnen Knochen sehr verschiedene Verhältnisse der Anordnung ihres Gebälkes darbietet.

D. Von den Verbindungen der Knochen.

§ 52.

Die einzelnen Knochen sind untereinander auf mannigfaltige Art zum Skelette vereinigt. Die Verbindung ist bald continuirlich, so dass zwei verbundene Skelettheile nur durch anderes, aber in beide übergehendes Gewebe von einander

Die *Synarthrose* ist die ursprüngliche Art der Verbindung von Skelettheilen. Sie bildet den Vorläufer der Diarthrose. Das die Verbindung herstellende Gewebe kann hinsichtlich seiner Qualität eine Reihe verschiedener Einrichtungen hervorrufen.

In einer ferneren Modification besitzt das verbindende Gewebe nur eine geringe Dicke, so dass die sich verbindenden Strecken fast unmittelbar an einander liegen. Sie greifen dann meist mit Versprünge (Zacken, Leisten) in einander ein, und fördern damit die Festigkeit der Verbindung, welche man dann als *Naht*, *Sutura*, bezeichnet (Knochen des Schädel'sches).

Die *Syndesmose* entsteht aus der ersten Differenzierung zweier Skelettheile, indem das nicht zu diesen verbrachte indifferente Gewebe in Bindegewebe sich umwandelt, durch welches dann die beiden Skelettheile zusammengefügt erscheinen. Von der Größe der in die Verbindung eingehenden Skeletoberflächen, sowie von der Länge des Zwischen gewebes hängt die Beweglichkeit der verbundenen Theile ab. Diese wächst mit der Beschränkung der Flächen und der Ausdehnung des Zwischengewebes.

b) *Synchondrosis*; das Zwischengewebe ist hier knorpelig. In der Regel ist es ein Rest der den durch es verbundenen Skelettheilen einheitlich zukommenden knorpeligen Anlage, welche nicht in den Ossificationsprocess einbezogen ward. Die verbundenen Knochenflächen gehen so durch den intermediären Knorpel in einander über, ohne dass ihnen an dieser Stelle eine Periostbekleidung oder Perichondrinum zukäme.
Dieser Zustand bildet die *wahre Synchondrose*. Von ihr leitet sich ein zweiter Zustand ab, und zwar auf Grund von Veränderungen des verbindenden Knorpels. Im Inneren desselben gehen nämlich Umwandlungen vor sich, so dass nur die unmittelbar an die knöchernen Skelettheile grenzenden Strecken die ursprüngliche Beschaffenheit bewahren. Jene Umwandlungen bestehen in Bildung von Faserknorpel und damit verbundener Lockung des Gefüges, woran sogar eine Continuitätstrennung, die Bildung einer Höhlung anknüpfen kann. Diese Form ist die *falsche Synchondrose*. Sie kann auch, ohne die wahre Synchondrose zum Vorläufer zu besitzen, entstehen, indem von der knorpeligen Anlage an einander grenzender discreate Skelettheile ein Rest mit intermediärem Gewebe erhalten bleibt.

c) *Synostosis* oder Verschmelzung discreate Knochen kann sowohl aus der Syndesmose als auch aus der Synchondrose hervorgehen. Von den Syndesmosen sind es vorzüglich die Suturen, welche zur Synostose führen (Knochen des Schädeldaches). Aus der Synchondrose gehen die Synostosen gewisser Knochen der Schädelbasis hervor (Sphenoidale und Occipitale). In allen Fällen greift die Ossification auf das verbindende Zwischengewebe über.

Von den Gelenken.

Entstehung der Gelenke.

§ 53.

Die Sonderung der Gelenke erscheint im Zusammenhang mit der Differenzierung der knorpeligen Skelettheile. Diese sind stets eine Zeit lang durch indifferentes Zwischengewebe getrennt (Fig. SS a). Mit dem Wachsthume der knorpeligen Theile wird dieses intermediäre Gewebe allmählich in jene Knorpelanlagen übergenommen, nach beiden Seiten hin zu Knorpel umgewandelt und dadurch verbraucht. Im weiteren Vorwärtschreiten ist dieses in Fig. SS b dargestellt. Endlich grenzen die knorpeligen Endflächen zweier Skelettheile unmittelbar an einander und haben inzwischen eine bestimmte Gestalt gewonnen, die für jedes Gelenk eigenthümlich ist. Ein anfänglich

Fig. 88.

unanschaulicher Zwischenraum, eine schmale Spalte, erscheint zwischen den knorpeligen Endflächen der bezüglichen Skelettheile, den Gelenkflächen derselben Fig. 88 b) und gewinnt eine nach Maßgabe der mannfächen Gelenke verschiedene Ausdehnung. Diese Lücke ist die Gelenkhöhle. Sie trennt die den primitiven Knorpel als Überzug (Gelenkknoorpel) beibehaltenden Gelenkenden der articulirenden Knöchhen. Nach außen hin findet sie ihre Grenze in dem noch von einem Skelettheil zum andern verlaufenden Gewebe, welches außerhalb der Gelenkflächen vom Periost resp. Perichondrium des einen zum anderen sich fortsetzt. Dieses die Gelenkhöhle umschließende Gewebe läßt die Gelenkkapsel (Fig. 89) hervorgehen. Es differenziert sich in seinen äußeren Schichten zu einer meist derberen fibrösen Membran, dem Kapselbande, und einer inneren, der Gelenkhöhle zugekehrten weicheren und gefäßreichen Schicht, der Synovialmembran, von der die Bildung einer in der Gelenkhöhle sich findenden zähern gelblichen Flüssigkeit, der Synovia (Gelenkschmiere) ausgeht.

Das Kapselband entfaltet sich nicht überall gleich stark. An manchen Stellen erscheint es schwächer, an anderen verdickt es sich durch derbere sehnhige Faserzüge. Solche bilden sich in bestimmter Anordnung aus und können bei größerer Mächtigkeit ein verschiedenes Maß von Selbständigkeit gewinnen, ja sogar vom Kapselbande sich vollständig trennen. Sie stellen Hilfsbänder, Verstärkungsbänder der Kapsel Lig. accessoria, vor.

Das in der Anlage eines Gelenkes bestehende indifferentere Zwischengewebe wird aber nicht immer zum Wachstum der Gelenkenden der Skelettheile vollständig verwendet. Bei nicht vollständiger Congruenz der Gelenkflächen bleiben Reste jenes Gewebes in der Circumferenz der Gelenkhöhle mit der Kapsel, resp. deren Synovialmembran in Zusammenhang, ragen unter geweblicher Differenzierung als Fortsätze, Falten, gegen die Gelenkhöhle vor, Synovialfortsätze, Synovialsalten.

In anderen Fällen schreitet die Differenzierung des knorpeligen Gelenkendes noch weniger weit vor, so dass beide Gelenkflächen sich nicht in ihrer ganzen Ausdehnung, sondern nur an einer Stelle berühren und ein größerer Theil des intermediären Gewebes rings an die Gelenkkapsel angeschlossen noch übrig bleibt.

Dieses in seinem Fortbestehen von einer Incongruenz der beiderseitigen Gelenkflächen bedingte Zwischengewebe formt sich in derbes, faserknorpeliges Gewebe um und bildet sogenannte halbmondartige Knorpel oder Menisci (Fig. 90 a). Endlich kann es bei der Gelenkentwicklung zu gar keiner continuirlichen Gelenkhöhle kommen, indem das Zwischengewebe in noch minderem Grade verbraucht
wird. Bevor die Ausbildung der Gelenkenden zum gegenseitigen Contacte fortgeschritten ist, entsteht zwischen den Gelenkflächen und dem Zwischengewebe je eine Gelenkspalte, die sich zu einer Gelenkhöhle entfaltet (Fig. 90 b). Jedes der beiden Gelenkenden sieht dann in eine besondere Gelenkhöhle, welche von der außen durch jene intermediäre Gewebsschicht getrennt ist. Letztere bildet sich wieder zu einer fasernervopeligen Platte um, die als Zwischenknorpel beide einem einzigen Gelenke angehörrigen Höhlen scheidet.

Da die spezifische Form der Gelenkenden der verschiedenen Skelettheile bereits vorhanden ist, bevor die Gelenkhöhle besteht oder ein geringes Maß der Ausdehnung über- schritten hat, da also in diesem Falle eine Verschiebung der Skelettheile an einander nicht besteht, an ein Aufeinandergleiten der Gelenkflächen, somit an eine Function des Gelenkes für diese Stadien nicht gedacht werden kann, ist der bedeutendste Theil der Gelenkbildung nicht durch Muskelaction des Embryo entstanden. Der Antheil der Muskeltätigkeit an der Gelenkbildung ist daher auf ein gewisses Maß zurückzuführen und ist keineswegs ein unbegrenzter. Dagegen ist auch jener ererbte Theil insofern das Product der Muskeltätigkeit, als er in früheren Zuständen einmal durch jene Action erworben wurde.

Allgemeiner Bau der Gelenke.

§ 54.

1) Der als Gelenkknorpel bezeichnete Überzug der Gelenkenden der Knochen bildet eine wechselnd dicke Schichte, welche nach ihrem Umkreise hin allmählich dünner wird. Gegen den Knochen zu bietet der Gelenkknorpel unvollständig ossificirte oder bloß verkalkte Partien des sonst hyalinen Knorpelgewebes. Seine Zellen werden gegen die Oberfläche zu kleiner, liegen nicht mehr gruppenweise (wie in der Tiefe, wo sie Längsgruppen bilden) beisammen und erscheinen schließlich sogar abgeplattet, und meist auch dichter gelagert. Der Gelenkknorpel repräsentirt die Contactfläche der Gelenkenden des Knochens. Diese Fläche wird sehr häufig durch nicht knorpelige Theile vergrößert; in jenen
Fällen in denen die eine, vertiefte Fläche eine Gelenkpflanne bildet, die einen gewölbten Gelenktheil (Gelenkkopf) aufnimmt, ist ihr Rand mit einem faserknorpeligen Ansatz umgeben. Diese *Gelenkklippe* (Labium glenoidale, Lab. cartilagineum) ist entweder von der Knorpelfläche durch eine Furche abgegrenzt, oder sie geht in die überknorpelte Pfannenfläche über. Bald ist die Gelenkklippe von der Kapsel umfasst und ist inniger mit dem Gelenkende in Zusammenhang, bald zeigt sie nähere Beziehungen zur Kapsel.

Umfang und führen reichliche Fettmassen \(\text{Plicae adiposae} \). Sie dienen dann zum Ausfüllen bei gewisser Configuration der Gelenkflächen in der Gelenköhle auftretender Räume, beruhen somit auf Anpassungen an bestimmte aus dem Mechanismus der Gelenke entspringende Zustände.

Der durch die \textit{Hilfsbänder \ Ligg. accessoria} dargestellte Apparat dient theils der durch größere schlaffe Strecken der Kapsel weniger gesicherten innigeren Verbindung der in das Gelenk eingehenden Knochen, theils kommt ihm noch ein besonderer Werth für den Mechanismus des Gelenkes zu. Im letzteren Falle bestimmen die Hilfsbänder häufig die Richtung der Bewegung und ergänzen dann, vorzüglich als zu beiden Seiten des Gelenkes angeordnete Stränge (\textit{Ligg. lateralia}) die durch das Gelenkrelief der Skeletteritheile selbst angesprochenen Einrichtungen. Wie sie hier seitliche Bewegungen ausschließen, so beschränken sie in anderen Fällen die Größe der Excursion einer Bewegung: in beiden Fällen sind sie \textit{Hemmungsbänder}.

Bei bedeutender Verwicklung der Gelenkkapsel in der Nähe ihrer Verbindungsstelle mit dem Knochen kann die Kapsel sogar zur Vergrößerung der beizüglichen Gelenkfläche, die dann meist eine Pfanne vorstellt, verwendet werden. Die Kapsel ist dann in ihrer Textur dieser neuen Leistung angepasst, von bedeutender Derbheit, und bietet eine glatte Innenfläche. An bestimmten Localitäten dieser Art finden sich Ossificationen der Kapsel, aus denen kleine Knöchelchen, \textit{Sesambeine \ (Ossa sesamoida)} entstehen.

Formen der Gelenke.

§ 55.

Für die einfachen Gelenke bilden sich zwei Abtheilungen nach der allgemeinen Beschaffenheit der Flächen. Die einfachsten werden durch Gelenke mit gleichartigen Flächen repräsentirt.

6) Ginglymus (Charniergelenk). Ist die Pfanne zu einer querliegenden rinnenförmigen Vertiefung gestaltet, welcher der einem größeren oder kleineren Theile eines quergestellten Cylinders entsprechende Gelenkkopf angepasst ist, so wird die Bewegung auf eine einfache, in einer Ebene stattfindende Winkel-

Von den Bändern.

§ 56.

Nach der speziellen Beschaffenheit des Gewebes sind zwei differente Zustände zu unterscheiden:

2) Elastische Bänder werden vorwiegend aus elastischen Fasern gebildet, welche in spärliches fibrilläres Bindegewebe eingebettet sind. Die elastischen Faserzüge (Vergl. Fig. 21) erscheinen in parallelem Verlaufe mit der Längsrichtung des Bandes. Der gelblichen Färbung des elastischen Gewebes gemäß werden manche dieser Bänder als Ligamentum flava benannt.

Außer diesen beiden Gruppen werden noch viele andere Theile als Bänder aufgeführt, welche des anatomischen Charakters eines Bandes entbehren und entweder nur durch künstliche Präparation dargestellt oder Einrichtungen ganz anderer Art sind, die bezüglich ihrer Mächtigkeit zu dem Volum der zu befestigenden Theile oft in argem Missverhältnisse stehen. Zu diesen Pseudoligamenten gehören manche, oft nur aus einfach faserigem Bindegewebe geformte Züge, die an bestimmten Stellen nur wenig stärker als an anderen entfaltet sind, und nach Entfernung des benachbarten Gewebes Ligamente vorstellen. Ferner gehören hierher die mannigfachen Duplicaturen der serösen Membranen an gewissen Eingeweiden, endlich sogar obliterirte Blutgefäßstrecken, die während des fotalen Lebens wegsam, nach der Geburt zu rudimentären Organen werden, indem sie zu bindegewebigen Strängen sich rückbilden, in denen vernünftigerweise die Ligamentfunktion nur als untergeordnet erkannt werden kann. Dagegen besteht eine ganze Abtheilung von wichtigen Bandapparaten, die aus den Umhüllungen der Muskulatur, den Fascien, differenziert sind, und wegen ihrer Beziehungen zu den Muskeln auch ihre Betrachtung bei diesen finden.

Zur Literatur der Gelenke und Bänder ist anzuführen:

E. Von der Zusammensetzung des Skeletes.

§ 57.

Das als Rückensäite, Chorda dorsalis, aufgeführte primitive Stützorgan § 99 hat nur in den niederen Formen der Wirbelthiere eine bedeutende Rolle. Aber bei diesen schon beginnt in der nächsten Umgebung der Chorda die Sonderung complicirter Stützorgane, die nicht mehr einheitlich wie die Chorda, sondern dem Gesammtorganismus der Wirbelthiere angepasst, in Abschnitte getheilt sind. Wir sehen da vom Kopfe an durch die ganze Länge des Körpers um die Chorda eine Reihe von soliden Bildungen entstanden, welche das über der Chorda verlaufende Rückenmark mit oberen Bogen umschließen. Diese Skelettheile sind die Wirbel,

Mit dem Rumpfskeletes in Zusammenhang erscheint das Skelet der Glied maßen, die wir in obere resp. vordere, und untere resp. hintere unterscheiden, und deren Verbindungstücke mit dem Rumpfskeleten den Gliedmaßengürtel vorstellen. Für die obere wird dieser als Brust- oder Schultergürtel, für die untere als Beckengürtel bezeichnet.

I. Vom Rumpfskelet.

A. Wirbelsäule.

§ 58.

Die Wirbelsäule (das Rückgrat) bietet in ihrer Zusammensetzung aus einzelnen, wesentlich gleichartig gebildeten Stücken, sowie in Verbindung mit den als Rippen erscheinenden Anhangsgebilden den treuesten Ausdruck für eine Gliederung (Metamerie) des gesamten Körperstammes. Sie zeigt auf einander folgende gleichwertige Abschnitte, die auch an einem Theile anderer Organsysteme (den Muskeln, Nerven, Blutgefäßen) erkennbar sind. An ihr hat sich erhalten, was an anderen Organsystemen durch Umwandlungen verloren ging und am Kopfskeleten fast spurlos verschwand.

Um die Chorda dorsalis bildet sich eine sie allseitig umschließende Gewebschichte, welche an einzelnen, der Zahl der späteren Wirbel entsprechenden Strecken hyalinen Knorpel hervorgehen lässt, während das dazwischen befindliche Gewebsstück zwar knorpelähnlich gestaltet, aber nicht definitiv in Knorpel übergeht. Die in ihrer Axe von der Chorda durchsetzten knorpeligen cylindrischen Stücke stellen die Anlagen der Grundstücke der Wirbel, Wirbelkörper vor. Von jedem Wirbelkörper erstreckt sich jederseits dorsalwärts ein schmales Spangenstück in die weiche Wandung des das Rückenmark einschließenden Canals und gibt so für
diesen eine festere Stütze ab. Die beiderseitigen Spangen erreichen sich allmählich in der dorsalen Medianlinie und schließen den von ihnen gebildeten Wirbelbogen ab. Damit ist das wesentlichste des Wirbels gesondert hervorgetreten, er besteht aus einem Körper und einem Bogen. Von dem knorpeligen Bogen gehen dann noch Fortsätze ab, die als Theile des Bogens gelten müssen.

Nicht das gesamte perichondrale Gewebe wird zur Anlage der Wirbelkörper verwendet, vielmehr geht je ein zwischen zwei Wirbelkörpern befindlicher Abschnitt desselben eine andere Differenzierung ein und bildet einen besonderen intervertebralen Apparat, den Intervertebrallband oder die Intervertebral scheibe (Fig. 93 c).

Die Chorda dorsalis hat mit diesen Sonderungsvorgängen gleichfalls Veränderungen erlitten. Auf den Strecken ihres Verlaufs durch die Wirbelkörperanlagen erscheint sie allmählich dünner, was wohl ebenso durch das in die Länge vor sich gehende Wachsthum der Wirbelkörper als durch Einwachsen des Knorpels selbst erfolgt. Daran schließt sich ihre endliche Zerstörung. In den intervertebralen Strecken dagegen persistirt die Chorda nicht nur, sondern vergrößert sich sogar zu einem das Innere der Zwischenwirbelscheibe einnehmenden Körper, dem sogenannten Gallertkern (Fig. 93 d).

Die Verknöcherung des knorpelig angelegten Wirbels erfolgt an drei Punkten. Ein Knochenkern erscheint im Innern des Wirbelkörpers, meist paarig auftretend, mit vorhergehender Knorpelverkalkung (Fig. 93 a). Dazu kommt noch jederseits einer an der Wurzel der Bogen, von dem aus nicht nur jederseits ein Theil des Wirbelkörpers, sondern auch der ganze Bogen samt seinen Fortsätzen ossifizirt.

Der Wirbelkörper umschließt samt seinem Bogen einen Raum (Foramen vertebrae), der in seiner Continuität durch die gesamte Wirbelsäule den Rückgratennal darstellt. Die Reise der Wirbelkörper bildet die vordere Wand dieses Canals, dessen seitliche und hintere Wand durch die Wirbelbogen gebildet wird. Vom Wirbelbogen entspringen Fortsätze nach verschiedenen Richtungen.

Da der Wirbelbogen mit seiner vom Körper ausgehenden Wurzel nicht die ganze Höhe des Körpers einnimmt, wird von je zwei benachbarten Wirbeln an der Bogenwurzel eine zum Rückgratcanal führende Öffnung Foramen intervertebrale, umschlossen s. Fig. 103. Die vordere Umgrenzung geschickt durch den Körper, die obere und untere, wie auch die hintere Begrenzung liegt auf je einem Bogen und bildet dort einen am je oberen Bogen auf den unteren Gelenkfortsatz, am je unteren Bogen auf den oberen Gelenkfortsatz auslaufenden Ausschnitt: Incisura vertebralis superior et inferior.

An den Wirbelkörpern sind die an die Intervertebralscheibe sich anfügenden oberen und unteren Flächen mit einem dünnen, in erstere sich fortsetzenden Knorpelüberzuge versehen. Die hintere, den Rückgratcanal begrenzende, wie die vordere, auch seitliche fortgesetzte Fläche zeigt außer mancherlei unbedeutenden Unebenheiten zahlreiche Öffnungen zum Durchlass von Blutgefäßen. Der größte Theil des Wirbelkörpers wird im Inneren von spongöser Substanz gebildet (Fig. 112), welche von reichen Venennetzen durchzogen wird. Nur dünn ist die oberflächliche Schichte compacter Knochensubstanz, die erst an der Wurzel der Bogen bedeutent mächtiger wird.

Die zur Wirbelsäule an einander geschlossenen Wirbel bieten in Anpassung an die in den einzelnen Regionen des Körpers verschiedenen functionellen Beziehungen mancherlei an ihren einzelnen Theilen angeprägte Eigenthümlichkeiten, erscheinen somit verschiedenartig gestaltet. Die Wirbelsäule ist differenziert in mehrfache Abschnitte, welche Wirbelcomplexe bilden. Danach werden die Wir-

Die einzelnen Wirbelgruppen.

§ 59.

Die sieben Halswirbel sind sämmtlich durch das Verhalten ihrer Querfortsätze ausgezeichnet, indem dieselben aus einem vorderen und hinteren, lateral wieder verbundenen Schenkel bestehen, der so eine Öffnung, das Foramen transversarium, umschließt (Fig. 97). Dieser Befund beruht auf der Concrecence mit einem Rippenrudimente (cost.), welches als Processus costarius den vorderen Schenkel des Querfortsatzes vorstellt und sowohl mit dem Wirbelkörper wie mit dem den hinteren Schenkel vorstellenden eigentlichen Querfortsätze (tr) sich verbindet. Vom dritten bis zum sechsten ist der Processus costarius aufwärts gekrümmt, und begrenzt von vorn eine lateral und abwärts gerichtete Rinne, die hinten vom eigentlichen Querfortsatz eine Wand empfängt.

Mit Ausnahme der beiden ersten Halswirbel erscheinen die bis zum siebenten an Breite zunehmenden Körper mit oberen, von der einen Seite nach der andern concaven und mit unteren, von vorne nach hinten coneaven Flächen versehen. Da die Flächen je nach der entgegengesetzten Richtung etwas convex sind, bezeichnet man sie als sattelförmig. Die Bogen umschließen einen auf dem Querschnitt mehr dreieckig gestalteten Abschnitt des Rückgratcanales, und reihen sich mit schräg abgedachten Flächen übereinander. Die Gelenkfortsätze bilden wenig bedeutende Vorsprünge. Die oberen (Fig. 98) lassen ihre Gelenkfläche schräg nach hinten und aufwärts, die unteren ebenso schräg nach vorne und abwärts gerichtet erscheinen. Nur die oberen Gelenkfortsätze tragen zur Begrenzung des Foramen intervertebrale bei. Die Dornfortsätze sehen schräg abwärts, nehmen nach unten an Länge zu und laufen bis zum sechsten Wirbel in zwei Zacken aus, die am sechsten schon bedeutend kurz, und am Dornfortsatz des siebenten meist nur angedeutet sind. Wie schon am sechsten bemerkbar, ist der Dornfortsatz des siebenten fast gerade nach hinten gerichtet und erscheint demgemäß als bedeutenderer Vorsprung, der diesem Wirbel den Namen «vertebra prominens» geben ließ.

Das Rippenrudiment des siebenten Halswirbels entwickelt sich zuweilen bedeutender und besitzt dann bewegliche Verbindung mit dem Wirbel. Die Ausbildung solcher Halsrippen zeigt sehr verschiedene Grade, zuweilen verschmilzt diese Rippe auf ihrem Verlauf nach vorn mit der ersten Brustrippe. Äußerst selten jedoch erreicht sie das Brustbein.
Am sechsten Brustwirbel tritt der Querfortsatz stets bedeutend weiter vor als am siebenten, und zeigt an seinem vorderen Schenkel (Proc. cost.) häufig einen Vorsprung, der bei den meisten Säugetieren als eine mächtige senkrechte Platte ausgebildet ist. Am siebenten Halswirbel ist die als Processus costarius bezeichnete vordere Spanne des sogenannten Querfortsatzes meist schwach entwickelt und verläuft rein lateral, um sich dem bedeutend starken und auch längeren Processus transversus anzuschließen.

Die Höhe der Körper der Halswirbel ist am dritten bis vierten nur wenig verschieden, vom fünften an beginnen sie jedoch hinten etwas höher als vorne zu sein. Dagegen wächst die Breite der Körper in jener Folge und beträgt am siebenten um ein Drittel mehr als am dritten. An den Gelenkflächen ändert sich die Stellung der Queraxe. Am dritten convergiren die Queraxen der beiderseitigen Gelenkflächen und finden sich in einem Kreisbogen, dessen Centrum weit hinter den Wirbeln liegt. An den folgenden Wirbeln flacht sich dieser Bogen immer bedeutender ab und geht am letzten, indem die beiderseitigen Queraxen zusammenfallen, in eine Gerade über. Die Gelenkflächen sind jedoch keineswegs immer plan, vielmehr häufig pfannenartig vertieft oder auch etwas gewölbt.

Der den hinteren Abschnitt der Pflanne tragende Theil der Seitenmasse hebt sich meist in einen Fortsatz empor, der hinten an seiner Wurzel eine vom Foramen transversarium über den Anfang des hinteren Bogens ziehende Furche für die Arteria vertebralis) überwölbt. Die unteren Gelenkflächen sind plan, oder wenig vertieft, etwas median und zugleich nach hinten convergirend. Das von
Atlas umschlossene Loch entspricht nur mit seinem größeren hinteren Abschnitte dem Foramen vertebrale der anderen Wirbel, sein vorderer, durch die Massae laterales eingeengter Abschnitt (vergl. Fig. 99) liegt außerhalb des Rückgratcanals, von dem er durch einen Bandapparat abgeschlossen wird. Ein zahnförmiger Fortsatz des zweiten Halswirbels tritt in jenem Raum empor und findet an der Innenseite des vorderen Atlasbogens eine Articulationsfläche (Fig. 100). An der Innenfläche jeder Massa lateralis ist an der vorderen Hälfte ein gewölbter Höcker bemerkbar, der einem queren Bande zur Befestigungsstelle dient.

Der **zweite Halswirbel, Epistropheus (Fig. 100)**, ist mit einem höheren Körper ausgestattet, der an seiner unteren Fläche mit den übrigen Halswirbeln übereinkommt, an der oberen Fläche dagegen einen starken Fortsatz (Dens, proc. odontoïdes) trägt. An diesem gegen die innere Fläche des vorderen Atlasbogensartieulirenden Fortsatz ist eine vordere mit dem Atlas und eine hintere gegen das oben erwähnte Querband gerichtete Gelenkfläche vorhanden. Dieser Zahn ist der eigentliche Körper des Atlas, der nicht mit den Bogenanlagen des letzteren, sondern mit dem Körper des Epistropheus verschmilzt. Der **Bogen** des Epistropheus beginnt mit starker Wurzel an der Seite des Körpers und trägt an seiner oberen Fläche eine rundliche, schräg nach der Seite abfallende Gelenkfläche, so dass dieser Theil des Bogens einem oberen Gelenkfortsatze entspricht. Am Querfortsatz ist nur der hintere Höcker entwickelt: das Foramen transversarium sieht schräg nach der Seite und nach hinten. Der **Dornfortsatz** zeichnet sich durch seine Stärke aus, übertrifft die der nächst folgenden Wirbel auch an Länge und geht wie jene in zwei Zacken über.

sind diese beiden ersten Wirbelkörper noch von einander getrennt (Fig. 101). Das obere Ende des ersten, welches die Spitze des Zahnscharzes bildet, ist noch knorpelig, ebenso wie der vordere Bogen des Atlas (Fig. 101). In der Anlage findet sich derselbe so mit dem eigentlichen Körper verbunden, dass man daraus seine Zusammengehörigkeit zum letzteren hergeleitet hat. C. HASSI, Anatom. Studien S. 542. Leipz. 1873.

§ 60.

Die 12 Brustwirbel (V. thoracales) schließen sich oben in ihrem Baue ebenso an die Halswirbel an, wie sie nach unten allmähliche Übergänge zu den Lendenwirbeln darbieten. Ihre wesentlichste Eigentümlichkeit liegt in ihrer Verbindung mit beweglichen Rippen, wodurch manche Gestaltungsverhältnisse beherrscht werden.

Die Wirbelkörper nehmen vom ersten bis zum letzten allmählich an Höhe zu; dabei wächst auch ihr sagittaler Durchmesser, der an den unteren Brustwirbeln dem Querdurchmesser nahezu gleichkommt. Das Volum der Wirbelkörper wächst also nach abwärts. Die Gestalt der Endflächen ändert sich dabei aus der quergezogenen Form an den oberen in eine mehr herzförmige an den mittleren um (Fig. 102) und diese geht an den unteren Brustwirbeln unter zunehmender Breite wieder in eine quer-ovale Form über. Da hierbei die den Rückgratkanal begrenzende Fläche des Wirbelkörpers nur wenig modifiziert wird, bedingt die Volumserweiterung des Körpers eine bedeutendere Entfaltung der vorderen und der Seitenflächen. Diese sind vom Rande der oberen Endflächen gegen den der unteren hin leicht vertieft. An der Seite der Körner, dicht am Ursprunge der Bogen liegen die flachen überknorpelten Gelenkpflatten zur Aufnahme der Rippenköpfchen Fac.art.1. Am ersten Brustwirbel erstreckt sich diese Pfanne bis zum oberen Rande. Vom zweiten Brustwirbel an greift sie von derselben Stelle aus auf die Intervertebralscheibe und auf den nächst höheren Wirbel

Fig. 102.

Fig. 103.
über, so dass bis zum 5.—6. Brustwirbel nur je eine halbe Facette auf den oberen Rand des Körpers tritt, und die andere Hälfte auf den unteren Rand des nächst höheren Wirbels. Vom 6.—7. Brustwirbel an nimmt dieses Verhalten derart ab, dass der größere Theil der Facette auf den oberen Rand je eines unteren Wirbels trifft (Fig. 103), bis endlich, zuweilen schon am 10., in der Regel aber erst am 11.—12. Wirbel die Gelenkpflanne ganz auf je einen Wirbel zu liegen kommt und kein Übergreifen auf den nächst höheren Wirbel mehr stattfindet.

Die Bogen wurzeln an den Brustwirbelkörpern mit einem mindestens die Hälfte der Höhe der letzteren betragenden Stücke, welches an den unteren Wirbeln bis über \(\frac{2}{3} \) der Wirbelkörperhöhe zuminnt. Da die Bogenwurzel vom oberen Theile des Wirbelkörpers ausgeht, so wird das von je zwei Bogenwurzeln umfaßte Foramen intervertebrale nach vorne zu vom noch übrigen unteren Theile eines Wirbelkörpers begrenzt. Die Querfortsätze sind bei der Zumahme der Bogenwurzeln weiter nach hinten gerückt, viel stärker als die ihnen entsprechenden hinteren Schenkel der Querfortsätze der Halswirbel. Sie nehmen an Länge bis zum 7.—8. etwas zu, um bis zum 12. wieder kürzer zu werden, so dass dieser kann die Länge des 1. erreicht. Dabei sind sie nicht quer nach außen, sondern etwas nach hinten gerichtet (vergl. Fig. 102 u. 104), weniger beim Manne, mehr beim Weibe. An dem ersten Brustwirbel ist diese Stellung der Querfortsätze weniger als an den folgenden ausgeprägt. Die verdickten, an der Dorsalfläche rauen Enden sind an den ersten 10 Brustwirbeln mit Gelenkpflannen versehen, an welchen die Rippenhöckerchen articularil (Fig. 102 c). An den oberen Wirbeln meist vom 2. an, sind diese Pflannen bedeutender ausgebildet und seitlich und vorwärts gerichtet. Nach unten zu sind sie weniger deutlich, werden flacher und sehen mehr aufwärts. Am 10. Brustwirbel ist die Pflanne des Querfortsatzes häufig ganz rudimentär und am 11. u. 12. ist sie völlig verschwunden. Das Gelenk ist durch Syndesmose ersetzt.

Die Dornfortsätze richten sich vom ersten Brustwirbel an schräg abwärts, so dass sie sammt den an Höhe vergrößerten hinteren Theilen der Bogen sich bis zum 8.—10. Wirbel dachziegelförmig decken, vom 8. an beginnt diese Neigung sich zu mindern, und am 12. ist der Dornfortsatz nur noch mit einer oberen schräg absteigenden Kante versehen. Das Ende der Dornfortsätze ist besonders an den oberen und unteren Wirbeln verdickt und bietet nicht selten Deviationen von der Medianlinie.

Von den Gelenkfortsätzen erheben sich die oberen (Fig. 104) selbständiger von den Wurzeln der Bogen und ragen über das Niveau der oberen Endfläche des Wirbelkörpers empor. Die Gelenkflächen sind nach hinten und etwas weniger lateral gerichtet. Die unteren Gelenkfortsätze sind mit den hinteren hohen

Die Höhe der Wirbelkörper erscheint vorn und hinten nur hin und wieder gleich. Meist ist die Höhe vorn etwas geringer als hinten, so dass eine Keilform zum Ausdruck kommt. Die Axen der beiderseitigen Gelenkflächen der Processus articularis liegen in einer flachen Kreisbogenlinie, deren Centrum vor die Wirbel fällt.

§ 61.

Die Bögen sind mit ihren Fortsatzbildungen im Anschlusse an die letzten Brustwirbel gleichfalls massiver gestaltet und wurzeln am oberen seitlichen Theile des Körpers, dem die für die Brustwirbel charakteristischen Gelenkfacetten abgehen. Wie schon an den Brustwirbeln sind die Bogen nach der Umschließung des Foramen intervertebrale stark abwärts gerichtet, und laufen jederseits in den unteren Gelenkfortsatz ans. Das Foramen vertebrale ist umfänglicher. Der Dornfortsatz ist gerade nach hinten gerichtet, durch Stärke und Höhe ausgezeichnet. Er nimmt bis zum dritten an Volum zu, von da an wieder ab.

Am meisten verändert erscheinen die Querfortsätze, die nur durch die Vergleichung mit den an den letzten Brustwirbeln sich treffenden Befunden richtig zu beurtheilen sind. Am letzten, zuweilen schon am vorletzten Brustwirbel
[Fig. 106, 11, 12] erscheinen am Querfortsatzes drei mehr oder minder gesonderte Vorsprünge. Eine vordere, etwas seitlich sehende Rauhigkeit (c) ist mit der letzten Rippe durch Bandmasse vereinigt, ein zweiter Vorsprung, als der stärkste die Hauptmasse des gesammten Querfortsatzes vorstellend, ist nach hinten gerichtet (a) ein dritter, kleinerer, ist an dessen hinterer oberer Fläche unterscheidbar und sich aufwärts (m). Diese drei Theile sind an den Lendenwirbeln voluminöser gestaltet und schärfer von einander getrennt. Der ersterwähnte Vorsprung stellt einen schon am ersten Lendenwirbel anschlächt, an den folgenden zunehmenden, nur am letzten meist etwas kürzeren Fortsatz vor, der als Proc. transversus bezeichnet zu werden pflegt. Der zweite Vorsprung (Processus accessorius) bildet einen hinten an der Wurzel des Querfortsatzes befindlichen, abwärts sehenden Höcker (a) von verschiedenem Umfange, an den folgenden Wirbeln abnehmend oder durch eine bloße Rauhigkeit repräsentirt. Der dritte Vorsprung endlich, Processus mamillaris (m), rückt am ersten Lendenwirbel von der Wurzel des Querfortsatzes aufwärts gegen den oberen Gelenkfortsatz, um am zweiten Lendenwirbel der hinteren Fläche des oberen Gelenkfortsatzes aufzusitzen und hier wie an den folgenden eine abgerundete Erhabenheit zu bilden. An Stelle des an der Brustwirbel säule einfachen Querfortsatzes sind somit an der Lendenwirbeltäule drei Fortsätze vorhanden, von denen einer zwar als Querfortsatz bezeichnet wird, aber, wie gezeigt wurde, nur einem Theile eines Querfortsatzes entspricht und damit einen besonderen Namen: Proc. lateralis verdient.

Von den Gelenkfortsätzen gehen die oberen unmittelbar von der Wurzel des Bogens aufwärts; ihre Gelenkkante sieht nach hinten und medial. Diesem Verhalten entspricht die entgegengesetzte, d. h. laterale Richtung der Gelenkflächen der unteren Gelenkfortsätze.

Die Höhe des Wirbelkörpers ist am ersten, oder auch am 1. und 2., den Brustwirbeln ähnlich, vorne geringer als hinten, oder vorne und hinten gleich. Am 3.—5. gewinnt der vordere höhere Durchmesser die Oberhand und die Keilform tritt zuweilen, aber keineswegs immer, deutlich hervor. Am ausgesprochensten ist sie stets am letzten.

I. Rumpfskelet. A. Wirbelsäule.

§ 62.

Die Concrescenz der fünf Sacralwirbel zu einem Stücke (Fig. 107) steht also in Zusammenhang mit der durch seine Verbindung mit dem Becken geänderten Function dieses Abschnittes der Wirbelsäule. Die Wirbel sind derart auf einander gereiht, dass sie dem Sacrum eine vordere concave und eine hintere convex Fläche verleihen. Da sie von oben nach unten an Größe abnehmen, empfängt das Kreuzbein eine etwas pyramidale Gestalt. Seine obere breite Fläche wird als Basis, das untere Ende als Apex bezeichnet.

Die Körper der Sacralwirbel sind ursprünglich auf die gleiche Art wie die der übrigen Wirbel unter einander in Verbindung. Mit der Concrescenz (im 16. Lebensjahre beginnend, im 30. beendet) schwindet der intervertebrale Apparat und es erfolgt eine Synostose, welche als Spur der früheren Trennung mehr oder minder deutliche Querwülste an der Vorderfläche des Sacrums erkennen lässt (vergl. Fig. 107). Die Synostose schreitet von hinten nach vorne, so dass die Trennung des ersten und zweiten Wirbels nach der Verschmelzung der übrigen noch besteht. Der erste Sacralwirbel documentirt sich dadurch als zuletzt dem Sacrum assimiliert. Für die Wirbelbogen und deren Fortsätze trifft sich dieselbe Verschmelzung. Am Bogen des letzten, zuweilen schon des vorletzten Sacralwirbels fehlt der mittlere, sonst in den Dornfortsatz auslaufende Abschnitt. Die Bogenrudimente schließen daher jederseits mit den Gelenkfortsätzen ab, von denen die unteren des letzten Sacralwirbels die Cornua sacralis vorstellen Fig. 108). Der in das Kreuzbein fortgesetzte Abschnitt des Rückgratcanals (Canalis sacralis) öffnet sich auf der hinteren Fläche des letzten oder der beiden letzten Sacralwirbel als Hiatus caud. sacralis. An der übrigen Dorsalfläche des
Kreuzbeins (Fig. 108) erheben sich 3—4 mediane Vorsprünge von oben nach abwärts an Größe abnehmend: die Rudimente der Dornfortsätze (Proc. spin. spurii). Eine undeutlichere Längsreihe von Rauhigkeiten bilden jederseits die Gelenkfortsätze (Proc. articulares spurii), von denen die sich berührenden unter einander verschmolzen sind. Nur am 1. Sacralwirbel erhält sich der obere Gelenkfortsatz frei zur Verbindung mit dem unteren des letzten Lendenwirbels (Fig. 108).

Die bedeutendsten Eigentümlichkeiten des Kreuzbeines liegen in dem Verhalten der lateralen Theile, denn an der Stelle der Querfortsätze finden sich viel mächtigere von den Körpern wie von den Bogenwurzeln ausgehende Fortsätze, lateral verbreitert und unter einander verschmolzen. Sie umschließen dadurch jederseits vier intervertebral gelagerte Öffnungen, die vorne (Fig. 107) wie an der Hinterfläche (Fig. 108) (Foramina sacralia anteriora et posteriora) bestehen, die vorderen größer und mit lateralwärts flach verlaufender Umwandlung. Der für die ersten drei Wirbel treffende Seitenteil des Kreuzbeines ist von bedeutender Dicke und zeigt an seiner lateralen Fläche zwei Strecken verschiedenen Verhaltens. Zunächst nach vorne zu und zwar bis unmittelbar an den nach vorne convexen Vorderrand jener Fläche reichend, ist eine unebene, aber überknorpelte Strecke bemerkbar, die Facies auricularis (Fig. 108). Die sie bildende Ebene ist nach außen und etwas abwärts und nach hinten gerichtet, und dient zur Verbindung mit dem Hüftbein. Der vom 1. Sacralwirbel gebildete Abschnitt hat an jener »ohrähnlichen Fläche« den größten Antheil, weniger der zweite Wirbel, und noch weniger der dritte, der zuweilen sogar ganz davon ausgeschlossen ist. Hinter dieser Facies auricularis findet sich eine bis zu den hinteren Kreuzbeinlöchern sich erstreckende, durch größere Vertiefungen und Rauhigkeiten ausgezeichnete Strecke (Tuberositas sacralis), welche einer das Darmbein mit dem Kreuzbein verbindenden Bandmasse zur Insertionsstelle dient (vergl. Fig. 108).

Die Prüfung der **Seitentheile des Kreuzbeins** lehrt, daß dieselben nicht durch eine bloße Verbreiterung von Querfortsätzen gebildet sein können, denn am 1. Sacralwirbel ist der durch die Vergleichung mit den Lendenwirbeln einem Querfortsatz entsprechende Theil häufig sehr deutlich gesondert. Der vordere, die Facies auricularis tragende Theil ist dadurch bestimmt als etwas einem Querfortsatz fremdes anzusehen, zumal er vom Körper, und nicht wie ein Querfortsatz nur vom Bogen ausgeht. Die Ossification der knorpeligen Sacralwirbel weist in dem von vorderen Stücke des Seitentheils des Sacrum einen besonderen Knochenkern auf, während die hinteren, gegen die Tuberositas gerichteten Theile von den Bogen aus ossifiziren (vergl. Fig. 109). Dadurch, wie aus vergleichend-anatomischen Gründen ist die jenen ersten drei Kreuzbeinwirbeln zukommende Verbreiterung der seitlichen Theile aus damit verschmolzenen Rippenrudimenten zu erklären, von denen jedes sowohl am Körper als am Querfortsatz sich anfügt. **Dieser Theil ist also als Costalstück (Pars costalis) vom Querfortsatzstück zu unterscheiden.**

Die Verbindung der zwei oder drei ersten Sacralwirbel, resp. deren Costalstück mit dem Hüftbein erklärt die Synostose dieser Wirbel, die mit jener Verbindung ihre selbständige Existenz aufgeben. Nicht erklärt wird aber dadurch der synostotische Anschluß von noch zwei oder drei Wirbeln, die als **falsche Sacralwirbel** den ersten **wahren** gegenüber aufzufassen sind. Der Anschluß dieser Wirbel an die wahren Sacralwirbel kann theils aus
Zweiter Abschnitt.

der Rückbildung des Caudalabschnittes der Wirbelsäule entstanden sein, thens aus dem Umstande, daß diese Wirbel in ursprünglichen Zuständen das Darmbein trugen, also wahre Sacralwirbel waren. Da wir wissen, dass das Sacrum seinen ersten Wirbel erst im Laufe der Ontogenie gewinnt, da dieser Wirbel vordem ein Lumbalwirbel war, so wird diese Annahme in hohem Grade wahrscheinlich.

Für die Ossifikation der knorpeligen Sacralwirbel gilt das oben (§ 58) für die Wirbel im Allgemeinen bemerkte, mit der vorhin für das Costalstück angegebenen Modifikation. Unter der Facies auricularis tritt sehr spät ein gesonderter lamellenartiger Knochengran auf. Kleine Punkte treten am knorpeligen Seitenrand der folgenden Sacralwirbel hinzu.

§ 63.

An die vom Körper des letzten Sacralwirbels gebildete Spitze des Kreuzbeines fügt sich der caudale Abschnitt der Wirbelsäule, das sogenannte »Steißbein«, »Os coccygis« (Cocegygnum). Es entspricht dem meist viel anschließenden Schwanzskelette der Säugetiere und besteht aus 4—5 zum größten Theile rudimentären Wirbeln (Fig. 107), deren Complex auch der Zahl nach rückgebildet ist, da in der Anlage eine größere Anzahl besteht. Am ersten, relativ größten Caudalwirbel sind außer kurzen Seitenfortsätzen jederseits noch die Anfangstheile von Bogen erkennbar, deren freie Enden aufwärts gegen die Cornua sacralia gerichtet »Cornua coccygea« bilden. Dies sind Rudimente oberer Gelenkfortsätze. Am zweiten Wirbel sind die Seitenfortsätze ganz unansehnlich, und am dritten noch mehr verkümmert. Der vierte und fünfte hat alle Fortsatzzbildung verloren, er stellt ein kleines, oft unregelmäßig gestaltetes Knochenstückchen vor. So geht an diesen Wirbeln Theil um Theil verloren, bis an den letzten nur noch Rudimente des Körpers bestehen. Der älteste Theil des Wirbels überhaupt erhält sich am längsten.

Bei älteren Individuen tritt eine Verschmelzung der letzten Caudalwirbel als Regel auf. Auch der erste verbündet sich dann (häufiger bei Männern) mit dem Sacrum. Er kann dann eine unmittelbare Fortsetzung des Sacrums vorstellen, indem noch die Cornua coccygea mit den Cornua sacralia verschmelzen und der Seitenfortsatz terminal mit dem Ende des Seitenfortsatzes des letzten Sacralwirbels verwächst. Dadurch wird ein fünftes Foramen sacrale gebildet und das Sacrum besteht scheinbar aus 6 Wirbeln. Als rudimentär gewordenes Ende der Wirbelsäule bietet dieser Caudaltheil die größte Mannigfaltigkeit, sowohl im Umfange als nach der speziellen Gestaltung seiner Stücke. Durch Verschmelzung des ganzen Complexes mit dem Kreuzbein geht jede Selbständigkeit verloren. Der Übergang des ersten Caudalwirbels ins Sacrum ist regelmäßig dann vorhanden,

Variationen an der Wirbelsäule.

§ 64.

auch beim Erwachsenen bleibt gar nicht selten ein Befund der Seitentheile dieses Wirbels bemerkbar, der auf nicht vollständige sacrale Ausbildung gedeutet werden muß. Hierher gehört die Scheidung des Seitenfortsatzes vom Costalfortsatz, wie sie in Fig. 110 B bemerkbar ist. Der Proceß der sacralen Verschiebung schreitet in einzelnen Fällen noch weiter und ergreift abnorm auch den 17. Thoracolumbalwirbel (vergl. Fig. 110 A). Das Sacrum macht also eine aufwärts schreitende Veränderung durch. Wie es vorne Zuwachs empfängt, so verliert es hinten, indem es einen Wirbel dem Caudalabschneiden übergibt. Dieses Verhalten wirft Licht auf die frühzeitige Synostosierung der hinteren, die spätere der vorderen Sacralwirbel. Von der letzteren Wirbeln gegenwärtig zukommenden funktionellen Bedeutung sollte man den umgekehrten Gang der Synostosierung erwarten. Aber der späte Zutritt jenes Wirbels zum Sacrum erklärt auch das längere Getrenntbleiben dieses Wirbels von jenen Wirbeln, die schon früher Sacralwirbel waren und demzufolge früher verschmolzen sind.

Die Wirbelsäule des Menschen stellt sich durch die Zahlenverhältnisse ihrer Wirbel

Verbindungen der Wirbel unter sich.

§ 65.

Die einzelnen Wirbel sind zur Wirbelsäule durch Bandapparate vereinigt, welche theils zwischen je zwei Wirbel vertheilt sind, theils der Gesammtheit angehören. Die ersteren sind wieder in solche zu sondern, welche den Wirbelkörpern, und solche, welche den Bogen und den Fortsätze zumachen.

1. Bänder zwischen den einzelnen Wirbeln:

a) Zwischen den Wirbelkörpern finden sich der Form der Körper im Allgemeinen entsprechende Bandscheiben, Ligg. intervertebrales. Sie schließen sich unmittelbar der knorpelig bleibenden intervertebralen Oberfläche je zweier Wirbel an, in dieselben continuirlich übergehend, und bestehen aus einem äusseren, aus faserigem Bindegewebe gebildeten Theile (Anulus fibrosus), welcher einen gallertigen innern Theil (Nucleus pulposus) (Fig. 112) umschließt. Der Umfang dieser Bandscheiben übertragen um Weniges den Rand der intervertebralen Oberflächen. Die Dicke der Bandscheiben nimmt vom dritten Halsarbeits gegen die letzten etwas ab, und von da an gegen die Mitte der Brustwirbelsäule, steigt aber dann allmählich, um an den letzten Lendenwirbeln ihr Maximum zu erreichen. Die Bandscheibe der Lumbo-Sacralverbindung verjüngt sich aber nach hinten zu so bedeutend, dass sie

Im Sacrum des Neugeborenen nehmen die Bandscheiben nach unten zu an Stärke ab, die erste ist aber um vieles bedeutender, wie sich ja auch die Synostose zwischen dem 1. und 2. Wirbel viel später ausbildet (vergl. oben S. 134). Zwischen dem letzten Sacral- und ersten Caudalwirbel ist dieses Verhalten fortgesetzt und zwischen den übrigen Caudalwirbeln macht sich eine allmähliche Rückbildung dieser Theile geltend.

b) Bänder zwischen den Bogen und zwischen den Fortsätzen der Wirbel. Als solche bestehen:

Die Verbindung der Cornua sacralia (S. 131) mit den Cornua coccygea scheint aus einer Articulation hervorgegangen, so dass die zwischen jenen Versprüngen befindlichen **Ligamenta sacro-coccygea brevia** Kapselbändern entsprechen. Ihrer mit der Synostosierung des Sacrum und des Steißbeines auftretenden Ossification ist bereits oben gedacht.

Am längsten und dicksten sind die zwischen den Lendenwirbeln, am kürzesten zwischen den Brustwirbeln, und am dünnsten an der Halsseite, zwischen dem 1. und 2. Halswirbel reduziert. Auch zwischen den Sacralwirbeln kommen sie vor, so lange dieselben noch nicht unter einander verschmolzen sind.

3. **Ligg. intertransversaria** sind dünne Faserzüge zwischen den Querfortsätzen, mehr membranös zu denen der Lendenwirbel, schlanker zwischen den Brustwirbeln. Sie sind ohne Bedeutung.

Der Querfortsatz des letzten Sacralwirbel verbindet sich mit dem gleichen Fortsatz des ersten Caudalwirbels durch einen Faserstrang, das **Lig. sacro-coccyg. laterale.** Ossification dieses ursprünglich durch einen Knorpelstreif vorgestellten Bandes trifft sich nicht selten bei sacraler Assimilirung des ersten Schwanzwirbels.

4. **Lig. interspinalia.** Das mediane, beiderseitige Rückenmuskulatur schei-}

Translation Note:
- The text contains several references to anatomical structures and medical terms, which are standard in the context of human anatomy. The document seems to be a part of a larger work, possibly a medical or anatomical text, discussing the anatomy of the human spine, particularly focusing on the intervertebral discs and ligaments. The descriptions are technical and precise, typical of medical or scientific literature. The text is written in German and provides detailed information about the structure and function of the spinal region.

Den hinteren Rand des Nackenbandes bildet von der Insertion des letzteren am Schädel an ein schmäler Strang, der bis zum Dorn des 7. Halswirbels verläuft und von da an schwächer ausgeprägt vom freien Ende eines Dorns zu dem nächststen verfolgbar ist. Er stellt das \textit{Spitzenband}, \textit{Lig. apicem} vor (Fig. 124), welches nichts anderes als der verstärkte freie Rand der Ligg. interspinalia ist. Dadurch dass es über die Dornspitzen hinweg verläuft, wenn auch an ihnen befestigt, bietet es zu dem folgenden Anschlusse.

2. \textit{Der gesamten Wirbelsäule} angehörige Bänder erstrecken sich an der vorderen und hinteren Fläche der Wirbelkörper längs der ganzen Wirbelsäule. Das Kreuzbein unterbricht sie jedoch, da seine Wirbel verschmelzen.

a. \textit{Lig. longitudinale anterius} (Fig. 112). Das vordere Längsband beginnt schmal am vorderen Atlashöcker und verläuft an der Vorderfläche der folgenden Halswirbel sich verbreiternd, zu den Brustwirbelkörpern herab. Von da über die Lendenwirbel zur vorderen Krenzbeinfläche, auf der es in das Periost übergeht. Am 2.—3. Lumbalwirbel ist es latéral durch schnüre Ursprungsfasern der medialen Vertebral-Portion des Zwurchfellk verstärkt.

Über die Ränder der Bandscheiben verlaufen die Faserzüge zwar dicht angelagert, aber ohne Insertionen zu nehmen hinweg, während sie mit den knöchernen Wirbelkörpern besonders in der Nähe von deren Rändern sich fest verbinden. Vom letzten Sacralwirbel beginnt eine Fortsetzung dieses Bandes auf die Caudalwirbel unter entsprechender Modification seines Umfangs (Lig. sacro-coccygeum anterius).

b. \textit{Lig. longitudinale posterius} (Fig. 111). Beginnt breit vom Körper des Hinterhauptbeines noch innerhalb der Schädellöhle und mit der harten Hirnhaut sowie mit dem zwischen Schädel und den beiden ersten Halswirbeln befindlichen Bandapparat in Zusammenhang. Vom zweiten Halswirbel an gesondert erstreckt es sich der dem Rückgratcanal zugewendeten Fläche der Wirbelkörper folgend bis zum Sacrum herab, in dessen Canal es verschmälert endet. Den Bandscheiben ist es mit verbreiterten Strecken fest verbunden, während es die Wirbelkörper überbrückt.

Auf die Caudalwirbel erstreckt sich eine ähnliche Fortsetzung, wie sie oben vom vorderen Längsband erwähnt wurde, das \textit{Lig. sacro-coccygeum posterius}.

\section*{Die Wirbelsäule als Ganzes.}

§ 66.

Wie die Differenzierung der größeren, aus einer Anzahl von Wirbeln zusammengesetzten Abschnitte das Ergebnis außerhalb der Wirbelsäule befindlicher Factoren war (vergl. oben S. 123'), so ist auch die Gestaltung des Ganzen in seiner vollständigen Ausbildung als Wirkung äußerer Momente aufzufassen. In einem frühen Embryonalzustände erscheint die Wirbelsäule in einfacher dorsaler Wölbung mit ventraler Concavität. Diesen Zustand kann man als eine An-
passung an die minder in die Länge gestreckten ventralen Körpertheile sich vor-
stellen. In späteren Stadien treffen wir die Wirbel in einer minder von der
Geraden abweichenden Linie an einander gereicht. Noch beim Neugeborenen sind
die später sehr ausgeprägten Krümmungen erst angedeutet. Sie müssen als er-
erbte Einrichtungen angesehen werden, da die mechanischen Bedingungen, unter
deren Einfluß sie sich weiter ausbilden und durch deren Wirkung sie zuerst ent-
standen sein können, erst nach der Geburt zur Geltung gelangen. Die bedeu-
tendste dieser Krümmungen liegt an der Verbindung des letzten Lendenwirbels
mit dem ersten Sacralwirbel, sie bildet das Promontorium (Fig. 113 p). Beim
Neugeborenen zwar schon vorhanden, aber doch wenig ausgeprägt, bei vielen
Säugethieren ganz fehlend, selbst bei den Anthropoiden wenig entfaltet, hat es
beim Menschen mit der Aufrichtung des Rumpfes und der daraus resultirenden aufrechten Stellung des Körpers seine bedeu-
tendste Ausbildung gewonnen. Der Säcultheil der Wirbel-
säule wird durch das Becken und die damit verbundenen, auch
ferner den Rumpf und zwar ausschließlich ihn tragenden Hinter-
gliedmaßen noch theilweise in seiner ursprünglichen Lage er-
halten (Fig. 113). Für die präsaecrale Wirbelsäule sind diese
Beziehungen nicht maßgebend, sie folgt einer anderen Richtung
und wölbt sich an ihrem Lendentheile (l) vorwärts auf Grund
ihrer mit der veränderten Stellung geänderten Belastung. An
dieser vorderen Convexität des Lendenheils drückt sich an
ihrem untenen Abfalle zum Promontorium hin noch eine Spur
einer Vorwärtsneigung der gesamten Wirbelsäule aus. Der
vierte Lendenwirbel entspricht meist der Höhe der Convexität.
Die ersten Lendenwirbel dagegen treten in eine, sämtliche
Brustwirbel und auch die letzten Halswirbel umfassende vordere
Concavität (th), welche in Bezug auf die Lendenwölbung com-
pensatorisch wirksam wird. Durch die ersten Halswirbel wird
eine zweite Convexität (c) gebildet. Sie entspricht der Be-
lastung der Halswirbelsäule durch den Kopf. So knüpft sich
an den Vorgang der Erwerbung der aufrechten Stellung des
Rumpfes eine ganze Reihe von Veränderungen der Configu-
ration der Wirbelsäule, die im Promontorium ihre erste und ergiebigste Krüm-
nung empfängt. Wie diese sich nach der Geburt bedeutender ausprägt, so ge-
winnen auch die übrigen Krümmungen mit der Übung des aufrechten Ganges
und der dabei wirksamen Belastung der Wirbelsäule an Bedeutung und zeigen
im ausgewachsenen Zustande des Körpers bei vielen, vor allem von der Körper-
haltung abhängigen individuellen Schwankungen doch im Wesentlichen überein-
stimmende Befunde. Diese Krümmungen steigern sich bei momentaner Zu-
nahme der Belastung, wie es z. B. bei aufrechter Stellung sich ergibt. Dagegen
wird sie bei Abnahme der Belastung gemindert, wie es z. B. in liegender Stel-
lung sich trifft. Eine größere Streckung der Wirbelsäule ist davon die Folge.
Die Wirkung der Belastung äußert sich auch in der Keilform der Wirbelkörper, wie sie am bedeutendsten am letzten Lendenwirbel sich darstellt, und auch an den Bandscheiben bemerkbar wird. Sie ist aber nicht der einzige Factor, der die Krümmung der Wirbelsäule im Individuum hervorbringt, da jene Krümmungen schon während der Fetalperiode sich zu bilden beginnen, wo von einer Belastung der Wirbelsäule im Sinne des späteren Zustandes nicht die Rede sein kann.

Die Art der Verbindung der Wirbel untereinander gestattet ihnen Beweglichkeit, die wenn auch am einzelnen Wirbel in geringem Maße sich äußert, sich für größere oder kleinere Wirbelcomplexen — vom Kreuzbein abgesehen — summirt und damit der gesammten Wirbelsäule größere Exkursionen ermöglicht. Die Fortsätze der Wirbel fungiren dabei als Hebelarme, insofern an ihnen die die Wirbelsäule bewegenden Muskeln befestigt sind. Ähnliches leisten unter gewissen Umständen auch die Rippen. Die Elasticität eines Theiles des Bandapparates wirkt compensatorisch, indem sie das durch die Muskulatur gestörte Gleichgewicht wieder herstellt. Wie die Ligg. intercrrnralia hinten, so kommen die Bandscheiben vorne in Betracht.

1. Die Bewegung um eine Queraxe liefert die als Streckung oder Beugung unterschiedenen Actionen. Die Beugung als die nach vorne gehende Bewegung ist die bei weitem bedeutendere Exkursion, denn die in entgegengesetzter Richtung stattfindende Bewegung, die fortgesetzt gleichfalls Beugung ist (Dorsalbeugung), findet in der Regel bald an der Stellung der Gelenkfortsätze eine Schranke. Nur die schrägen Gelenkflächen der Halswirbel gestatten hier ein größeres Maß.

Die mindeste Beschränkung der Bewegung kommt also dem Halsabschnitt zu, daran reiht sich der Brusttheil, während am Lendenabschnitt die relativ größte Beschränkung besteht.

Der die Wirbelsäule durchsetzende Canal (Rückenmark) entspricht bei seiner an die Gense der Wirbel geknüpften Entstehung genau dem Rückenmark, welches er nebst dessen Hüllen umschließt. Allmählich treten diese Beziehungen etwas zurück, ohne dass jedoch die einmal gewonnenen Verhältnisse verloren gehen. Am weitesten erscheint er, wo ihn der Atlas umschließt. Am 2. Halswirbel wird er etwas enger, bleibt aber immer noch durch den ganzen Halsabschnitt von bedeutendem Querdurchmesser (Fig. 98).
Dieser vermindert sich am Brusttheil bedeutend, unter geringer Zunahme des sagittalen Durchmessers, so dass der Querschnitt fast kreisförmig wird (Fig. 101). Am letzten Brustwirbel tritt für beide Durchmesser wieder eine Vergrößerung ein, die in der Lendengegend zu Gunsten des Querdurchmessers zuminnt und am letzten Lendenwirbel am bedeutendsten erscheint. Im Sacrum findet dann eine allmähliche Verengerung statt, unter vorwaltender Verkürzung des Sagittaldurchmessers, die vom zweiten Sacralwirbel an am meisten ausgeprägt erscheint.

B. Rippen und Brustbein.

§ 67.

I. Rumpfkelet. B. Rippen und Brustbein.

Die einzelnen Rippen folgen sich in schräg abwärts gerichteter Stellung ziemlich regelmäßig, durch Zwischenräume (Spatia intercostalia) getrennt, an Länge und auch sonst in der Gestaltung einzelner Verhältnisse von einander verschieden. Sie zeigen sich in dieser Hinsicht abhängig von dem Umfang der Thoraxstrecke die sie darstellen, von der Verbindung mit der Wirbel-

![Rechte Thoraxhälfte in seitlicher Ansicht.](image)
säule, und von Weichtheilen mancherlei Art, die mit ihnen in Zusammenhang tretet.

An den vertebralen Enden der Rippen vermittelt eine verdickte Partie, das *Capitulum* (Fig. 116 u. 117) die Verbindung mit den Wirbelkörpern. Eine überknorpelte Fläche entspricht der Articulation. An der ersten Rippe ist diese Fläche einfach. Von der zweiten oder der dritten an beginnt sie sich in zwei schräg gegeneinander gestellte, durch eine quere Kante (*Crista capituli*) getrennte Facetten zu theilen, davon die obere gewöhnlich die kleinere bleibt. Dieses Verhalten entspricht der Verbindung mit je zwei Wirbelkörpern (S. 127), in dem die zweite oder dritte Rippe noch auf den je vorhergehenden Wirbelkörper übergreift. So verhält es sich bis zur zehnten oder elften. An diesen wird die Gelenkfläche wieder einfach, da jede dieser Rippen sich nur einem Wirbel anfügt.

Als den Brustraum umziehende Spangen besitzen die Rippen eine äußere und eine innere Fläche, welche beide in mehr oder minder deutlichen Kanten zusammentreffen. An der ersten Rippe (Fig. 117) erscheinen diese Flächen als obere und untere. An der zweiten Rippe ist die äußere Fläche noch schräg aufwärts gerichtet. Von der dritten an beginnen diese Flächen eine mehr senkrechte Stellung einzunehmen. — Die Länge der Rippen nimmt bis zur 7.—8. zu, von da an wieder ab. Die Krümmung ist im Allgemeinen derart verschieden, dass die oberen Rippen größere Abschnitte eines kleineren Bogens, die unteren kleinere Abschnitte größerer Bogen vorstellen.
Genauer betrachtet ist dieser Bogen nur an der letzten Rippe ein Theil eines Kreises. An allen übrigen zerfällt er in zwei oder auch drei Strecken, welche Kreisbogen mit verschiedenen langen Radien angehören. Die Bogenstrecke mit kürzerem Radius befindet sich immer der Wirbelsäule zunächst. (Abb. 1).

Die schrägen Stellung der Rippen ist noch mit einer anderen Krümmung verbunden, die einen Theil einer Spirale vorstellt. Die Krümmung der Rippen liegt also nicht in einer Ebene. Eine fernere Eigenthümlichkeit erscheint in einer lateral vom Halse gelegenen Stelle, an der die Rippe einen nach hinten und lateral gerichteten stumpfen Winkel bildet. Dieser *Angulus costae* (Fig. 116, 117)

Die erste Rippe ist durch die Beziehungen zu Nachbarorganen besonders ausgezeichnet (Fig. 117 I.). Eine Rauhigkeit der oberen Fläche dicht am Sternumende bildet die Anfügestelle eines Bandes des Schlüsselbeins. Zwei leichte, lateral convergirende Eindrücke sind aus der Anlagerung von großen Blutgefäßen hervorgegangen (Impressio arteriae et venae subclavii, (Fig. 117)). Sie sind nicht immer deutlich. Zwischen beiden ist eine leichte Erhebung, zuweilen ein Höcker, Tuberculum secali (T. Lissfranchi), die Anfügestelle des M. scal. anticus bemerkbar. Hinter und lateral von der Impress. art. subclav. ist wieder eine Rauhigkeit (für den M. scal. medius) vorhanden, noch deutlicher ist an der zweiten Rippe eine Tuberositas ausgeprägt (Fig. 117 II), welche dem Ursprung einer Zacke des M. serratus anticus major entspricht.

Die Rippenknorpel sind an der Übergangsstelle etwas verdicke Fortsetzungen der knöchernen Rippen. Der Knorpel ist dementsprechend weniger abgeplattet als die knöcherne Rippe, zuweilen fast cylindrisch. Die Länge der Knorpel nimmt bis zur siebenten Rippe zu (vergl. Fig. 118), von da an wieder ab, so dass die beiden letzten Rippen nur kurze, zugespitzt verlaufende Knorpelenden tragen. Der Knorpel der ersten und zweiten Rippe verläuft in der Richtung des Rippenknochens. Auch jener der dritten Rippe setzt in der Regel die Richtung seiner Rippe fort. Er nimmt ziemlich genau die Mitte des Seitenrandes des Brustbeins ein. Die folgenden Knorpel der wahren Rippen zeigen ihre Sternalverbindungen immer dichter an einander gedrängt. Der Knorpel der vierten Rippe bildet an seiner Verbindung mit der knöchernen Rippe einen Winkel, der häufig schon an der dritten Rippe angedeutet, an der fünften Rippe aber weiter ausgebildet ist. Die sechste Rippe zeigt diese Knickung stets am Knorpel, von dem also noch ein Theil in der Richtung der knöchernen Rippe verläuft, ebenso verhält sich der Knorpel der siebenten Rippe.

Thorax von vorn.

Wie bei allen am Ende eines Abschnittes befindlichen Skelettheilen, so ist auch im Bereiche der letzten Rippen eine große Schwach-

Der Knorpel der siebenten Rippe setzt sich in der Regel vor dem Schwertfortsatz an. Auch beim Knorpel der achten Rippe ist das der Fall, wenn er das Sternum erreicht.

§ 68.

Das Brustbein (Sternum) ist das Produkt der vorderen Vereinigung einer Anzahl von Rippen. Die von deren ventralen Enden jederseits gebildete knorpelige Längsleiste (Fig. 114) nähert sich allmählich der anderseitigen und beide treten in mediane Vereinigung über, wobei die Verschmelzung von vorn nach hinten stattfindet (Fig. 119). So entsteht ein medianer unpaarer Skelettheil, der nach seiner Verknöcherung einen breiten platten Knochen bildet, an welchem man drei mehr oder minder getrennte Abschnitte zu unterscheiden pflegt. Das oberste, breiteste aber kurze Stück ist der Handgriff, Manubrium. An ihn reihst sich abwärts das längste Stück als Körper, und daran ein kleines, meist knorpelig anlaufendes Stück, welches keine Rippen mehr trägt. der Schwertfortsatz, Processus xiphoideus. Während Handgriff und Körper durch mediane Verschmelzung der beiderseits von den Rippen gebildeten Sternaletteisten entstehen, legt sich der Schwertfortsatz als ein disseretes Gebilde an, aus einem paarigen Knorpel bestehend, der wahrscheinlich von einem nicht in die jederseitige Sternalleiste übergegangenen Endstücke des achtent (resp. neunten) Rippenpaares abstammt.

Das Manubrium verdankt seine voluminöse Ausbildung der Verbindung mit dem Schlüsselbein, dem es eine mediale Stütze abgibt. Es ist bei allen
Säugethieren, die eine ausgebildete Clavicula besitzen, ein anschauliches Stück des Brustbeins, und tritt an Volum zurück, wo die Clavicula verkümmert ist, oder ist sogar geringer als der Körper ausgebildet. Zu jener Verbindung dient ein Ausschnitt am oberen seitlichen Rande: *Incisura clavicularis* (Fig. 120). Durch die vorspringenden oberen Ränder dieser beiderseitigen Ausschnitte wird ein medianer, dem Halse zugekehrter Ausschnitt, *Incisura jugularis*, abgegrenzt. Unterhalb der Incis. clavicularis, dem Seitenrande des Manubrium angehörend, ist eine rauhe Stelle, welcher der Knorpel der ersten Rippe (1) unmittelbar sich anfügt.

Der Körper verbreitert sich gegen sein Ende etwas, um dann wieder verschmälert mit dem Schwertfortsatz sich zu vereinigen. An seinem lateralen Rande finden sich kleine Ausschnitte für die Knorpel der Rippen (*Incisurae costales*). Das zweite Paar fügt sich an der Verbindungsstelle zwischen Manubrium und Körper an, das dritte und vierte in gleichem Abstande von einander, während das fünfte Paar vom vierten durch geringere Distanz getrennt ist und das sechste und siebente dicht an einander dem Ende des Körpers ansetzen, der Knorpel der siebenten Rippe gewöhnlich etwas vor dem Schwertfortsatz gelagert.

Der Schwertfortsatz ist der der größten Variation unterworffene Theil des Sternums. Zuweilen ist er von einem Loche durchsetzt (Fig. 120), oder er ist gabelig getheilt. Er bleibt lange knorpelig. Seine Verbindung mit dem Körper wird erst im höheren Alter synostotisch.

Geschlechtsverschiedenheiten bestehen am Sternum darin, dass beim Weibe das Manubrium relativ breiter und der Körper länger und schmäler als beim Manne ist.

Verbindungen der Rippen.

§ 69.

1) Costo-vertebrale Verbindungen (Fig. 122). Diese werden durch Gelenke vermittelt, welche sowohl zwischen den Capitulis der Rippen und den Wirbelkörpern, als auch zum Theile zwischen den Tuberculis und den Querfortsätzen bestehen. Letzteres ander ersten bis achten oder zehnten Rippe. Die Gelenke der Köpfchen sind bei den mit zwei Wirbelkörpern verbundenen Rippen doppelt, indem die Crista capituli durch ein das costo-vertebrale Gelenk theilendes Band dem Lig. intervertebrale angeheftet ist. Eine straffe Gelenkkapsel überzieht die verbundenen Theile und ist sowohl an den Gelenken des Köpfchens wie an jenen der Tubercula durch accessorische Bänder verstärkt. Da aber auch der Rippenhals Bandverbindungen ein-
geht, sind die costovertebralen Ligamente in solche des Capitulums, des Halses und des Tuberculum zu undern.

a) Als Ligg. capituli costae bestehen die Ligg. radiata, von der seitlichen Fläche des Wirbelkörpers aus zur Vorderfläche der Rippenköpfchen ziehende Schenestreifen in radiärer Anordnung. Man kann an ihnen meist eine obere und eine untere Partie unterscheiden, zwischen die eine dritte, von der Bandscheibe entspringende Portion sich einschiebt (Fig. 123). Faserzüge ähnlicher Anordnung wie die Ligg. radiata finden sich auch von der Halswirbeln vom Wirbelkörper zur costalen Portion des Querfortsatzes, und an den Lendenwirbeln zum Querfortsatz ziehend (HENLE).

b) Ligg. colli costae.

b. L. e. c. sup. post. Hinter dem vorigen, in ähnlichem Ursprung, inserirt sich aber meist hinter der Crista und verläuft von oben schräg lateralwärts. Sehr variabel, zuweilen nur durch dünn, nicht einmal schmale Bindegewebsstreifen vertreten.

c) L. e. c. medium. Von der oberen Fläche des Querfortsatzes des Wirbels, dem die Rippe angehört entspringend, erstreckt sich das Band vorwärts zum Rippenhalse und füllt dadurch teilweise den Raum zwischen Rippenhals und Querfortsatz (Fig. 122).

d. L. e. c. inferius. Kommt ausgebildet nur den oberen Rippen zu; entspringt nahe an der Wurzel des Querfortsatzes, an der unteren Fläche desselben, und verläuft sich verbreiternd zur unteren Hälfte des Rippenhalses.

e) Als Ligr. tuberculi costae (Fig. 124) besteht ein an den 9—10 Oberen Rippen die Gelenkkapsel deckendes Verstärkungsband, welches von der hinteren Fläche des Querfortsatzes zum Tub. costae sich erstreckt. An den unteren Rippen trifft es mit dem die Rippe an dem Querfortsatz befestigenden Bande zusammen. Unbeständig ist das Lig. accessorium. Meist nur durch lockeres Gewebe dargestellt, oder auch mit dem Lig. intertransversarium gemeinsam, ein Bündel des letzteren, das nicht zum Querfortsatz, sondern zum Tuberculum verläuft.

Die Costa-sternal-Verbindungen werden durch Bänder verstärkt, die vom Brustbein in das Perichondrium der Rippenknorpel übergehen: **Ligg. sternocostalia (radiata).** Schmale Fasern verlaufen convergirend vom Brustbein zu den Knorpeln. Die zu den unteren Rippenknorpeln tretenden bilden theilweise längere Bündel, welche auf dem Brustbein sich durchkreuzen. Sie stellen so eine scheine, das Brustbein überkleidende Schichte (Membrana sternia) dar, welche unmittelbar ins Periost des Brustbeins übergeht. An der hinteren Fläche ist die Ausbildung der Sterno costalbänder schwächer.

3) **Intercostale Verbindungen** bestehen hauptsächlich durch ligamentöse Gebilde, welche einen mehr membranösen Charakter besitzen, und zumeist nichts anderes sind, als die theilweise sehnrig verstärkten Fasern der Intercostalsmuskulatur. Zum Theile sind sie wohl auch aus partiellen Rückbildungen dieser Muskeln hervorgegangen. Sie bieten sehr irreguläre Befunde.

Die **Ligg. intercost. externa** bilden vorzüglich die Fortsetzung des M. intercost. ext. Sie finden sich in den 8—9 oberen Intercostalräumen gegen das Brustbein zu mit Faserzügen, deren Richtung jener des Muskels entspricht.

In der speziellere Gestalt des Thorax ergeben sich zahlreiche individuelle Schwankungen. Im Allgemeinen ist er beim Weibe kürzer, aber weiter als beim Manne. Der gerade Durchmesser ist beim Fötus bedeutender als der quer, und auch beim Neugeborenen hat der letztere das beim Erwachsenen bestehende Verhältniß nicht erreicht. Dadurch wird an die Thoraxform von Säugethieren erinnert. Die sich ausbildende Verkürzung des Sternovertebraldurchmessers zu
Günstig des transversalen modifiziert die Belastung der Wirbelsäule und lässt den Schwerpunkt weiter nach hinten fallen. Diese Veränderung der Thoraxform zeigt demnach einen Zusammenhang mit der Erwerbung des aufrechten Ganges.

II. Vom Kopfskelet.

1. Anlage des Kopfskelets. — Primordialcranium.

§ 71.

Durch die Mannigfaltigkeit seiner Beziehungen gestaltet sich das Skelet des Kopfes zu einem ebenso wichtigen als complicirten Abschnitte des gesammten Skeletsystems. Es umschließt das Gehirn, birgt die wichtigsten Sinnesorgane und den Anfang des Darmesystems Kopfdarm, mit den aus ihm hervorgegan-
Zweiter Abschnitt.

Mit dem Knorpelcranium erscheinen auch in dem die Kopfdarmöhle umschliessenden Bogen knorpelige Theile, gleichfalls bogenförmig gestaltet. Die
Die Mundöffnung umziehenden Bogen bilden die Anlage eines knorpeligen Kiefer skeletes, zwei darauf folgende Paare repräsentieren mit ihrem ventralen Verbin dungsstücke Rudimente von Kiemenbogen, die in andere Funktionen treten. Auch diese Theile erhalten sich nur in der Anlage knorpelig. Sie bilden sich, so weit sie bestehen bleiben, zu knöchernen Bestandtheilen des Kopfskeletes um und erhalten eine ihren sehr verschiedenen Verrichtungen angepaßte Gestalt.

Die erste Anlage des Knorpelcraniums ist bis jetzt nur von Thieren genauer erkannt. Wir dürfen aber annehmen, dass auch beim Menschen keine wesentliche Abweichung
Zweiter Abschnitt.

bestehe. Das zuerst sich differenzierende Knorpelgewebe erstreckt sich längs der Chorda bis zu einer Stelle, an welcher das Gehirn im Winkel nach vorne und abwärts umbiegt, so dass an seiner Basis ein einspringender Raum entsteht, welchen Knorpel erfüllt. Dieser bildet damit einen Vorsprung, den mittleren Schädelbalken (Rauk) (vgl. Fig. 125). Von da aus bilden sich zwei seitliche Leisten, die durch die Ausbuchtung des Zwischenhirns von einander getrennt sind und die seitlichen Schädelbalken vorstellen, die zwischen ihnen befindliche Lücke dient der Hypophysis zum Durchtritte und wird später vom Knorpel ausgefüllt. Wie das Vorwachsen von Knorpel zur Herstellung des mittleren Schädelbalkens aus der an der Gehirnbasis auszufüllenden Lücke sich erklärt, so wird auch das paarige Auftreten der sogenannten vorderen Schädelbalken als Anpassung verständlich, indem die hier stattfindende Ausbuchtung des Genrouraums des Zwischenhirns nur eine seitlich von ihr vor sich gehende Fortsetzung der Knorpelentfaltung nach vorne zu erlaubt. Erst mit der ferneren Volumszunahme des Körpers bildet sich diese basale Schädelanlage voluminöser aus, und dann verschwindet auch jene vordere Lücke. Die Stelle aber an der sie bestand, entspricht der späteren Sattelgrube, indem die Sattellehne aus dem mittleren Schädelbalken hervorwächst. Sie ist durch den Anfang des in Fig. 125 von der Schädelbasis senkrecht emporsteigenden Fortsatzes vorgestellt, dessen obere End durch häutige Theile gebildet wird. Diese setzen sich bis zu 2 (8. Fig.) längs der seitlichen Schädelwand fort, und repräsentiren das Tentorium cerebelli (s. unten beim Gehirn). Die spätere Sattelgrube wird durch die am oberen Ende jenes senkrechten Fortsatzes befindliche, an der Seitenwand bemerkbare Vertiefung dargestellt, die ihre hintere Begrenzung in der Falle des Tentoriums (2) empfängt. Das Ende der Chorda dorsalis findet sich in der Sattellehne. Als prächordaler Abschnitt ist also der vordere in Fig. 125 nach links befindliche Theil des Cranii anzusehen.

Bei manchen Säugetieren (Schweinen) bildet sich das Primordialcranium bedeutender aus. Beim Menschen ist es relativ bedeutend reduziert.

2. Knöchernes Kopfskelet.

§ 72.

Das knorpelige Primordialcranium spielt beim Menschen eine rasch vorübergehende Rolle, denn sehr frühzeitig treten knöcherne Theile auf, die es entweder
zerstören, indem sie sich an die Stelle vorher knorpeliger Strecken setzen, oder die sich ihm anlagern, wobei der darunter befindliche Knorpel früher oder später durch Resorption zu Grunde geht. Dann erscheinen aber auch Knochen, welche gar keine Beziehung zum Knorperalanium besitzen, jedoch durch ihre Verbindung mit jenen anderen zur Herstellung eines *knöchernen Craniums* beitragen. Ähnliches ist auch bezüglich der knorpeligen Theile der Fall, welche aus den primitiven Kiemenbogen sich bilden.

Aus mehreren Knochenkernen — ebenso vielen Ossificationsecentren — entstandene Knochen bewahren ihre individuelle Existenz nicht allgemein, sondern treten, nach den einzelnen Fällen verschieden, häufig wieder mit benachbarten Knochen zu größeren Complexen zusammen.

Die knöchernen Theile des gesamten Kopfskeletes sondern wir in Knochen des Schädels und Knochen des *Kiemen- oder Visceralskeletes*.

Das schon oben erwähnte Verhalten des Schädels zur Wirbelsäule, aus welcher der Rückgratcanal in die Schädelhöhle sich fortsetzt, ließ die Auffassung entstehen, dass im Kopfskelet ein der Wirbelsäule ähnliches, nur durch erworbene Beziehungen etwas modifiziertes Geäble gegeben sei. Nachdem es möglich war, am knöchernen Schädel einzelne, entfernt mit Wirbeln vergleichbare Segmente nachzuweisen, hat man darauf die Anschauung von der Zusammensetzung des knöchernen Schädels aus Wirbeläquivalenten gegründet (Goethe, Oken). Diese *Wirbeltheorie* des Schädels wurd oftmals und man-
Zweiter Abschnitt.

nigfach umgebildet, je nachdem man eine Mehr- oder Minderzahl von Wirbeln zu sehen glaubte (drei, vier und mehr) und ihren Aufbau aus Wirbeln nur für die Hirnkapsel annahm, oder auch auf die Gesichtsknochen ausdehnte. So richtig das Fundamentale dieser Auseinandersetzung war, dass nämlich das Kopfskelet jenem der Wirbelsäule nichts absolut fremdes sei, so wenig halbar war die speziellere Ausführung, in Aufstellung wie im Nachweis einzelner Wirbel. Es widerspricht ihr die Thatsache des continuumlichen Primordialcraniums, die Thatsache, dass die den Bogen der Wirbel verglichenen Deckknochen des Schädels nie knorpelig sind, eine ganz andere Abstammung als die basalen Theile des Schädels besitzen, endlich die Thatsache, dass von den am Säugetierschädel konstruierten Wirbeln bei niederen Wirbeltieren (Fischen) gar nichts zu sehen ist. Die hypothetischen Schadelwirbel sind daher nicht Wirbeln vergleichbare (homologe) Abschnitte des knochernen Craniums, es sind Segmente, in welche man das letztere sich gesondert vorstellen kann, ohne dass ein Nachweis für die wahre Wirbelsäule dieser Segmente auch nur entfernt zu liefern wäre. So wenig aber als die Abschnitte, in welche der Säugetierschädel zerlegbar ist, sämtlich einzelnen Wirbeln entsprechen, ebenso wenig deuten die an der Chorda dorsalis des Schädel's erkennbaren ungleichen Volumsgestaltungen, Einschnürungen, die mit erweiterten Strecken wechseln, aber in Ganzen sehr variable Bildungen sind, auf eine Gliederung des Knorpelcraniums. Auch von solchen Vorkommnissen ist bei Fischen nichts vorhanden, während es doch, wenn es einen Rest einer primitiven Gliederung des Craniums vorstellen soll, gerade bei den niederen Wirbeltieren seine vollkommenste Ausbildung besitzen müßte. Das gleiche gilt von den Knorpelresten zwischen den Knochen der Schädelbasis, in welchen Residenz des Primordialcraniums auch Fragmente der Chorda längere Zeit sich erhalten. Diese Reste sind nur ein Zeugnis für das nicht überall gleichmäßig erfolgende Wachsthum der knorpeligen Theile und der aus ihnen entstehenden Knochen. Der zwischen beiden derselben persistirende primordiale Knorpel wird epiphysenartig auf beide ihn begrenzende Knochen vertheilt und trägt durch sein Wachsthum zur Vergrösserung jener Knochen bei, indem an der Grenze zwischen beiden Portionen ein Indifferenzpunkt existirt, an welchem die Chorda dem zufolge keine so rasche Zerstörung erfährt als an den in den Bereich der Ossifizirungen getretenen Knorpelpartien. Ausführlicheres hierüber s. in meinem Grundriß der vergleichenden Anatomie. II. Aufl. S. 469. Dagegen bestehen am knorpeligen Kopfskelet niedriger Wirbeltiere nicht wenige Verhältnisse, welche die Existenz eines vielgegliederten Craniums als eines ontogenetisch nicht mehr nachweisbaren Vorläufers des einheitlichen Craniums annehmen lassen.

a. Knochen des Schädels.

Die einzelnen Knochen vertheilen sich auf diese Gruppen in folgender Weise:
I. Knochen der Hirnkapsel des Schädels.

1. Hinterhauptsbein.
2. Keilbein.
3. Schläfenbeine.
4. Scheitelbeine.
5. Stirnbein.

II. Knochen der Nasenregion.
7. Thränenbeine.

III. Knochen der Kieferregion.
10. Oberkiefer.

Die Knochen der beiden ersten Gruppen sind entweder solche, die in enger Beziehung zum Primordialcranium stehen, aus ihm hervorgehen oder als Belegknochen des Knorpeleraniums erscheinen, oder endlich das am knorpeligen Cranium defecte Schädeldach herstellen. Die dritte Gruppe umfaßt ursprünglich dem Cranium fremde Elemente, die bei den niederen Wirbeltieren sogar beweglich mit dem Schädel verbunden sind.

In wiefern mit diesen Knochen andere beim Menschen nicht mehr gesondert fortbestehende verbunden sind, wird bei den einzelnen Knochen aufgeführt.

1. Hirnkapsel des Schädels.

§ 73.

Knochen der Schädelbasis.

1. Hinterhauptsbein (Occipitale).

Das Hinterhauptsbein, Os occipitis, bildet den hintersten Abschnitt des Schädels, vermittelt die Verbindung desselben mit der Wirbelsäule und betheiligts sich ebensowohl an der Basis cranii, wie an der Herstellung des Schädeldaches. Es umschließt eine große, die Communication der Schädelhöhle mit dem Rückgratcanal vermittelnde Öffnung: das Hinterhauptloch (Foramen occipitale, Foramen magnum).
Es sind an diesem Knochen vier Theile unterscheidbar, welche in die Umgrenzung des Hinterhauptloches eingehen. Der den Vorderrand dieses Loches begrenzende Körper (Pars basilaris, Occipitale basilare), die beiderseits daraan stossenden, den Seitenrand bildenden Partes laterales. Occipitalia lateralia, endlich das durch die Verbindung mit den Seitentheilen das Hinterhauptloch abschließende Schuppenstück (Squama occipitalis). Während der Körper wie die Seitentheile aus dem knorpeligen Primordialceranium hervorgehen, nimmt die Schuppe des Hinterhauptbeins nur mit ihrem untersten Abschnitte mit jenen gleiche Entstehung, der oberste, zwischen die Parietalia sich einschiebende Theil gehört nicht dem Primordialceranium an, sondern stellt gleich den übrigen Knochen des Schädeldaches einen Deckknochen vor, der aber bereits im dritten Fötalmonate mit dem unteren Stücke zu verwachsen beginnt. Die Schuppe setzt sich also aus zwei Stücken zusammen, dem dem Hinterhaupt angehörigen ursprünglich knorpeligen Schlusstück des Foramen magnum, Occipitale superius, und einem damit sich verbindenden Deckknochen: dem Interparietale (Fig. 126).

Die Seitentheile (Occipitalia lateralia) sind an der Verbindungsstelle
mit dem Körper stärker, höher als breit, nach hinten zu horizontal verbreitert und abgeflacht, allmählich in die Schuppe übergehend.

Sie tragen an ihrem vordersten Theile die überknorpelten Gelenkköpfe, Condylii occipitales (Vergl. auch Fig. 174), zur beweglichen Verbindung mit dem Atlas. Die Oberfläche jedes Condylus ist von hinten nach vorn zu gewölbt mit lateraler Richtung, der vordere Theil der Wölbung zugleich bedeutender als der hintere. Die Längsaxen beider Condylen convergiren vorne und schneiden sich in einem Winkel, der etwa die vorderste Grenze des Körpers des Hinterhauptsbeins trifft. Ihr vorderer Theil steht auf einem Vorsprunge des Knochens, der hintere Theil tritt gegen eine Grube, in welcher ein von der Innenfläche her eine Vene führender, sehr variable Canals, C. condyloideus, sich öffnet (Foramen condyloideum posterius).

Die Verbindungsstelle des Körpers mit den Seitentheilen ist nicht selten durch eine nach dem Cavum cranii vorspringende Wulstung auszeichnet. Zur vorderen Umgrenzung des Foramen jugulare dient zuweilen eine lateral und nach hinten gerichtete Zacke, so dass dann der größere Theil des Randes jenes Loches vom Occipitale gebildet wird. Der Boden der Fossa condyloidea ist meist die dünnste Stelle des Hinterhauptsbeines. An der Stelle, wo oben der Processus jugularis vorrät, erscheint an der Unterfläche häufig ein stumpfer Fortsatz (vergl. Fig. 176) zur Insertion des Musc. rectus cap. lat. Er entspricht dem Proc. paramastoideus (Pr. jugul.), der in vielen Säugethierabheilungen, am meisten bei Ungulaten und Nagern ausgebildet vorkommt. Ein fast constant vorkommender Vorsprung an der Incisura jugularis scheint dieselbe in einen

GeGenaRANT, Anatomie.
meist größeren lateralen, und kleineren medialen Abschnitt. Dieser Processus interjugulāris sieht gegen einen ähnlichen, der am Felsenbein liegt, und hilft so eine Theilung des Foramen jugulare bewerkstelligen.

Die Schuppe bildet den ansehnlichsten Theil des Hinterhaupteins. Wir unterscheiden an ihr eine innere (cerebrale) Fläche und eine äußere. Die letztere ist in derselben Grade gewölbtp wie die erstere vertieft ist. An der äußeren Fläche grenzt sich der obere, der Hinterhauptsregion des Kopfes zu Grunde liegende Abschnitt (Planum occipitale) durch glattere Beschaffenheit von dem unteren Abschnitt ab, der gegen den Nacken gerichtet ist und vorwiegend zur Insertion von Muskeln dient (Planum nuchale) (Fig. 127). An der Grenze gegen die Occipitalfläche erhebt sich in der Medianlinie ein Vorsprung (Protuberantia occipit. ext.), von dem aus eine an ihrer ersten Hälfte meist schwache, an der zweiten stärkere Leiste gerade zum Foramen magnum verläuft, Linea nuchae mediana. Sie scheidet das Planum nuchale in zwei seitliche Hälfte und dient, wie die Protuberanze an ihrem Anfange, dem Nackenbande zur Befestigung. Von der Protuberanz erstreckt sich lateral in einem aufwärts schwach convexen Bogen die Linea nuchae superior, eine Reihe von Unebenheiten, welche die Grenze des Planum occipitale und nuchale bestimmen. Parallel mit ihr verläuft über das Planum nuchale die Linea nuchae inferior. Sie beginnt an der Mitte der L. nuchae med., da wo diese deutlicher hervortritt, und verläuft wie die L. n. sup. bis gegen den seitlichen Rand, kann auch zuweilen mehr medianwärts zum For. condyl. post. verfolgt werden. Die Linea n. superior ist sehr häufig auf ihrem lateralen Verlaufe verbreitert, so dass sie mit ihren Grenzen ein mond-sichelförmiges Feld umschließen, dessen Convexität aufwärts gerichtet ist. Die Ausprägung der Grenzen stellt dann zweibesondere Linien dar, deren oberste die L. n. suprema bildet (Fig. 127).

rechten Querschenkel sich fortsetzt, zuweilen aber auch in eine, den linken Schenkel ähnlich auszeichnende Furche sich abzweigt. Die senkrechte Furche ist der *Sulcus sagittalis*, die die Querschenkel begleitenden stellen je einen *Sulcus transversus* vor. Der untere senkrechte Schenkel des Kranzes (*Crista occip. int.*) bietet seltener eine dann schmale Furche und springt in der Regel stärker als die anderen vor. Am Foramen occipitale läuft er in zwei, dies umfassende Wülste aus.

2. Keilbein (*Sphenoidale*).

So geht er in der Medianlinie liegende *Körper* aus zwei Stücken hervor (Fig. 130), einem hinteren Basisphenoid, *Sphenoidale basilare post.*) und einem
vorderen (Praesphenoid, Sphenoidale bas. anterius). Jeder der beiden Körperteile besitzt seitliche Stücke angefügt, die Flügel (Sphenoidalia lateralia, Fig. 129). Die hinteren Flügel, beim Menschen viel größer als die vorderen, treten in der Schlärfergrube an der Oberfläche des Schädels zu Tage und werden als Alae temporales, A. magnae, von den im vorderen Körperstücke sich verbindenden, beim Menschen kleineren Flügeln, Alae orbitales, A. parvae, unterschieden. Die Alae temporales bilden sehr frühzeitig abstiegsige Fortsätze aus, an deren mediale Fläche ein dem Cranium ursprünglich fremder, dem Oberkiefer-Gaumenapparate angehöriger Knochen, das Pterygoid, sich anlagert und mit ihm verschmilzt. Das Pterygoid (Fig. 129, PT) bildet dann die mediale Lamelle des Flügelfortsatzes des Keilbeins.

Die Entstehung des Keilbeinkörpers aus einem vorderen und einem hinteren Stück (Fig. 130) bedingt die lang gestreckte Gestalt, welche dieser Theil selbst bei der Geburt noch besitzt und worin er mit dem jene zwei Abschnitte meist getrennt erhaltenden Keilbeine der meisten Säugethiere übereinstimmt. Zu dieser Zeit bestehen auch noch Knorpelreste zwischen beiden Stücken nach unten hin, nachdem die Verschmelzung von der oberen Fläche aus erfolgte. Mit dem Vollzug der vollständigen Verschmelzung beider Körperstücke tritt die sagittale Ausdehnung allmählich zurück und der einheitliche Keilbeinkörper gewinnt eine annähernd cuboidale Gestalt. Wie die beiden Theile des Keilbeinkörpers unter sich verschmelzen, so verbindet sich mit dem Keilbeinkörper, freilich viel später, der Körper des Occipitale. Diese Vereinigung beginnt gleichfalls von innen her im 12. bis 13. Lebensjahre, und ist nach beendetem Wachstum vollzogen, so dass Keil- und Hinterhauptsbein Einen Knochen (Os tribistare Vieeau) vorstellen. Zuweilen persistirt jedoch die Trennung. Beim Neugeborenen erstreckt sich der Knorpel der Spheno-occipital-Synchondrose (Synchondrosis sphenoch-basilaris) auf die oberen Theile des Keilbeins bis in die Sattellehne, die noch knorpelig ist (Fig. 130), tritt also hier ansehnlich an der Innenfläche des Schädels zu Tage.

a. Der Körper kann von cubischer Gestalt gedacht werden, wonach wir die Flächen unterscheiden. Die hintere Fläche ist zugleich etwas schräg abwärts gerichtet, längere Zeit durch eine Knorpelschichte mit dem Körper des Occipitale in Verbindung (Synchondrosis sphenoch-basilaris), bis eine Verwachsung beider Knochen eintritt. Sie ist, so lange sie als selbständige Fläche existirt, rauh, un-
Knochen des Schädels.

Die obere Fläche sieht gegen die Schädelhöhle, wo sie den Sattel (Sella turcica, Epiphümm) bildet. Sie trägt eine bedeutende, quer gerichtete Vertiefung, die Sattelgrube, welche seitlich über den Körper hinaus, gegen die von hier entspringenden großen Flügel sich abflacht. Hinten überragt sie einquerer Vorsprung, die Sattellehne (Dorsum ephippii) (Fig. 131). Die beiden seitlichen Ecken dieses Vorsprungssind meist lateral, oder auch vorwärts in Höcker ausgezogen (Processus clinoides posteriores). Die hintere Fläche der Sattellehne läuft auf die obere Fläche des Körpers des Hinterhauptsbeines aus, bildet im Zusammenhange mit diesem Knochen eine rück- und abwärts zum Foramen magnum verlaufende Ebene, Clivus. Die Stelle der Synchondrose ist häufig auch bei Erwachsenen durch Raubildungen ausgezeichnet. Vor der Sattelgrube liegt einquerer Walst, bald flach, bald etwas nach hinten zu erhoben: Sattelknopf (Tuberculum ephippii). Seitlich liegen die Processus clinoides medii. Sie fehlen häufig. Vor dem Sattelknopfe setzt sich die fast ebene obere Fläche des Keilbeinkörpers lateral auf die der kleinen Flügel fort, und grenzt vorne mit ausgezacktem, häufig vorspringendem Rande gegen die Siebplatte des Ethmoid.

Jede seitliche Fläche des Körpers steht im Zusammenhange mit den Flügeln, davon die kleinen vorne und höher, die großen hinten und tiefer entspringen. Der hinter und über der Wurzel der großen Flügel liegenden Strecke der Seitenfläche hat eine Arterie (Carotis int.) eine breite, meist flache Furchen eingeprägt, Sulcus caroticus. Diesen begrenzt eine laterale Erhebung, die bald als schwache Leiste, bald als stärkerer Vorsprung, Lingula sphenoidalis (Fig. 131) sich darstellt.

Die vordere Fläche sieht gegen die Nasenhöhle, und ist durch einen medianen senkrechten Kamm ausgezeichnet, Crista sphenoidalis, der sich in einen vor und abwärts gerichteten Vorsprung, Rostrum sphenoidale, auszieht (Fig. 132). In der Crista besteht die mediane

Der seitliche Rand der vorderen Fläche verbindet sich mit dem hinteren Rande des Labyrinthes des Siebbeines und grenzt oberflächlich an den hinteren Rand der Lamina papyracea desselben Knochens.

Die untere Fläche ist gleichfalls gegen die Nasenhöhle gerichtet. Sie bietet einen medianen, in das Rostrum sphenoidale anlaufenden, häufig zugespitzten Vorsprung, von dem zuweilen durch eine, längere Zeit Knorpelreste führende, unebene Vertiefung getrennt. Diese Stelle entspricht der Grenze zwischen vor dem und hinterem Keilbeinkörper. Seither grenzt sich die untere Fläche durch eine von vorne nach hinten zu verlaufende, dabei medianwärts gerichtete Furche von den den großen Flügeln zugehörigen Theilen ab. Diese beiden dreiseitigen Strecken der Unterfläche werden am ausgebildeten Keilbeine durch die Ossicula Bertini gebildet, welche hier mit dem Keilbein verschmolzen sind (Fig. 132).

Die Wurzel ist oben und vorne (Fig. 133) dicht am Körper von einem nach vorne und wenig lateral gerichteten Canale durchbohrt, Foramen rotundum (für den Ram. II. Nervi trigemini). Hinten wird die Wurzel durch die Lingula vom Körper abgegrenzt (Fig. 131). Der Flügel erstreckt sich erst fast horizontal nach außen, mit seinem vorderen Theile aufwärts gekrümmt, und biegt in nach oben und außen ausgezogen. Nahe an seinem hinteren Rande durchsetzt ihn senkrecht eine quervereale Öffnung, Foramen ovale (für den Ram. III. N. trig.), (Fig. 131), und dicht daran etwas lateral und nach hinten zu ist eine zweite viel kleinere Öffnung, Foramen spinosum (für die Art. meningeæ media).
Die dieses Loch nach außen abschliessende hintere Ecke des großen Flügels bildet einen abwärts gerichteten, zuweilen zugespitzten Fortsatz, Spina angularis.

Vom großen Flügel wenden sich drei Flächen eben so vielen verschiedenen Räumen des Schädels zu. Wir unterscheiden eine innere concave Fläche, Facies cerebralis (Fig. 131), durch die Un-ebenenheiten ausgezeichnet, die auch anderen, die Schädelhöhle begrenzenden Knochen zu kommen.

Die beiden anderen Flächen sind nach außen gerichtet. Die Facies orbitalis (Fig. 133) trapezförmig, ist nach vorn gekehrt und hilft die Augenhöhle lateral begrenzen. Ihr hinterer Rand läuft gegen die Wurzel des Temporalflügels herab und bildet mit einer Strecke des Vorderrandes der cerebralen Fläche scharfkantig sich vereinend die untere Begrenzung der Fissura orbitalis superior. Der untere Rand der Orbitalfläche bildet dagegen die obere Begrenzung der Fissura orbitalis inferior. Die dritte Fläche, Facies temporalis, liegt lateral, der Schläfengrube zugekehrt. Der größere obere Abschnitt der Temporalfläche ist schräg abwärts geneigt, und durch eine quere, in sehr verschiedenem Maße ausgeprägte Leiste, Crista infratemporalis, von dem unteren Abschnitte geschieden. Der vordere Rand des ersteren bildet mit dem gleichen der Orbitalfläche einen das Jochbein erreichenden kammförmigen Vorsprung, Crista jugalis (Fig. 133). Die unterhalb der Crista infratemporalis gelegene Strecke der Temporalfläche verläuft fast horizontal medianwärts und biegt sanft auf die äußere Fläche des absteigenden Fortsatzes des Temporalflügels über.

Durch die Entfaltung der Crista jugalis wird die untere Augenhöhlenspalte lateral abgegrenzt. Sie fehlt bei vielen Säugethieren, indem Orbita und Schläfengrube ursprünglich einen einheitlichen Raum bilden, der erst allmählich sich in zwei scheidet. Noch beim Neugeborenen ist die Fiss. orb. inf. sehr weit und deutet auf den primitiven Zustand. Außer der durch die Crista jugalis gebildeten Verbindung mit dem Jugale geht der Temporalflügel mit seinem oberen, dreieckig verbreiterten Rande (Margo frontalis, Fig. 133) eine Nahtverbindung mit dem Stirnbein ein. Daran stößt die mit dem obersten, meist etwas quer abgestutzten Winkel, Angulus parietalis, stattfindende Verbindung mit dem Parietale. Der hintere seitliche Rand (Margo squamosus s. temporalis) fügt sich an die Schuppe des Schläfenbeins; endlich bildet der von der Spina angularis an median verlaufende Theil des
hinteren Randes mit dem Felsenbein in den Schläfenbeins das großenteils durch Faserknorpel ausgefüllte Foramen lacerum (anterius).

Der absteigende Fortsatz des großen Flügels, Processus pterygoideus, Flügelfortsatz, tritt vom Wurzeltheile des Flügels herab. Er besteht aus zwei an der Wurzel versetzten, mit ihren Enden durch die Fissura pterygoidea von einander getrennten Lamellen von sehr verschiedener Wirkung. Die laterale Lamelle, eine breite, mit ihrem hinteren Rande lateral gestellte Platte (vergl. Fig. 134) entsteht durch eine Fortsatzbildung der Ala temporalis; die mediale Lamelle dagegen wie oben angegeben, aus dem Pterygoid. Indem diese aus dem Pterygoid entstehende mediale Lamelle des Flügelfortsatzes mit ihrem oberen Theile sich median-wärts gegen den Keilbeinkörper krümmt, bildet sie da einen leisten-förmigen Vorsprung (Processus vaginalis (Fig. 133). Auf der unteren Fläche desselben verläuft sagittal eine Rinne, welche vorne zuweilen zu einem Canälichen sich abschließt, diesen Abschluß aber in der Regel durch den Processus sphenoidalis des Gaumenbeins findet (Canaliculus pharyngeus).

Das untere Ende der inneren Lamelle läuft in einen lateralen gekrömmten Fortsatz aus, Hamulus pterygoideus, der meist durch eine tiefe Ineisur von der Lamelle abgesetzt ist (Fig. 131). Beide Lamellen des Flügelfortsatzes bilden den Boden der nach hinten offen den Fossa pterygoidea (vergl. Fig. 176). Sie wird abwärts vervollständigt, indem ein Fortsatz des Gaumenbeins in die zwischen den Enden der beiden Lamellen gebildete Spalte sich einbettet.

An der Wurzel wird der Flügelfortsatz durchsetzt von einem horizontal von hinten nach vorne verlaufenden, mit dem anderseitigen convergirenden Canal, Canalis Vidianus (Fig. 133).

Zwischen der hinteren Mündung des Vidian'schen Canals und der Fossa pterygoidea findet sich zuweilen recht deutlich angepreßt eine flache, nach vorne und median gerichtete Vertiefung: Sulus pro tuba Eustachiana.

Die laterale Lamelle des Pterygoidfortsatzes erscheint häufig verbreitet und zieht sich dann in eine nach hinten gerichtete Spitze aus. Dieser Befund zeigt, sich nicht

c. Die kleinen Flügel, Alae orbitales, Orbita-sphenoidalalia, entspringen vom vorderen oberen Theile des Körpers, und zwar mit zwei Wurzeln, welche eine in die Orbita führende Öffnung für den Sehnerven, das Foramen opticum umschließen. Sie verlaufen oben plan auf den Körper, erstrecken sich lateral allmählich spitz anlaufend, mit vorderem, dem Orbitaltheile des Stirnbeins sich verbindenden Rande (Fig. 133). Ihr hinterer Rand ist in die Schädelöhle gerichtet und läuft in einen starken, gegen die Sattellehne sehenden Vorsprung aus: Proc. clinoides anterior (Fig. 131). Die untere Fläche sieht vorne in der Umgebung des For. opt. in die Orbita und begrenzt von oben her die Fissura orbitalis superior (Fig. 131. 133).

Der Proc. clin. ant. verschmilzt zuweilen mit dem medius oder auch mit dem posterior oder mit beiden zugleich. Beim Orang scheint letzteres Regel zu sein. Die ungleiche Volumensaltung der Alae orbitales und Alae temporales, die sie als kleine und große Keilbeinfügel unterscheiden liess, ist eine Eigenthümlichkeit des Menschen und steht mit dem Antheile der Alae temporales an der Begrenzung der Schädelöhle in Connexion. Bei den meisten Säugethiere sind die Alae temporales kaum Alae magnae zu nennen, bei vielen sind sie bedeutend kleiner als die Alae orbitales. Auch beim Menschen drückt sich die Anpassung ihres Umfangs an die Volumensaltung des Gehirns in dem erst nach der Geburt erreichten, proportionalen Verhalten zu den Alae orbitales aus (vergl. Fig. 129 mit 131).

3. Schläfenbein (Temporale).

Das Schläfenbein, Os temporis, füllt die Lücke, welche zwischen Hinterhauptsbein und Keilbein theils an der Seite des Schädels theils von da aus gegen die Basis hin besteht.

Es setzt sich aus mehrfachen, in ihrer Entstehung sehr verschiedenen Theilen zusammen, die größtentheils beim Neugeborenen (Fig. 135) noch getrennt sind, und erst später zu einem einzigen Knochen verschmelzen. Wir unterscheiden diese Elemente des Schläfenbeins auch am ausgebildeten Knochen als besondere Partien. Es sind:

1. Der Felsentheil. Pars petrosa. bei vielen Säugethiere noch einen besonderen Knochen, das Petrosum, vorstellend. Es entsteht mit mehreren Knochenkernen aus einem Theile des Primordialcraniums, umschließt das
Labyrinth des Gehörorgans und wird durch diese Beziehungen zu jenem Sinnesorgan e auch vielfach in seinen äußeren Verhältnissen beeinflußt, indem sich in seiner Umgebung Hilfsapparate des Gehörorgans ausgebildet haben. Der lateral an der Außenfläche des Craniums sichtbare Abschnitt wird gewöhnlich als Pars mastoidea davon unterschieden, ist aber nicht den anderen Theilen gleichwerthig, und darf um so mehr dem Petrosum zugetheilt werden, als er gleichfalls aus dem Primordialeranum entsteht. Er besitzt jedoch einen besonderen Knochenkern.

3) Der Paukentheil, Pars tympanica. Ist von einem selbständigen Skelettheile, Tympanicum, gebildet, der anfänglich als fast ringförmiger Knochen, Annulus tympanicus (Fig. 136) lateral und abwärts gerichtet am Felsenbein liegt, und einen Rahmen für das Trommelfell abgibt. Der obere offene Teil des Ringes lehnt sich an das Squamosum an. Bei den meisten Säugethieren persistirt dieser Knochen getrennt.

Der durch den Anschluß des Tympanicum an die beiden anderen Elemente des Schläfenbeins umgrenzte Raum gelangt damit ins Innere des Schläfenbeins, er bildet die Paukenhöhle, Cavum tympani, welche also einen ursprünglich an der Außenfläche des Primordialeranums liegenden Raum vorstellt.

Außer diesen Elementen des Schläfenbeins ist endlich noch 4) ein dem Felsenbein von unten her sich anfügendes Knochenstückchen zu erwähnen, welches dem Schädel ursprünglich fremd ist, der Griffelfortsatz, Processus styloides.

1. Pars petrosa. Wir unterscheiden an ihr einen vorderen und medialen, sowie einen hinteren und lateralen Abschnitt. Der erstere, Pars pyramidalis, bildet eine liegende, mit der Spitze nach vorn und medianwärts gerichtete, mit der Basis lateral und etwas nach hinten gewendete vierseitige Pyramide, welche den Schädelgrund einnimmt. Nach außen und hinten stößt die Basis der Pyramide an einen zweiten Abschnitt, die Pars mastoidea. Diese bildet äußerlich einen unmittelbar hinter dem äußeren Gehörgang entspringenden, abwärts gerichteten starken zitzenförmigen Fortsatz, Proc. mastoides, der medial durch einen tiefen Einschnitt, Incisura mastoidea (Fig. 137, 138) abgegrenzt ist. Er ist von verschiedener Mächtigkeit, die erst nach der Geburt zur Ausbildung gelangt. Sein Inneres wird von zahlreichen kleineren und größeren Hohlräumen eingenommen (Fig. 139), Cellulæe mastoideæ, die mit der Paukenhöhle kommuniciren. Sowohl am Fortsatze wie am Einschnitt befestigen sich Muskeln.
Knochen des Schädelns.

An der Pyramide sind vier Flächen unterscheidbar, von denen zwei, eine vordere und eine hintere, aufwärts gegen die Schädelhöhle gerichtet sind. Eine dritte findet sich der Basis cranii zugekkehrt. Mit der vierten ist lateral das Tympanicum in Verbindung, so dass dadurch die eigentliche Außenfläche verdeckt wird und nur zum Theile vorne gegen die Spitze der Pyramide zu sichtbar ist. Da die Pars tympanica zugleich mit der Unterfläche der Pyramide an der Schädelbasis zum Vorschein kommt, wird sie meist mit der unteren Fläche gemeinsam beschrieben, und die Pyramide damit als eine dreiseitige vorgestellt. Sehr compactes Knochengewebe zeichnet die Pyramide vorzüglich in jenen Partien aus, mit denen sie das Labyrinth des Gehörganges umwandelt.

Weiter lateralwärts ist eine von dünnem Knochenblatte überdachte Spalte...

führt gegen die Schnecke des Labyrinthes. Aqueductus cochleae. Näher dem lateralen Rande vor der Fossa jugularis öffnet sich der weite Canalis caroticus, der auf- und vorwärts gekrümmt seitlich oder auch dicht an der Spitze der Pyramide seine innere Mündung (Fig. 139) besitzt. In Fig. 140 ist dieser Canal auf senkrechtem Längsschnitt dargestellt. An der Scheidewand zwischen der äußeren Mündung dieses Canals und der Fossa jugularis liegt eine flache, oft kaum bemerkbare Einsenkung, Fossula petrosa.

An ihr findet sich die Apertura inferior canaliculi tympanici, als feine Öffnung, die in ein in die Paukenhöhle führendes Canälchen leitet. Dieses nimmt in der Paukenhöhle seinen Weg auf das Promontorium, wo es meist in eine Rinne, Sulcus Jacobsonii s. tympanicus fortgesetzt ist (Fig. 140). Ein anderes feines Canälchen beginnt an der hinteren Wand der Fossa jugularis, Canaliculus mastoideus. Seine Öffnung steht zuweilen mit der Fossa petrosa durch eine Rinne in Verbindung. Das Canälchen verläuft zum Fallopischen Canal und setzt sich von da aus gegen den Proc. mastoideus fort. Eine Abzweigung des Canälchens mündet hinter dem For. stylo-mastoideum aus, die Fortsetzung hinter dem äußeren Gehörgange, dicht am Zitzenfortsatz. Am Anfangsstück des carotischen Canals bietet dessen hintere Wand gleichfalls einige feine Öffnungen dar, von denen meist zwei als Durchlässe von Nerven zur Paukenhöhle dienen, Canaliculi carotico-tympanici (Fig. 140).

Die äußere, laterale Fläche der Pyramide wird großenteils vom Tympanicum bedeckt und bildet die mediale Wand der Paukenhöhle, deren Dach das oben erwähnte Tegmen tympani vorstellt. Der Raum dieser Cavität ist in Fig. 141 auf dem Querschnitte dargestellt. Nach Entfernung des Tympanicum, oder auch am Schläfenbein eines Neugeborenen, wo jene Wandfläche im Rahmen des Annulus tympanicus nahezu vollständig zu übersehen ist (Fig. 135), erblickt man eine längliche, etwas schräg gestellte Öffnung, Fenestra ovalis, unterhalb welcher ein gewölbter Vorsprung liegt, Promontorium (Fig. 139. 140). Am unteren Abhänge des letztern, nach hinten zu, sieht man eine zweite fast dreiseitige Öffnung, Fenestra tricornis (Fen. rotunda). In der Höhe der Fenestra ovalis ragt von der hinteren Wand der Pauken-
höhle her ein kurzer, an seinem freien Ende durchbohrter Fortsatz ein, **Eminentia pyramidalis** (Fig. 139). Durch seine Öffnung tritt die Schneide eines Muskelchens (M. stapedius) zu einem der Gehörknöchelchen. Über das Promontorium verläuft von unten her der **Sulcus Jacobsonii** (tympanicus). Vor und über der Fenestra ovalis springt eine dünne Knochenlamelle mit aufwärts gebogenem Rande vor, und formt an ihrem hinteren Ende emportretenden [**Processus cochleariformis**]. Nach vorn zu setzt sich die Knochenlamelle in gerader Richtung fort und lässt damit auf der lateralen Fläche der Pyramide zwei Halbrinnen entstehen, die einem theilweise von dem Tympanicum, theilweise von der unteren Fläche der Pyramide her umschlossenen Canale, **Can. musculo-tabarius**, angehören. Von diesen beiden Halbrinnen ist die obere, auf den Processus cochleariformis auslaufende vom Mus. tensor tympani eingenommen, bildet den **Semicanalisteensoris tymp.**, die andere, untere, wie die erstere gegen die innere Öffnung des Canalis caroticus zu fortgesetzt, ist beträchtlich weiter und bildet den **Semicanalis tabae Eustachii**. An ihr eingeht sich die knorpelige Ohrtrompete. Von dem hinteren oberen Theile der Paukenhöhle erstreckt sich unter dem Hegmen tympani eine Verbindung (Fig. 140) mit den Zellen des Zitzenfortsatzes (Fig. 139).

2. **Pars squamosa** (Schuppe des Schläfenbeins) erscheint als eine oben kreisförmig gerundete, mit einem vorderen Abschnitte horizontal einwärts gebogene Platte (Fig. 135, 137), die hinten der Pars mastoiden, weiter nach vorn dem Rande des Hegmen tympani angefügt ist. Man unterscheidet eine äußere und eine innere Fläche. An ersterer tritt an der Grenze des medianwärts gerichteten Abschnittes mit breiter Wurzel ein im Winkel nach vorn gewendeter Fortsatz ab, **Processus jugalis s. zygomaticus**, der sich mit dem Jochbein zum Jochbogen verbindet. Die breite Wurzel dieses Fortsatzes beginnt mit zwei Vorsprüngen (Fig. 138), ein kleinerer hinterer Höcker liegt unmittelbar vor dem äußeren Gehörorgane, dessen Eingang er begrenzen hilft, ein zweiter größerer, quergestellt, liegt vor diesem, von ihm durch eine tiefe, gleichfalls quergerichtete Grube, die **Fossa articularis** (Fovea glenoidalis) für den Unterkiefer, getrennt. Die Grube empfängt eine mediale Begrenzung von der Pars tympanica. Der vor der Grube liegende Höcker ist das **Tuberculum articulare**. Die vor dem letztern befindliche Fläche bildet die Facies infratemporalis. An der Innenfläche der Schuppe bleibt die Grenze gegen die Pars petrosa meist längere Zeit als ein Nahtrest sichtbar. Die Fläche theilt die Eigenthümlichkeiten anderer der Schädel-
höhle zugewendeter Knochen. Als charakteristisch erscheint aber die bedeutende Ausdehnung der äußeren Fläche im Vergleiche zu der zur Begrenzung der Schädellhöhle gelangenden inneren. Der Rand stellt sich von der äußeren Fläche her ausgezogen dar, und bietet bis in die Nähe des Jochfortsatzes eine scharfe Kante. Damit legt sich der Knochen schuppenförmig über die benachbarten hinweg (Sutura squamosa) und erst die vordere untere Strecke des Randes geht eine Zackennahm ein.

An dem vorderen oberen Rande verbindet sich die Pars tympanica mit der Pars squamosa (Fig. 141), über welche von innen her das Tegmen tympani mit
einer Platte hinweggreift, hinter der Fossa articularis. Weiter eh"a"w"a"rs aber schiebt sich in eine zwischen beiden Theilen klau"fennde Spalte der laterale Rand des Tegmen tympani ein, so dass zwischen diesem und der Pars tympanica nur eine schmale Ritze bestehen bleibt: die Fissura Glaseri (Petro-tympanica), durch welche die Chorda tympani die Paukenh"ohle verl"a"ft.

An den Verbindungen des Schl"afenein"s mit den benachbarten Knochen sind vorwiegend die Pars petrosa und squamosa beteiligt. Der hintere Rand der Pyramide, an dem Zusammentritt der hinteren und unteren Fl"ache, legt sich an das Hinterhauptsbein (Synchondrosis petro-occipitalis) und zug"unsten an der Fossa jugularis, der Incisura jugularis des Occipitale entsprechend, das Foramen jugulare. Hinter diesem setzt sich die Verbindung mit dem Occipitale l"angs der Pars mastoidea fort. In der dadurch gebildeten Naht (Sut. mastoidea) befindet sich hinter dem Zitzenfortsetzung in der Regel ein Loch (Foramen mastoideum), welches innen auf die Fortsetzung des Sulcus transversus ausm"undet. Es ist zuweilen ganz auf die P. mastoidea oder auf das Hinterhauptsbein verlegt.

Von allen das Schl"afenein in constitutirenden Theilen zeigt der Griffelfortsetzung die bedeutendsten Variationen. 'Er geht aus einem Abschriitt des knorpeligen zweiten Kiemenbogens hervor, der sich dem Petrosom anlagert und nach seiner, erst nach der Geburt erfolgenden Ossification mit ihm verschmilzt. Auch sp"ater kann er noch eine Strecke weit ins Innere des Schl"afenein"s verfolgt werden. Seine wechselnde L"ange steht mit der gr"o"ßerem oder geringeren R"uckbildung jenes Kiemenbogens in Zusammenhang. Er setzt sich abw"arts in das zum kleinen Zungenbeinhorn f"uhrende Lig. stylohyoideum fort, welches aus einer r"uckgebildeten Strecke jenes Bogens entsteht. Er ist demgem"a"s um so l"anger, je k"urzer jenes Rand ist, und kann sogar direct mit dem kleinen Zungenbeinhorne sich verbinden. Zuweilen fehlt er, oder es ist vielmehr nur das in das Schl"afenein" eingelassene Stuck vorhanden, welches auch mit dem freien Griffelf"utze beweglich verbunden sein kann.

Knochen des Sch"aeldeckes.

§ 74.

Von den ohne Betheiligung des Primordialeraniums durch directe Ossification in einer bindegewebigen Grundlage entstehenden Knochen, welche das Primordialeranium zur Sch"adelkapsel erg"anzen, den seitlichen und oberen Verschlu"s herstellend, sind einige mit Knochen zusammengetreten, welche aus dem Primordialeranium hervorgingen. So hat sich das Interparietale mit dem Hinterhauptsbein verbunden, das Squamosum dem Schl"afenein als Schuppe desselben zugef"ugt. Beide sind mit jenen Knochen behandelt. Selbst"andig erhalten sich nur die Parietalia an der Scheitelgegend nach der seitlichen Region des
Schäeldaches sich herab erstreckend und das Frontale, welches die Stirnregion einnimmt.

Jedes der beiden Scheitelbeine stellt einen platten, vierseitigen, an der Außenfläche convexen, innen concaven Knochen vor, an dem man vier Ränder und vier Winkel unterscheidet.

Die Außenfläche (Fig. 142) ist durch eine über sie hinwegziehende gebogene, häufig ranhe Linie, Linea temporalis (inferior), in zwei Strecken geschieden. Der von der Conca-vität dieser Linie umgenene untere Theild der Aussenfläche ist vom Schläfenmuskel bedeckt und bildet die Facies temporalis, welche sich vorn gegen den vorderen unten etwas ausgezogenen Winkel des Knochens zur Schläfengrube herabneigt. Der grösse außerhalb der Schläfenlinie liegende obere Abschnitt der Außenfläche ist dem Scheitel zugekehrt. Fast in der Mitte der gesammten Fläche, über der Schläfenlinie ist ein Höcker (Tuber parietale), bei jugendlichen Individuen mehr, bei älteren weniger bemerkbar. Er entspricht der Stelle der ersten Ossification, und beim Neugeborenen ist diese noch durch strahliges Gefüge des Knochens wahrnehmbar, wobei der Scheitelhöcker den Mittelpunkt der Strahlen abgibt.
Zweiter Abschnitt.

Die Inn enfläch e Fig. 143) ist glatt, durch Eindrücke und Erhabenheiten, sowie durch verzweigte Furchen für die Art. meninge a media ausgezeichnet, welche vom unteren Rande zum oberen empor treten. Meist sind zwei dieser Sulci arteriosi unterscheidbar, ein vorderer, am vorderen unteren Winkel beginnender, der parallel mit dem Vorderrande des Knochens emporsteigt, und ein hinterer, der an der Mitte des unteren Randes beginnt. Dazu kommt noch ein dritter, kürzester, der nahe am hinteren Winkel empor tritt. Längs des oberen Randes zieht eine breitere Furch e, die mit der des anderseitigen Scheitelbeins den Sulcus sagittalis bilden hilft, zur Aufnahme des gleichnamigen Venen-Sinus der Dura mater.

Weiter lateral vom Sulcus sagittalis bemerkt man bei älteren Individuen ziemlich allgemein unregelmäßige, an Zahl wie an Form und Umfang variable Vertiefungen, in welche Bindegewebswucherungen der Dura mater, die sogen. Pacchionischen Granulationen eingebettet sind.

Die vier Ränder unterscheiden sich nach den Verbindungen, der vordere, Margo frontalis, verbindet sich in der Kranznah t Sin. coronalis mit dem Stirnbein, der obere M. sagittalis, mit dem anderseitigen Scheitelbein in der Pfeilnaht (S. sagittalis), der hintere, M. occipitalis mit dem Hinterhauptsbein in der Hinterhauptsnah t. Nahe dem M. sagittalis, dem hinteren oberen Winkel nicht sehr entfernt, wird die Dicke des Scheitelbeins von dem Foramen parietale durchsetzt, welches ein Emissarium vorstellt. Endlich verbindet sich der untere, M. squamosus in der Schuppen n aht, mit der Schuppe des Schläfenbeins. Während die drei ersten Ränder zur Bildung von Zackennähten gestaltet erscheinen, ist der untere Rand auf der Au ßenseite des Knochens Fig. 142 mit breiter Fläche zugeschärf t, und greift weit unter sein Verbindungsstück, die Schläfenschuppe, ein.

Von den vier Winkeln wird der obere vordere als Angulus frontalis, der obere hintere als A. occipitalis unterscheidet (Fig. 143). Der untere vordere A. sphenoeidalis stößt mit dem großen Keilbeinflügel zusammen und ist schräg abgestutzt, fast mit dem Margo squamosus sich vereinend, mit dem er auch die Verbindungsweise durch eine Schuppen n aht teilt. Der hintere untere Winkel, A. mastoideus, der stumpfs tete von allen, verbindet sich durch Zackenn aht mit der Pars mastoidea des Petrosun.

Knochens des Schädels.

5. Stirnbein ('Frontale, Os frontis').

Dieser wie das Scheitelbein ursprünglich paarige Knochen erscheint auch noch beim Neugeborenen in diesem Zustande (Fig. 178), bis gegen das Ende des zweiten Lebensjahrs beide Frontalia in der median verlaufenden Stirnnaht unter einander verschmelzen. Das dann einheitliche Stirnbein bildet den vorderen Abschluß der Schädelhöhle, und liegt dem oberen Theile des Antlitzes zu Grunde, bis zum Scheitel emporreichend. Mit seinem unteren Abschluß tritt es zwischen den Augenhöhlen zur Wurzel der Nase und seitlich davon setzt es sich fast horizontal als Decke der Augenhöhlen fort. Man unterscheidet daher eine Pars frontalis, eine P. nasalis, und zwei Partes orbitales.

Der nach außen gewölbte, nach innen concave Stirntheil ist an der Außenfläche glatt und trägt jederseits das eine stärkere Wölbung repräsentirende Tuber frontale, welches fast in der Mitte jeder Hälfte, jedoch näher dem unteren Rande liegt. Bei jüngeren Individuen deutlich, rückt der Stirnhöcker bei älteren etwas höher und flacht sich bedeutender ab. Abwärts grenzt sich der Stirntheil vom Orbitaltheil durch einen lateral stärker vorspringenden Rand ab, Margo supraorbitalis. Wo dieser gegen die Pars nasalis zu sich abflacht, ist ein häufig zu einem Loch abgeschlossener Ausschnitt vorhanden, Incisura supraorbitalis, Foramen supraorbitale, durch welchen Gefäße und Nerven von der Augenhöhle zur Stirne gelangen. Lateralläuft der Supraorbitalrand auf einen starken Vorsprung aus, an dem das Stirnbein mit dem Jochbein sich verbindet, Processus jugalis. Eine von diesem Fortsatz aus nach hinten emporstehende Linie ist der Anfang der Schläfenlinie, und grenzt ein seitliches kleines, der Schläfenrube zugekehrtes Feld des Stirnbeines als Facies temporalis von der Stirnfläche ab. Über dem Nasenbeine erhebt sich an der Vorderfläche jederseits ein schrägl nach außen emporsteigender Wulst, der bogen-
förmig lateralwärts verläuft und sich selten weit über die Incisura supraorbitalis hinaus erstreckt: Arcus superciliaris. Er ist an dem Stirnbein älterer Individuen deutlicher als bei jüngeren ausgeprägt. Zwischen diesen beiden Bogen liegt eine meist plane Fläche, die Glabella.

Die Orbitaltbeine Fig. 145 sind durch einen tiefen, von hinten her vorspringenden Einschnitt (Incisura ethmoidalis) von einander getrennt. Am jederseitigen Rande dieser Incisur besteht eine vorne sich verbreiternde Fläche, welche dem Labyrinth des Siebbeins sich anlagert und die Decke dort befindlicher Zellen abgibt. Nach vorn hin werden diese Siebbeinzelten immer vollständiger vom Stirnbein umwandiert, und die vordersten senken sich weit ins Stirnbein ein, theils seitlich gegen das Orbitaldach, theils aufwärts gegen die Glabella zu ausgedehnt. Sie bilden die Sinus frontales. Zwischen dem hinteren und dem vorderen Abschnitte dieser Fläche verläuft der Sulcus ethmoidalis, der vom Siebbein zu einem gleichnamigen Canal ergänzt wird. Lateral besitzt die der Augenhöhle zugewendete Fläche des Orbitaltbeines eine vom Margo supraorbitalis überlagerte Grube zur Aufnahme der Thranendrüse, Fossa lacrymalis. Seitlich davon setzt sich der Orbitaltbeil zum Processus jugalis des Stirnbeins fort.

Der Nasenbeil bildet den mittelsten, zwischen beiden Orbitaltbeinen gelegenen Abschnitt, der sich nur wenig nach hinten zu erstreckt, wo er durch die Incisura ethmoidalis abgegrenzt ist. Eine mittlere, nach vorn und abwärts gerichtete Fläche zeigt Rauhigkeiten und Zackige Vorsprünge zur Verbindung mit den Nasen- und Oberkieferknochen. Eine mediane Zacke ist meist bedeutender ausgeprägt, Spina nasalis, und zeigt zuweilen noch zwei seitliche flügelförmige Anhänge. Seitlich von ihr sind die Öffnungen der oben erwähnten Sinus frontales. Die in die mediale Begrenzung der Orbitawand eingehende laterale Fläche der Pars nasalis trägt zuweilen einen kleinen spitzen Vorsprung (Spina trochlearis), häufiger ein seichtes, oft kaum bemerkbares Gräbchen (Forca trochlearis), an welchen Theilen das Anhängestück der Rolle (Trochea) für die Endsehne des Musc. trochlearis befestigt ist.

Das Stirnbein verbindet sich am Stirntheile mit den Scheitelbeinen in der Kraunnaht, abwärts dann mit dem Vorderrand der Ala temporalis des Keilbeins, woran die Verbindung mit dem Jochbein sich anschließt. Hinten ist der Orbital-
theil mit der Ala orbitalis in Verbindung, woran nach vorn das Siebbein sich anreihet. Dann folgt das Thränenbein, und vorne am Nasentheil die Verbindung mit dem Stirnfortsatz des Oberkiefers, an welche jene mit dem Nasenbein sich schließt.

II. Nasenregion des Schädels.

§ 75.

Die hieher zu rechnenden Skelettheile bilden die Wandungen der Nasenhöhle und auch das Gerüst der äußeren Nase. Als Grundlage dient die knorpeligen Nasenkapsel, eine Fortsetzung des Primordialcraniums. Diese Kapsel besteht aus zwei seitlichen Knorpellamellen, den Seitenwänden der Nasenhöhle, und einer medianen Scheidewand, welche die Nasenhöhle in zwei Hälften theilt (Fig. 146) und oben mit den seitlichen Lamellen zusammenhängt. An der gegen die Schädelhöhle sehenden Strecke dieser Nasenkapsel bestehen Durchbrechungen für die zur Nasenhöhle tretenden Riechnerven. Die seitliche Knorpelwand sendet mediane Fortsätze ab, die sich zu queren Vorsprüngen der Nasenhöhlenwand, den Muscheln (Conchae) entwickeln und als obere, mittlere und untere Muschel unterschieden werden. Die untere Muschel wird durch das Ende der knorpeligen Seitenlamelle dargestellt (Fig. 146). Eine Complication dieses einfachen Verhaltens, wie es in nebenstehender Figur von einem Embryo dargestellt ist, erfolgt durch die theilweise Ossification der Knorpelanlage, dann aber auch durch die Entstehung von Nebenhöhlen der Nase. Letzteres geschieht durch Resorptions- und Wachsthumsvorgänge, welche unter der Schleimhautauskleidung der Nasenhöhle an bestimmten Stellen der knorpeligen Seitenwand Platz greifen, wobei die
Schleimhaut gleichmäßig eine Auskleidung der Höhlungen abgibt. Diese bilden sich zwischen den Muscheln in die laterale Wand, und rufen an der bis dahin einfachen Lamelle Umgestaltungen hervor. Der die oberen und mittleren Muscheln tragende Theil der Seitenwand ossifizirt für sich, und ebenso die dazwischen befindliche Strecke der knorpeligen Nasenscheidewand. Die seitlichen Theile setzen sich dann mit der knöchernen Scheidewand in Verbindung, indem die der Schädelhöhle zugewendete Lamelle gleichfalls ossifizirt. Die Verknöcherung der Seitentheile geht von den Muscheln aus, deren jede für sich ossifizirt. Durch die Entwicklung von Nebenhöhlen im Bereiche der der oberen Muschel entsprechenden Strecke der seitlichen Knorpelwand empfängt die Wand der Nasenkapsel hier eine bedeutende laterale Ausdehnung, und complizirt sich schließlich zu einem wegen zahlreicher Hohlräume als Labyrinth bezeichneten Abschnitte.

Die Begrenzungen dieser Räume ossifiziren zum Theil als dünne, fragile Blättchen, aber nur da, wo sie an die Oberfläche des Schädels treten (in der medialen Orbitalwand), oder wo sie dem Binnenraum der Nase zugekehrt sind, wo dagegen die knorpeligen Strecken der Nasenkapsel nach außen hin mit anderen Knochen in Contact kommen, da erleiden sie eine vollständige Rückbildung, indem jene anderen Knochen die Stützfunction des Knorpels übernehmen. Da zahlreiche Knochen an der Überlagerung der knorpeligen Nasenkapsel sich betheiligen, tritt nur ein geringer Theil der letzteren in die Begrenzung der Schädeloberfläche, und fast alle die Knorpelkapsel deckenden Knochen stehen auch zum Abschluß der Nebenhöhlen der Nase in Verwendung.

Dieser vorn an das Keilbein sich anschließende Knochen wird hauptsächlich aus einer medianen senkrechten Lamelle und aus Seitentheilen zusammengesetzt. Die mediane Lamelle ragt gegen die Schädelhöhle vor und steht mit einer horizontalen, einen Theil der letztern abschließenden Platte in Zusammenhang, welche die complicirteren seitlichen Theile des Siebbeins trägt.

Die der Schädelhöhle zugewendete Platte (Fig. 147) ist auf ihrer Fläche beiderseits von zwei unregelmäßigen Reihen von Öffnungen durchbrochen, welche die Riechnerven zur Nasenhöhle gelangen lassen, sie bildet daher die Siebplatte, Lamina cribr. Median erhebt sich von derselben in die Schädelhöhle ein Vorsprung, und abwärts in die Nasenhöhle setzt sich die knöcherne Nasenscheidewand — Lamina perpendicularis — fort. Der laterale Rand der Siebplatte trägt die Seitentheile des Siebbeines, die in medial gerichtete Vorsprüinge, die Muscheln, und die lateralen, die Siebbeinzellen bergenden Partieen, die Labyrinthe zerfallen. Den letzteren werden gewöhnlich die Muscheln zugeordnet.

Die Lamina perpendicularis bildet den ossifizirten Theil der knorpeligen Nasenscheidewand (s. Fig. 130). Sie tritt (Fig. 148) als senkrechte Knochenplatte von der unteren Fläche der Siebplatte ab, mit ihrem vorderen Rande in der unmittelbaren Fortsetzung der Proc. alares. Sie hat eine ungleich vierseitige Gestalt. Mit dem hinteren Rande lehnt sie an die Crista sphenoidalis, weiter ab und vorwärts grenzt das Pfängscharbein daran. Der Vorderrand stößt mit seiner obersten kürzesten Strecke an einen Vorsprung der Nasenbeine und verbindet

Die Labyrinthe bilden einen mit sehr dünnen Knochenblättchen die Cellulae ethmoidales umschließenden Theil, der, an die Seite der Vorderfläche des Keilbeins angefügt, nur mit der gegen die Orbita sehenden Strecke einen äußeren Abschluß hat. Diese laterale Wand des Labyrinths, Lamina papyracea (Fig. 149), hat eine viereckige Gestalt, am oberen an den Orbitalfortsatz des Stirnbeins grenzenden Rand außer unregelmäßigen Verbindungszacken zwei Ausschnitte tragend, welche mit dem Stirnbein die Foramina ethmoidalia bilden helfen.

Der hintere Rand der Lamina papyracea grenzt an den Keilbeinkörper, der vordere an das Thränenbein, der untere an das Planum orbitale des Oberkiefers und hinten mit einer kleinen Strecke ans Gaumenbein (die Ethmoidalfläche des Processus orbitalis desselben). Diese Knochen decken in der Nachbarschaft der Lamina papyracea nach außen geöffnete Siebheinzellen, die man darunter als Cellulae frontales, lacrimales, maxillares, sphenoidales, palatinae unterscheidet. Die unter der Papierplatte gelegenen stellen dann die Cell. ethmoidales im engeren Sinne vor. Die nach oben sehenden Cell. frontales (Fig. 147) stehen zum Theil mit den Stirnbeinhöhlen in Zusammenhang.

Die mediale Wand des Labyrinthes trägt die Muscheln (Conchae) und die Eingänge zu den Nebenhöhlen der Nase. Die Oberfläche dieser Wand ist meist rauh, uneben, und besonders die oberste an die Siebplatte stossende Strecke ist
Knöchens des Schädels.

von feinen Rinnen oder Canälen (Olfactorinsrinnen) durchsetzt, welche von den lateralen Löchern der Siebplatte ausgehen (die Anordnung der Muscheln siehe in Fig. 175).

Der hintere Theil jedes Labyrinthes setzt sich meist in eine dünne dreiseitige Lamelle fort, welche gegen die Unterseite des Keilbeinkörpers, seitlich vom Rostrum sphenoidale sich anlegt und die Keilbein-Sinus verschließt (Ossicula Bertini, Figg. 147 und 149). Mit dem Siebbein ossificirend verschmelzen sie später mit der Unterfläche des Keilbeinkörpers (Fig. 126), mit welchen sie oben (S. 166) beschrieben worden sind.

An der medialen Labyrinthewand in der Nähe des vorderen Theiles der Concha tritt ein dünner, nach hinten und unten gebogener Fortsatz. Processus unciniatus (Fig. 149) herab, der die mittlere Muschel lateral überragend über die Öffnung des Sinus maxillaris des Oberkiefers hinweg zur unteren Muschel tritt, mit deren Processus ethmoidalis er sich verbindet. In diesem zuweilen fehlenden, aber auch bei der Dünnheit der Verbindung leicht zerstörbaren Zusammenhange der Concha inferior mit dem Siebbein, spricht sich auch später noch die Zusammengehörigkeit dieser Theile aus.

Untere Muschel (Concha inferior). Dieser meist als selbständiger Theil (Os turbinatum) betrachtete Knochen hat die Gestalt der Concha media, ist aber länger und auch etwas höher als jene. Er bildet eine fast wagrechte, doch vorn etwas höhergelagerte, durch

![Diagram](149)

Siebbein und untere Muschel von der linken Seite.

Die Concha inferior begrenzt den mittleren Nasengang von unten her und bildet zugleich die Decke des unteren, dessen Boden von Oberkiefer und Gaumenbein vorgestellt wird.

Auch der von andern Knochen (s. unten) überlagerte Theil der Nasenkapsel ist zur Zeit der Geburt noch knorpelig, so dass jene Knochen als Belegknochen des Knorpels sich darstellen.

7. Thränenbein (Lacrymale).

Dieser Knochen stellt ein dünn, mehr oder minder deutlich vierseitiges Plättchen vor, welches am medialen Augenwinkel, zwischen dem Hinterrand des Stirnfortsatzes des Oberkiefers und dem Vorderrand der Lamina papyracea des Siebbeins eingefügt ist, und mit seinem oberen Rande an die Pars orbitalis des Stirnbeins, mit dem unteren an die Facies orbitalis des Oberkiefers grenzt. Seine medial gerichtete, durch Unebenheiten ausgezeichnete Fläche deckt vordere Siebbeinzellen. Die laterale, gegen die Orbita gerichtete Fläche ist durch einen
von oben herabziehenden leistenartigen Vorsprünge Crista lacrymalis post. cr) [Fig. 150, 172], in zwei Abschnitte getrennt. Der vordere schmalere ist rinnenartig vertieft, Sulcus lacrymalis s. Das untere Ende dieses Abschnittes sieht dem Proc. lacrymalis der unteren Muschel entgegen.

Der hintere größere Abschnitt der lateralen Fläche ist glatt und setzt sich unmittelbar auf die Crista fort, und einen von ihrem unteren Ende ausgehenden vorwärts gerichteten Vorsprung (Hamulus lacrymalis), der gegen den Anfang der Crista lacr. anterior des Stirnfortsatzes des Oberkiefers tritt und damit die in Concurrenz mit diesem Knochen gebildete Fossa lacrymalis zur Aufnahme des Thräenensackes lateralwärts umzieht.

S. Nasenbein (Nasale).

Die beiden Nasenbeine nehmen den zwischen den Stirnfortsätzen der beiderseitigen Oberkiefer bestehenden Raum ein (Figg. 151, 152, 153 ff.). Jedes Nasenbein ist ein länglicher, oben schmaler, aber verdickerter Knochen, der nach unten und vorne sich verbreitert und dabei dünner wird. Die äußere Fläche ist glatt, abwärts etwas gewölbt. Sie zeigt meist einige kleine Löcher für Blutgefäße. Die innere Fläche ist uneben, mit einer zuweilen getheilten, abwärts verlaufenden Furche (Sulcus ethmoidalis) versehen. Das obere bedeutend verdickte Ende bietet eine zackige Verbindungsfäche mit der Pars nasalis des Stirnbeins. Der untere zugeschärfte freie Rand zeigt gewöhnlich einen dem Ende jener Furche entsprechenden Einschnitt, und bildet mit dem anderseitigen und der Incisura nasalis beider Oberkieferknochen die Begrenzung der Apertura pyriiformis, des Eingangs der knöchernen Nasenhöhle. Der mediane Rand (Fig. 151) dient zur Verbindung mit dem anderseitigen Knochen, ist uneben, oben sagittal verbreitert, gegen das untere Ende bedeutend verschmäler. Von ihm aus erstreckt sich nach innen eine Leiste, gegen welche der vordere obere Rand der Lamina perpendicularis des Siebbeins sich anlegt. Der laterale Rand endlich schließt sich dem Vorderrande des Stirnfortsatzes des Oberkiefers an (Fig. 172).

Die Nasenbeine sind gleichfalls Belegknochen der knorpeligen Nasenkapsel. Noch beim Neugeborenen ist unter ihnen eine Knorpellamelle erkennbar, die mit dem Siebbein und der knorpeligen Nasenscheidewand zusammenhängt, aber auch ebenso contnuirlich in die Cartilago triangularis der äußeren Nase sich fortsetzt.
In der Gestalt der Nasenbeine bestehen zahlreiche individuelle Schwankungen, durch welche die Configuration der äußeren Nase beherrscht wird. Zuweilen erscheinen sie untereinander verschmolzen, wie es für die Affen als Regel gilt.

9. Pfugscharbein (Vomer).

Dieser unpaare Knochen (Fig. 151) nimmt an der Basis des Schädels eine mediane Stellung ein, den hinteren Abschnitt der Scheidewand der Nasenhöhle vorstellend. Er bildet eine ungleich vierseitige senkrechte Platte, deren oberer stärkerer Theil dem Keilbeinkörper anlagert, in zwei seitliche Fortsätze, Alae vomeris ausgezogen (Fig. 176). Sie umfassen das Rostrum sphenoidale. Der hintere Rand ist schräg nach vorn und abwärts gerichtet, meist scharf, scheidet die beiden hinteren Nasenöffnungen (Choanae) und geht in stumpfem Winkel in den unteren Rand über, welcher bedeutend verdünnt auf der Crista nasalis des Gaumenbeins und der Gaumenplatte des Oberkieferns ruht. Dieser untere Rand bildet mit dem vorderen einen spitzen Winkel. Der vordere Rand ist aufwärts gekrümmt und erscheint zugleich etwas verdickt, an seiner hinteren oberen

Strecke mit der Lamina perpendicularis des Siebbeins, an der vorderen unteren Strecke mit der knorpeligen Nasenscheidewand in Verbindung.

Das Pfugscharbein bildet ebenfalls einen Belegknochen des Primordialcraniiums, und zwar an der von der Keilbeinregion sich nach vorne erstreckenden, sehr ansehnlichen medianen knorpeligen Lamelle (Fig. 146), von der die knorpelige Nasenscheidewand ein Überrest ist. Es umfaßt eine Zeit lang diesen Knorpel, der im Bereiche des vom Vomer gebildeten Knochenbelegs allmählich schwindet, wie er oben durch Ossification in die Lamina perpendicularis des Siebbeins ausgeht. — Häufig ist der Vomer asymmetrisch, zeigt Deviationen, oder auch Aufreibungen, streckenweise eine poröse Beschaffenheit.

Von der knorpeligen Nasenkapsel bleibt nach der Verknöcherung des in das Siebbein übergehenden Abschnittes sowie nach Schwund der vom Nasenbein und Oberkiefer überlagerten Strecke ein Theil erhalten und geht mit in das Gerüste der äußeren Nase ein. Es ist das eine senkrechte knorpelige Lamelle mit unmittelbar oder mittelbar ihr verbundenen Knorpeln, welche der seitlichen Wand der äußeren Nase angehören. Die senkrechte Lamelle bildet:

Das hintere, verschmälerte auslaufende Ende des Knorpels zeigt bedeutende Variationen. Es bietet Einschnitte dar oder ist abgegliedert. Ähnliche einzelne Knorpelstückchen finden sich auch über der Cart. alaris, in der verschieden umfänglichen Lücke, welche zwischen ihrem oberen Rande, dem Rande der Apertura pyriformis und der Cart. triangularis besteht (Fig. 152). Es sind die in Zahl, Umfang und Lage sehr wechselnden Cartilagines sesamoidae.

Die Nasenflügelknorpel erscheinen als vom Primordialcranium unabhängige Bildungen. Am unteren Rande der knorpeligen Nasenscheidewand findet sich noch jederseits ein länglicher Knorpel, welcher wohl einem beim Menschen nicht zur Entfaltung gelangenden
Zweiter Abschnitt.

III. Knochen der Kieferregion des Schädels.

§ 76.

11. Oberkiefer (Maxillare superius oder Maxilla).

Am Körper des Oberkiefer sind drei Flächen wahrnehmbar, eine mediale oder innere (Facies nasalis), eine laterale oder äußere (Facies externa), und eine obere (Planum orbitale). Der Körper umschließt eine große Höhle (Sinus maxillaris, Antrum Highmori), die als Nebenhöhle der Nase auf der medialen Fläche ausmündet (Fig. 155).

Die äußere Fläche (Fig. 154) wird durch einen lateral und auf-

Von den 4 Fortsätzen des Oberkiefers dienen drei zur Verbindung mit anderen Knochen. Aufwärts gerichtet, theils von der Antlitzfläche, theils von der Nasen-
flache sich erhebend, tritt der Processus frontalis ab (Figg. 154. u. 155). Sein hinterer Rand bildet an der Basis die vordere Wand des Sulcus lacrimalis und grenzt diese Furche durch eine zuweilen scharfe, aufwärts ziehende Leiste (Crista lacrimalis anterior) von vorne her ab. In der Mitte der medialen Fläche zieht eine der Crista turbinalis parallele rauhe Linie etwas schräg vor- und abwärts: Crista ethmoidalis. An sie schließt sich das Siebbein mit seiner mittleren Muschel. Das ausgezackte und verdickte obere Ende des Stirnfortsatzes fügt sich an die Pars nasalis des Stirnbeines, der Vorderrand verbindet sich mit dem seitlichen Rand der Nasenbeine, der hintere, medial vom Sulcus lacrimalis vorspringende Rand, (Margo lacrimalis) dem Tränenbein.

Der kurze Processus jugalis (Fig. 154) ist lateralwärts gerichtet, dabei etwas nach hinten. Er bietet eine dreiseitige rauhe Fläche, nicht selten mit bedeutenden Vertiefungen. Mit ihm verbindet sich das Jochbein.

Ein dritter Fortsatz, Processus palatinus erstreckt sich an der medialen Seite horizontal einwärts. Er hilft den Boden der Nasenhöhle und das Dach der Mundöhle, den harten Gaumen bilden, indem er mit dem anderseitigen in einer Zackenmaß (Sutura palatina sich vereinigt Fig. 155). Die Nasenfläche ist glatt, die Gaumenfläche uneben. Der obere Rand der Sutura palatina erhebt sich als eine Leiste, Crista nasalis, welche vorne meist bedeutender und etwas lateral gekrümmt erscheint. Sie trägt das Pflugscharbein und an der vordersten Strecke die knorpelige Nasenscheidewand. Ein spitzer Fortsatz ragt median mit dem gleichen verbunden als Spina nasalis anterior (Fig. 154) vor. Hinter dem lateralwärts umgekrempften Vordertheile der Crista palatina tritt ein Canal in den Gaumenfortsatz schräg herab, Canalis incisivus (Fig. 155). Die beiderseitigen Canäle vereinen sich in der Regel an der Gaumenfläche zu einer weiteren unpaaren Mündung. An dieser Stelle ist häufig noch bei Erwachsenen, stets aber an jugendlichen Individuen eine feine, quer nach außen ziehende nahtartige Stelle (Sutura incisiva) bemerkbar, welche die Grenze des Praemaxillare andeutet (Fig. 156). Nach hinten verbindet sich der Gaumenfortsatz mit der horizontalen Platte des Gaumenbeins.

Der vierte Fortsatz, Proc. alveolaris, birgt die Alveolen der Zähne des Oberkiefers und ist abwärts gerichtet. Der Anordnung der Zähne gemäß verläuft er bogenförmig von hinten nach vorne, median dem anderseitigen vor dem Canalis incisivus sich verbindend. Der zahntragende freie Rand des Fortsatzes bietet die durch Querwände von einander getrennten Öffnungen der Zahnfächer, Alveoli, welche dem Umfange und der Gestalt der in sie eingesenkten Zahnwurzeln angepasst sind (s. unten beim Darmsystem).

Die Alveolen der beiden Schneidezähne fallen auf den vom Praemaxillare gebildeten Theil des Fortsatzes. Die innere, die Mundhöhle mit begrenzende Fläche des Fortsatzes ist uneben und wölbt sich gegen die Gaumenfläche des Gaumenfortsatzes empor. Die äußere Oberfläche bietet den Alveolen entsprechende Versprünge (Juga alveolaria), die vorne am stärksten sind. Die Existenz des Alveolarfortsatzes ist an die Zähne geknüpft. Vor dem Durchbruch der Zähne ist er kaum angedeutet. Mit ihrer Ausbildung

Die Beziehung zu den Schneidezähnen, deren alveolare Umwandlung die anscheinendste Partie des gesammten Praemaxillare vorstellt, lässt eine Scheidung der Anlage des Knochens in zwei je eine Alveole bergende Theile entstehen, die auch auf den Gaumentheil des Knochens sich fortsetzen, so dass dann jedenfalls zwei Praemaxillaria zu bestehen scheinen; zweiweilen erhält sich dieser Zustand noch am Gaumen des Neugeborenen erkennbar. Die Geschichte des Praemaxillare in der Reihe der Wirbeltiere gestattet jedoch nicht, jene auch an andern sonst einheitlichen Deckknochen des Schädels zuweilen vorkommende Entstehung aus mehreren Theilen zur Aufstellung eines neuen Schädelementes zu verwerten, selbst wenn, wie in nicht seltenen Fällen von Missbildungen die Trennung sich zu einer definitiven gestaltet hat.

Abgesehen von Praemaxillare bildet sich der Oberkieferknochen aus mehreren Ossifikationen, über die sehr verschiedene Angaben bestehen. Die erste Knochenlamelle, welche auch den größten Theil des Knochens hervorgehen lässt, entsteht an der lateralen Fläche der knorpeligen Seitenwand der Nasenhöhle, bildet abwärts gegen die Zahnanlagen wachsend den Alveolartheil des Kiefers und erstreckt sich auch medianwärts, den Gaumenfortsatz vorstehend. Schon bei 8 cm langen Embryonen buchtet sich der Raum der Nasenhöhle zwischen mittlerer und unterer Muschel gegen den hier verdickten Knorpel der Seitenwand der Nasenhöhle aus und bildet die Anlage des Sinus maxillaris, der also zuerst vom Knorpel umrandet wird (Dürsy).

GEGENBAUR, Anatomie.

Die Pars perpendiculāris (P. nasalis) liegt am hinteren Abschnitt der medialen Fläche des Oberkiefers (Fig. 155) mit einer rauen Oberfläche ihr verbunden, deckt von hinten her einen Theil der Öffnung des Sinus maxillaris und schließt sich mit ihrem hinteren Rande über einen Theil der medialen Lamelle des Flügelfortsatzes des Keilbeins hinweg. Genan zwischen diesen beiden an der lateralen Fläche der senkrechten Lamelle befindlichen Verbindungsgstrecken zieht sich, oben an einem tiefen, fast kreisförmigen Ausschnitt (Incis. palatina) beginnend, der Sulcus pterygo-palatinus herab (Fig. 157 B). Der von zwei leistenartigen Vorsprüngen begrenzte Sulcus ist in seinem Verlaufe nach unten allmählich vollständiger von Knochen umschlossen, indem seine hintere Randbegrenzung in einen anschließenden nach hinten, außen und abwärts vorspringenden Fortsatz, Processus pyramidalis (Fig. 157 A, B) sich erstreckt, welcher den unten sich erweiternden Sulcus auch nach vorne zu theilweise umwandelt.

Der Sulcus pterygo-palatinus, abwärts zum Canal gestaltet, mündet am Gaumen zwischen Oberkiefer und Gaumenbein aus. Das Gaumenbein bildet die mediale Begrenzung dieser Mündung (Foramen palatinum majus), welche auslaufend noch auf die Gaumenfläche der Pars horizontalis sich erstreckt. Die vom Oberkiefer gebildete laterale Begrenzung der Endstrecke des Canals ist gleichfalls rinnenförmig vertieft. Vom Can. pterygo-palatinus zweigen sich meist zwei engere Canäle ab, Canales palat. posteriores (B), welche den Proc. pyramidalis durchsetzen und an der Basalfäche desselben als Foramina palat. minora zur Mündung kommen.
Der Processus pyramidalis legt sich mit seiner vorderen, etwas lateralen Fläche an den Oberkiefer, über dem hinteren Ende des Alveolarfortsatzes und bietet an seiner hinteren Fläche ungleiche Strecken dar, eine mittlere, meist etwas vertiefte glatte Strecke (Fig. 157 A), welche von zwei abwärts divergirenden rinnenartigen Stellen umfasst wird. Diese dienen zur Aufnahme der beiden Lamellen des Flügelfortsatzes des Keilbeins. Die Verbindungsfäche der medialen Lamelle ist meist rinnenartig gestaltet (w), jene für die laterale Lamelle ist auf die laterale Fläche des Pyramidenfortsatzes ansgedehnt (l). Die glatte Fläche (*) hilft die Fossa pterygoidea bilden. Oberhalb des Pyramidenfortsatzes wird der Sulcus pterygopalatinus vom oberen Theile des Flügelfortsatzes abgeschlossen, der sich hier nur mit seiner medialen Lamelle an das Gaumenbein anlegt. Dieser obere Abschnitt der Furchen ist am Schädel von außen sichtbar, zwischen Tuber maxillare des Oberkiefers und dem Flügelfortsatz des Keilbeins und entzieht sich erst der Blick, wo die laterale Lamelle des Flügelfortsatzes sich an den Pyramidenfortsatz des Gaumenbeins anschmiegt. An der Innenfläche (Superficies nasalis) der Pars perpendicularis sind außer indifferenten Unregelmässen zwei ziemlich parallele Quervorsprünge bemerkbar (Fig. 157 C). Der untere, Crista turbinalis, entspricht der gleichnamigen Leiste des Oberkiefers, desgleichen der obere, Crista ethmoidalis. Beide sind an der vordersten Hälfte der Nasenfläche schärfer ausgeprägt. Die Crista ethmoidalis liegt dicht unter der Incisura palatina, welche zwei abwärts gehende Fortsätze der Pars perpendicularis des Gaumenbeins von einander trennt.

Bei anscheinlicher Gestaltung sind an diesem Fortsatz fünf Flächen zu unterscheiden. Drei dienen zur Verbindung mit den oben genannten Knochen, nach denen sie benannt sind. Davon liegen zwei medial und aufwärts. Eine vordere (Fig. 157 C, s. ethm.) schliesst sich an das Siebbein an und bedeckt meist eine Zelle desgleichen, welcher entsprechend sie vertieft ist. Daran grenzt nach hinten die Verbindungsfäche mit der Vorderseite des Keilbeinkörpers, von dessen Höhle eine Buchtung sich auf sie erstreckt (s. sphen.). Die dritte Verbindungsfäche liegt lateral und ist vor- und abwärts gerichtet (B. s. max.). Sie legt sich auf den Oberkiefer. Die beiden freien Flächen sind glatt und stossen an einer schwachen Kante an einander. Die eine davon sieht aufwärts (B. s. orb.), medial grenzt sie an die Papierplatte des Siebbeines. Hinten und abwärts gegen die Incisur schliesst sich die letzte Fläche an, welche der Flügelmagensrube zugekehrt ist. (vergl. Fig. 166 B.).

Der hintere Fortsatz, Proc. sphenoidalis, erhebt sich minder als der vorige und krümmt sich etwas medial, um sich der unteren Fläche des Keilbeinkörpers anzulegen. Seine Innenfläche sieht gegen die Nasenhöhle.

Beide Fortsätze geben durch ihre Verbindung mit dem Keilbeinkörper der

Knochen des Schädels.

195
Incisura palatina einen Abschluss. Diese wird so zum Foramen sphenopalatinum, welches aus der Flügelgangengrube in die Nasenhöhle führt.

Die Pars horizontalis bildet im Anschluss an den hinteren Rand des Proc. palat. des Oberkiefers eine dünne und auch schmale Lamelle, die sich median durch eine Naht mit der anderseitigen verbindet. Die obere Fläche ist glatt, die untere meist etwas uneben. Ein am hinteren zugeschärften Rande befindlicher Ausschnitt lässt median eine Spitze vorragen, die mit der des anderseitigen Knochens die Spina nasalis posterior bildet (vergl. Fig. 148). An der Naht erhebt sich die Crista nasalis als Fortsetzung der durch den Proc. palatinus des Oberkiefers gebildeten und verbindet sich wie diese mit dem Vomer.

13. Jochbein, Jugale (Os zygomaticum, Os malar).

Das Jochbein, Wangenbein, stellt durch seine Hauptverbindungen mit dem Oberkiefer und dem Schläfenbein den Jochbogen (Arcus zygomaticus) dar, der sich an der Seite des Antlitztheils des Schädels über den unteren Theil der Schläfengrube hinwegspannt. Man unterscheidet an dem unregelmäßig vierseitigen Knochen drei freie Flächen und eben so viele Fortsätze, welche mit anderen Knochen Verbindungen eingehen. Die äußere oder Antlitzfläche, Superficies facialis, ist die anschulichste (Fig. 158) und läuft auf sämtliche Fortsätze aus. Sie bietet nahe ihrer Mitte 1—2 kleine Löcher (z') (For. zygomatico-faciale). Ihr vorderer oberer Rand ist bogenförmig ausgeschnitten, er bildet als Margo orbitalis die laterale und theilweise auch die untere Begrenzung der Orbitalöffnung, und an ihm beginnt einwärts die zweite oder Orbitalläche, welche den vorderen Abschnitt der lateralen Begrenzung der Augenhöhle vorstellt und auf den Proc. fronto-sphenoidalis ausläuft. Daselbst ist das Foramen zygomatico-orbitale (Fig. 159 z) bemerkbar, ins Innere des Knochens führend.

b. Knochen des Visceralskeletes.

§ 77.

drei Bogen Beziehungen zur Mundhöhle. Am ersten bildet sich der knöcherne Unterkiefer, und die sich erhaltenden Reste der beiden folgenden Bogen gewinnen Verbindungen mit der Muskulatur des Halses sowohl wie der Zunge, und stellen das Zungenbein vor. Unterkiefer, Zungenbein und Gehörgelenke, funktionell wie anatomisch sehr differente Bildungen, nehmen also aus oder an jenen ursprünglich gleichartig angelegten Bogenbildungen ihre Entstehung, sind Differenzierungen derselben.

Die Vertheilung jener Skeletgebilde nach den einzelnen Bogen, aus denen sie hervorgehen, ist in Folgendem kurz dargestellt. Aus einem obersten Abschnitte des ersten Bogens (Kieferbogens) geht der Amboß hervor. Die bezügliche knorpelige Anlage entspricht einem bei Reptilien und Vögeln als Quadratbein persistirenden Skelettheile, der aus einem bei Fischen als Palatoquadratum bezeichneten, einen primären Oberkiefer darstellenden Knorpelstücke entspringt. Wie mit dem Quadratrum der Unterkiefer der niederen Wirbeltiere articulirt, so articulirt mit der Anlage des Amboß ein ventralwärts sich anderes Knorpelstück, welches jedoch bei den Säugethieren sich nicht zum Unterkiefer entwickelt. Der mit dem Amboß articulirende Abschnitt wandelt sich nämlich wieder zu einem Gehörgelenke, dem Hammer, um. Von diesem aus erstreckt sich dann der knorpelige Rest des ersten Bogens in der unteren Begrenzung der Mundöffnung medianwärts (Vergl. Fig. 160) den hinter dem Unterkiefer nach hinten und aufwärts ziehenden Theil. Es ist der Meckel'sche Knorpel, auf welchem die knöcherne Anlage des definitiven Unterkiefers entsteht.

Von einem dritten Bogen wird nur ein unteres Knorpelstück ausgebildet, das grosse oder hintere Horn des Zungenbeins. Dazu kommt noch ein medianes Verbindungsstück (Copula) des zweiten und dritten Kiemenbogens, der Körper des Zungenbeins, dem also zwei Reste von Bogen, die eben genannten Hörner ansitzen. Aus den primitiven Ver-

Gehörknöchelchen.

Sie bilden an einander schließend eine Kette, welche von der Labyrinthwand der Paukenhöhle aus lateral zu dem an der Pars tympanica des Schläfenbeins ausgespannten Trommelfell zieht. Mit ersterer steht der Steigbügel, mit letzterem der Hammer in continuirlicher Verbindung, und zwischen beiden ist der Amboß angebracht.

Der Steigbügel (Stapes), das in seiner Form am meisten seiner Benennung entsprechende Knöchelchen (Fig. 161), lässt eine Platte und zwei davon ausgehende und in einem griffartigen Stück (Capitulum) vereinte Spangen unterscheiden. Die längliche Fußplatte ist an einer Längsseite ihres Randes stärker als an der anderen gekrümmt und mit einer planen und einer etwas vertieften Fläche versehen. Von letzterer erheben sich die Spangen. An den einander zugekehrten Flächen sind sie rinnenartig ausgehöhlt. Eine Membran verschließt den zwischen den beiden Spangen und der Fußplatte befindlichen Raum. Der Stapes hat eine fast horizontale Lage, indem seine Fußplatte der Fenestra ovalis eingepasst und mit dem Rande derselben fibrös verbunden ist. Die eine, etwas mehr gekrümmte Spange ist als vordere, die andere, minder gekrümme als hintere unterschieden.

Der Amboß (Incus) besitzt einen vorwärts gerichteten Körper und zwei davon ausgehende Fortsätze (Fig. 162). Der kürzere aber gedrungenere, lateral etwas comprimirte, geht vom Körper nach hinten ab und bietet lateral nahe an seinem Ende eine unebene Gelkflache zur Verbindung mit der Wand der Paukenhöhle. Der längere schlankere ist abwärts gerichtet und trägt an seinem etwas

Während die Entstehung des Hammers und des Amboß aus dem ersten knorpeligen Kiemenbogen (Kieferbogen) längst festgestellt ist, walten bezüglich des Steigbügels verschiedene Meinungen. Nach J. Grauer soll er aus der knorpeligen Labyrinthwand sich sondern, also keine genetische Beziehung zum zweiten Kiemenbogen (Zungenbein) besitzen. Vergleichend anatomische Thatssachen, sowie manche Beobachtungen der Entwicklung selbst begründen die oben eingehaltene Darstellung.

Unterkiefer (Mandibula, Maxilla inferior).

Der Unterkiefer entsteht aus zwei getrennten Hälften, die allmählich durch Ossification der medianen Synchondrose, meist bald nach der Geburt, zu dem einheitlichen Knochen verschmelzen, der unterhalb des Gesichtsteiles des Schädels seine Lage hat. Man unterscheidet am Knochen den bogenförmigen Körper, welcher aufwärts einen dem Alveolarfortsatz des Oberkiefer’s entsprechenden
Alveolartheil besitzt und jederseits hinten in einen aufsteigenden Ast sich fortsetzt.

Am Körper ist der untere Rand wulstig verdickt, und am vorderen Theile springt er sogar etwas vor. Zuweilen prägt sich das an zwei dann höckerartig gestalteten Stellen bedeutender aus. In der Medianlinie macht sich die Verschmelzungsstelle beider Hälften als eine leichte Erhebung bemerkbar, die abwärts sich verbreitert und dann als Protuberantia mentalis bezeichnet wird. Seitlich von ihr ist am Unterrand das Tuber mentale bemerkbar. Weiter lateral, fast in der Mitte der Höhe des Knochens, liegt das Foramen mentale an der seitlichen Grenze der Kinngegend. Weiter nach hinten zieht die Linea obliqua zum Vorderrande des Unterkieferastes empor. An der Innenfläche ist die mediane Verbindungsstelle gleichfalls durch einen Vorsprung ausgezeichnet, der näher dem unteren Rande liegt, Spina mentalis. Dicht am Rande selbst findet sich jederseits eine flache Grube, einem Fingereindruck ähnlich, nach einem hier inserirten Muskel (Musc. biventer maxillae s. digastric) Fossa digastrica (Fig. 166 Biv.) benannt. Über derselben beginnt ein schräg aufwärts und nach hinten verlaufender Vorsprung, auf dem eine Kante, Linea

Fig. 165.

Rechte Unterkieferhälfte in lateraler Ansicht.
A von einem Neugeborenen. B vom Erwachsenen.

Fig. 166.

Rechte Unterkieferhälfte in medialer Ansicht.
A vom Neugeborenen. B vom Erwachsenen.
Zweiter Abschnitt.

Der Alveolartheil trägt die Fächer, Alveolen, der Zähne des Unterkiefers, die einzelnen Fächer wieder den Wurzeln dieser Zähne angepasst (s. Zähne). Bei Verlust der Zähne verfallen die Wandungen auch dieser Alveolen einem Schwunde. Äußere, den Alveolen entsprechende Vorsprünge, Juga alveolaria, sind minder bedeutend als am Oberkiefer ausgeprägt.

Der Ast erhebt sich vom hinteren Theile des Körpers und bildet mit ihm einen nach unten und hinten gerichteten Vorsprung, Angulus mandibulae, an welchem der untere Rand des Körpers in den hinteren Rand des Astes übertritt (Fig. 165). Die an der äußeren Fläche des Kieferwinkels befindlichen Unebenheiten deuten die Insertion des M. masseter an. Aufwärts gabelt sich der Ast in zwei durch die Incisura mandibulae getrennte Fortsätze; der hintere stärkere Processus articularis-(condyloides) trägt den schräg gestellten, mit dem andersseitigen convergirenden, überknorpelten Gelenkkopf, der medial bedeutend vor sprungt. Hier hat der Fortsatz an seiner Vorderfläche eine meist sehr deutliche Grube zur Insertion des äusseren Flügelmuskels.

Der zweite vordere Fortsatz, Proc. temporalis (coronoides) ist von den Seiten comprimirt und stellt eine zur Insertion des Schläfenmuskels dienende Bildung vor, die erst während der ersten Lebensjahre sich anscheinender entfaltet. Auf seiner medialen Fläche läuft die Lin. mylo-hyoidea aus. Unterhalb der Incisur tritt an derselben Fläche ein Loch schräg in den Unterkiefer, Foramen mandibulare s. alveolare (Fig. 166). Es wird medial meist von einem Knochenblättchen (Lingula) überzogen, hinter welchem dicht vom Eingange der Öffnung her der Sulcus mylohyoideus parallel mit der Lin. mylohyoidea sich ab- und vorwärts erstreckt. Eine raue Stelle an der Innenfläche des Kieferwinkels bezeichnet die Insertion des inneren Flügelmuskels.

Vom Foramen mandibulare verläuft ein Canal durch den Unterkiefer (Can. alveolaris) unterhalb des Grunde der Alveolen der Innenfläche und dem Unterrande nahe, bis nach vorn, Blutgefäße und Nerven bergend. Eine Abzeigung dieses Canals mündet am Foramen mentale aus.

Eine mächtige Schichte compacten Knochengewebes bildet die Hauptmasse des Knochens, und lässt den Unterkiefer dem Verweigungspfess länger widerstehen als andere Theile des Skeletes.

Mit dem Fehlen des Alveolartheils vor dem Durchbruch der Zähne zeigt sich in den früheren Zuständen des Unterkiefers noch eine bedeutend schräge Stellung des Astes zum Körper, so dass der Winkel milder vorspringt und der Gelenkfortsatz nach hinten sieht (vergl. Fig. 165, 166, A). Im Greisenalter gewinnt der Knochen nach Verlust seines Alveolartheiles eine ähnliche Gestaltung.

Kiefergelenk (Art. cranio-mandibularis).

Der Unterkiefer artculirt mittels seines Gelenkfortsatzes auf der ihm vom Schuppenteil des Schlafenbeins gebotenen Gelenkfläche. Diese umfasst das Tuberculum articulare und senkt sich von da an in die dahinter gelegene Gelenkgrube ein.

Der Gelenkkopf des Unterkiefers besitzt für jene Gelenkfläche keine congruente Oberflächenbildung. Die Congruenz wird hergestellt durch einen Zwischenknorpel (Fig. 167), der mit dem schlaffen Kapselbande verbunden ist. Seine dickeren Ränder sind in letzteres eingefügt, so dass er mit dem Kapselbande dem Gelenkkopfe folgend, bewegt wird. In der Mitte ist er dünner, zuweilen sogar durchbrochen. Das Kapselband entspringt am Schädel vorne vor dem Tuberculum art., lateral von der hinteren Wurzel des Jochbogens, medial von

Fig. 167.

Senkrechter Durchschnitt durch das Kiefergelenk.
A Gelenkkopf des Unterkiefers in der Cavitas glenoïdalis, B auf dem Tubere. articulare stehend.

der Umgebung der Spina angularis des Keilbeins, und hinten aus der Tiefe der Cavitas glenoïdalis. Am Unterkiefer befestigt es sich rings unterhalb der Gelenkfläche des Processus articularis.

Mit der Kapsel ist ein Verstärkungsband in Zusammenhang, das äußere Seitenband. Es entspringt von der unteren Fläche der Wurzel des Jochfortsatzes des Schlafenbeins und verläuft schräg nach hinten und abwärts zum Gelenkfort-
Zweiter Abschnitt.

satz des Unterkiefers, an dessen Hals es sich inseriert. Ein inneres Seitenband wird durch ligamentöse Stränge, die keine Beziehung zur Kapsel besitzen vorge- stellt (s. unten).

Solche **Innere Seitenbänder** bilden eine Bandmasse, welche hinter dem Kiefergelenke, etwas medial davon, vom Schädel entspringt und sich in mehrere Blätter sondert, die an der medialen Seite des Gelenksfortsatzes befestigt sind. Eines geht zum Halse des letzteren, ein anderes tritt zur medialen Begrenzung (Lingula) des Foramen alveolare. Hierauf kann endlich noch gerechnet werden das **Lig. stylo-ma**

zione, einen von der Fascie des M. stylo-glossus, oder auch von dessen Ursprungssehne sich abziehenden Bandstreif, der zum Winkel des Unterkiefers verläuft und an der Lingula sich befestigt, besitzt keine direkte Beziehung zum Mechanismus des Kiefergelenkes. Das gleiche gilt von dem sogenannten **Lig. pterygo-maxillare**, einem vom Hamulus pterygoideus zum hinteren Ende der Linea mylo-

hyoidea tretenden Bande.

Die anatomische Einrichtung des Kiefergelenkes wird aus dem **Mechanismus** der Actionen des Unterkiefers verständlich. Die ausführbaren Bewegungen sind dreifacher Art: 1. Eine **seitliche Bewegung** mit geringer Excursion findet in der Richtung einer Bogenlinie statt, in welche die nicht in einer Geraden aufeinander treffenden Axen der Gelenkköpfe fallen. 2. **Auf- und Abwärtsbewegung** des Unterkiefers, wobei das Gelenk einen Ginglymus vorstellt. 3. **Vor- und Rückwärtsbewegung**. Bei der Vorwärtsbewegung tritt der Gelenkkopf auf das Tub. articulare und der Zwischenknorpel bildet für den Condylus eine Pfanne (Fig. 167 B), während beim Zurücktreten in die Cavitas articularis der Zwischenknorpel sich an die hintere Fläche des Tub. art. und die vordere Fläche des Condylus legt, dessen hintere Fläche gleichzeitig vom Kapselbande bedeckt wird (Fig. 167 A). Die seitliche Bewegung wie die Winkelbewegung, bei welcher der Condylus um seine Axe sich dreht, gehen in der Cavitas articularis vor sich. Doch findet beim einfachen Abziehen des Unterkiefers, in höherem Grade bei weiter Öffnung des Mundes, eine Vorwärtsbewegung statt, so dass der Gelenkkopf auf das Tub. art. tritt. Diese mannigfachen Bewegungen ermöglichen der Zwischenknorpel, der für den Condylus eine transportable Pfanne repräsentiert. Damit steht noch im Zusammenhang, dass der den Unterkiefer vorwärts bewegende M. pteryg. externus sich teilweise an die Kapsel, speziell an den daselbst angefügten Zwischenknorpel inserirt, also mit dem Unterkiefer auch jenen Knorpel vorwärts bewegt.

Zungenbein (Os hyoides, Hyoid).

Das die Copula repräsentirende Stück, Körper oder **Basis** benannt, ist platt, nach den Seiten schwach gekrümmt, an der vorderen aufwärts gerichteten

Die am Zungenbeinkörper sitzenden Bogenumdimente sind die Hörner des Zungenbeins. Es sind vordere, obere, Cornua minora (Fig. 168, 169 mi), und hintere untere, Cornua majora (ma). Die kleinen Hörner sind meist unanschauliche, zuweilen knorpelig bleibende Stückchen, welche oben dem lateralen Rande des Körpers dicht an der Verbindungsstelle mit den großen Hörnern mittels eines Gelenkes angefügt sind. Die großen Hörner sind schlank, gegen den Zungenbeinkörper zu breiter werdende Stücke, welche mit dem lateralen Rande des Körpers in straffer Verbindung stehen. Seltener ist auch hier ein Gelenk vorhanden. Das hintere freie Ende der großen Hörner bietet meist eine knopfförmige Anschwellung.

Die kleinen Hörner sind an Länge sehr variabel. Sie stehen durch das Lig. stylo-hyoideum mit dem Griffelfortsatz des Schlafenbeins in Verbindung, und können so aufwärts verlängert sein. Selten erreicht diese Verlängerung den Griffelfortsatz und noch seltener verbindet sich sogar mit ihm. Zuweilen wird das Lig. stylo-hyoideum durch ein Knochenstäbchen vertreten, welches die Verbindung mit dem Griffelfortsatz vermittelt, und dann besteht eine Überlagerung mit den meisten Sägethüren, bei denen das Lig. stylohyoid, durch einen unschönen Knochen repräsentiert wird. Diese Variation im Verhalten der kleinen Hörner erklärt sich aus deren Entwicklung, die sie als die unteren Glieder eines Bogens nachweist. Die großen Hörner verwachsen häufig mit dem Körper. Die durch die großen Hörner und ihre Verbindung mit dem Körper dem Zungenbein zukommende Gestalt lässt es einem griechischen ν ähnlich erscheinen, daher der Name: Hyoïdes.

Verbindungen des Schädels mit der Wirbelsäule (Articulatio occipitalis, s. cranio-vertebralis).

§ 78.

Atlanto-epistropheal-Verbindung. In diesem »Drehgelenke« des Schädels kommen mehrfache Articulationen in Betracht. Der mit seinen unteren Gelenkflächen auf den oberen des Epistropheus lagernde Atlas nimmt mit seinem vom vorderen Bogen abgeschlossenen Ausschnitte den Zahnför-
Verbindungen des Schädels.

Fig. 170.

Fig. 171.

Bandapparat zwischen Occipitale und den beiden ersten Halswirbeln, bei geöffnetem Rückgratskanal von hinten gesehen.

An Hilfsbändern bestehen 1. die Ligg. alaria (Fig. 171), zwei kurze, aber starke Faserstränge, welche vom oberen Theile des Zahnes lateral ausgehen und divergent zur medialen Fläche der Condyls occipitales emporsteigen. Sie befestigen sich da an der rauhen, gegen das Foramen magnum schenden Fläche.

2. Von der Spitze des Zahnes erstreckt sich das mechanisch unwichtige Lig. apicis zum vorderen Umfange des Hinterhauptsloches (Fig. 171). 3. In seiner Lage zum Atlas wird der Zahnfortsatz durch das Lig. transversum festgehalten (Fig. 170). Es ist jederseits an einer unebenen Vertiefung am Atlas befestigt und verläuft verbreitert über die hintere Fläche des Zahnfortsatzes. Von der Verbreiterung aus erstrecken sich Faserzüge in longitudinaler Richtung aufwärts und abwärts. Die erstern bilden ein schmales, zum Occipitale tretendes Band. Die etwas kürzeren und abwärts gehenden Züge inseriren sich am Körper des Epistrophens. So wird das Lig. transversum zu einem Lig. cruciatum umgestaltet. Eine das gesammte Lig. cruciatum überdeckende Membran erstreckt sich breit vom Körper des Epistrophens zum Occipitale. Sie ist eine schärfer ausgeprägte Fortsetzung des hinteren Längsbandes der Wirbelkörper. Indem der ganze Bandapparat in den am Atlas befindlichen vorderen Ausschnitt eingebettet ist, wird er vom Rückgratskanal ausgeschlossen.

Ungeachtet der zwischen Schädel und den ersten Halswirbeln bestehenden Beweglichkeit bleibt doch ein unmittelbarer Zusammenhang zwischen der Basis des Occipitale
und dem einem Körper des ersten Halswirbels entsprechenden Zahn des Epistrophus. Ein feiner Bandstreif, das oben erwähnte Lig. apiæs (Lig. suspensorium dentis) (Fig. 171) verläuft von oben an den Schenkel des Kreuzbandes gedeckt zwischen jenen Theilen. Er entspricht einem Zwischenwirbelkörperbande, auch insofern, als ihn die Chorda dorsalis durchsetzt, die sich hier auch länger als in den Wirbelkörpern erhält. Die Reduction dieses Lig. intervertebrale ist auf Rechnung der Beweglichkeit zu setzen, die zwischen den von ihm verbundenen Theilen sich entfaltet hat.

c. Der Schädel als Ganzes.

Aussenfläche und Binnenräume.

§ 79.

Die Hirnkapsel besitzt eine in der Regel ovale Gestalt mit größerem sagittaln Durchmesser, und kleinerem queren, der aber am hinteren Drittel jenen des vorderen zu übertreffen pflegt.

Vor dieser Vertiefung läuft die Infraorbitalspalte in eine medianwärts eindringende spaltähnliche Grube herab, deren seitlicher Eingang durch die Anlehnung der äußeren Lamelle des Flügelfortsatzes des Keilbeins gegen den Oberkiefer eine untere Abgrenzung empfängt. Es ist die Flügelgaumengrube (Fossa pterygopalatina) (vgl. Fig. 172), deren Eingang, von Keilbein und Oberkiefer begrenzt, auch als Fossa sphenomaxillaris aufgeführt wird.

Von der Schädelhöhle her öffnet sich vor ihrem oberen Abschnitt das Foramen rotundum des Keilbeins.

Hinter der Wurzel des Jochbogens ist der äußere Gehörgang bemerkbar, hinter welchem von der seitlichen Hinterhauptsgegend her der Processus mastoides herabsteigt.

Complicirter als Dach und laterale Schädelwand erscheint der Antlitztheil durch mannigfaltigere Beziehungen zu anderen Organen.

Zunächst treten uns als bedeutende Vertiefungen die Augenhöhlen (Orbitae) entgegen, zwischen denen vorne die knöcherne Nase vorspringt. Jede der beiden Orbiten ist etwa pyramidal gestaltet. Die vier Seitenflächen der Pyramide entsprechen den Wandungen der Augenhöhle, deren äußere Öffnung der Basis entsprechende wäre. Der tief im Grunde der Orbita befindliche, mehr median gerückten Spitze der Pyramide entspricht das Foramen opticum. Lateral
Zweiter Abschnitt.

hiervon ist die obere Wand von der seitlichen geschieden durch eine bedeutende, meist bis gegen die Hälfte der Tiefe der Orbita vordringende Spalte: *Fissura orbitalis superior* (Fig. 173.), welche eine zweite Communication mit der Schädelhöhle vermittelt. Eine andere, nach vorne zu weitere Spalte scheidet die laterale Wand von der unteren. Die laterale Wand bildet vorwiegend die Facies orbitalis des großen Keilbeinflügels, vorne in Verbindung mit dem Jochbein. Die laterale und nach vorne geneigte untere Wand stellt der Oberkiefer her, vorne und seitlich gleichfalls mit dem Jochbein in Verbindung. Auf dem vom Oberkiefer gebildeten Boden der Orbita verläuft von der Infraorbitalspalte als offene Rinne beginnend der *Canalis infraorbitalis*.

Am hintersten Theile des Orbitalbodens tritt das Gaumenbein mit einer kleinen Fläche seines Processus orbitalis ein (Fig. 172.). Die mediale Wand [vergl. Fig. 172., 173] bietet die Lam. papyracea des Siebbeins, und daran im Anschluss das Thränenbein dar. Gegen die oberen Ränder beider Knochen wölbt sich vom Orbitaldache das Stirnbein herab, und an der Verbindung mit der Lam. pap. sind zwei, zuweilen sogar drei *Foramina ethmoidalia* bemerkbar, deren vorderstes das wichtigste und meist auch das größere ist.

Auf der vorderen Hälfte des Thränenbeins vertieft sich, zur Hälfte auf den Stirnfortsatz des Oberkiefers übergreifend, die *Fossa sacci lacrymalis* von einer oben flachen Grube aus in einen hinter dem medialen Orbitalrand eindringenden *Canal Canalis naso-lacrymalis*, dessen Be- ginn vom Hamulus lacrymalis lateralwärts abgegrenzt ist (Fig. 172). Am Orbitaldache spielt das Stirnbein die Hauptrolle, indem nur ein kleiner Theil des Daches über dem For. opt. vom kleinen Keilbeinflügel gebildet wird. Die laterale am vorderen oberen Theile des Daches befindliche Fovea lacrymalis birgt die Thränendrüse. Der medial gegen die Pars nasalis des Stirnbeins auslaufende Supraorbitalrand trägt die Incisura supraorbitalis oder ist an deren Stelle von einem gleichnamigen Loche durchbohrt.

 Wie die Lamina papyracea das Siebein und das Thränenbein andeuten, wird der Interorbitaltheil des Schädels vom Nasenabschnitte gebildet, der an der Außenfläche durch eine mediane Öffnung, *Apertura pyriformis*, seinen Zugang hat. Die obere Begrenzung dieser Öffnung bilden die Nasenbeine, an welche
lateral der Oberkiefer sich mit seinem Stirnfortsatz ansehlt und auch den unteren Abschluss herstellt, median die Spina nasalis anterior entsendend.

Fig. 174.

Das Dach der Nasenhöhle bildet hinten zum geringen Theile der Keilbeinkörper, dessen Sinus von den Ossicula Bertini grossentheils verschlossen wird, dann die Siebplatte des Siebbeins, und endlich vorne die Nasenbeine, welche zugleich in die seitliche Wand sich fortsetzen. Die Seitenwand wird vorzüglich vom Siebbein, dann aber vorne vom Oberkiefer und nach hinten vom Gaumenbein und Flügelfortsatz des Keilbeins dargestellt. Vom Siebbein treten die beiden oberen Muscheln vor, vom Oberkiefer- und Gaumenbeinherhebt sich die untere Muschel (Fig. 174). Den Boden der Nasenhöhle bilden Oberkiefer und Gaumenbein. Auf dem vorderen Theile des glatten Bodens steigt jederseits der Canalis incisivus herab zum Gaumen.

Die Muscheln scheiden die drei Nasengänge, Meatus narium. Der untere liegt zwischen der unteren Muschel und dem Boden der Nasenhöhle, der mittlere zwischen mittlerer und unterer Muschel, zwischen mittlerer und oberer der obere. Sie convergiren nach hinten gegen die Choanen. In den unteren Nasengang unter dem vorderen Drittel der unteren Muschel, mündet der

Der vordere oder Antlitztheil des Schädels lässt durch seine Beziehungen zu Mund- und Nasenhöhle auch diese Räume an der Basis cranii betheiligt erscheinen.

Es ist bald eine engere, bald weitere Öffnung, in der Regel assymmetrisch, und bildet nicht selten eine tiefe gegen den Felsentheil des Schläfenbeines eingebuchte Grube zur Aufnahme des Bulbus venae jugularis. Die Scheidung des Foramen jugulare in zwei Abschnitte, von denen der laterale, hintere für die genannte Vene bestimmt ist, der mediale vordere die Austrittsstelle von Nerven bildet, trifft sich zuweilen auch an der Basis deutlich, und kann sogar zur Bildung zweier, durch eine Knochenspange, (der unter einander verbundenen Processus interjugulares) von einander getrennten Löcher fortgeschritten sein. Die ungleiche Weite des venösen Abschnittes beider Foramina ju-
Zweiter Abschnitt.

gularis steht mit Caliberdifferenzen der Sinus transversi (venösen Blutleiter) in Innern der Schädelhöhle in Zusammenhang.

Fig. 176.

Rechte Hälfte des Schädel von der Basis gesehen.

Der Binnenraum der Schädelhöhle ist dem Volum wie der Gestaltung des Gehirnes angepasst, und bietet das negative Bild der Gehirnoberfläche. Außer den großen Vertiefungen und Erhebungen, die nur der Bodenfläche des Cavum cranii angehören, sind scheinbar unregelmäßige Vorsprünge (Juga cerebraIia) und zwischen diesen befindliche Vertiefungen (Impressiones digitatae), welche den Furchen und Windungen des Großhirnes entsprechen, an allen von letzterem berührten Wandflächen bemerkbar. Breite und seichte Furchen nehmen als Sulci venosi die venösen Blutbahnen der harten Hirnhaut auf, indess feinere, deutlich ramifizirte, Sulci arteriosi vorstellen. Letztere gehen von der Basisfläche aus, wie erstere ihr zustreben, denn dort findet die Verbindung mit den größeren Gefäßstämmen statt, durch bestimmte Öffnungen vermittelt. Ebenda dienen wieder andere Öffnungen zum Durchlass von Nerven. In dieser reicheren Gestaltung correspondirt die Innenfläche des Cavum cranii mit dem Äußeren der Basis des Schädels. Am Grunde des Cavum cranii (Fig. 177) sind drei bedeutende, als vordere, mittlere und hintere Schädelgrube unterschiedene Räume bemerkbar.

Der Schädel als Ganzes.

Fig. 177.

Rechte Hälfte der Schädelbasis von Innen.
transversus hinter der Felsenbeinpyramide und in ~förmiger Krümmung zum hinteren und lateralen Abschnitte des Foramen jugulare herab.

Von den beiden Hauptästen dieses Sulcus tritt nicht selten ein Zweig nach vorn gegen das laterale Ende der Fissura orbitalis superior; er ist bedingt durch eine hier bestehende Anastomose der Art. meningea media mit einem Zweige der A. ophthalmica.

Fontanellen und Schaltknochen.

§ 80.

Das für jeden der Deckknochen des Schädels von einem einzigen Punkte ausgehende Wachsthum lässt für das Schädeldach nicht sofort einen gleichmäßigen knöchernen Verschluss entstehen. Die von der Stelle ihrer Tubera aus sich peripherisch vergrößernden Frontalia und Parietalia treffen erst allmählich unter sich zusammen, und gleiches gilt für die Parietalia in Bezug auf das die Schuppe des Occipitale bilden helfende Interparietale. Wie die Anlagen dieser Knochen anfänglich durch membranöse Zwischenräume von einander getrennt sind, so bleiben auch noch später, nachdem die Knochen auf längeren, zu den Suturen sich ausbildenden Strecken sich berühren, an mehreren Orten membranöse Verschlussstellen des Schädeldaches übrig. Sie liegen an den von der Mitte (dem Tuber) der betreffenden Knochen entferntesten Stellen ihres Umkreises, und werden als Fontanellen (Fonticuli) bezeichnet, weil sich hier einer Quelle ähnlich eine pulsirende Bewegung (der fortgeleitete Puls der Hirnarterien) wahrnehmen lässt. Zwei dieser Fontanellen sind von grösserer praktischer Bedeutung. Die Stirnfontanelle (Font. major s. frontalis) [Fig. 178 a] zwischen den beiden Scheitel- und Stirnbeinen gelagert, und in der Regel mehr zwischen die Stirnbeine ausgedehnt. Die Hinterhauptsfontanelle (Font. minor s. occipitalis) [b] zwischen dem Interparietale und dem hinteren Winkel der Parietalia befindlich, dreiseitig und kleiner als die erst erwähnte. In der Regel ist sie bei der Geburt schon sehr reducirt, indess die große erst nach der Geburt, meist während des ersten Lebensjahres schwindet.

Der Verschluss der Fontanellen erfolgt mit der Ausbildung der betreffenden Winkel der Knochen, auf dieselbe Weise, wie die Vergrösserung dieser Knochen stattfindet. Die Fontanellen unterstützen eine gewisse Verschiebbarkeit der Deckknochen des Schädels, und beim Geburtsakte werden die Ränder der benachbarten Knochen untereinander gedrängt, wodurch der Umfang des Schädels sich etwas verengert.

Außer den vorerwähnten Fontanellen finden sich zwei kleinere an der Seite des Schädels, der Font. sphenoidalis (Fig. 179 c) am vorderen unteren
Winkel und der Font. mastoideus (F. Casseril) (d) am hinteren unteren Winkel des Scheitelbeines. Letzterer schwindet später als ersterer. Beide sind beim Neugeborenen schon sehr unanschließlich oder völlig verschwunden.

Menschen- und Thierschädel.

§ 51.

Die Besonderheiten der Organisation des menschlichen Körpers finden an keinem Theile des Skeletes einen so prägnanten Ausdruck als am Schädel. Dies gründet sich auf die Fülle der Beziehungen, welche am Kopfskelette zu anderen mit ihm verbundenen Organen bestehen. Je weniger aktiv ein Skeletbestandtheil an der Ökonomie des Organismus partizipirt, je geringer sein Eingreifen in den Mechanismus der Verrichtungen ist, aus denen für seine Structur ein bestimmtes Gepräge hervorgeht, desto wichtiger werden jene anderen, durch an- oder eingelagerte Theile bestimmten Beziehungen für das Verständniss seiner Gestaltung. Wie das allgemein Typische des Craniums der Wirbeltiere aus solchen Beziehungen entspringt, so leitet sich davon auch wieder die große Mannigfaltigkeit ab, welche innerhalb der einzelnen Abtheilungen besteht, und da. wo in diffe-
renten Abtheilungen die einzelnen Bestandtheile des Schädels in Zahl, Lage und Verbindung große Ähnlichkeit besitzen, sind es wieder dieselben Beziehungen, von denen die Verschiedenheiten beherrscht sind. Denn das Cranium gestaltet sich so wenig wie ein anderer Skelettheil aus sich selbst, sondern durch Anpassungen an Functionen, durch die es von außen her bestimmt wird. Da diese Functionen durch die Beziehungen zu anderen Organen bedingt sind, so ist die Prüfung dieser Beziehungen Aufgabe, wenn das Wesen der Besonderheit einer bestimmten Schädelform ermittelt werden soll. Das Besondere wird aber durch die Vergleichung mit anderen ähnlichen Zuständen erkennbar.

Ebenso werden für die Ausdehnung der übrigen Theile der Schädelkapsel die Gestaltungs- und Volumsverhältnisse vorzüglich des Großhirns maßgebend. Ein Blick auf die in Fig. 150 gegebenen Durchschnitte von Menschen- und Thierschädeln lässt diesen Einfluss verstehen. An die überwiegend größere Entfaltung der Cavitas cranii knüpft sich die beim Menschen viel bedeutendere Neigung des Planum nuchale des Hinterhauptsbeines und die Richtung des Hinterhauptsloches nach unten, während dieses bei den meist Säugerthieren vergl. Fig. 180 D nach hinten sieht und selbst bei den Anthropoiden in dem Maße einer verticalen Ebene sich zukehrt, als das in der Jugend relativ bedeutendere Gehirnvolum allmählich zurücktritt. Aus derselben Entfaltung des Großhirns entspringt auch die Zunahme des Basal- oder Sattelbeinkerns, dessen einer Schenkel durch die Längsaxe des Körpers des Hinterhauptsbeines gebildet wird, indessen der andere der Längsaxe des Keilbeinkörpers entspricht.

In dieser Beziehung ist es das Volum der Zähne und deren Wurzeln, die in dem Maße als es die beim Menschen bestehenden Verhältnisse übertrifft, eine größere Kieferstrecke beanspruchen. Schon innerhalb der Affen bestehen bedeutende...

Indem wir die Gestaltung des Schädels als das Product von Anpassungen betrachteten, mindert sich der Gegensatz, in welchem man ihn im Vergleiche mit Schädeln von Thieren darzustellen pflegt. Es sind hier wie dort die gleichen Faktoren im Spiele, nur
Zweiter Abschnitt.

das Maß, die Intensität ihrer Wirkung ist verschieden. Aber es ist längst schon behauptet worden, dass außer der Anpassung, wie sie z. B. zum Gehirne sich kundgibt, noch andere den Skeletttheilen, also dem Schädel selbst inhärente Potenzen sich geltend machen, wie durch viele Thatsachen begründet wird. Wir leiten das von Vererbung ab, deren Object im ersten, weit zurückliegenden Zustände freilich wieder aus einer Anpassung entstand.

Altersverschiedenheiten des Schädels.

§ 82.

So kommt der Schädel in den Pubertätsjahren zu seiner definitiven Form, die jedoch wieder zahlreichen individuellen Verschiedenheiten unterworfen ist. Bis zum vollendetem Zahnwechsel dient der Durchbruch der einzelnen Zähne als ein ziemlich sicherer Leitfaden für die Bestimmung des Alters. Für spätere Perioden sind die Verhältnisse der Nähte der Knochen des Schädeldaches, sowie die Ausbildung der Schläfen- und Hinterhauptslinien maßgebend.

Schädelformen und Schädelmessung.

§ 53.

Mittel 1450, beim Weibe 1300 cbem. (Welcker). Bei manchen Rassen sinkt er bedeutend tiefer.

Außer den oben angegebenen Maßverhältnissen des Schädels bestehen noch zahlreiche andere, welche theils wieder den ganzen Schädel, theils nur einzelne Partien oder Strecken desselben in Be tracht ziehen. Von den letztern soll noch des Condyluswinkels Erwähnung geschehen, welcher den Winkel der Ebene, in welcher das Hinterhauptsloch liegt, mit der Ebene des Citivus darstellt (Ecker). Des Sattelwinkels ist schon oben (S. 222) gedacht worden. Alle diese Messungen haben für die Bestimmung von Stammes- oder Rasseneigenthümlichkeiten um so höheren Werth, je größer die Summe der zur Untersuchung verwendeten Objecte war, je weniger also individuelle Besonderheiten in Rechnung kommen, denn das was sich innerhalb eines Stammes oder einer Rasse als typisch herausstellt, findet sich vereinzelt auch innerhalb anderer Gruppen vor. Unter dolichocephalen Völkernstämmen finden sich brachycephale Schädelformen, und umgekehrt. Es handelt sich also bei Aufstellung jener Normen wesentlich um Durchschnittswerte. Diese sind um so sicherer, je größer die Summe des untersuchten Materials ist.

III. Vom Skelet der Gliedmaßen.

§ 84.

liche Stütze des Körpers und Organ der Ortsbewegung geworden, oder hat vielmehr diese Versuchungen, in die sie sich bei den meisten Säugethieren mit der Vordergliedmaße theilt, in dem Masse hochgradig ausgebildet, dass sie ihr anschliessend zu zahlen. So wird verständlich, wie vieles des ursprünglich Gemeinsamen verloren gegangen ist.

Beide Gliedmaassen gehören der ventralen, d.h. beim Menschen vorderen Region des Rumpfes an, wie ihre Beziehung zu ventralen (vorderen) Nervenästen unerachtet der im Vergleiche mit primitiveren Zuständen aufgetretenen bedeutenden Modificationen wahrnehmen lässt. Sie lagern dem Rumpfe auf, was für die obere Gliedmaasse noch deutlich sich erhalten hat, für die untere dagegen deshalb nicht mehr erkennbar ist, da in der ihr zugetheilten Körperregion die Rippen rudimentär wurden, so dass der Beckengürtel die Rumpfholle direct umschließt. In den am Kranzeinh befindlichen Rippenrudimenten [S. 133] besteht aber noch eine Ansehnung eines der Bildung des Thorax ähnlichen Zustandes, woraus auch für die ursprünglichstern Verhältnisse des Beckengürtels eine dem Schultergürtel ähnliche Lage gefolgt werden darf. Jeder der beiden Gliedmaassen-gürtel besteht bei niederen Wirbeltieren aus einem Paar einfacher, einander sogar ziemlich ähnlicher knorpeliger Bogen, welches die freien Gliedmaassen trägt.

Das Skelet der letzteren wird in jenen Zuständen aus einzelnen, dem Bogen ansetzenden Knorpelstäben gebildet, welche bei größerer Länge Gliederungen eingehen, so dass jedes eine Reihe mit einander beweglich verbundenen Stücke bildet. Aus solchen Theilen geht durch mächtigere Entfaltung einzelner, Rückbildung anderer Abschnitte das Gliedmaassenskelet der höheren Wirbeltiere her vor, und auch das des Menschen erscheint als eine bestimmte Modification eines Allen zu Grunde liegenden einheitlichen Zustandes.

Zweiter Abschnitt.

A. Obere Gliedmaßen.

a. Schultergürtel.

§ 85.

Die hierher gehörenden Knochen sind das Schulterblatt \(\text{Scapula} \) und das Schlüsselbein \(\text{Clavicula} \), welches das letztere mit dem Sternum verbindet.

Die \text{Scapula} ist der Haupttheil des Schultergürtels, der die freie Gliedmaße trägt und ursprünglich aus zwei Abschnitten, einem dorsalwärts und einem ventralwärts sehenden, besteht. Beide gehen aus einheitlicher knorpeliger Anlage hervor \(\text{primärer Schultergürtel} \), und da wo sie unter einander zusammenstoßen, lenkt die Gliedmaße ein. Das ventrale Stück fügt sich dem Sternum an, hat da eine Stütze, und damit empfängt der Schultergürtel größere Festigkeit, ist aber in seiner Beweglichkeit sehr beschränkt. So verhält es sich bei den Wirbeltieren bis zu den niedersten Mammalien \(\text{Monotremen} \). Von da bildet sich bei den Säugetieren eine größere Freiheit der Bewegung der Vordergliedmaße aus, woran auch der Schultergürtel partizipirt. Daraus resultirt eine Lösung jener Sternalverbindung unter Rückbildung des diese Verbindung herstellenden ventralen Abschnittes. Dieser bildet einen mit dem oberen Stücke verbundenen Fortsatz, der mit ihm verwächst und so die einheitliche \text{Scapula} bildet.

Was durch Auflösung der Sternalverbindung mit der Reduction des ventralen Theiles des Schultergürtels diesem an Festigkeit verloren geht, wird theils durch reichere Entfaltung der zur \text{Scapula} tretenden und sie nach Erforderniss fixirenden Muskulatur geleistet, theils durch eine neue Einrichtung. Diese besteht in der nunmehr durch die \text{Clavicula} bewerkstelligten Verbindung der \text{Scapula} mit dem Sternum. Sie ersetzt nicht nur die andere, früher bestehende, sondern stellt sich höheren Ranges dar, da sie die Beweglichkeit der \text{Scapula} nicht beeinträchtigt. Es spricht sich also in der neuen Einrichtung ein Fortschritt aus, der an den Verlust eines Abschnittes des niederen Wirbeltierenvon zukommenden Schultergürtels geknüpft ist. Bei vielen Säugetieren geht aber auch die Sternalverbindung verloren, indem die Clavicula einer Rückbildung erliegt, da wo die Vordergliedmaße allmählich auf die Stufe eines Stütz- und Bewegungsorganes zurücktritt. Die anscheinliche Entfaltung der \text{Clavicula} beim Menschen ist also der Ausdruck größerer Freiheit der Action der oberen Gliedmaße.
Die Scapula (Omoplasta) stellt einen breiten, platten, dreiseitig gestalteten Knochen vor, an welchem wir eine vordere und hintere Fläche, drei Ränder und eben so viele Winkel unterscheiden, außerdem noch Fortsätze verschiedener Art. Die massivste Stelle des Knochens gibt die Verbindung mit dem Humerus ab. Die von dieser Stelle sich ausbreitende, auf ihrem größten Theile sehr dünne Platte dient wesentlich zu Muskelursprüngen. Die vordere, der hinteren und seitlichen Thoraxwand zugekehrte Fläche (Fig. 181) ist besonders oben und lateralwärts concav (Fossa subscapularis). In der Nähe des medialen Randes erheben sich von ihr mehrere lateral und aufwärts convergirende ruhere Linien (Costae), an welche die Ursprungsssehnen des M. subscapularis befestigt sind. Die hintere Fläche (Fig. 182) wird durch einen vom medialen Rande an sich erhebenden Kamm (Spina scapulae) in zwei ungleiche Strecken geschieden, die mehr oder weniger vertieft, die Fossa supra- und infraspinata vorstellen. Die Spina scapulae beginnt mit einem dreiseitigen Felde, dessen längste Seite mit einer Strecke der Basis scapulae zusammenfällt. Sie läuft quer lateralwärts bis nahe zum Halse der Scapula, erhebt sich dabei immer bedeutender, ihren freien Rand in eine Wulstung formirend, und setzt sich von ihrer größten Erhebung an in einen starken, über das Schulterblatt lateralwärts sich fortsetzenden Fortsatz, Acromion (υπὸ ὡμοῦ ἄκρον) fort. Am vorderen Rande des Acromion, etwas medial gerichtet, befindet sich eine kleine Gelenkfläche zur Verbindung mit dem Schlüsselbein. Der mediale, längste Rand, auch Basis scapulae genannt, verläuft meist gerade oder wenig convex, er geht am unteren, etwas abgerundeten Winkel, an welchem der Knochen etwas verdickt ist, in den lateralen Rand über, welcher wulstartig verstärkt, zum lateralen oberen Winkel emporsteigt. An der hinteren Fläche grenzt sich gegen den unteren Winkel und den lateralen Wulst zu ein Feld durch eine schräge ruhere Linie ab. Es ist die Ursprungsfäche des M. teres major. Ein schmaleres Feld liegt darüber am lateralen Wulste, die Ursprungsfäche des M. teres minor.

Den lateralen oberen Winkel bildet der Gelenktheil der Scapula (Fig. 182 a, b.) ein ansehnlicher, eine längliche, nach oben etwas verschmälerte Gelenkfläche, Cavitas glenoidalis (Fig. 186), tragender Vorsprung. Eine verschieden ausgeprägte Einschnürung stellt den als Hals unterschieden Theil dar. Eine rauh vorspringende Stelle, unterhalb der Cavitas glenoidalis, noch am lateralen Rande der Scapula gelegen, Tuberositas infraglenoidalis, ist die Ursprungsstelle des M. anconaeus longus. Von einer Erhebung dicht am
oberen Ende der Cavitas glenoïdalisch entspringt der lange Kopf des M. biceps. Der Ausschnitt zwischen der Basis der Spina scapulae und dem Gelenktheile wird \textit{Incisura colli} benannt.

Zwischen der Incisura scapulae und dem oberen Rande der Gelenkfläche erhob sich ein erst aufwärts, dann lateral und etwas vorwärts gerichteter Fortsatz, hakenförmig gekrümmt, \textit{Processus coracoïdes}. Er repräsentirt den oben erwähnten ventralen Theil des primären Schultergürtels; bei Reptilien und Vögeln ein sehr ansehnlicher Knochen, der bis zum Brustbein reicht und so den Schulfergürtel vervollständigt. Bei den Säuge thieren besteht dieser Knochen nur noch bei den Monotremen, sonst ist er meist rudimentär.zeigt aber seine ursprüngliche selbständige Bedeutung durch einen besonderen Knochenkern, der in dein mit der Scapula continuirlich zusammenhängenden Coracoid knorpel auftritt. Das Coracoidstück betheiligt sich auch an der Bildung der Pfanne, in deren oberstem Theil ein selbständiger Knochenkern entsteht, welcher mit dem Coracoid verschmilzt.

Aceromion und Coracoidfortsatz bilden über dem Schultergelenk ein Dach, welches durch ein zwischen den beiden ersteren ausgespanntes breites Band, \textit{Lig. coraco-acromiale}, vervollständigt wird (vergleiche Fig. 186).

Auch die Incisura scapulae, welche nicht selten sehr schwach entfaltet ist, wird von einem Band überbrückt (\textit{Lig. transversum}), welches auch ossifiziren kann, so dass an der Stelle der Incisur dann ein Loch im Knochen sich findet.

Ein anderer Landstreif geht entgegengesetzt vom Halse der Scapula zur Basis der Spina (\textit{Lig. transvers. inferius}). Unter ihm verlaufen Blutgefässe, die es überbrückt.

Die Gestalt der Scapula steht im Zusammenhange mit der Ausbildung der von ihr entspringenden, zum Oberarme gehenden Muskulatur. Die Verbreiterung des Körpers der Scapula gegen die Basis bietet den Rollmuskeln des Oberarmes anschauliche Ursprungsfächen. Beim Bestehen beschränkterer Bewegungen des Oberarmes und demgemäß einer niederen Entwickelung jener Muskeln ist die Basis bedeutend schmaler. So bei allen Säugerthieren, deren Vordergliedmaße nur als »Fuß« fungirt. Die Funktion der Ober gliedmaße beeinflusst also die Gestalt der Scapula. Auch beim Menschen ist die bedeutende Länge der Basis scapulae eine erst im Laufe der Entwicklung erworbene, und die Basis scapulae ist bei Embryonen viel, ja selbst beim Neugeborenen (Fig. 184) noch merklich kürzer als beim Erwachsenen. Bei manchen Rassen bleibt die Proportion von Länge und Breite auf einer tieferen Stufe stehen (Neger). Das Verhältniss der

Man unterscheidet an dem Knochen ein Mittelstück, an welches die beiden Enden sich anschließen. Das Mittelstück ist in seiner medialen Hälfte nach vorne, in seiner lateralen Hälfte nach hinten convex. Die obere Fläche ist eben und verschmälert sich gegen das mediale Endstück, indess sie nach dem lateralen Ende zu breiter wird. Die untere, gewölbte Fläche ist der ersten Rippe zugewendet und bietet Unbenenheiten dar. Das mediale Ende, Extremitas sternalis (Fig. 155), lässt drei Flächen unterscheiden, eine vordere, eine hintere und eine untere. An letzterer liegt eine starke Rauhigkeit (Tuberositas costalis), die Auftiggestelle eines zur ersten Rippe gehenden Bandes. Den Abschluss der Extremitas sternalis bildet eine breite, etwas gekrümmte, überknorpelte Endfläche.

Das laterale Ende, Extremitas acromialis ist horizontal verbreitert, bietet an seiner Unterfläche Rauhigkeiten (Tub. coracoideus), an welche Bänder vom Coracoid her sich anschließen. Zu äußerst trägt es eine kleine querovale Gelenkfläche, die an jene des Aeromion sich anschließt. Eine Furche längs der Unterfläche dient am mittleren Drittel dem M. subclavius zur Insertion.

Verbindungen der Knochen des Schultergürtels.

Da das Schulterblatt nur durch die Clavicula mit dem Stamm des Körpers verbunden ist, fallen sowohl Gelenke als accessorische Bänder der Clavicula zu.

Die Verbindung der Clavicula mit der Scapula wird erstlich durch das Acromio-Claviculargelenk vermittelt. Um die Anfügung der beiden oben erwähnten Gelenksflächen am Acromion und dem acromialen Ende der Clavicula, erstreckt sich ein ziemlich straffes Kapselband, welches oben stärkere, unten schwächere Fasermassen aufgelagert hat.

Vom oberem Rande her erstreckt sich häufig ein keilförmiger Zwischenknorpel zwischen beide Knochen. Er entsteht als eine von der Endfläche der Clavicula sich
ablösende Schichte; beim Fehlen des Zwischenknorpels ist die Clavicula an der Gelenkstelle mit derselben lockerer Faserknorpelschichte überkleidet.

Beim Verlaufe über den Proc. coracoïdes empfängt die Clavicula noch einen starken Bandapparat. Dieses Ligamentum coraco-claviculare besteht aus einem vorderen trapezförmigen Lig. trapezoïdes und einem hinteren kegelförmig (Lig. conoides, vergl. Fig. 156) sich ausbreitenden Abschnitte, die unmittelbar zusammenhängen und eine rauhe Stelle der Unterfläche der Extremitas acromialis clav. zur Insertion besitzen.

Die bewegliche Verbindung der Clavicula mit dem Thorax vermittelt die Articulatio sterno-clavicularis (Fig. 157). Der oben als Episternale gedeutete Skelettheil fungirt hier als Zwischenknorpel. Er steht mit dem lateralen Rande der Incisura clavicularis des Manubrium sterni in fester Bandverbindung, erstreckt sich, nach hinten zu bedeutend verdickt, über die Fläche jener Incisur, und geht oben durch Bandmasse in die Clavicula über, welche unterhalb dieser Verbindung mit ihrer überknorpelten Endfläche sich dem Zwischenknorpel (Fig. 157) auflöst. Indem ein Kapselband von der Clavicula über den Rand des Knorpels, und diesen umfassend zum Sternum zieht, wird das Sterno-Claviculargelenk in zwei Hohlräume geschieden.

Die Gelenkkapsel ist vorne und oben durch Faserzüge stark verdickt. Von der Clavicula her ziehen solche Fasern zur Incisura jugularis des Manubrium sterni und werden auf die andere Seite übergehend, als Lig. interclaviculare unterschieden.

Die Sterno-Clavicularverbindung wird verstärkt durch das Lig. costo-claviculare (Fig. 157). Es entspringt vom Knorpel der ersten Rippe, nahe an dessen Sternalende und verläuft schräg lateral auf- und rückwärts, um an die Rauhigkeit der Unterfläche der Extr. sternalis claviculae sich zu inseriren.
Zweiter Abschnitt.

b. Skelet der freien Extremität.

1. Oberarmknochen.

§ 86.

Das distale Ende des Humerus dient der Gelenkverbindung mit dem Vorderarmknochen, und trägt demgemäß eine complicirter gestaltete Gelenkfläche. Der laterale Abschnitt der überknorpelten Gelenkfläche ist gelenkkopffachtig geformt und vorwärts gerichtet (Fig. 197) (Capitulum, Eminentia capitata).

Der mediale Abschnitt dagegen stellt eine tief ausgeschnittene Gelenkrolle (Trochlea) vor, auf welcher die Ulna sich bewegt. Die Trochlea setzt sich mit einer schrägen Fläche gegen das Capitulum ab: ihr medialer Theil bildet einen bedeutenderen Vorsprung als der laterale, so dass die gesammte Trochlea eine schräge Lage empfängt.

Von der stark vorspringenden medialen Randfläche der Trochlea scharf abgesetzt, erhebt sich medial ein derber Vorsprung, Epicondylus medialis, auf welchen die mediale Kante des Humerus ausläuft. An der hinteren Fläche dieses Vorsprungs findet sich der meist wenig deutliche Sulcus ulnaris für den gleichnamigen Nerven. Viel weniger bedeutend tritt von dem das Capitulum tragenden Theile ein lateraler Vorsprung ab (Epicondylus lateralis). Über der Trochlea ist der Humerus bedeutend verdünnt (vergl. Fig. 195), bietet durch vorne und hinten gelegene Vertiefungen eine durchscheinende, zuweilen durchbrochene Stelle.
Zweiter Abschnitt.

Oberhalb des Epicondyl. medialis erhebt sich zuweilen ein hakenförmig abwärts gebogener Fortsatz, — *Proc. supracecondyloideus* — von dem ein Bandstrang zum Epicondylius sich erstreckt. Das Ligament dem Pronator teres zum Ursprung, unter der von ihm erzeugten Brücke verläuft der N. medianus. Bei vielen Säugethiern ist die Einrich-
tung in einen Canal umgewandelt. Sie herrscht meist bei solchen, die eine ausgebil-

Die knorpelige Anlage des Humerus erhält die perichondroische erste Ossification am Mittelstück in der 8. Woche. Am reifen Fötus sind nur die beiden Enden noch knorpelig und beginnen vom 2. Lebensjahre an von einzelnen Kernen aus zu ossificiren. Im fünften Jahre sind die (2—3) Kerne des proximalen Endes zu Einer Epiphyse vereinigt. Die (4) des distalen Endes bleiben bis zum 18. Lebensjahre getrennt. Der erste dieser Kerne beginnt in der Eminentia capitata und erstreckt sich in den be-
nachbarten Theil der Trochlea; der zweite Kern entsteht im medialen Epicondylius, der dritte im medialen Theile der Trochlea, und der letzte kleinste im lateralen Epicondylius. Die untere Epiphyse verschmilzt früher mit dem Mittelstück als die obere, welche das Caput humeri in sich begreift. Die am Humerus im Verlaufe der Kanten sich aus-
prechende Spiralform ist das Produkt einer wirklichen *Drehung*, welche der Knochen während seiner Entwicklung erfährt. Man hat sich diese Torsion durch Wach-
thumsvorgänge zu Stande kommen vorzustellen: Wachsthumsveränderungen im Epi-
physenknorpel, Anbildung von Knochengewebe an dieser, Resorption an jener Stelle. Das distale Ende hat demnach seine ursprünglich vordere Fläche nach hinten, die hintere nach vorne gekehrt. Durch Vergleichung des Verhaltens von Embryonen mit dem Erwachsenen ergibt sich die Drehung in einem Winkel von ca. 35°.

Obwohl die Differenz der Stellung der beiden Epicondylen des Humerus zu dessen Gelenkkopf viele individuelle Schwankungen darbietet, so ist doch die Schwankung im Vergleich mit der Stellung dieser Theile während des Fötallebens eine geringe. Ob bei Negern die Torsion minder weit vorschreitet als bei Europäern, ist bei den von ersteren in alizu geringer Zahl zur Untersuchung gelangten Humeris noch unsicher. Bei anthropoiden Affen stellt sich die Torsion geringer als beim Menschen heraus, und bei anderen Säugethiern ist sie noch geringer.

Das Foramen nutritium humeri findet sich meist am Beginne der distalen Hälfte der Diaphyse, nahe an der medialen Kante, oder auch an der hinteren Fläche. Es sieht nach dem distalen Ende zu.
Schultergelenk (Articulatio humeri).

Die Articulation des Gelenkkopfes des Humerus mit der Pflanne der Scapula bildet das Schultergelenk, welches gemäß der großen Excursionsfähigkeit des Humerus von einer weiten und schlaffen Kapsel umfasst wird (Fig. 190). Diese entspringt im Umfange der überknorpelten Gelenkfläche der Scapula und besitzt hier zu innerst eine starke Schichte circulärer Faserzüge, die streckenweise unmittelbar an den Knorpelüberzug der Gelenkpflanne sich anschließen. Stellenweise ragt der äußere Rand dieser Schichte frei in die Gelenkhöhle vor, besonders auf der lateralen Strecke, und häufig setzt sich dieser Theil in die Ursprungsscheide des langen Kopfes des M. biceps fort (Fig. 191). Diese Ringfaserschichte vergrößert als Labrum glenoidale die Pfanne, und ihre Biegsamkeit gestattet ihr, sich der nicht genau sphärischen Oberfläche des Gelenkkopfes bei dessen verschiedenen Stellungen zur Pflanne anzupassen, dient somit zur Herstellung der Congruenz der Contactflächen. Am Humerus setzt sich das Kapselband jenseits der überknorpelten Fläche des Gelenkkopfes an und geht hier in das Periost über, die Strecke ausgenommen, welche den Anfang des Sulcus intertubercularis vorstellt. Außer Verstärkungen, die es von der Endsehne jener Muskeln empfängt, welche das Gelenk überlagern (Mus. supraspinatus, infraspinatus, subscapularis), kommt ihm noch ein Verstärkungsband von dem lateralen Rande des Coracoïdfortsatzes zu: das in sehr verschiedener Ausdehnung entspringende Lig. coraco-brachiale, dessen Fasern auch vom oberen Rande der Pflanne Zuwachs erhalten (Fig. 191), und in der oberen Wand der Kapsel zum Tuberculum minus, teilweise auch zum T. majus verlaufen. An dem Anfange des Sulcus intertubercularis findet sich das Kapselband quer von einem Höcker zum andern ausgespannt, und ist von da verdünnt zum Abschluss jener Rinne nach abwärts fortgesetzt. So besteht hier eine Ausbuchtung der Kapselhöhle (Bursa synovial, intertubercularis), die aber nicht ans Ende der Rinne herabreicht. Eine zweite, nicht selten ganz schwache Ausbuchtung der Kapsel tritt medial gegen die Wurzel des Coracoid.
von der medialen Wand der Kapsel her (Fig. 191) und wird unten vom oberen Rande des M. subscapularis begrenzt (B. synov. subscapularis).

Der Eingang in diese Ausbuchung der Kapsel wird gegen die Pfanne zu vom Labrum, distal davon von einem breiten und starken Bandzuge begrenzt, welcher theils vom Labrum, theils von der Wurzel des Coracoid kommt und zum Tuberculum minus vorlaufend die mediale Kapselwand verstärkt.

Über das Schultergelenk hinweg erstreckt sich vom Lig. coraco-aeromiale her eine Schichte lockeren Bindegewebes, welche theils mit der Kapsel verschmilzt, theils in die Fasern der Muskeln des Oberarms sich fortsetzt.

Der mediale Strang des Lig. coraco-brachiale inserirt sich am Humerus meist nahe an der Gelenkfläche, die an dieser Stelle nicht selten eine Einbuchung darbietet. Eine Weiterbildung dieses Zustandes lässt ein an das Lig. teres des Hüftgelenkes erinnerndes Verhalten hervorgehen, Welcker, Zeitschr. f. Anat. u. Entw. Bd. 1. S. 74.

§ 87.

Deren sind zwei, ähnlich dem Oberarmknochen bedeutend langgestreckte Stücke, als Speiche, Radius, und Elle, Ulna bezeichnet. Ihre Gestaltung wird wesentlich beherrscht durch die Art der Verbindungen, die sie an beiden Enden eingehen, und speziell durch die Beweglichkeit des Einen. Der Radius ist nämlich um eine longitudinalia Axe drehbar, und ihm ist distal die Hand angefügt, so dass jene Rotationen an der Stellung der Hand zum Ausschlage kommen. Daraus resultiert, dass die Verbindung des Vorderarmskeletes

Der Radius trägt am proximalen Ende ein plattes Capitulum, welches durch einen halsartigen Theil vom Mittelstück abgesetzt ist. Die pfannenartige Oberfläche des Köpfchens articulirt auf dem Capitulum humeri und lässt ihren Knorpelüberzug auf den etwas abgerundeten Rand (Circumferentia articularis) übergehen. Dieser greift in einen Ausschnitt der ihm anliegenden Ulna. Der dem Halse folgende Theil des Radius trägt einen bei aufwärts gewendeter Hand vorwärts und medial sehenden Vorsprung, Tuberositas radii zur Befestigung der Endsehne des M. biceps (Fig. 192). Von da an plattet sich der Körper des Radius etwas ab und bildet eine medial gerichtete scharfe Kante (Crista interossea). Am lateralen gewölbten Rande dient eine Rauhigkeit der Insertion des M. pronator teres.

Ulna (Cubitus). Der Gelenkverbindung mit dem Oberarmbein zufolge hat die Ulna ihren stärksten Theil am proximalen Ende. Sie trägt hier auf der Vorderseite einen hinten von einem starken Fortsatz überragten Gelenk- ausschnitt, halbkreisförmig gestaltet, Incisura sigmoides ulnae Fossa s. Cavitas sigmoides major). Sie ist der Form der Trochlea des Humerus angepasst. Der den Ausschnitt hinten überragende Fortsatz ist das

Das distale Ende der Ulna bildet als geringe Verwicklung das Capitulum mit einer überknorpelten Endfläche, welche lateral auf den Rand sich fortsetzt und damit gegen die Incisura ulnaris radii gerichtet ist. An dem entgegengesetzten medialen Rande wird die Endfläche vom kurzen Processus styloides ulnae überragt (Fig. 193). Dieser Fortsatz geht aus einem dorsalen Vorsprunge hervor, der eine Rinne medial abgrenzt, in welcher die Endsehne des M. ulnaris externus zur Hand verläuft.

Verbindung der Vorderarmknochen unter sich und mit dem Humerus Ellbogengelenk.

In der Verbindungweise der beiden Vorderarmknochen mit dem Humerus finden Einrichtungen Ausdruck, welche der doppelten Bewegung des Radius gemäß sind. Wie die Ulna vollzieht dieser in jenem Gelenke Streckung und Beugung. Das Gelenk fungirt dann als Ginglymus. Aber die Rotation des Radius

Alle drei Articulationen werden von einem gemeinsamen Kapselbande umschlossen und besitzen eine gemeinsame Gelenköhle. Das Kapselband ist am Humerus vorne wie hinten höher als seitlich befestigt, hinten über der Fossa olecrani, vorne über der Fossa cubitalis und radialis. Seitlich geht die Befestigung bis dicht an die überknorpelten Gelenkflächen des Humerus herab. Das steht mit der Bewegung in Zusammenhang, insofern diese für beide Knochen zusammen eine Winkelbewegung ist unter Ausschluss aller seitlichen Excursionen.

Die hinteren entfalten ihre größte Spannung bei der Beugung, die vorderen bei der Streckung. Das laterale Seitenband entspringt aus der Grube hinter dem Capitulum humeri. Es geht nicht direct zum Radius, sondern zu einem dessen Capitulum umfassenden Bande, dem Lig. annulare radii (Fig. 196 AB), welches ebenfalls der Kapsel eingefügt ist. Dieses Ringband beginnt aus der hinteren Umgrenzung der Incisura radialis ulnae, und zieht sich dem Umfange des Capit. radii mit glatter Innenfläche anliegend bis zum Vorderrande jener Incisur an der Seite des Proc. coronoides. Es ergänzt die Incisur, schließt ihr das Capit. radii innig an und bietet für die Rotation des Radiusköpfchens eine Gleitefläche.

Die Art. radio-ulnaris inferior wird durch die Verbindung der lateralen Gelenkfläche des Capitulum ulnae und den bezüglichen Ausschnitt am distalen Ende des Radius dargestellt. Ein Kapselband umschließt das Gelenk, verbindet
so sehr Zusammen. welches hinter dem Radius angefügt ist, und die Endfläche des Radius in dieser Richtung fortsetzt. Ein Bandstreif befestigt die Cartilago triangularis (Fig. 197 c. tr.) an den Processus styloides ulnae. Bei der Rotation des Radius gleitet also nicht bloß die Ineis. ulnaris radii auf dem Rande des Capitulum ulnae, sondern die Cart. triangularis gleitet ebenso auf der distalen Endfläche jenes Capitulum. Dieses ist also vollständig vom directen Kontakt mit der Hand ausgeschlossen und der letzteren die ausschließliche Verbindung mit dem Radius ermöglicht, so dass diesen Rotationen ihr angeschmälert zu Gute kommen.

Eine andere Verbindung beider Vorderarmknochen besteht in der Membrana interossea antibrachii. Eine ziemlich starke aponeurotische Membran, welche die gegeneinander sehenden Cristae interossea beider Knochen verbindet und in das Periost derselben übergeht.

Ein sehnder Strang, der von der Tuberositas ulnae schräg zum Radius herabzieht, und sich unterhalb dessen Tuberositas inserirt, — Chorda transversa — kann die Auswärtsdrehung des Radius (Supinatio) beschränken (Fig. 196. A. B). Er fehlt häufig oder ist nur angedeutet.

§ 85.

In dem die Hand darstellenden letzten Abschnitte der oberen Gliedmaße kommen zahlreichere, aber kleinere Skeletelemente zur Verwendung (Fig. 198), Ein Complex kurzer, sehr mannigfaltig geformter Stücke setzt den proximalen Abschnitt, die Handwurzel, den Carpus, zusammen. Daran reihen sich fünf
längere Stücke, welche die Mittelhand, den Metacarpus, bilden. Den einzelnen Mittelhandknochen sind die Skelettheile der Finger (Digit), die Phalangen, angefügt.

a. Carpus.

Zwei Reihen kleinerer, vielläufigerer Knochenstücke bilden das Skelet der Handwurzel. Sie besitzen Gelenkflächen, durch welche sie theils unter sich, theils mit dem Vorderarme, theils mit dem Metaearpus articuliren.

In der proximalen Reihe des Carpus liegen drei Knochen, nach ihrer Lagebeziehung zum Carpus als Radiale, Intermedium und Ulnare unterschieden, speziell beim Menschen nach Ähnlichkeiten benannt. In der distalen Reihe finden sich vier solcher Stücke. Die ersten drei, von der Radialseite gezählt, tragen je einen Mittelhandknochen, das letzte deren zwei. Es bestehen Gründe zur Annahme, dass auch dieses ursprünglich durch zwei Knochen vorgestellt wird, so dass fünf distale Carpalia bestehen. Wir haben also das vierte Carpal als $4 + 5$ anzusehen.

Proximale Reihe.

Radiale (Scaphoides, Naviculare, Kahnbein). Der größte Knochen der ersten Reihe besitzt eine proximal gewölbte Gelenkfläche an seiner ulnaren Hälfte, unter welcher die distale, pfannenförmig vertiefte Gelenkfläche gleichfalls ulnärwärts emportritt, so dass nur eine schmale ulnare Seitenrandfläche zur Verbindung mit dem Nachbar übrig bleibt. Der radiale Abschnitt des Knochens ist proximal etwas ausgeschweift und distal mit einer, fast ins Niveau der Dorsalfäche übergreifenden, quergerichteten Gelenkfläche ausgestattet, welche mit den beiden ersten Knochen der distalen Reihe artenförmig

Intermedium (Lunatum, Mondbein). Von der Seite betrachtet halbmondförmig, da es proximal eine gewölbte, distal eine concave Gelenkfläche trägt. Erstere Fläche sieht gegen eine Facette des Radius, die letztere faßt den Kopf des Capitatum. Die lateralen Flächen sind eben, und convergiren etwas gegen die untere zu, die radiale sieht gegen das Radiale (Scaphoid), die ulnare gegen das Ulnare (Triquetrum).

Das Pisiforme [Fig. 198, 200] ist ein rundlicher oder etwas länglicher Knochen, der außerhalb des Carpus liegt, und nur
mittels einer Gelenkfläche sich dem Ulnare (Triquetrum) verbindet. Es ist in die Endschme des M. ulnaris internus eingebettet und verhält sich zu dieser wie ein Sesambein.

Distale Reihe.

Carpale 1 (Trapezium, Multangulum majus). Der in die Quere ausge- dehnte Knochen liegt an der Radialseite der Reihe, bietet auf seiner größten, sattelförmig gekrümmten distalen Endfläche die Articulation mit dem Metacarpale des Daumens, während die viel kleinere proximale Fläche mit dem Radiale articulirt. Von dieser Stelle an zeigt sich die schräg verlaufende ulnare Seitenfläche mit einer gekrümmten Gelenkfläche versehen, auf welcher das Carpal 2 (Trapezoides) angefügt ist. Davon setzt sich endlich eine zweite, ulnarwärts gerichtete kleinste Gelenkfläche ab und verbindet sich mit der Basis des zweiten Metacarpale. Auf der Volarfläche verläuft eine kurze, radialwärts von einem hakenförmigen Vorsprung überragte Rinne (zur Aufnahme der Endschme des M. radialis internus).

Carpale 2 (Trapezoides, Multangulum minus). Der kleinste Knochen des Carpus. Einer vierseitigen Pyramide ähnlich, deren Basis durch die Dorsalfäche, die abgestumpfte Spitze dagegen von der Volarfläche gebildet wird. Die kleine proximale Fläche bildet mit jener des Vorigen eine flache Pfanne für das Radiale. Die radiale Fläche articulirt mit dem Carpal 1, während die ulnare durch eine Vertiefung in zwei Gelenkfacetten geschieden ist, welche sich dem Carpal 3 anfügen. Die größte distale Fläche, flach sattelförmig gestaltet, trägt das zweite Metacarpale.

Carpale 3 (Capitatum, Os majus). Der größte Knochen des Carpus. Tritt proximal mit einem anscheinlichen Gelenkkopf vor, dessen Fläche radialwärts abgerundet ist und sich in eine vom Radiale und Intermedium gebildete Pfanne einfügt, während sie ulnar eine scharfkantig abgesetzte Ebene als Articulationsfläche zur Verbindung mit dem Carpal 4 besitzt. Die dem letzteren zugewendete übrige ulnare Fläche ist rauh — dagegen befinden sich an dem distalen Ende der radialen Seitenfläche noch zwei Gelenkfacetten für das Carpal 2. Die distale Endfläche ist in zwei Facetten getheilt, davon die größere dem dritten Metacarpale, die kleinere schräg daran stossende noch einem Theile des zweiten Metacarpale Verbindung leitet. Da die Dorsalfäche des Knochens breit, die volare dagegen distal vom Kopfe schmal ist, convergiren die beiden lateralen Flächen und geben dem Knochen eine keilförmige Gestalt, welche an der Wölbung des Carpus bedeutenden Antheil hat.
Carpale 4 (1 + 5) (Hamatum, Uneinatum). Das Hakenbein ist einer vierseitigen Pyramide ähnlich, mit proximaler Spitze und distaler Basis. Letztere trägt eine in zwei Winkel zu einander stehende Facetten getheilte Gelenkfläche zur Anfügung des vierten und fünften Metacarpale. Von den lateralen Flächen ist die radiale mit einer großen proximalen Gelenkfläche und einer kleinen gegen die Basis zu folgenden dem Carpale 3 angefügt. Die ulnare dagegen hat auf einer schwach gekrümmten Fläche das Umare liegen. Von der Volarfläche hebt sich ein starker Fortsatz ab, Hamatus (Fig. 201).

nähert sich die Gelenkfläche der sphäroiden Form und gewinnt damit an Freiheit der Bewegung. Eine Ausdehnung der Gelenkfläche in der Richtung der kürzeren Axe muss in jener Weise wirksam werden. Wir sehen an der proximalen Endfläche des Carpus diese Vergrößerung nach der Richtung der kürzeren Axe erfolgt, zugleich unter Benutzung der durch ihre Wölbung die günstigsten Verhältnisse darbietenden Dorsalfläche, während ein Übergreifen nach der Volarfläche durch die hier bestehende Rinnenbildung von vorn herein ausgeschlossen war.

b. Metacarpus.

Die fünf Knochen der Mittelhand sind längere, an beiden Enden etwas stärkere Stücke, an denen, wie an den größeren Röhrenknochen, zwei Endstücke und ein Mittelstück unterschieden werden. Das proximale Ende fügt sich als Basis dem Carpus an. Das distale Capitulum trägt die erste Phalange der Finger. An Länge übertrifft das zweite Metacarpale nur wenig das dritte, oder ist mit diesem gleich lang, selten kürzer, daran reihen sich die beiden letzten; das kürzeste zugleich das stärkste ist das des Daumens. An allen Abschnitten bestehen theils gemeinsame, theils differentielle Eigenthümlichkeiten.

Die Mittelstücke sind volar in der Längsrichtung schwach concav, mit abgerundeter Oberfläche, dorsal ist das des ersten fast plan; die übrigen sind mit einem nahe an der Basis beginnenden flachen Ausschnitt der Oberfläche ausgestattet, wodurch die von den Metacarpalien begrenzten Interstitia interessea sich distal etwas verbreitern und zugleich nach dem Ricken der Metacarpalia sich ausdehnen. Die Ränder dieser Ausschnitte begrenzen an der Dorsalfläche eine nach dem Capitulum zu sich verbreiternde ebene Fläche, welche am zweiten durch eine Längsleiste auf die Basis sich fortsetzt, am dritten verschmälert und wenig scharf.
abgegrenzt dahin ausläuft; am vierten läuft der jene Fläche fortsetzende Vorsprung nach der Radialseite der Basis aus, am fünften dagegen nach der Ulnarseite, so dass das vierte Interstitium interosseum am bedeutendsten dorsalwärts über die es begrenzenden Metacarpalia übergreift.

Die Foramina nutritia dieser Knochen liegen an der Volarfläche und treten proximalwärts geradlinig ein.

c. Phalangen.

Sie bilden, zu zwei für den Daumen, zu dreien für die übrigen Finger das Skelet dieser Theile. Man scheidet sie in Grundphalange, Mittelphalange und Endphalange. An Volum nehmen sie in dieser Folge ab. An jeder Phalange ist ein Mittelstück und zwei Enden unterscheidbar.

Verbindungen des Handskeletes.

§ 89.

Der hohe functionelle Werth, welcher der menschlichen Hand durch ihre Beweglichkeit im Ganzen wie in ihren Theilen zukommt, findet in der Einrichtung ihrer Verbindungen anatomischen Ausdruck. Diese Verbindungen betreffen erstlich die Hand als Ganze, ihre Anfüngung an den Vorderarm, resp. den Radius; zweitens betreffen sie die einzelnen Abschnitte der Hand unter sich. Wir unterscheiden also die Radio-Carpalverbindung und die innerhalb des Carpus, dann
zwischen Carpus und Metacarpus, Metacarpus und Phalangen, endlich die zwischen dem Phalanzen der Finger bestehenden Verbindungen.

G. B. Günter, Das Handgeleuk, Hamburg 1841.

Radio-carpal-Verbindung (Articulatio radio-carpalis).

Sie stellt ein Gelenk vor, welches zwischen dem Radius einerseits und den drei proximalen Carpalknochen andererseits besteht. Durch die schon oben erwähnte Cartilago triangularis, welche an dem Radius befestigt, sich zwischen das Köpfehen der Ulna und das Ulnare (Triquetrum) des Carpus einschieht, wird die Ulna von der Articulation mit dem Carpus ausgeschlossen, so dass die Rotationen des Radius, der die Hand ausschliesslich trägt, die letztere in gleicher Weise mit bewegen.

Die drei proximalen Carpalia sind durch Zwischenbänder (Ligamenta intercarpalia) (Fig. 202), die unmittelbar unter dem proximalen Ende der Interstitien liegen, unter einander verbunden und besitzen unter sich eine minimale Beweglichkeit. Sie repräsentiren so eine Einheit und bilden zusammen einen mit seiner Längsaxe quergestellten Gelenkkopf, dessen Pfanne die distale Endfläche des Radius mit der Cartilago triangularis vorstellt. Dieser Gelenkkopf ist continuirt überknorpelt, da der Gelenkknorpel seiner 3 Carpaliaflächen auch auf die

Das Radio-carpal-Gelenk kann auch mit dem unteren Radio-ulnar-Gelenk kommunizieren, wenn die Cartilago triangularis unvollkommen entwickelt ist.

Intercarpalverbindung (Articulatio carpalis).

Wie die Knochen der proximalen Reihe durch ihre straffe Verbindung eine Einheit repräsentierten, so tritt sich für jene der distalen Reihe das Gleiche. Die Configuration der Contactflächen beider Complexe erscheint ~förmig, indem an jedem der beiden Theile ein Gelenkkopf und eine Pfanne gebildet wird. Der proximale Gelenkkopf wird vom seitlichen Abschnitte des Radiale (Scaphoid) gebildet, er greift in eine Pfanne, welche Carpale 1 und 2 (Trapez und Trapezoïd) darbieten. Den distalen Gelenkkopf bilden Carpale 3 (Capitatum) und Carpale 4 (Hamatum), welche in eine Pfanne sich einlagern, die von allen drei proximalen Knochen geboten wird (vergl. Fig. 199 u. 200).

Die Höhle dieses Gelenkes Fig. 202 setzt sich in Spalten zwischen den Knochen sowohl der proximalen als der distalen Reihe fort. Zwischen proximalen Carpusknochen findet sich ihre Grenze durch Ligg. intercarpalia, welche jene Knochen im Niveau ihrer proximalen Articulationsflächen unter einander verbinden (Lig. inteross. intermedio-radiale [lunato-scaphoideum] und intermedio-ulnare [lunato-triquetrum]). In die distale Knochenreihe setzt sich die intercarnale Gelenkhöhle zwischen Carpale 1 u. 2, dann 2 u. 3 fort, und an letzterer Stelle auch in die Höhle der Articulatio carpo-metacarpea. Zwischen Carpale 3 und 4 bietet ein ansehnliches Intercarpalband der Fortsetzung der Gelenkhöhle eine Schranke. Dieses Lig. interosseum (Fig. 202) ist aber nicht nur zwischen den benachbarten Carpalien vorhanden, sondern verläuft auch mit longitudinalen Zügen zwischen die Metacarpalia 3 u. 4.

Ein Bändchen tritt vom Carpal 3 zum Metacarpale 3, und eines vom Carp. 4 zum entsprechenden Metacarpale, und beide Bändchen befestigen sich an den bezüglichen einander zugekehrten Flächen der Metacarpalbasen.

Die Bewegungen im Intercarpalgelenk sind vorwaltend Streck- und Beugebewegungen, deren Antheil an anderen Bewegungen S. 251 erörtert ward.

Verbindung des Pisiforme. Das Erbsenbein artikulirt mit dem Ulnare (Trioquetrum) mittels planer oder doch nur wenig gekrümmer Gelenkflächen. Ein ziemlich schlaffes Kapselband umfasst das Pisiforme oberhalb seiner Gelenkfläche und befestigt sich am Ulnare.
Metacarpo-carpalverbindungen.

Diese sind in die Carpalverbindung des Metacarpale des Daumens und in jene der Finger zu scheiden.

Die **Metacarpo-carpalverbindung des Daumens** geschieht in einem Sattelgelenk, welches das Carpale I (Trapezium) mit dem Metacarpale pollicis bildet. Das Kapselband erstreckt sich vom Umfange der Gelenkfläche des Carpale I etwas über den Umfang jener des Metacarpale I hinaus.

Bei der Opposition des Daumens, bei welcher der Daumen gegen die Hohlhand bewegt wird und sich dem Kleinfinger nähert, liegt die Axe transversal im Carpale I, etwas volarwärts geneigt, bei der Abduction und Adduction geht sie dorso-volarwärts, und zwar in schräg ulnarer Richtung durch die Basis des Metacarpale I.

Metacarpo-carpalverbindung der vier Finger. Die vier Finger sind in verschiedene straffere Gelenkverbindung den vier Carpalien angefügt. Die Gelenkhöhe ist bei größerer Ausdehnung des Lig. interosseum für je die zwei ersten und die zwei letzten Finger gemeinsam und erstreckt sich proximal zwischen Carpale I u. 2, distal zwischen die Basen der Metacarpalia II u. III, und IV und V (vergl. Fig. 202).

Das Carpale 2 und noch ein kleiner Theil des Carpale 1 trägt das Metacarpale des Zeigefingers, das Carpale 3 und ein kleiner Theil des zweiten das Metacarpale dig. medii, das Carpale 4 und ein Theil vom Carp. 3 das Metacarpale dig. IV, während jenes des kleinen Fingers ausschliesslich dem Carpale 4 zugetheilt ist. Die drei mittleren Finger artikuliren also mit je zwei Carpalien, und zwar sämtlich mittels schräger, auf einem vorspringenden Theile der Metacarpalbasis liegender Flächen, mit denen sie in ein springende Winkel der distalen Endfläche der Carpalia eingreifen. Etwas geringer ist die straffe Zusammenfügung am Metacarpale IV, welche so den Übergang zur noch weniger straffen-Verbindung des Metacarpale V vermittelt. Mit dieser Zunahme der Beweglichkeit nach dem Ulnarrande der Hand zu steht auch die Abnahme der lateralen Berührungsflächen der Metacarpalia in Zusammenhang. Die nach der Ulnarseite etwas zunehmende Beweglichkeit des Metacarpus gestattet diesem Abschnitte der Hand beim Greifen, Fassen mit thätig zu sein, steht also mit der Funktion der Hand in denselben Zusammenhange wie die festere Verbindung der dem Daumen benachbarten Metacarpalia die Leistung des Daumens begünstigt, indem sie den vorwiegend mit dem Daumen zusammen operirenden Fingern festere metacarpale Stützen darbietet.

Bandapparat der Hand.

Nach Maßgabe der Excursionen der durch das Kapselband verbundenen Theile ist es mehr oder minder straff ausgespannt. Mit ihm stehen die Verteilungsbänder in enger Verbindung, nur durch den Verlauf der sie darstellenden schnigen Züge unterscheidbar.

Dorsal erstreckt sich eine solche Bandmasse von den Enden der Vorderarmknochen über den Carpus auf die Basen der Metacarpalia der Finger. In ihr ist ein breiter Faserzug unterscheidbar, der vom Radius aus schräg ulnawärts convergiert. Er wird als Lig. rhomboïdes unterschieden (Fig. 203). Die übrige Bandmasse lässt meist kürzere Bandpartien erkennen, welche theils die einzelnen Carpalia untereinander, theils dieselben mit den Metacarpalia verbinden, und dazu kommen endlich solche, welche die Metacarpalia der vier Finger untereinander in Verbindung setzen.

Volar ist eine ähnliche zusammenhängende Bandmasse vorhanden. Sie kleidet als eine ziemlich mächtige Schicht die Tiefe der Hohlhand aus, und wird aus einzelnen, durch die Richtung des Faserverlaufes unterscheidbaren Zügen, den Ligg. carpi volaria (profunda) zusammengesetzt. Es sind vorwaltend transversale Züge, welche das Gewölbe der Hohlhand zu erhalten beitragen. Der proximale Theil nimmt vom Radius seinen Ursprung. Der distale geht auf den Metacarpus über, der dazwischen befindliche befestigt sich von beiden Seiten her an das Carpace 3 (Capitatum) (Fig. 204).

Solcher Züge unterscheidet Henle folgende drei:

1. Das Lig. areutatum nimmt den proximalen Theil ein. Es besteht aus bogenförmigen Faserzügen, welche vom Radius ausgehen, und über den Carpus hinweg ulnawärts verlaufen. Die proximalen sind am Intermedium (Lunatum), die distalen größtenteils am Ulnare befestigt, von welchem auch Züge zur Ulna emporireten.

2. Lig. radiatum. Dieses schließt sich distal an das vorige an und wird durch Faserzüge vorgestellt, welche vom Carpace 3 aus in die Nachbarschaft ausstrahlen. Die schrägen und queren Züge sind am deutlichsten ausgeprägt.

3. Lig. transversum wird die vom Carpus auf die Basen der 4 Metacarpalia übergehende Fortsetzung der tiefen Bandmasse benannt, in welcher die transversale Faserrichtung vorherrscht.
Diese Bänder, die mehr als Faserzüge erscheinen, können wie die dorsalen nur künstlich in eine größere Anzahl zerteilt werden.

An dem dorsalen wie an dem volaren Bandapparat ist bemerkenswerth, dass die proximalen Verstärkungszüge (Lig. rhomboides und Lig. arcuatum) vom Radius kommen und einen schrägen Verlauf nehmen. Dadurch erhält einmal der Ausschluss der Ulna von der Handverbindung einen neuen Ausdruck, und durch den schrägen Verlauf werden auch die ulnaren Partien des Carpus mit dem Radius in innigeren Zusammenhang gebracht.

Viel selbständiger als diese Bandzüge gehen vom Pisiforme Ligamente aus (Fig. 204). 1. Lig. piso-hamate vom Erbsenbeine zum Hamulus des Carpale 4. 2. Lig. piso-metacarpum zur Volarfläche der Basis des Metacarpale V. Diese Stränge sind jedoch als Fortsetzungen der Endsehne des am Pisiforme sich festigenden M. ulnaris internus anzusehen.

Die volaren, den Carpus deckende Bandmasse setzt sich seitlich auf die Vorsprüinge fort, welche den Carpus rinnenförmig gestalten; hier gehen sie in mächtige transversale Züge über, die vom Radialrande nach dem Ulnarrande ziehen. Diese stehen mit der oberflächlichen Fascie des Vorderarmes in Zusammenhang, bilden aber einen die Wölbung des Carpus erhaltenden und die dadurch gebildete Rinne zu einem Canal abschliessenden Apparat: das Lig. carpi volare transversum. Radial ist es am Tuberculum des Radiale (Scaphoid) und dem Vorsprung des Carpale 1 (Trapezium) befestigt; ulnar am Hamulus des Carpale 1 (Hamatum) und am Pisiforme. Die von der tiefen Bandmasse zum Lig. carpi transversum an der seitlichen Wand jenes Endes emportretenden Faserzüge überbrücken die Rinne am Carpale 1 (Trapezium) und bilden so einen kleineren Canal, in welchem die Endsehne des M. radialis internus verläuft.

Metacarpo-phalangealverbindung.

Zweiter Abschnitt.

dem Daumen schon vom Carpus an die Beweglichkeit eines dreigliedrigen Fingers gegeben.

Die starken Ligg. lateralia entspringen aus den Gruben zu beiden Seiten der Metacarpalköpfchen und inseriren sich an die Seiten der Phalangen- Basen, mehr volarwärts ausgedehnt. Ein Theil ihrer Fasern tritt in mehr transversale Richtung und hilft das volare Verstärkungsband bilden, eine verdickte Partie der Kapselwand, auf welche sich die schwere Auskleidung der für die Beugesehnen der Finger gebildeten Rinne (s. Muskelsystem) fortsetzt. Dadurch schließt sich diese volare Verdickung der Kapsel eng an die Basis der Phalange und vergrößert deren Pfanne volarwärts (Fig. 205). Von dieser verdickten Volarfläche der Kapsel aus erstrecken sich zwischen die Metacarpalia der 1 Finger quere Faserzüge, welche die Capitula der vier Metacarpalia untereinander verbinden: Ligna- menta transversa capitulorum metacarpi (Fig. 204).

An den Fingern ist die Gelenkpflanne flacher als die Wölbung des Metacarpalköpfchens. Diese Incongruenz findet durch eine ringsum verlaufende Synovialfalte ihre Ausgleichung.

In der volaren Verdickung des Kapselbandes des Daumens finden sich allgemein: zwei Sesambeine. Sie grenzen mit einer kleinen überknorpelten Fläche an die Gelenköhle. Auch am Kleinfinger ist in der Regel ein kleines an der Ulnarseite vorhanden, etwas weniger häufig auch an der Radialseite des Zeigefingers.

Interphalangealverbindung.

Die Phalangen der Finger stehen unter sich durch Winkelgelenke in Verbindung, in welchen Streckung und Beugung ausgeführt wird. Der querstehenden Gelenkrolle des Phalangenköpfchens ist die Articulationsfläche der Basis der nächst folgenden Phalange angepasst. Die volare Ausdehnung der Rollen (Fig. 205) entspricht wieder der größeren, in dieser Richtung vor sich gehenden Excursion. Bei voller Streckung bleibt der volare Abschnitt der Rolle von der Pfanne unbedeckt und bei starker Beugung tritt die obere und distale Fläche der Rolle vor.

Die Gelenkkapsel erhielt wie am Metacarpo-phalangealgelenke seitliche Verstärkungsbänder. Die Ligg. lateralia gehen von den Gruben zur Seite der Capitula aus, an die Seite der Basis der folgenden Phalange. Die volare Verstärkung ergänzt die Pfanne, indem sie inniger an deren Rand sich anschließt, sie also ähnlich wie an der Metacarpo-phalangealverbindung vergrößert.
Untere Gliedmaßen. Beckengürtel.

B. Untere Gliedmaßen.

a. Beckengürtel.

§ 90.

Hüftbein.

Das Hüftbein (Os coxae, os innominatum) ist ein größentheils platter, aber in verschiedenen Ebenen sich entfaltender Knochen, der längere Zeit hindurch aus drei, in der lateral gelegenen Pfanne sich vereinigenden Stücken besteht (Fig. 206). Das größte, dorsal gelagerte Stück wird als Ilium, Darmbein, unterschieden, die zwei anderen, ventral gelagerten begrenzen eine große, etwas ovale Öffnung, Foramen obturatum, welche bis auf eine beschränkte Stelle von einer Membran (M. obturatoria) verschlossen ist. Das vor diesem Hüftbeinloch gelegene Stück ist das Schambein (Os pubis). Die hintere Abgrenzung des Loches bildet das Sitzein (Os ischii).

1. Am Darmbein, Os ilei, Ilium, ist die äußere Fläche (Fig. 207) vorne etwas gewölbt, gegen die Mitte zu und nach hinten mit einer Vertiefung versehen. Auf der Fläche bildet eine Reihe von Rauhigkeiten, die äussere Ursprungsgrenze des M. gluteus minimus, häufig eine gebogene Linie, welche vorne und oben beginnt und zum hinteren unteren Rande sich hinzieht, Linea glutaea anterior. Eine zweite, viel kürzere Linie verläuft parallel und hinter der genannten, ein kleines hinteres Stück der äußeren Fläche abgrenzend, Linea...
glat. posterior. Unterhalb der L. glut. ant. ist zuweilen eine dritte gekrümme Linie bemerkbar, die innere Ursprungs- grenze des M. glutaeus minimus, L. glut. inferior. Die innere oder mediale Fläche (Fig. 208) zerfällt in einen vorderen größeren, glatten, und einen hinteren kleinen rauhen oder mehrenen Theil. An letzteren machen sich wieder zwei Abschnitte bemerkbar. Ein vorderer, ohrförmig gestalteter, mit einem Knorpelüberzuge versehener, Facies auricularis, bildet die Gelenkverbindung mit dem Sacrum, während die dahinter gelegene Tuberositas zum Ansätze von Bändern dient. Der vordere glatte Abschnitt der Innenfläche des Ilium wird durch eine im Vorderrande der Fac. auricularis beginnende, bis zur Darmbeingrenze verlaufende Erhebung, Linea ilcopestinea (innominata), in einen oberen und unteren Theil geschieden. Der erstere bildet die flache, aber ausgedehnte Fossa iliaca, in deren Grund die Substanz des Knochens beträchtlich verdünnt, im Alter durchscheinend ist. Am hinteren unterten Theil der Grube liegt ein Ernährungshoch.

Untere Gliedmaßen. Beckengürtel.

Fig. 208.

259

Die für das Hüftgelenk von den drei Theilen des Hüftbeins gebildete Pfanne (Acetabulum) bietet eine halbkugelig vertiefte Fläche, deren Boden die Fossa
Zweiter Abschnitt.

acetabuli einnimmt, an welcher der Knochen bedeutend verdünnt erscheint. Von ihr führt die gegen das Sitzbein vertiefte Incisura acetabuli abwärts. Die übrige Pfannenfläche ist überknorpelt, und bildet eine halbmond förmige Figur. Die drei Stücke des Hüftbeines betheiligen sich ungleich an der Pfannenbildung; das Ilium hat den größten, das Schambein den geringsten Anttheil an der Gelenkfläche des Acetabulums, dessen Grube zum bei weitem größten Theile vom Sitzbein gebildet wird. Der Rand der Pflanne ist lateral von dem Tuberulum ilo-pubicum (durch den hier verlaufenden M. ilio-psoas) etwas eingebogen, trifft dann oben mit der unter der Spina ilei anterior inferior liegenden Tuberosität zusammen, von welcher Stelle an er hinten und unten einen stärkeren, am Sitzbeine bis zur Incisura acetabuli sogar etwas zugeschärften Vorsprung bildet.

Die Membrana obturatoria (Fig. 210) wird von vorwiegend quer verlaufenden schrägen Zügen gebildet, welche ins Periost des Schem- und Sitzbeines übergehen; unterhalb der Incisura obturatoria bleibt ein Raum frei, der oben vom Schem- und Sitzbein begrenzt, unten von Zügen der Membrana obturatoria zum Canalis obturatorius abgeschlossen ist (Fig. 210).

Verbindungen des Hüftbeins.

a. Verbindungen mit der Wirbelsäule.

Untere Gliedmaßen. Beckengürtel. 261

Die Verstärkungsbänder bilden an der vorderen Fläche nur eine dünne Lage (Ligg. ileo-sacralia ant.). Dorsal sind sie dagegen mächtig entwickelt. Zwischen der Tuberositas ilei und der entsprechenden Fläche des Sacrum bestehen zahlreiche Bandstränge, zuweilen von Fett oder lockerem Bindegewebe durchsetzt; Ligg. ileo-sacralia postica (Fig. 209) (il. s. p.). Oberflächlicher bilden sie eine continuirliche Lage und stehen auch mit Ursprüngen des M. sacro-spinalis in Zusammenhang. Von der Spina iliaca posterior superior aus setzt sich dieser Bandapparat in längere, lateral an die Hinterfläche des Sacrum angefügte Bänder fort (Ligg. ileo-sacr. post. long.).

Als entfernter vom Ileo-sacralgelenk gelagerte Bänder sind das Lig. ileo-lumbale und die Ligg. ischio-sacralia aufzuführen. Ersteres geht vom Querfortsätze der Vertebrae lumbalis V, theils zum Darmbeinkamme, theils zum oberen Theile der Articul. sacro-iliaca.

Die Ligamenta ischio-sacralia (Fig. 210) scheiden sich nach ihrer Be-

Das Lig. spinoso-sacrum erstreckt sich von der Spina ischiadica unterhalb des Lig. tuberose-sacrum zum Kreuzbein. Es schließt die Incisura ischiadica major zu einem gleichnamigen Loch ab und hilft mit dem Lig. tuberose-sacrum das Foramen ischiadicum minus begrenzen, das von Seite der Incisura ischiadica major seine vordere Grenze empfängt.

b. Verbindung der beiderseitigen Hüftbeine unter sich.

Diese kommt durch die Schambeine in der Scham- oder Schoosfuge zu Stande. Die »Symphyses ossium pubis« wird durch eine mächtige Faserknorpelschicht dargestellt, welche sich beiderseits an die überknorpelten gegeneinander geklapperten Schambeinflächen anschließt und in dieselben fortgesetzt ist. Im Inneren erscheint das Gewebe der Symphyse lockerer, und lässt zuweilen auch einen bald mehr unregelmäßigen, bald spaltförmigen Hohlraum unterscheiden, der auch als Gelenkhöhle gedeutet ward. Sehnige Querfaserzüge verstärken äußerlich die Symphyse und laufen im Periost der Schambeine aus. Von besonderer Mächtigkeit sind sie am Arcus pubis, wo sie das Ligamentum arcudatum (L. arc. inferius) darstellen.

Das Becken als Ganzes.

Da die hintere Wand des kleinen Beckens vom Kreuz- und Steißbeine, die vordere von der Schamfuge und ihrer Nachbarschaft gebildet wird, so ergibt sich für die hintere Wand eine viel bedeutendere Höhe und die Ebenen, in welchen Beckencin- und Ausgang liegen, convergiren nach vorne zu.

b) In Ranne des kleinen Beckens wird der sagittale Durchmesser von der Mitte der Schamfuge zur Verbindungsstelle des 2. und 3. Sacralwirbels genommen. Als Normalconjugata H. Meyer; wird der Durchmesser von der meist eingerückten Mitte des 3. Sacralwirbels bis zum oberen Rande der Schamfuge aufgefasst Fig. 212 N. Als Diagonalconjugata der von Lig. arenum zum Promontorium sich erstreckende Durchmesser, der am Lebenden gefunden wird. Der quere Durchmesser vereinigt die Mittelpunkte beider Pfannen.

c) Am Beckenausgang verbindet der gerade Durchmesser den unteren Rand der Schamfuge mit der Steißbeinspitze; da diese beweglich, die Linie also veränderlich ist, ward auch die Verbindung des Sacrum mit dem Steißbein als hinterer Punkt gewählt Ausgangsconjugata. Der Querdurchmesser verbindet beide Sitzbeinhöcker.

Stellt man sich zahlreiche Conjugatae und dieselben durch eine Linie untereinander verbunden, welche jede Conjugata halbiert, so erscheint diese Linie als eine gekrümmte. Sie entspricht der Beckenaxe und wird Führungslinie benannt (Fig. 212 a x). In ihrer Richtung bewegt sich beim Geburtsacte des Kopfes des Kindes.

Die Stellung des Beckens im Körper ist derart, dass die Eingangsebene des kleinen Beckens stark nach vorn gesenkt erscheint. Der nach hinten offene Winkel der Eingangsconjugate mit einer Horizontalen beträgt 60——64°. Er drückt die Neigung des Beckens aus. Das Becken ist also der aufrechten Stel-

Am großen Becken erscheinen die Darmbeine beim Weibe flacher als beim Manne. der Beckeneingang bietet eine mehr queroval Gestalt, indem er beim Manne durch das in ihn vorspringende Promontorium mehr oder minder herzförmig sich darstellt. Die kleine Beckenhöhle selbst ist niederer, aber weiter, die Schamfuge kürzer. Die Sitzbeine sind mehr parallel gestellt, indem sie beim Manne etwas convergiren. Der Arcus pubis öffnet sich in größerem Winkel und dadurch kommt auch dem Foramen obturatum eine weniger längliche Gestalt als

Becken eines Mannes.

b. Skelet der freien Extremität.

§ 91.

Skelet der unteren Extremität. 265

beim Manne zu. Bei relativ größerer Breite des Kreuzbeins ist dasselbe niederer als beim Manne.

Großes Becken.

<table>
<thead>
<tr>
<th>M.</th>
<th>W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querdurchmesser zwischen den Labia int. der beiderseitigen Crista ilei</td>
<td>257</td>
</tr>
<tr>
<td>Querdurchmesser den Spinae iliacae ant. sup.</td>
<td>244</td>
</tr>
</tbody>
</table>

Kleines Becken.

Eingang.

- Conjugata 108 116
- Querdurchmesser 128 135
- Sehräger Durchmesser 122 127

Binnenraum.

- Conjugata 108 122
- Querdurchmesser 122 135
- Durchmesser zwischen den Spinae ischiad. 85 110

Ausgang.

- Conjugata zur Steißbeinspitze (veränderlich) 75 90
 - zur Synchondrosis Saecro-coccygea 95 115
- Querdurchmesser 81 110

Ferner:

- Diagonalconjugata 122 129
- Höhe der Schamfuge 54 45
- Winkel des Schambogens 75 95

war, so spricht sich diese auch in den Verhältnissen der übrigen Skelettheile dieser Gliedmaße aus, die dem Körper als Stütze und als Organ der Ortsbewegung dient.

1. Oberschenkelknochen (Femur).

An diesem längsten Knochen des Körpers besitzt das starke Mittelstück nur wenige Eigentümlichkeiten. Seine Markhöhle ist von einer dicken Wand compacter Substanz umschlossen, welche dem Knochen an diesem Theile bedeutende Festigkeit verleiht. Das proximale Ende ist durch einen medial und etwas nach vorne gerichteten Gelenkkopf ausgezeichnet, der etwas mehr als die Hälfte einer Kugel bildet und unterhalb der Mitte seiner Oberfläche die Fovea capitis als Insertionsstelle des Lig. teres trägt. Der Kopf steht durch ein schlankeres Stück, den Hals, mit dem Körper des Knochens in Verbindung. Er bildet mit dem Mittelstück einen Winkel von 120—130°; lateral wird er überragt von einer mächtigen Apophyse, dem Trochanter major, welcher hinten meist etwas medial gebogen eine Grube unter sich hat, Fossa trochanterica. Ein zweiter Höcker springt an der Grenze des Halses und des Körpers tiefer herab, medial und nach hinten gerichtet, der Trochanter minor (Fig. 215). Unter ihm läuft vorn vom Troch. major her eine rauhe Linie, Linea obliqua, schräg nach hinten und abwärts (Fig. 214), und hinten sind beide Trochanter durch einen bedeutenderen Vorsprung, Linea intertroch., verbunden. Von da aus verschmälert sich der Körper wenig, um gegen das distale Ende zu bedeuten an Breite zu gewinnen. Er ist dabei etwas gekrümmt, so dass er in seiner
Länge eine vordere Convexität darbietet. An der hinteren Fläche tritt, an der Mitte am bedeutendsten entwickelt, die *Linea aspera* herab, welche nach oben wie abwärts ihre beiden Labien, durch die sie gebildet wird, divergiren lässt. Das Labium laterale läuft aufwärts gegen den Troch. major zu in eine bedeutende Rauhigkeit, *Tuberositas glutealis* aus, welche zuweilen einen kammmärtigen Vorsprung bildet. Dieser entspricht einem dritten Trochanter, der bei vielen Säugetieren (Perissodactylen, manchen Nagern etc.) besteht. Das Lab. mediale steigt gegen den Trochanter minor zu empor, um unterhalb desselben in die oben erwähnte Linea obliqua nach vorn umzubiegen. Distal divergiren die beiden Labien zur Umgrenzung des *Planum poplitaeum*, welches sich gegen das Gelenkende zu ausbreitet.

Der von der Längsaxe des Körpers des Femur und jener des Halses gebildete Winkel ist beim Neugeborenen offener als beim Erwachsenen und nähert sich in höherem Lebensalter einem Rechten, was beim weiblichen Geschlechte schon in früheren Lebensperioden der Fall ist.

Der Hals ist der am spätesten deutlich werdende Theil des Femur. Noch beim Neugeborenen bildet er einen ganz unanschaulichen Abschnitt, so dass der Kopf fast unmittelbar dem Körper angefügt ist und das proximale Ende des Femur dadurch große Ähnlichkeit mit einem Humerus besitzt (Vergl. Fig. 85).

Die Ernährungslöcher des Femur befinden sich auf oder doch in der Nähe der Linea aspera. Sie führen in proximaler Richtung. Zuweilen kommt nur ein einziges größeres vor, etwas unterhalb der Mitte der Länge des Femur (Fig. 215).

Verbindung des Femur mit dem Becken (Hüftgelenk).

Die im Hüftgelenk (Articulatio coxae) bestehende Verbindung der unteren Extremität mit dem Rumpf bildet ein Nussgelenk. Der Kopf des Femur greift in die Pfanne des Hüftbeins ein und an ihm wird mehr als die Hälfte einer Kugel von der Pfanne umschlossen. Die Pfanne wird nämlich vertieft durch eine Erhöhung ihres Randes mittels eines faserknorpeligen Ringes (Labrum glenoidale), der auch die Incisura acetabuli als Lig. transversum überbrückt. Unter dieser Brücke ziehen Blutgefäße in die Fossa acetabuli. Das breit aufsitzende Labrum springt mit verschmälertem Rande vor und
legt sich damit dem Gelenkkopf eng an, die Pfannenfläche vergrößern (Fig. 216 Lab.). Die halbmondförmige Gelenkfläche der Pfanne umzieht die nicht überknorpelte tiefer liegende Pfannenfläche (Fossa acetabuli), an der die Synovialmembran ein ansehnliches Fettpolster (Pulvinar) bedeckt. Gegen die Incisur zu setzt sich die Synovialmembran in einen platten, großentheils vom Ligamentum transversum ausgehenden Strang fort, welcher sich verjüngt zur Grube des Femurkopfes begibt und daselbst befestigt ist. Man hat ihn als Ligamentum teres bezeichnet, er ist aber wesentlich ein Gebilde der Synovialmembran, in welchem Blutgefäße zum Schenkelkopf verlaufen. Bei den Bewegungen des Kopfes in der Pfanne folgt das Ligamentum teres, ohne eine mechanische Bedeutung kund zu geben. Es bettet sich dabei in das weiche Polster der Fossa acetabuli (Fig. 216). Die Gelenkkapsel ist außerhalb des Labrum glenoidale am knöchernen Umfange der Pfanne befestigt. An der Stelle des Pfannenausschnittes entspringt sie vom Ligamentum transversum. Sie tritt über den Hals des Femur, indem sie sich hinten über der Linie intertrochanterica anfügt, während sie vorne bis zur Linea obliqua reicht.

Das Kapselband wird durch scharfe, von der Hüftbeinbefestigung in es eingehende Züge verstärkt. Von diesen ist ein an der Spina iliaca ant. inf. entspringender, in die vordere Kapselwand sich einfügender breiter Zug als Lig. ilio-femorale (Lig. Bertini) hervorzuheben. Dieses Band (Fig. 217) erstreckt sich zur Linea obliqua hinab, wo sich seine Fasern befestigen. Ein zweites Verstärkungsband ist das Lig. pubo-femorale, welches vom Schambein bis zum Tuberculum pubicum entspringt und seine Faserzüge zur medialen und hinteren Fläche der Kapsel entsendet. In Fig. 217 ist es sichtbar. Es läuft mit Zügen, die vom Sitzbein entspringen fort, welche teilweise mit Ringfasern des Kapselbandes den Schenkelhals umgreifen (Zona orbicularis), und mehr nach innen als nach außen sichtbar werden. Das Lig. ilio-femorale hemmt die Streckung und die Rotation nach außen.

Das Lig. teres erscheint nicht einfach als ein Rest einer ursprünglichen Continuität beider Contactflächen des Hüftgelenkes, sondern vielmehr als ein ursprünglich außerhalb des Gelenkes liegender Apparat, der mit der erst bei den Vögeln und Säugethieren verlorenen annähernd transversalen Stellung des Femur in's Gelenk mit einbezogen wird, und sich wohl unter dem Einflusse der Rotationsbewegungen des Femur, aus seinem parietalem Zusammenhange löst. Bei manchen Säugethiern fließt die In-

2. Knochen des Unterschenkels.

§ 92.

und für die betreffenden Skelettheile erst erworben, nachdem die beiden Gliedmaßen bereits zu einer Verschiedenheit der Leistung gelangt waren.

Die Tibia (Schienbein) lässt an ihrem proximalen Ende die Anpassung an die Verbindung mit dem Femur erkennen. Auf der proximalen Fläche sind zwei überknorpelte Gelenkflächen vorhanden, die laterale häufig etwas breiter, stets weniger vertieft, die mediale tiefer und sagittal verlängert. Sie entsprechen den beiden Condylen des Femur. Zwischen ihnen tritt von vorne wie von hinten her eine unebene, etwas vertiefte Stelle (Fossa intercondylea anterior und posterior) auf eine Erhebung, auf welche auch die beiderseitigen Gelenkflächen eine Strecke weit fortgesetzt sind. Diese Eminentia intercondylea besitzt demnach jederseits einen Vorsprung. Der die Gelenkflächen umgebende Rand (Margo infraglenoidalis) fällt ziemlich senkrecht ab und geht vorne allmählich auf einen Vorsprung über, die Tuberositas tibiae, an welcher das Lig. patellae befestigt ist. Hinten ist der Margo infraglenoidalis durch die Absenkung der Fossa intercondylea unterbrochen. Unterhalb des lateralen Randes ist hinten eine kleine ebene Gelenkfläche (Superficies fibularis) zur Verbindung mit der Fibula angebracht.

Das distale Ende trägt die Gelenkfläche zur Verbindung mit dem Fußskelet. Medial wird sie von einem starken Vorsprung (Malleolus medialis) überragt (Fig. 218), auf

\textit{Fibula (Perone, Wadenbein)}. Ein schlanker, an beiden Enden verdickter Knochen, dessen \textit{Mittelstück} drei Kanten und eben so viele Flächen unterscheiden lässt. Die schärfste Kante sieht vorwärts, oben etwas medial gewendet und läuft gegen die vordere Fläche des distalen Endes aus, wo sie sich in zwei schwächere Kanten spaltet, welche jene Fläche zwischen sich fassen. Von beiden hinteren Kanten ist die laterale die längste. Sie nimmt im distalen Verlaufe eine rein hintere Lage ein und gewinnt ihre schärfste Strecke, bevor sie über dem distalen Ende in dessen hinterer Fläche verläuft. Die mediale Kante ist die kürzeste, in der Mitte des Knochens springt sie am bedeutendsten vor. An der medialen Fläche tritt wie eine vierte Kante die sehr variable \textit{Crista interossea} auf. Proximal verläuft sie neben der vorderen Kante, parallel mit ihr und wie ihr zugehörig erscheinend. In der Mitte des Knochens entfernt sie sich weiter nach hinten, und fließt mit der medialen hinteren Kante zusammen. Der hinter der Crista interossea liegende hintere Theil der medialen Fläche weist häufig eine rinnenförmige Vertiefung auf.

Das \textit{proximale Ende — Capitulum} — setzt sich durch einen der Kanten fast entbehrenden Hals vom Mittelstück ab, zuweilen beginnen die beiden hinteren Kanten schon am Capitulum. Eine nach vorne und medial abgeschrägte, zuweilen
etwas vertiefte Gelenkfläche dicht in Verbindung mit der Tibia. Von drei verschiedenen deutlichen Vorsprüngen dient der längste dem M. biceps femoris zur Insertion.

Das distale Ende der Fibula bildet der Malleolus lateralis. An dessen medialer Fläche findet sich eine meist dreiseitig begrenzte, nahezu plane Gelenkfläche zur Articulation mit dem Talus. Oberhalb der Gelenkfläche macht sich eine größere, durch Unebenheiten ausgezeichnete, gleichfalls dreiseitige Fläche bemerkbar, gegen welche die Crista interossea ausläuft. Hier steht die Fibula mit der Tibia durch Ligament in Verbindung: Lateral bildet der Malleolus einen Vorsprung, an welchem hinten eine schwache Furche für die Sehnen der M. peronaei bemerkbar ist.

Als ein Bestandtheil des Skeletes der unteren Extremität pflegt die Patella, Kniescheibe, aufgeführt zu werden, obwohl sie nur dadurch, dass sie eben ein Knochen ist, hierher gehört. Sie gehört nicht zu den typischen Skelettheilen, sondern ist ein Sesambein, das in der Endsehne des M. extensor cruris quadriceps sich ausgebildet hat. An diesem Knochen ist eine vordere, etwas gewölbte (Fig. 220), und eine hintere, überknorpelte Fläche unterscheidbar. Die letztere ist durch eine mittlere Erhebung in zwei Facetten geschieden, davon die breitere lateral, die schmalere medial liegt (Fig. 220), beide der Configuration der Gelenkflächen der Condylen des Femur angepasst, auf welchen die Patella bei der Streckung und Beugung des Unterschenkels gleitet. Der untere Rand ist in eine Spitze (Apex pat.) ausgezogen, von der das als Ligamentum patellae bezeichnete Endstück der genannten Strecksehne ausgeht, um sich an die Tuberositas tibiae zu befestigen, indess der obere Rand (Basis) den oberen Theil der Strecksehne an-
gefügt hat. Das Verhalten zum Lig. Patellae wie zum Femur siehe unten in Fig. 223.

Die Differenzierung der knorpeligen Patella erfolgt erst in der 9.—10. Woche, und im dritten Jahre beginnt die Ossification.

Verbindung der Tibia mit dem Femur (Kniegelenk).

Durch die mächtigere Ausbildung der Tibia wird die Fibula von der Articulation mit dem Femur ausgeschlossen (S. 270) und die Tibia geht mit letzterem allein die Bildung des Kniegelenks ein. Die in diesem Gelenke stattfindenden Bewegungen sind sowohl Streckung und Beugung (Winkelbewegung) des Unterschenkels als auch Drehbewegungen desselben. Es ist also ein Trocho-ginglymus.

Die Gelenkflächen der Condylen des Femur sind den ihnen entsprechenden Flächen der Tibia nicht congruent (Fig. 221). Die Congruenz wird hergestellt durch zwei aus Faserknorpel bestehende halbmondformige Band scheiben, die zwischen Femur und Tibia lagern. Beide Knochen sind äußerlich durch die Kapsel und ihre Verstärkungsbänder in Zusammenhang, und überdies noch durch die scheinbar im Innern des Kniegelenkes angebrachten Kreuzbänder.

Die Befestigung an der Tibia findet für beide Menisci vor und hinter der Eminentia intercondylæa statt. Der *lateral* *Meniscus* (Fig. 222) beschreibt einen kleineren, aber vollständigeren Kreis und ist breiter als der andere. Sein vorderer Schenkel ist vor der Eminentia intercondylæa befestigt, mit dem hinteren Schenkel tritt er theils an die beiden Vorsprünge der Eminentia intercondylæa von hinten heran, theils setzt er sich in einen starken Strang fort, der sich in der Fossa intercondylæa femoris am medialen Condylus befestigt. Der *medial* *Meniscus* ist mehr
halbmondförmig, schmal, vorne vor der bezüglichen Gelenkfläche der Tibia, dicht am Rande der Vorderfläche dieses Knochens befestigt, hinten verbreitert er sich an seiner Anfügestelle in die Fossa intercondylea posterior tibiae, zum hinteren Abhang der Eminenz.

Die Kreuzbänder, *Ligg. cruciata*, werden nach Ursprung und Insertion unterschieden. Sie stellen einen hinten mit der Synovialkapsel in Zusammenhang stehenden, von hinten her gegen das Innere des Kniegelenkes eingetretenen Bandapparat vor, der von der Fossa intercondylea femoris zur Fossa intercondyl. ant. und post. tibiae sich erstreckt. Das *vordere Kreuzband* (Fig. 222) entspringt an der inneren Fläche des lateralen Condylus femoris und befestigt sich an der Fossa intercondylea tibiae anterior, wobei Faserzüge auf den vorderen Schenkel des medialen Meniscus auslaufen. Das stärkere *hintere Kreuzband* entspringt an der Innenfläche des medialen Condylus fem. und nimmt an der Fossa intercondylea posterior tibiae weit herab übergreifend seine Insertion (Fig. 222). Durch diese Anordnung beider Bänder kommt ein gekreuzter Verlauf zum Vorschein.

Die *Gelenkkapsel* ist am Femur vorne und seitlich oberhalb der überknorpelten Flächen befestigt, vorne am höchsten emporreichend, an den Seiten bis über die Epicondyle herab mehr dem Knorpelrand genähert. Die Ausdehnung der Kapselhöhle auf die vordere Fläche des Femur wird durch ihre Vereinigung mit einem Schleimbeutel (Bursa subbernalis) bedingt, welcher oberhalb der Patella, zwischen der Endsehne des *Extensor cruris quadriceps* und dem Femur sich findet. Hinten geht die Kapsel oberhalb der Condyle hinweg und setzt sich mit ihrer Synovialmembran auf den Apparat der Kreuzbänder und mit diesen zur Tibia fort, während äußerlich mehr straffes Gewebe die hintere Kapselwand vorstellt (Fig. 221). An der Tibia ist die Kapsel seitlich und hinten unterhalb des Margo infraglenoidalis befestigt; vorne an der Tuberositas tibiae, indem das *Lig. patellae* in die fibröse Kapselwand eingetreten ist. Unter ihm findet sich ein Schleimbeutel (B. subpatellaris). Das Eintreten des auch das Lig. patellae in sich begreifenden Endsehne des M. Extensor cruris quadriceps in die vordere Wand der Gelenkkapsel lässt die Patella mit ihrer hinteren Fläche, soweit diese überknorpelt ist, gleichfalls die Gelenkhöhle begrenzen (Fig. 223). Unterhalb der in die Gelenkhöhle sehenden Patellenfläche ist die *Synovialhaut* der Kapsel durch reichliche Fetteinlagerung zu stark vorspringenden Falten entwickelt. Diese ragen in die Gelenkhöhle und setzen sich ursprünglich durch eine
Zweiter Abschnitt.

mediane Falte über dem vorderen Kreuzband bis zur Fossa intercondylea femoris fort, so dass sie mit der die Kreuzbänder umschliessenden, von hinten her eindringenden vertikalen Scheidewand der Gelenkhöhle zusammenfließen. In diesem Zustande ist die Gelenkhöhle in zwei den beiden Condylen entsprechende Cavitäten geschieden, die nur vorne zwischen Patella und Femur unter einander zusammenhängen. Zuweilen erhält sich dieser Zustand beim Erwachsenen. Während der hintere Theil dieser Scheidewand mit den Kreuzbändern bestehen bleibt, schwindet der vordere in der Regel bis auf einen mehr oder minder dünnen Strang, das Lig. mucosum, welches dann die vorderen mächtigen Synovialsäumen (Plicae adiposae, Ligamenta alaria, Marsupium) mit dem vorderen Rande der Fossa intercondylea femoris in Verbindung setzt (Fig. 223).

Von Verstärkungsbändern der Kapsel sind die Seitenbänder (Fig. 221) die wichtigsten. Das innere, Lig. mediale (Fig. 224), entspringt breit vom Epicondylus medialis und erstreckt sich mit seiner vorderen stärkeren Partie zur Seite der Tibia, an der es weit unterhalb des Margo infraglenoidalis herab sich festigt. Der hintere dünnere Theil dieses Bandes erreicht nur den Rand des medialen Meniscus, wo er sich inserirt. Das äußere Seitenband, Lig. laterale, ist von der fibrösen Kapselwand schärfer gesondert. Es entspringt vom lateralen Epicondylus und festigt sich an der äusseren Fläche des Köpfchens der Fibula. Eine hinter diesem Strange liegende Fasermasse der Kapsel verläuft zum oberen Theil des Capitulum fibulae.

An der hinteren fibrösen Wand der Kapsel findet sich die Ausstrahlung eines Theiles der Endsehne des M. semimembranosus, als Lig. poplitaeum obliquum beschrieben. Von der Gegend des Condylius medialis tibiae aus verläuft jener Sehnenzipfel compact oder auch nach anderen Richtungen ausstrahlend in der Kapselwand zum Condylus lateralis femoris (Fig. 221), während ein anderer Zipfel derselben Endsehne unter dem medialen Seitenbande dem Margo infraglenoidalis tibiae sich anlegt und mit ihm verschmilzt.

Denkt man sich die Krümmungsebene der Gelenkflächen der Condylen als eine Spirale (an welcher der Krümmungshalbmesser jedoch mehrmals wechselt), und stellt man sich die Ausgänge der Spirale an der Befestigungsstelle der Seitenbänder vor, so werden von diesem Punkte aus auf die Spirale gezogene Radien um so länger sein, je weiter von ihrem Ausgänge entfernt sie die Spirale treffen. Auf diese Radien stellen sich die Seitenbänder bei den Winkelbewegungen im Kniegelenk ein. Sie fallen auf kürzere Radien bei der Beugung, auf längere bei der Streckung, und endlich bieten sie bei fortgesetzter Streckung eine Hemmung dar.

Den Kreuzbändern kommen verschiedene Leistungen zu; zunächst besteht in ihnen ein mächtiger Apparat der Vereinigung von Femur und Tibia, und dieser Apparat gestattet durch seine Lage in der Fossa intercondylea femoris, wie durch seine Anordnung die Bewegungen im Gelenke. Sie hemmen vorzugsweise die mediale Rotation, besitzen aber noch Einfluss bei Streckung und Beugung, indem das vordere Band bei der mit jener Rotation verbundenen Beugung die größte Spannung erlangt und das hintere mit seinen vorderen Fasern die Beugung, mit seinen hinteren die Streckung hemmt (Langer).
Zweiter Abschnitt.

Das unterhalb der Patella in die Gelenkhöhle vortretende Synovialpolster samt dem es an den Vorderrand der Fossa intercondylica befestigenden Strang (Ligg. alaria und Lig. mucosum) ist am Mechanismus des Kniegelenks nicht direct beteiligt. Jene Falten bilden einen Ausstülppapparat der Gelenkhöhle, der sich der bei Streckung und Beugung verschiedenen Configuration der Höhle anpasst, indem die Falten durch den zur Fossa intercond. gehenden Strang jeweils dirigirt werden: bei der Streckung wagrecht zwischen die Condylen des Femur (vergl. Fig. 223), bei der Beugung senkrecht vor die Condylen. Dadurch wird die Straffheit der von einer Strecksehne gebildeten vorderen Kapselwand, welche der Änderung der Gestalt der Gelenkhöhle nicht zu folgen vermöge, kompensirt, und es erscheint die ganze Einrichtung von der in die vordere Kapselwand eingetretenen Strecksehne abhängig, insofern durch diese die Anpassungsfähigkeit der Kapsel an die Gestaltung der Gelenkhöhle aufgehört hat.

Tibia-fibularverbindung.

Das proximale Tibio-Fibulargelenk besitzt nahezu plane Gelenkflächen (Fig. 221). Nach oben zu ist die tibiale Fläche etwas gewölbt, die fibulare entsprechend vertieft. Die im Ganzen sehr mannigfache Configuration lehrt, dass wir es mit einer untergeordneten Gelenkbildung zu thun haben. Des Zusammenhanges der Gelenkhöhle mit der B. m. poplitaca ist beim Kniegelenk Erwähnung geschehen. Häufiger ist eine directe, die erste nicht ausschließende Communication. An die Kapsel schließt sich ein vorderes und ein hinteres Verstärkungsband, Lig. capitulii fibulae anterius et posterius an.

Das distale Tibio-fibulargelenk fließt mit seiner Höhle mit dem Fußgelenk (Talo-cruralgelenk) zusammen, und kann somit als ein Theil des letzteren gelten (vergl. Fig. 230). Die Befestigung des Malleolus fibulae an die Tibia bewerkstelligen zwei, den bezüglichen Abschnitt der Gelenkkapsel des Talo-cruralgelenkes verstärkende Bänder, das Lig. malleoli fibulae anterius und posterius. Beides straffe, von der Tibia schräg zum Mall. fibularis sich herab erstreckende breite Faserzüge (Fig. 232).

Die untere Tibio-fibularverbindung bildet durch ihre Hilfsbänder einen federnden Apparat, in welchen der Talus eingeklemmt ist. Diese Einklemmung ist am vollständigsten in der aufrechten Stellung, indem hier der breitere vordere
Theil der Gelenkfläche des Talus von beiden Malleolis umfasst wird. Dann findet sich der Bandapparat im Zustande der grössten Spannung, während beim Senken der Fußspitze, also beim Strecken des Fußes die Spannung nachlässt, indem die Malleoli dann den schmaleren hinteren Theil des Talus jener Gelenkfläche umfassen.

c. Skelet des Fußes.

§ 93.

Im Fußskelet wiederholen sich im Ganzen die bereits bei der Hand unterschiedenen Abschnitte mit Modificationen, welche aus der Verschiedenheit der Function dieser Theile entsprungen sind. Wir unterscheiden die Fußwurzel, Tarsus, den Mittelfuß, Metatarsus, und die Phalangen der Finger.

1. Tarsus.

Die Knochen der Fußwurzel, sieben an der Zahl, stellen im Vergleiche zu jener der Handwurzel ansehnliche Stücke dar, die zugleich eine andere Anordnung darbieten. Zwei grössere, Talus und Calcaneus, repräsentiren die proximale Reihe und entsprechen zusammen den drei Knochen derselben Reihe des Carpus, wobei der Talus das Radiale (Scaphoideum und Intermedium Lunatum) repräsentirt, während der Calcaneus dem Ulnare (Triquetrum homolog ist. Auf den Talus folgt distal das Naviculare, welches einem der menschlichen Hand in der Regel fehlenden Knochen, dem Centrale entspricht; ihm folgen drei, ebenso viele Metatarsalia tragende Tarsalia, das Tarsale 1, 2, 3, die auch als Keilbeine, Cuneiformia bezeichnet sind. An den Calcaneus fügt sich distal als Tarsale 1: das Cuboid, welches mit den 3 Cuneiformia die distale Reihe der Tarsusknochen vorstellt, und wie das Carpale 4 (Hamatum) zwei Mittelhandknochen, so zwei Metatarsusknochen trägt.
Durch das Fortbestehen des Centrale (als Naviculare) erhalten sich im Tarsus primitivere Zustände als im Carpus, während wieder die im Talus bestehende Verbindung eines Tibiale mit einem Intermedium eine im Vergleich mit dem Carpus weiter fortgeschrittene Bildung ausdrückt. Diese Verschmelzung kommt allen Säugethieren zu.

Talus, Astragalus, Sprungbein. Der einzige, die Verbindung mit dem Unterschenkel vermittelnde Knochen. Sein Körper trägt auf der oberen proximalen Fläche (Fig. 225) eine von vorne nach hinten gewölbte und zugleich in dieser Richtung sich verschmälernde Gelenkfläche, welche auf die mediale Seitenfläche mit einer schmalen, auf die laterale dagegen mit einer breiteren Strecke sich fortsetzt. Die letztere ist zugleich schärfer als die mediale von der oberen abgesetzt, und tritt in concaver Krümmung auf einen Fortsatz über. An sie legt sich der Malleolus der Fibula an, während die Tibia und ihr Malleolus der oberen, sowie der schmalen medialen Fläche angepasst ist. An der hinteren Fläche des Knochens ist eine Furche bemerkbar für die Sehne des M. flexor hallucis longus. Vorne setzt sich vom Körper des Talus ein abgerundeter Vorsprung ab, **Caput tali**, dessen überknorpelte convexe Oberfläche drei, zuweilen ohne deutliche Grenze in einander übergehende Abschnitte unterscheiden lässt. Der vorderste, den größten Theil des Kopfes bedeckende fügt sich an das Naviculare, daran grenzt hinten und lateral eine plantarwärts ziehende Fläche, welche von einem Bandapparate (Lig. calcaneo-nav. plant.) bedeckt wird, und an diese stösst eine schräg gerichtete ganz plantare Facette (Fig. 227), welche durch eine unebene Rinne (Sulcus interarticularis (Sulc. i. a.) von einer dahinter liegenden größeren Gelenkfläche der Plantarseite des Knochens geschieden wird.

Die letzte erwähnte Gelenkfläche ist concav, und tritt mit der hinteren Fläche in einem scharfen Rande zusammen, sie articulirt, wie die von ihr durch den Suleus geschiedene mit dem Calcaneus und bildet den vorderen Abschnitt der Articulatio talo-calcanea.

Calcaneus, Fersenbein, der größte Knochen der Fußwurzel. ist länglich gestaltet, an seiner hinteren Hälfte ohne Verbindungsf lächen, fast vierseitig. Die
hintere, mit etwas aufgeworfenem Rande versehene Fläche ist uneben, bildet das plantar vorspringenden Tuber calcanei (Fig. 226, 228), welches lateral einen kleineren Vorsprung neben sich hat, Tuberculum calcanei. An der lateralen Seitenfläche ist zuweilen eine von einer flachen Rinne abgegrenzte Vorsprungsbildung vorhanden, Processus trochlearis. An der vorderen, minder massiven Hälfte des Calcaneus zeigt sich zunächst ein bedeutend medial vorspringender Fortsatz, das Sustentaculum tali (Fig. 228), an dessen plantarer Fläche eine Rinne, Sulcus M. flexoris hallucis, sich vorwärts erstreckt. Die obere Fläche des Sustentaculum ist mit einer schmalen Gelenkfläche ausgestattet. Lateral davon tritt eine ranhe Rinne in eine die obere Fläche des vorderen Endes einnehmende vertiefte Bucht, Sulcus interarticularis. Die Rinne scheidet die auf dem Sustentaculum tali liegende Gelenkfläche, von einer größeren, welche schräg und nach vorne zu schwach gewölbt auf den Körper des Calcaneus herabzieht. Diese und die erwähnte Gelenkfläche ist von dem Talus bedeckt. Die auf beiden Knochen angebrachten Rinnen (Sulci interarticulares) correspondiren, und bilden einen schräg zwischen Talus und Calcaneus von innen lateralwärts ziehenden Canal, welcher vorne zu einer ansehnlichen Bucht, Sinus tarsi, sich entweitert. Der unter ihr noch weiter sich fortsetzende Theil des Knochens endet mit einer schräg nach hinten ziehenden Verbindungsfäche für das Cuboid.

Naviculare, Centrale, Kahnbein, kurz, aber breit, mit einer an das Caput tali sich anschließenden Gelenkpfanne versehen. Ihr entspricht die distale, etwas gewölbte Endfläche mit
drei Gelenkfacetten zur Verbindung mit den drei Cuneiformia. Die dorsale Fläche wölbt sich medial abwärts, und endet mit einem am medialen Fußrande liegenden Höcker, *Tuberositas ossis navicularis* [Fig. 226].

Cuneiformia (Tarsale 1—3), *Keilbeine*. Sie tragen durch ihre Form wesentlich zur Wölbung des Fußrückens bei [Fig. 229]. Das *erste* (l. grösste ist plantar verdickt [Fig. 226], dorsal verschmälert, die proximale Gelenkfläche liegt der ersten Facette des Naviculare an. Eine viel höhere, aber schmälere distale trägt das erste Metatarsale. Die laterale, größtenheils der Plantarfläche zugekehrte Seite zeigt zwei kleinere Gelenkflächen, eine hintere, am oberen Rande hinziehende längere, zur Verbindung mit dem zweiten Keilbein, und eine vordere, unansehnliche, an welche das zweite Metatarsale sich anschließt. Das *zweite Keilbein* ist das kleinste und kürzeste, so dass es von den beiden anderen zu beiden Seiten distal überragt wird. Es ist rein keilförmig gestaltet, mit breiter Dorsalfläche und schmaler plantarer Kante. Es verbindet sich der zweiten Facette des Naviculare, hat medial eine längliche, vom oberen Rande sich erstreckende Gelenkfläche für das Cuneiforme 1, und lateral eine solche, längs des Hinterrandes sich erstreckende fürs Cuneiforme 3. Distal trägt es das Metacarpale II. Das *dritte Keilbein* ist größer als das zweite, ragt plantar bedeutender vor, verbindet sich proximal der dritten Facette der Naviculare, lateral dem Cuboides, sowie der Basis des Metatarsale IV, während seine distale Endfläche das Metatarsale III trägt.

Cuboides (Tarsale 4), das *Würfelbein*, besitzt eine annähernd kubische Gestalt, die aber dadurch modifiziert wird, dass die dorsale Fläche mit der plantaren bedeutend convergiert, indem die mediale Seite höher ist als die laterale. Die Gestalt nähert sich dadurch einem dreiseitigen Prisma. Die laterale Fläche ist die kürzeste und bietet einen Einschnitt, der sich plantar als *Salen* für die Sehne des M. peron. longus fortsetzt [Fig. 226]. Die proximale Fläche ist schwach convex gekrümmt und bildet die Articulation mit dem Fersebein. An der medialen Seite findet sich fast in der Mitte der Länge und nahe am oberen Rande eine größere Gelenkfläche zur Verbindung mit dem Cuneiforme III. Dahinter kommt häufig eine zweite kleinere vor, für das Naviculare. Die distale Seite [Fig. 229] bietet zwei Gelenkfacetten. Die mediale ist höher als breit und trägt das Metatarsale IV, die laterale, breiter als hoch, correspondirt dem Metatarsale V.

2. Metatarsus.

Dieser auf den Tarsus folgende Abschnitt des Fußskelletes besteht aus fünf, eine Querreihe bildenden Knochen, davon der erste der kürzeste, aber weitaus der stärkste ist (Fig. 225, 226). Die folgenden 4 sind schlanker gestaltet und nehmen an Länge ab. Wie am Metacarpus, bildet das proximale Ende die Basis, die mit wenig gekrümmter, fast planer Gelenkfläche dem Tarsus sich anschließt. Das distale Ende trägt ein stark gewölbtes, plantarwärts ausgedehntes Capitulum, mit dem das erste Gliedstück der Zehen articulirt.

Am dritten Metatarsale ist die Basis, der des zweiten ähnlich, gleichfalls keilförmig, mit schräger proximaler Endfläche, die dem Cuneiforme 3 entspricht. An der medialen Seite der Basis sind zwei kleine Gelenkflächen für das zweite, an der lateralen Seite ist eine größere für das vierte Metatarsale angebracht. Am vierten ist die Keilform weniger deutlich. Eine Gelenkfläche an jeder Seite dient zur Verbindung mit den Basen der benachbarten Metatarsalia. Die Basis des fünften Metatarsale ist lateral in einen Fortsatz (Tuberositas) ausgezogen, und trägt eine in die Quere entfaltete Gelenkfläche, an welche eine andere an der medialen Seite sich anschließt.

Die Mittelstücke der Metatarsalien sind im Allgemeinen dreikantig gestaltet, mit einer für die einzelnen Knochen verschiedenen Richtung der Flächen. Die Capitula sind beträchtlich plantarwärts ausgedehnt und besitzen hinter der gewölbten Gelenkfläche seitliche Gräben zur Befestigung von Bändern. Am ersten wird die Gelenkfläche plantar durch eine longitudinalne Erhebung in zwei seitlich rinnenförmig vertiefte Abschnitte geschieden, denen zwei im Bandapparate entstandene Sesambeine (Fig. 226) aufgelagert sind.

Die Verknöcherung des Metatarsus findet im Allgemeinen nach dem beim Metacarpus beschriebenen Modus statt, und auch für die zeitlichen Verhältnisse bestehen Übereinstimmungen, so wie auch hier dasselbe gilt, was oben beim Metacarpus bezüglich der Abweichung des Metacarpale I von den übrigen dargelegt wurde.

3. Phalangen.

Im Gegensatze zu den Phalangen der Hand bieten die des Fußes, obwohl in der gleichen Anzahl wie an den Fingern den einzelnen Zehen zugeteilt, die Erscheinung bedeutender Rückbildung dar. An der großen Zehe (Hallux) zwar
Zweiter Abschnitt.

bedeutend stärker als an den übrigen Zehen, sind sie doch auch hier von beträchtlicher Kürze.

An den vier äußeren Zehen ist nur die Grundphalange von einiger Länge; die Mittelphalange von der zweiten Zehe an bedeutend reduziert, so dass sie an der fünften häufig breiter als lang erscheint. Auch die Endphalangen bieten diese Erscheinung der Reduction. Bezüglich des speziellen Verhaltens, der Basen und der Capitula werden dieselben Befunde wie an den Fingern unterschieden, aber dieses Verhalten ist in dem Maße undeutlich, als die Phalange selbst rückgebildet sich darstellt.

In der Verknöcherung besteht eine Übereinstimmung mit den Phalangen der Finger, mit dem Unterschiede, dass die Ossification an den Grundphalangen beginnt, und zuletzt die Endphalangen trifft.

Das in den Phalangen der Zehen uns entgegentretende so charakteristische Bild der Reduction wird aus den functionellen Verhältnissen des Fußes verständlich. Indem der Fuß als Stützorgan wesentlich mit dem hinteren Theile des Tarsus (Calcaneus) sowie mit den Metatarso-Phalangealgelenken sich auf den Boden stützt, sind die Zehen, etwa mit Ausnahme der gleichfalls noch in jener Beziehung sich ändierenden Großzehe, für jene Hauptfunction von geringerer Bedeutung und haben sich, man möchte fast sagen zu Anhangsgebilden des aktiven Abschnittes des Fußes umgewandelt. Die Ausbildung kommt dagegen eben diesem aus Tarsus und Metatarsus zusammengesetzten Abschnitte zu, der dadurch, dass er schon von vorne herein ein compacteres geschlossenes Ganze vorstellte, für die Verwendung zur Stütze geeigneter sein musste, als die unter sich freien, von der Verbindung des Unterschenkels mit dem Fuß abgelegeneren Endglieder des Fußes, die Zehen. Der Reductionszustand der Zehen setzt aber einen anderen, nicht reduzierten, nothwendig voraus, einen solchen, in welchem die Zehen in Function standen, die jener der Finger der Hand ähnlich gewesen sein mag. Das ist keine bloße Vermuthung, sondern begründbar durch das Verhalten der Muskulatur (s. bei dieser). Mit dem Verluste dieser Function und der einseitigen Verwendung des Fußes, an der die Zehen aus dem oben angegebenen Grunde keine wesentliche Bedeutung finden konnten, musste deren Rückbildung erfolgen. Wir sehen diese Rückbildung der Zehen somit als einen Consecutivzustand an, der sich an die Erwerbung des aufrechten Ganges ankniipfte, aus ihr hervorgehen musste, denn nur dadurch kann der Fuß seine gegenwärtige Function erlangt und eine andere, die größere Beweglichkeit der Zehen erheischte, aufgegeben haben.

Verbindungen des Fußes.

§ 94.

Wie an der Hand unterscheiden wir die Verbindungen nach den Hauptabschnitten, zwischen denen sie bestehen: also die Verbindung des Fußes mit dem Unterschenkel, die Verbindungen innerhalb des Tarsus, dann jene zwischen Tarsus und Metatarsus, Metatarsus und Phalangen, endlich die zwischen den Phalangen der Zehen bestehenden Verbindungen.

Die Bewegungsverhältnisse des Fußes resultiren aus dessen functionellen Beziehungen und sind demgemäß von jenen der Hand verschieden, wenn auch in manchen Punkten an die Bewegungen der Hand erinnert wird. Die erste, mit

Articulatio pedis, Art. talo-cruralis (oberes Sprunggelenk).

Die distalen Enden der beiden Knochen des Unterschenkels umfassen den Talus mit beiden Malleolis (Fig. 230). Der Talus und mit ihm der Fuß bewegt sich so zwischen beiden Malleolis wie in einem Charniergelenk. Von dem Umfange der von der Tibia und vom Malleolus fibulare dargebotenen Gelenkflächen entspringt die Gelenkkapsel und begibt sich vorne und hinten schlaff, seitlich straff zum Talus. An letzterem verbindet sie sich vorne erst am Halse mit dem Knochen, während sie hinten dicht an die Grenze des Gelenkknorpels sich dem Knochen anfügt. Die straffe Beschaffenheit der Kapsel an den Seiten wird noch durch Bänder verstärkt.

Medial findet sich das Ligamentum deltoïdes. Es geht vom Malleolus tibiae breit entspringend abwärts mit divergierendem Faserverlauf und
ist theils an der medialen Seite des Talus befestigt, theils über den Talus herab zum Sustentaculum tali des Calcaneus und vorwärts bis zum Naviculare. Man hat es nach den verschiedenen Insertionsstellen in mehrere Bänder zerlegt. Diesem Bunde entsprechen an der lateralen Seite drei völlig gesonderte Bänder. Das Ligamentum talo-fibulare anticum (Fig. 232) geht vom Vorderrande des Malleolus fibularis medial und vorwärts und befestigt sich am Körper des Talus. Das Lig. calcaneo-fibulare (Fig. 231) geht von der Spitze des Malleolus abwärts zur Seite des Calcaneus. Endlich entspringt das Lig. talo-fibulare posticum hinter der Gelenkfläche der Fibula und verläuft transversal einwärts zum Talus, über dessen hinterer Gelenkfläche es sich meist ausstrahlend befestigt (Fig. 231).

Articulatio talo-calcaneo-navicularis (unteres Sprunggelenk).

Diese Gelenkverbindung repräsentirt einen Complex von einzelnen Gelenken, welche zusammen eine funktionelle Einheit bilden. Die einzelnen Articulationen sind: die Articulatio talo-calcanea und Art. talo-navicularis. Die Art. talo-calcanea zerfällt in zwei, durch den Sinus tarsi von einander getrennte Abschnitte, einen hinteren und einen vorderen, weicht letzterer mit der Art. talo-navicularis zu einem Gelenke sich vereinigt. An dem hinteren Gelenke betheiligen sich die hinteren Gelenkflächen beider Knochen, die gewölbte, annähernd einen Theil eines schrägliegenden Kegelmantels darstellende Gelenkfläche des Calcaneus gleitet in der auf der Unterfläche des Taluskörpers befindlichen breiten und schräg gerichteten Rinne. Die besonders hinteren und lateral schluffere Kapsel ist an der Peripherie der Gelenkflächen befestigt und besitzt ein laterales Verstärkungsband, Lig. talo-calcaneum laterale (Fig. 233). Ein vorderes Verstär-
Kungsband wird durch das den Sinus tarsi durchsetzende *Ligamentum talo-calcaneum interosseum* gebildet. Dieser Bandapparat bildet eine feste Vereinigung der Knochen, ist aber derart gelagert, dass er dabei die Beweglichkeit nicht ausschließt. Er besteht aus einem äußeren oberflächlichen Abschnitte, der den Dorsalbändern des Fußes angehört, und einem inneren Abschnitte, den meist zwei gekreuzte Bänder darstellen. Ein hinteres Verstärkungsband bildet das *Lig. talo-calca-neum posticum*, welches von dem lateralen von der Rinne der Endshehe des M. flexor hallucis bestehenden Vorsprunge des Talus zum Calcaneus sich erstreckt (Fig. 231).

Das *Ligamentum tulo-calca-neum laterale* (Fig. 233) wird an seiner Befestigungstelle am Fersenbein mit dem Lig. calcaneo-fibulare in Zusammenhang getroffen, divergirt aber von diesem vor- und medialwärts, um sich unterhalb der lateralen Gelenkfläche des Talus zu befestigen, wo es meist mit der Insertion des Lig. talo-fibulare anticum zusammenfließt.

Der vordere Abschnitt der Articulatio talo-calca-nea ist mit der Art. talo-navicularis vereinigt. Der Gelenkkopf des Talus liegt in der vom Naviculare gebildeten Pfanne, die sich dadurch bis auf den Calcaneus fortsetzt, dass vom vorderen Rande des Sustentaculum tali aus ein mächtiges Band zum Naviculare
verläuft und so die hier zwischen beiden Knochen befindliche Lücke überbrückt. Dieses Lig. calcaneo-naviculare plantare (Fig. 234) tritt also mit seiner überknorpelten oberen Fläche in die Vervollständigung der das Caput tali aufnehmenden Pfanne ein. Nicht selten enthält es eine Ossification.

Lateral trägt dieses Band gleichfalls eine glatte, häufig überknorpelte, aber rinnenförmige Fläche, auf welcher die Endschne des M. tibialis post. gleitet, während jene des M. flex. dig. longus etwas tiefer herab dicht über den Rand des Sustentaculum tali vorüber zieht. Durch diesen plantaren Bandapparat wird die Gelenkkapsel hier zu einer straffen Schichte modifiziert, indess die dorsal sich schlaffer erhält. Doch ist sie auch hier medial verstärkt durch schräge Züge, welche vom Malleolus medialis aus, in Vereinigung mit dem Lig. deltoides (S. 285), sich bis zum Naviculare erstrecken (Lig. tibio-naviculare). Lateral bestehen wieder bedeutendere Verstärkungsbänder, welche der Dorsalfäche des Fußes angehören. Es sind die Ligg. tato-calcanea dorsalia Fig. 232 (L. talo-calc. lateralia), starke, in mehrere Schichten geordnete Faserstränge, welche den Sinus tarsi schräg nach vorn durchsetzen, von der oberen Fläche des Calcaneus entspringend, und an die Seitenfläche des Caput tali häufig divergierend inserirt. Aus der tiefen Schichte (Fig. 233) des Bandes setzen sich Züge in den lateralen Theil des Lig. tato-naviculare dorsale fort, welcher von der lateralen Fläche des Caput tali sich zur entsprechenden Fläche des Naviculare erstreckt.

Die Articulatio calcaneo-cuboida gestattet schon gemäß der Form der schwach sattelförmigen Gelenkfläche beider Knochen nur wenig ergiebige Bewegungen, wie denn auch die Kapsel von den Rändern der Gelenkfläche des einen Knochens unmittelbar zu jenen des andern sich erstreckt. Verstärkt wird die Kapsel durch dorsale und plantare Bänder.

Das Lig. calcaneo-cuboideum plantare (Fig. 234) ist das mächtigste Band des Fußes und verläuft von der Plantarfläche des Fersenbeins zum Cuboid, mit der Oberflächlichen Schichte (Lig. calc.-cub. plant. longum) den Sulcus peroneus überbrückend und nach den Basen des Metatarsale 3—5 ausstrahlend, mit einer tiefen Lage (Lig. calcaneo-cuboideum plant. breve) an dem hinteren Rande jenes Sulcus endigend. Die Art. calc.-cub. bildet mit der Art. talo-navicularis die Chopartsche Gelenklinie.

Das Lig. calcaneo-cuboideum dorsale (Fig. 232) entspringt von dem Höcker über der distalen Endfläche des Calcaneus und läuft schräg medianwärts zum Cuboid. Vom medialen Rande des Bandes zweigen sich platte Züge zum Naviculare ab (Lig. cub.-navicul. dorsale).

Durch die geringe Krümmung der beteiligten Gelenkflächen wie durch die starken vorzüglich plantarwärts entfalteten accessorischen Bänder wird die Verbindung zu einer Amphiarthrose. So verhalten sich auch die Articulationes intertarsae, welche zwischen den distalen Tarsalien bestehen und von denen die erste sich in die Articulation zwischen dem Tarsale I und der Basis des Metatarsale II fortsetzt.

Von den Verstärkungsbändern sind die Ligg. interossea hervorzuheben. Sie füllen großenteils den Raum, der außerhalb der einander zugekehrten Gelenkflächen der vier distalen Tarsalia liegt, und lassen diese Knochen als einen fast verbundenen Complex erscheinen.

Die Gelenkhöhlen setzen sich zum Theil zwischen die Basen der Metatarsalia fort, und stehen so mit Intermetatarsal-Gelenken in Zusammenhang. Ein solcher fehlt nur zwischen Metatars. I u. II.

Zwischen den Capitulis der Metatarsalia, und zwar im plantaren Zusammenhang mit der Verstärkung der Gelenkkapsel verlaufen quere Faserzüge, Ligg. capitulorum metatarsi, welche verschieden vom Verhalten ähnlicher Bänder an der Hand, auch die Großezehe dem übrigen Fuß ungar anschließen.

Gegenbaur, Anatomie.
Metatarso-phalangeal- und Interphalangeal-Verbindungen.

Diese Verbindungen wiederholen im Wesentlichen die bei der Hand geschilderten Einrichtungen. Was die Articulationen der Grundphalangen mit den Metatarsalien betrifft, so treffen wir bei den Gelenkflächen der metatarsalen Capitula eine bedeutende dorsale Ausdehnung, und gerade da ist die Congruenz mit den Pfannen der Grundphalangen am vollständigsten. Diesem Umstande entspricht die an der Grundphalange der 2.—5. Zehe in der Regel bestehende Streckstellung (Dorsalflexion) (vergl. Fig. 236B), welche wiederum mit der Gewölbestruktur des Fußes in Zusammenhang steht. Die Zehen sind an dieser nicht mehr beteiligt und der Fuß stützt sich vorne wesentlich auf die metatarsalen Capitula, während die Zehen dorsalwärts verschoben sind. Bei der Beugung, und damit beim Versuche einer jener der Finger ähnlichen Funktion der Zehen gleiten die Grundphalangen auf incongruenten Flächen und lassen, wenn auch die Kapsel eine Congruenz herstellt, eine Irregularität erkennen, die aus der beim Menschen eingetretenen Außergebrauchstellung der Zehen erklärbar wird.

Die Gelenkkapsel besitzt eine sehr bedeutende plantare Verstärkung (Fig. 235), welche an der Großzehe regelmäßig zwei Ossificationen — Sesambeine (s) — enthält. Sie artikulieren direkt mit den Metatarsal-Köpfchen. Auch in der Gelenkkapsel der fünften Zehe findet sich zuweilen ein solches.

dieselbe mit einem Theile vom Fersenköcher zur Tuberosität des Metatarsale V spannt, und mit ihrem übrigen Theile bis zur Zehenbasis sich verbreitet. Theile dieser allgemeinen Function übernehmen einzelne Bänder. Unter diesen kommt dem Lig. calcaneo-cuboideum plantare mit seinen verschiedenen Schichten die vornehmste Rolle zu, dann dem L. calc. naviculare pl., dem L. cuneo-naviculare pl. (Fig. 234), wie den gesammten von den distalen Tarsalien zum Metatarsus verlaufenden Bandzügen. Für die Querwölbung sind transversale und schräge Bänder wirksam, und hierbei kommen die tiefsten schräg medianwärts ziehenden Partien des Lig. calc. cub. pl., sowie die vordersten Portionen der L. calc. naviculare plantaria in Betracht (Fig. 234), dann die Zwischenbänder der distalen Tarsalia, schräge Bänder, die vom Naviculare zum Cuboid (L. cub.-nav. obliq.), vom Tarsale I zum Tarsale 2 und zum Metatarsale II und III (L. cuneo-metatarsale obliquum) ziehen. Der plantare Vorsprung des Tarsale 3 ist auch der Sammelpunkt noch anderer zur Spannung der Querwölbung beitragenden Bänder, die man als Ligg. radiata zusammenfassen kann. Es besteht darin eine Ähnlichkeit mit dem Verhalten des Carpale 3 Capi- tatum (s. oben S. 254). Vorne nimmt es quere Züge vom Metat. V u. IV auf, von welchen Zügen ein anderer Theil zum Metat. III verläuft und ein Lig. metatars. transversum pl. vorstellt. Die geringe Volumentaltung des Tarsale 3, welche dessen plantaren Vorsprung am mindesten weit gegen die Sohlfläche vortreten lässt, dient somit einer mechanischen Leistung, insofern die benachbarten Knochen an ihm für die Querwölbung günstige Verbindungsstellen gewinnen. In diesen kleineren Bändern ergeben sich viele individuelle Schwankungen der Stärke und selbständigen Ausprägung, so dass nur das Allgemeine der Verlaufsrichtung der Züge constant ist. Endlich gewinnen manche der plantaren Bänder noch durch die Ausstrahlungen der Endsehnen von Muskeln (s. diese) an Mächtigkeit.

Wie sich aus der Beschaffenheit der Gelenke ergibt, ist die mediale Portion des Fußes mit Talus, Naviculare und den drei Keilbeinen beweglicher als die laterale mit Calcaneus und Cuboid. An den Bewegungen des Fußes beteiligen sich nicht nur alle proximalen Tarsalgelenke, sondern auch das Talo-tibial-Gelenk. Auch an der vorwiegend im letzteren Gelenke vor sich gehenden Streckung und Beugung des Fußes nehmen die Tarsalgelenke nach Maßgabe der in ihnen gestatteten Beweglichkeit Theil.

Die Bewegungen des Fußes sind größtenteils combinernde Actionen, an denen mehrere Gelenke beteiligt sind.

Im Talo-crural-Gelenk (oberes Sprunggelenk) verläuft die Axe der
Bewegung quer durch den Talus, die Bewegungen sind wesentlich Winkelbewegungen, mit denen höchstens im völlig gestreckten Zustande des Fußes eine leichte Drehbewegung in einer mit der Sohlfäche des Fußes zusammenfallenden Ebene sich verbinden kann.

Dritter Abschnitt.

Vom Muskelsystem.

Allgemeines.

§ 95.

Das Muskelsystem besteht aus einer großen Anzahl im Wesentlichen gleichartig gebauter Organe, den Muskeln, deren jeder eine Vereinigung charakteristischer, contractiler Formelemente — quergestreifter Muskelfasern — darbietet. Mit diesen seinen Bestandtheilen überkleidet das Muskelsystem das Skelet und trägt, nur wenige Theile des letzteren frei lassend, zur bestimmten Gestaltung des Reliefs der Körperoberfläche in hohem Grade bei. Die Summe von Muskeln, welche einem Körpertheile oder auch dem ganzen Körper zukommt, bildet dessen Muskulatur. Das Muskelsystem begreift also die gesammte Muskulatur des Körpers in sich. Soweit die Muskulatur aus jenen contractilen Fasern zusammengesetzt ist, bildet sie das Fleisch, die Fleischtheile des Körpers.

In primitiven, bei den niederen Wirbeltieren gegebenen Zuständen besteht das gesammte Muskelsystem aus gleichartigen, der Metamerie des Körpers folgenden oder vielmehr diese ausdrückenden Abschnitten. Diese Muskelsegmente (Myocommata) sind durch senkrechte Bindegewebssehichten von einander getrennt, die wie Scheidewände das längs des Körpers sich erstreckende Muskelsystem durchsetzen. Sie dienen zugleich den in den einzelnen Segmenten parallel angeordneten contractilen Formelementen zur Befestigung. So findet sich jederseits eine in Metameren oder Segmente getheilte Schichte längs des gesammten Körpers verbreitet, beide Schichten in der Medianebene dorsal und ventral von einander getrennt. Diese Muskulatur (Seitenrumpfmuskeln) wirkt als Bewegungsorgan des Körpers, entbehrt aber in jenem einfacheren Verhalten noch des Zusammenhanges mit einem Skeletsystem. In dieser einfacheren Einrichtung erscheint das Muskelsystem auch bei den höheren Vertebraten in einem frühen entogenetischen Stadium. Es wird durch die aus der äußeren Schichte der primitiven Metameren des Körpers (Urwirbel) hervorgehenden Muskelnplatten (S. 69) angelegt und bietet damit in der ganzen Länge des Rumpfes eine gleichartige Be-

Das, was wir »Muskeln« nennen, sind also keineswegs von vorne herein selbständige, individuelle Bildungen, sondern die Produkte einer Differenzierung, hervorgegangen aus einem indifferenten Zustande des Muskelsystems, der seinen Ausgangspunct in den einander gleichartigen Abschnitten (Metameren) der beiderseitigen Rumpfmuskelsmassen besaß. In den so entstandenen Muskeln ist die Sonderung nicht zu einer überall gleichmäßigen Höhe ge- langt. Sie bietet viele graduelle Verschiedenheiten, da die in den Skelettheilen liegenden Bedingungen der individuellen Ausbildung eines Muskels sehr ver-

Der verschiedene Grad der individuellen Differenzirung wird zugleich zu einer Quelle, aus der die außerordentliche Mannichfaltigkeit der Gestaltung der Muskeln entspringt. Neben der Differenzirung hat aber auch die functionelle Ausbildung der morphologisch in verschiedenem Maße gesonderten Muskeln großen Einfluß auf die Gestaltung derselben, indem sie deren Volum, deren Verbindungweise an den Skelettheilen, zumal die größere oder geringere Ausdehnung dieses Zusammenhanges beherrscht.

§ 96.

Die in jedem einzelnen Muskel vereinigten Muskelfasern (vergl. § 28) verbinden sich nicht unmittelbar mit den zu bewegenden Theilen, sondern mittels Faserzüge straffen Bindegewebes, welches an beiden Enden des Muskels vorkommt, Sehnen desselben bildet. Man hat also am Muskel den aus Muskelfasern bestehenden, fleischigen Theil, der meist auch den voluminösern bildet, als Muskelbauch, und damit in Zusammenhang die Sehnen zu unterscheiden. Da die Wirkung eines Muskels in einer Verkürzung seiner quergestreiften Elemente besteht (der Muskelfasern), nähert er seine beiden durch die Sehnenverbindung vermittelten Befestigungsstellen. Die Summe der in einem Muskelbauche wirkenden Fasern, wie sie im Querschnitte eines Muskels sich ausdrückt, entspricht somit der Kraft der Wirkung. Von der Länge des Muskelbauches hängt der Umfang der Excursion der geleisteten Bewegung ab.

Im Muskelbauche sind die Muskelelemente zu Bündeln (Fleischfasern) vereinigt. Eine Anzahl von Muskelfasern wird durch Bindegewebe zu einem Bündel erster Ordnung zusammengeschlossen. Von diesen ist wieder eine Summe zu secondären Bündeln vereinigt, deren eine Anzahl ein stärkeres Bündel bildet. Solche, dem bloßen Auge schon wahrnehmbare Fäden werden wieder durch Bindegewebe in Gruppen vereinigt, welche schließlich den gesamten Muskel zusammensetzen.

Die Länge der Muskelfasern ist verschieden und entspricht keineswegs der Länge des Muskelbauches. Im Muskelbauche findet bei den meisten Muskeln eine Endigung der Fasern statt, und neue beginnen, so dass man sich die letzteren als in einander gedrungen vorzustellen hat. Die größte Länge der Faser ist auf 5 cm angegeben worden (im Sartorius).

Es bestehen also im Muskel Bündel verschiedener Ordnung. Sie werden von einander gesondert, aber auch untereinander verbunden durch lockeres Bindegewebe, welches auch an der Oberfläche des Muskels hervortritt, und denselben äußerlich als eine dünne Lage bedeckt. Dieses Bindegewebe wird als Perimysium bezeichnet, und, soweit es oberflächlich liegt, als äußeres Perimysium (Fig. 237 a), in seiner Vertheilung im Innern des Muskels als inneres Perimysium (b) unterschieden. Das letztere, zwischen den größeren Bündeln reichlicher, zwischen den feineren spärlicher vorhanden, führt Gefäße, die in den Muskel eindringen.
und da ihre Verbreitung finden. Das Perimysium internum ist also der Träger des Ernährungsapparates des Muskels und bildet auch die Bahnen für die im Muskel sich verteilenden Nerven.

Die aus dem Muskel hervorgehende Schne, wie alles straffe Bindegewebe durch atlasglänzendes Aussehen von dem Fleische des Muskelbauches ausgezeichnet, besitzt zwar ein festeres, aber doch mit dem Muskelbauche übereinstimmendes Gefüge, indem auch hier die Fasern in Bündeln verschiedener Ordnung durch lockeres Bindegewebe von einander getrennt sind (Fig. 238). Das letztere verhält sich ähnlich dem Perimysium, ist aber spärlicher als dieses und führt viel weniger Blutgefäße. Auch Nervenfasern sind in Schen beobachtet.

Die Anfügestellen der Muskeln an das Skelet mittels ihrer Schen sind für die durch die Contraction des Muskelauches zu Stande kommende Funktion der
Muskeln von Wichtigkeit. Sie liegen für je einen Muskel an verschiedenen Skelettheilen, so dass aus der Muskelaction eine Lageveränderung der beiden Skelettheile zu einander resultiert. Indem durch die Verkürzung des Muskelbahnchens bei seiner Action der eine dem anderen Befestigungspunct der Schne genähert wird, findet eine Zugwirkung statt. Für die Befestigungsstellen des Muskels am Skelet geht daraus die Unterscheidung eines Punctum fixum und eines Punctum mobile hervor. Ersteres liegt an der Befestigungsstelle des Muskels, gegen welche die Bewegung stattfindet. Das Punctum mobile dagegen liegt an dem durch die Muskelaction bewegten Skelettheile.

Danach unterscheidet man die doppelte Verbindung des Muskels in Ursprung (Origo) und Ansatz, Ende (Insertio) und die bezüglichen Schen als Ursprungs- und Endsehnen, wobei die Ursprungsstelle an dem das Punctum fixum tragenden Skelettheile, die Insertionsstelle an jenem Skelettheile, an dem das Punctum mobile liegt, angenommen wird.

Da für die am Stamme des Körpers befindlichen Muskeln der feste Punkt gewöhnlich der Medianebene des Körpers näher liegt, ebenso wie er für die zu den Gliedmaßen tretenden Muskeln in der Regel an den näher dem Stamme befindlichen Skelettheilen sich trifft, so kann man, wenigstens für den größten Theil der Muskulatur, als Ursprung die der Medianlinie des Stammes näher gelegene, an den Gliedmaßen die proximale Befestigungsstelle ansehen, und die davon je entferntere, an den Gliedmaßen distale Befestigungsstelle als Insertion auffassen. Für Muskeln, welche rein parallel mit der Medianebene verlaufen, kann jene Unterscheidungsweise der Verbindungsstellen keine Geltung haben, daher hier die Betrachtnahme des in der Wirkung unterscheidbaren festen und des beweglichen Punctes ausschließlich maßgebend wird.

Da das Punctum fixum und das Punctum mobile sich aus dem grösseren oder geringeren Widerstande bestimmen, welcher der Wirkung eines Muskels an der einen oder der anderen Stelle seiner Befestigung sich entgegenstellt, so können jene Puncte auch vertauscht sein, wenn unter Umständen andere Bedingungen eintreten. Das Punctum fixum wird zum P. mobile und umgekehrt. Denkt man sich in a b (Fig. 239) zwei Skelettheile gegeben, die durch einen Muskel gegen einander bewegt werden, so wird b gegen a bewegt, wenn in a das Punctum fixum des Muskels liegt. Dagegen wird a gegen b bewegt, wenn auf b das Punctum fixum übertragen wird, und beide Knochen werden gleichmäßig gegen einander bewegt, wenn für beide der durch die Muskelaction zu überwindende Widerstand der gleiche ist. Man kann dieses Beispiel sich ins Praktische übersetzen, wenn man a als Oberarm, b als Vorderarm gelten und die Fälle des gleichen oder des grösseren Widerstandes für b durch Fixirung des Vorderarmes mittels Festhalten der Hand ein- treten läßt. Da aber solche Fälle die Wirkung anderer Muskeln voraussetzen (wie in den angenommen die Wirkung jener der Hand), so wird dadurch nur die Möglichkeit einer Umsetzung des Punctum fixum und des Punctum mobile erwiesen und zwar für Ausnahmefälle, da eben eine Mitwirkung anderer Muskeln dabei nötig wird. Die Gültigkeit der Kriterien für jene beiden Puncte erledigt also dadurch keine Beeinträchtigung.
§ 97.

Die bisher betrachteten Zustände der Muskeln boten bezüglich des Verhaltens des Muskels des Muskelseubaus zu Ursprungs- wie zur Endsehne die einfachsten Zustände. In diesen erscheint uns die Mehrzahl der Muskeln des Stammes. Anders verhalten sich hingegen die Muskeln der Gliedmaßen. Die Verhältnisse der langen Muskeln der Gliedmaßen bieten für die Anordnung der Muskulatur, vorzüglich für die Ursprungs- und Endsehnen, als solchen zur Verhältnisse der Muskeln der Gliedmaßen einen relativ geringen Raum, und in Anpassung an die Funktion der Gliedmaßen mußten für die Muskeln der Gliedmaßen manche Complicationen eintreten. Vielmals handelt es sich hierbei um eine Raumersparnis; so z. B. in der Entfaltung des Muskelseubaus, um eine Vermehrung der Fasern unter Beschränkung des Volums des Muskels. Stellen wir uns in folgender Fig. 214a einen Muskel vor, der ein dem Ursprungs-, unten die Endsehne hat, so wird eine Ausdehnung dieser beiden Sehnen über den Muskelbauch, wie es in b auf dem Durchschnitt dargestellt ist, von einer Vermehrung der Fasern begleitet sein, ohne dass dadurch das Volum der Muskeln zugenommen hätte. Je mehr dieser Zuwachs an contractilen Elementen sich steigert, desto mehr treten die Sehnen, und zwar die proximale distal und die distale proximal auf den Muskelbauch über, desto mehr wird aber auch ein schräger Verlauf der Fasern von der einen Sehne zur andern nothwendig. Nach diesem Typus gebaute Muskeln, bei denen in einer langen schmalen Reihe entspringenden Faser-
bündel nach und nach an eine weit auf den Muskelbauch sich erstreckende Endsehne treten, werden als halbgefiederte Muskeln bezeichnet.

Eine fernere Vermehrung der Summe der Muskelfasern wird dadurch gegeben, dass die Ursprungsehne an ihre beiden Flächen Muskelfasern sich befestigen läßt und sich dadurch ins Innere des Muskelbauches erstreckt, während die Endsehne sich an beiden Seiten der Oberfläche des Muskelbauches entfaltet (Fig. 305 c), oder es ist dieses Verhältniß umgekehrt. Muskeln mit sehr platten, nach diesem Typus gebauten Bäuchen werden gefiederte benannt. Durch mehrfache Wiederholung dieser Einrichtung in einem einzigen Muskel entsteht für den Bauch desselben eine bedeutende Complication. Wir begegnen dieser Muskelstruktur da, wo es sich um Herstellung kräftig wirkender Muskeln in relativ beschränktem Raume handelt, und wo zugleich gemäß der Insertionsverhältnisse sowie der Einrichtungen der bezüglichen Gelenke bei geringer Verkürzung des Muskelbauches ergiebige Excursionen der zu bewegenden Theile möglich sind.

Muskel und Nerv.

§ 98.

Die Auffassung der Zugehörigkeit der motorischen Nerven zu den Muskeln ermöglicht einen Einblick in die Veränderungen, welche das Muskelsystem von seinen niedersten Anfängen an bis zu der hohen Complication, wie sie sich beim Menschen darbietet, erfahren hat. In der Beziehung zum Nerven hat der Muskel vielfach noch eine Eigenthümlichkeit bewahrt, die ihm einem bestimmten Körperabschnitte zuteilte und zwar viel sicherer und mit tieferer Begründung, als es durch die bloße Berücksichtigung der Lagerung des Muskels möglich ist. Der Nerv bietet in seinem Verhalten zum Centralsystem, aus dem er hervorgeht, minder wechselvolle Befunde als der Muskel, der in Gestalt, Umfang und Lage sich vielen Veränderungen unterzogen hat, je nach den Leistungen, welche die Körpertheile übernehmen, denen er zukommt. Von den im Vergleich mit niederen Zuständen sich ergebenden Veränderungen der Muskeln sind außer der Differenzirung die Lageveränderungen die bedeutendsten, sie brachten Umgestal-
tungen des Muskelsystems hervor, welche nur noch in den Nervenbahnen ein Zeugnis für ein primitiveres Verhalten besitzen. Das ist so zu verstehen, dass der Nerv mit dem Muskel zwar gleichfalls seine Lage, aber nur peripherisch verändert; dass er länger wird nach Maßgabe der Entfernung des Muskels von seiner ursprünglichen Stätte, dass er aber durch sein Verhalten zum Цentralnervensystem, seinen Abgang von diesem und damit in Zusammenhang auch meist für die erste Strecke seines Verlaufes das primitive Verhalten bewahren muß. Die Nervenbahnen zeigen also den Weg für das Verständniß des Muskelsystems.

Obwohl der Vorgang der Lageveränderung der Muskeln, ein Wander n derselben, größenteils nur beim Verfolge durch die Reihe der Wirbeltiere nachgewiesen werden kann, diese Frage also wesentlich ein Thema der vergleichenden Anatomie bildet, so ist sie doch auch für unsere Zwecke von größerer Bedeutung, da auch im Muskelsystem des Menschen ein Product jener Veränderung vorliegt, welches wissenschaftlich beurtheilt, nicht blos »beschrieben« sein will. Aber es kann für manche Muskeln auch ontogenetisch der Nachweis einer Wanderung geliefert werden.

Die Beziehungen der Muskeln zu Nerven erfahren bei jenen Veränderungen gleichfalls mehr oder minder intensive Modificationen, so dass man zwar die oben dargelegten Gesichtspunkte festhalten, aber sie doch nicht als exclusive betrachten darf. Im Laufe der Veränderungen treten nämlich neue Nervenbahnen auf, die den älteren sich zu- gesellen. Dann ist nicht mehr das primitive Verhalten gegeben, sondern ein neues, welches noch weiter sich umgestalten kann. Wir haben also durchaus nicht überall in dem Verhalten zum Nerven ursprüngliche Befunde vorliegen, und es bedarf der sorgfältigen Prüfung vieler durch die vergleichende Anatomie eruierten Thatsachen, um für den einzelnen Fall das Verhältniß des Muskels ins richtige Licht zu setzen.

Wirkung der Muskeln.

§ 99.

Die Wirkung der Muskeln des Skeletes äußert sich in der Bewegung der Skeletheile. Durch die Verkürzung des Muskelbauches wird die Insertionsstelle dem Ursprung genähert, oder auch umgekehrt unter gewissen, jedoch nicht mehr einfachen Umständen, deren oben (S. 298 Anm.) gedacht ward. Vermöge

Für viele Muskeln ist die Wirkungsart maßgebend für deren Benennung, sowohl der einzelnen als auch der aus ihnen gebildeten Gruppen. Man unterscheidet so Benger und Strecken, Anzieher und Abzieher u. s. w.

Wechselseitige Antagonisten können auch in gleichzeitige Action treten, wenn es sich darum handelt, den Skelettheil, zu dem sie treten, zu fixiren, dadurch, dass sie sich gegenseitig in ihrer Wirkung das Gleichgewicht halten: Das geschieht bei den coördinirten Bewegungen, bei denen die Action eines Muskels die Fixirung seiner Ursprungsstelle durch andere Muskeln voraussetzt.

bewegung einleiten hilft, die auszuführen bereits eine bestimmte Stellung des betreffen- den Skelettheils gegeben sein muß, jene, von der aus die Drehbewegung in gewisser Richtung erfolgen kann. Der andere Fall läßt den Muskel als Synergisten erscheinen. Er produziert mit seiner Hauptwirkung noch eine Bewegung, welche durch die Mitwirkung eines anderen Muskels hervorgerufen wird. Auch die Hauptwirkung eines Muskels ist in gewissen Fällen Modificationen unterworfen, und bietet zahlreiche, aus combinatorischen Actionen entspringende Verschiedenheiten. Das trifft sich vorwiegend für die Muskeln der Gliedmaßen. Bei den von einem Skelettheil zum nächsten gehenden, und so nur Ein Gelenk überspringenden Muskeln (eigengelenkige Muskeln), bestehen einfachere Verhältnisse. Mit dem Verlaufe des Muskels über mehrere Gelenke (mehrgelenkige Muskeln) bilden sich jedoch Complicationen dadurch, dass der Muskel nicht blos auf den Skelettheil wirkt, an dem er inserirt, sondern auch auf die zwischen seinem Ursprung und seiner Insertion befindlichen, vom Verlaufe des Muskels übersprungenen Skelettheile. Nach Maßgabe der Mitwirkung der Muskulatur dieser Skelettheile wird die Bewegung des distalen Skelettheiles in der verschiedensten Weise beeinflußt, und darin findet sich eine neue Quelle, aus der ein großer Theil des unendlichen Reichthums der Bewegungen jener Körperteile entspringt.

B. Von den Hilfsapparaten des Muskelsystems.

§ 100.

sich damit von jenem interstitiellen Gewebe löst, tritt auch für letzteres ein gewisser Grad von Selbständigkeit ein. Daraus entstehen dann jene Einrichtungen, die wir als Hilfsapparate des Muskelsystems bezeichnen. Es sind vornehmlich die Fascien, Sehmenscheiden und Schleimbeutel, die alle gemeinsamen Ursprungs sind. Sie sind Produkt der Wirkung der Muskeln.

Der Grad der Ausbildung der Fascien ist somit an mechanische Bedingungen geknüpft, und da bei ihrer Gestalt zugleich die Anpassung an die Form und den Umfang des Muskels von Einfluß sein muß, so werden sie um so selbständiger als Lamellen erscheinen, je mehr ein Muskel flächenhaft entfaltet ist. Andererseits besteht aber auch vielfach ein Übergang und ein Zusammenhang von solchem zu Fascien geschichtetem Bindegewebe in rein interstitielles, an welchem eine lamellöse Struktur entweder nur künstlich dargestellt werden kann, oder gänzlich fehlt. Wo außer Muskeln noch andere Organe: große Gefäßstämme u. s. w. verlaufen, nimmt das diese begleitende Bindegewebe in der Regel keine lamellöse Struktur an, verhält sich rein interstitiell, und kann daher auch nicht unter den Begriff der Fascien fallen. Wir unterscheiden daher außer den Fascien auch noch interstitielles Bindegewebe, dem wir nicht die Bedeutung der Fascien einräumen.

Die oberflächlichen wie die tiefen Fascien sind bezüglich ihrer Textur an gewisse durch das Muskelsystem bedingte Verhältnisse angepaßt, und hier ergeben sich wiederum mehrfache bedeutende Modificationen, welche aus jener Beziehung entspringen. Im Allgemeinen bildet lockeres Bindegewebe, wie es überall als interstitielles Gewebe erscheint, die Grundlage der Fascien. Es führt reiche, elastische Fasern an den die Muskelbäuche überkleidenden Strecken der Muskelfascien und erleichtert dadurch die Anpassung der Fascien an die Gestaltver-

Die Differenzierung dieser Ligamente aus der indifferenten Fascie entspricht einer Anpassung an die an jenen Stellen gesteigerten functionellen Ansprüche an die Fascien, welche hier den unter ihnen verlaufenden Sehnen bedeutsamen Widerstände entgegensetzen haben. Indem diese Bänder an diesen Stellen regelmäßig angeordnete Canäle zum Sehnendurchlaß überbrücken, tritt die Fascie durch die von ihr gelieferten Bänder in ermeute Beziehungen zum Mechanismus des Muskelsystems.

2) Sehnenscheiden (Vaginae tendinum). Diese sind gleichfalls aus interstitiellem Bindegewebe entstandene membranöse Umhüllungen der Sehnen,

Über die Schleimbetuel s. A. Monro, A Description of all the bursae mucosae of the human body. Edinb. 1788.

Nicht blos durch Differenzirungen interstitiellen Bindegewebes, wie solche in den Fascien und Schleimbetueln auftreten, bilden sich die Muskeln Hilfsapparate aus, sondern sie nehmen auch Skelettheile in Angriff und bewirken an
diesen die Muskelaction unterstützende Modificationen. Wo Sehnen im Winkel über Knochen ihren Weg nehmen, bilden sich an diesen rinnenförmige Ver-
tiefungen als Leitbahnen der Sehnen aus und die Knochenoberfläche überzieht
sich an diesen Strecken mit einer Knorpelschichte, welche der Sehne eine glatte
Gleitfläche bietet. Solche Stellen werden als Sehnenrollen bezeichnet.

Mancherlei andere Einrichtungen, welche in ähnlicher Weise der Muskeln dienen,
durch die sie auch entstanden sind, werden bei den bezüglichen Muskeln be-
handelt.

C. Von der Anordnung des Muskelsystems.

§ 101.

Die Vertheilung der Muskulatur am Körper läßt bei der ersten Betrachtung
wenig Momente wahrnehmen, welche zu einer rationellen Eintheilung und system-
matischen Gliederung der Menge der Muskeln geeignet wären. Wir begegnen
da fast überall mehrfachen Schichten und innerhalb dieser wieder besonderen
gruppen geformter und vielfältig auch nach der Wirkung sehr ver-
schiedener Muskelgebilde, zu deren didaktischer Bewältigung man von jeher die
regionale Behandlung und Darstellung als die scheinbar naturgemäßste gewählt
hat. In der That stellen sich auch an verschiedenen Regionen des Körpers zu-
sammengehörnde Abtheilungen von Muskeln dar, wie nicht blos von deren Be-
ziehungen zu den Skelettheilen, sondern auch aus den Verhältnissen ihrer In-
nervation sich herausstellt. Aber an vielen Localitäten finden sich andere Ver-
hältnisse und wir treffen sehr ungleichwerthige Muskeln in localer Vereinigung.

Wenn sich ergibt, dass topographisch einheitliche Muskelgebiete oft von sehr
verschiedenen Nerven versorgt werden, so wird sich nach dem, was oben (S. 300)
über die Zusammengehörigkeit von Muskel und Nerv gesagt ward, ein wichtiges
Bedenken an der Einheitlichkeit jener Gebiete erheben.

Der Versuch einer Ordnung der manichfaltigen Erscheinungsweisen der Mus-
keln hat notwendig von dem primitiven Zustande zu beginnen, welchen die An-
lage des Muskelsystems darbietet: der Sonderung des gesammten Muskelsystems
in einzelne, der Metamerie des Körpers entsprechende Abschnitte (S. 69). Diese bilden
jederseits eine längs des Körpers sich er-
streckende Reihe, die Seitenrumpfmuskeln, welche wir im Be-
reiche der niederer Wirbeltiere bereits in zwei Abschnitte, einen
dorsalen und einen ventralen (Fig. 241. d e) getheilt treffen.
Jeder dieser beiden Abschnitte wird von einem besonderen Aste
 eines Spinalnerven versorgt, die obere, dorsale (d) Seitenrumpfmuskulatur vom Ramus dorsalis oder posterior, die untere, ven-
trale (e) vom Ramus ventralis oder anterior. Da die Theilung
aller Spinalnerven in solche zwei Äste allgemein durchgeführt
ist, und uns auch beim Menschen wieder begegnet, liefert sie auch in diesem Falle
einen Anhaltpunct für die Beurtheilung der Muskulatur. Wir vermögen somit
in einem Theile der differenzierten Muskulatur, frühere, auch ontogenetisch sich wiederholende Zustände zu erkennen, solche, in denen die Muskeln eine metamere Anordnung kundgeben und zugleich in dorsale und ventrale unterscheidbar sind. Solchen Muskeln begegnen wir am Stamme des Körpers. Wenn auch die einfacheren Einrichtungen schon durch die Differenzierung der Wirbelsäule in einzelne größere Abschnitte mehr oder minder aufgelöst sind oder durch Veränderungen in Ursprung und Insertion viele Umgestaltungen erfolgten, so hat doch die dem Stamme angehörige Muskulatur größtentheils ihren metameren Charakter bewahrt, der selbst da noch in Spuren und Andeutungen mancherlei Art erkannt werden kann, wo Verschmelzungen einer Summe von Metameren angehöriger Muskeln zur Herstellung größerer Muskelelemente führten. An dieser Stammesmuskulatur sind dann wieder zum Theile nach der Lagerung, aber selbst da, wo diese nicht mehr die ursprüngliche scheint, nach der Innervation, dorsale und ventrale, hintere und vordere Muskeln auseinander zu halten.

Unter Zugrundelegung dieser Gesichtspunете heilen wir die gesammte Muskulatur des Skeletes in die primäre oder metamere Muskulatur des Körpersstammes, welche wieder in die dorsale und ventrale zerfällt, dann in die secundäre oder Muskulatur der Gliedmaßen, die als ein Abkömmling der ventralen primären anzusehen ist. Sie hat durch Wanderung der Muskeln ihre ursprüngliche Lagerung verändert und erscheint auch in der hochgradigen Differenzierung in zahlreiche einzelne Muskeln am bedeutendsten verändert.

Beider Darstellung des Muskelsystems glauben wir die regionale Eintheilung aus Gründen der Zweckmäßigkeit beibehalten zu können, indem wir dabei zugleich den oben dargelegten Gesichtspunkten Geltung geben und nach diesen die heterogene Muskulatur der einzelnen Gegend des Körperstammes ordnen.

Das Vorhalten der zur Bewegung der Gliedmaßen dienenden Muskulatur begnügt sich aus dem functionellen Werthe jener. Ein Blick auf das Verhalten des Muskel-

Indem wir die Anordnung der Muskulatur nicht bloß als etwas Bestehendes, sondern auch als etwas Gewordenes betrachten, als das Ergebniß eines Ungestaltungsprocesse, der einen anderen Zustand nothwendig voraussetzet, überträgt sich diese Auffassung von selbst auch auf die häufigen Abweichungen von dem als Regel bestehenden: die sogenannten Muskel-Varietätten erscheinen als Variationen. Sie ergeben sich bei genauerer Prüfung als wichtige Thatsachen, in denen sich vielfältig noch der Weg zu erkennen gibt, der den Muskel zu dem, was als Norm gilt, geführt hat. So hat sich auf dem, freilich bis jetzt noch sehr wenig wissenschaftlich durchforsten Gebiete der Muskelvarietätten ein reiches Material erhalten für die Erkenntniss der allmählchen Bildung des Muskelsystems.

Wichtigste Literatur des Muskelsystems:

Eine sorgfältige Zusammenstellung der Muskelvarietäten gibt:

A. Muskeln des Stammes.

Indem wir also die Muskulatur des Stammes in eine dorsale und ventrale theilen, vermögen wir die erstere einheitlich zu behandeln, indeß die letztere in einzelne, den Regionen des Stammes entsprechende Abschnitte, Muskeln des Kopfes, Halses, Thorax und Bauches zu sondern ist.

I. Muskeln des Rückens.

§ 102.

Diese Gliedmaßenmuskeln des Rückens sind sämtlich nicht mehr in ihrer primitiven Lage, wie zunächst aus ihren Nerven hervorgeht. Sie empfangen diese von oben her, von Cervicalnerven, und zwar von ventralen Aesten derselben, nicht von dorsalen, wie die Lage zu bedingen scheinen möchte. Auch
ein Kopfnerv ist betheiligt. Es werden also diese Muskeln als nicht ursprünglich dem Rücken zukommende zu beurtheilen sein, sondern als solche, die von oben und vorne her abwärts und rückwärts sich entfaltetet. Die tiefe Gruppe dagegen ist der Rückenregion des Körpers eigenthümlich, denn sie wird von Muskeln gebildet, welche ihre Nerven aus den ihrer Lage entsprechenden Spinalnerven beziehen. Sie sind also in ihrer ursprünglichen Lage und tragen die Metamerie des Körpers an sich ausgeprägt, indem sie mehr oder minder deutlich in einzelne den Wirbelsegmenten entsprechende Abschnitte gesondert erscheinen. Eine Abtheilung, welche sich an den Rippen inserirt, wird von ventralen Ästen der Thoracalnerven versorgt, ist also von der ventralen Muskulatur abzuleiten. Die übrigen sind rein dorsal, stellen vorzüglich die langen Rückenmuskeln vor, die ihre Nerven von dorsalen Ästen der Spinalnerven empfangen.

Diese gesamte Fläche bis zum Sacrum herab, deckt eine derbe Fascie, die vom Nacken in die Oberflächliche Halsfaszie, an der Schulter in jene des Oberarmes und unten abwärts in die Brust- und Böschfaszie übergeht, vom Sacrum in die Gesäßfaszie sich fortsetzt. Der den Nacken überlagernde Theil der Rückenfaszie wird als F. nuchae unterschieden.

In der Lendenregion liegt unter der lockeren Oberflächlichen Schichte der Rückenfaszie eine starke aponeurotische Membran, die an den Dornfortsätzen des Sacrums sowie am Darmbeinkamme befestigt ist und als Oberflächliches Blatt der Fascia lumbo-dorsalis bezeichnet wird. Sie deckt die unteren Ursprünge der langen Rückenmuskeln und dient anderen Rückenmuskeln als Ursprungsschene.

a. Gliedmaßenmuskeln des Rückens (Spino-humerale Muskeln).

b. Erste Schichte.

§ 103.

M. trapezius (Cucullaris) (Fig. 241). Repräsentirt für sich eine Schichte, welche den größten Theil des Rückens bis zur Lendengegend herab einnimmt. Er entspringt am Hinterhaupte mit einer meist schmalen Portion von der Linea nuchae sup., daran in unmittelbarem Anschlusse vom Nackenband, von den Dornfortsätzen des letzten Halswirbels und sämtlicher Brustwirbel, sowie von den Ligg. interspinalia dieser Wirbel. Die von dieser ausgedehnten Ursprungs-
linie hervorgehenden Fasern convergiren zur Schulter. An der Schädelportion ist die Ursprungssche ne dünn und schmal, ähnlich weiter abwärts am Nackenbande, an dessen unterem Abschnitte sie sich verbreitert und bis zum zweiten Brustwirbelbord eine weit laterawärts sich erstreckende Sehne vorstellt. Die vom Hinterhaupte und dem oberen Theile der Linea nuchae entspringenden Portionen des Muskels gelangen schräg herabsteigend an der Pars acromialis claviculae zur Insertion, die folgenden inseriren sich an Acromion und Spina scapulae. Weiter abwärts treten die Muskelfasern mit den übrigen schräg aufsteigenden gleichfalls gegen die Spina scapulae, aber mittels einer gemeinsamen Endsehne, welche über den Anfang der Spina sich hinweg erstreckt und von hinten und unten her an die Spina sich inserirt.

Der Muskel zieht das Schulterblatt nach hinten, nähert die Basis scapulæ der Medianlinie.

M. latissimus dorsi. Ein sehr breiter, platter Muskel, der den unteren Theil der Rückenfläche einnimmt, und an seinem oberen Ursprunge vom Trapezius bedeckt wird. Er entspringt mit sehr dünnersche ne von Dornfort-
Muskeln des Stammes.

Der oberste Theil des Muskels wendet sich quer lateralwärts, den unteren Winkel der Scapula deckend. An der folgenden Strecke treten die Fasern schräger aufwärts, bis die untersten in ziemlich steilem Verlaufe sich finden. Alle zusammen bilden einen dem M. teres major sich anlegenden starken, abgeplatteten Bauch, der um den letztgenannten Muskel sich vorwärts wendet, und mit platter Endsehne gemeinsam mit dem Teres major an der Spina tuberculi minoris humeri inserirt.

Innervirt von N. subscapularis.

M. rhomboideus. Liegt aufwärts vom Latissimus zwischen Wirbelsäule und Basis scapulæ. Entspringt vom unteren Abschnitte des Ligamentum nuchae, von den Dornen des siebenten Hals- und der vier ersten Brustwirbel mit kurzer, aber sehr dünner Sehne. Die Musselfasern bilden einen platten, rautenförmigen
Dritter Abschnitt.

Bauch, der schräg zur Basis scapulae verläuft, an der er sich etwas unterhalb des oberen Winkels der Scapula bis zum unteren Winkel herab inserirt.

Der Muskelaum wird an der Grenze des oberen Drittels von Blutgefäßen durchsetzt, denen in der Regel eine dem Faserzuge parallele Spalte entspricht, welche einen oberen kleineren Theil des Muskels als M. r.h. minor vom unteren größeren, M. r.h. major, oft sehr deutlich abgrenzt.

Der Ursprung bietet sowohl an seiner oberen wie an seiner unteren Grenze wechselnde Verhältnisse.

Innervirt von N. dorsalis scapulae.

Wirkung: Bewegt die Scapula aufwärts gegen die Wirbelsäule.

Innervirt von 2.—3. N. cerv. und dem N. dors. scap. — Hebt die Scapula.

b. Spino-costale Muskeln.

§ 104.

Sie sind mit ihren Ursprungssehnen zu Dornfortsätzen verfolgbar, und inseriren sich an Rippen. Zweige von Intercostalnerven (also Rami ventrales) innerviren ihre einzelnen Portionen und lassen sie als metamere Muskeln von den vorhergehenden ebenso unterscheiden, wie sie von den folgenden eben durch die Beziehung zu ventralen Nervenästen zu sondern sind.

M. serratus posticus inferior (Fig. 214). Ein platter, breiter Muskel, der vom Latissimus völlig bedeckt wird. Mittels einer sehr dünnen Ursprungsschne mit der Fascia humbo-dorsalis verbunden entsteht der Muskel aus dem Lumbaltheile dieser Fascie bis etwa in der Höhe des 11. oder 12. BrustWirbeldorns herauf. Die lateralwärts allmählich freierdende Ursprungsschne läßt einen dünnen, platten Bauch mit schläg nach außen und oben verlaufenden Fasern hervorgehen, der sich meist in vier hinter einander liegende, nach oben an
Breite zunehmende Zacken spaltet und mit diesen an den vier letzten Rippen inseriert.

Wirkung: zieht die vier letzten Rippen herab.

Wirkung: hebt die oberen Rippen.

Beide Serrati postici müssen als Theile eines einzigen Muskels betrachtet werden, dessen mittlerer Abschnitt rudimentär ward, und nur durch die beim Serratus posticus inferior erwähnten sehnnigen Züge angedeutet ist.

§ 105.

1. Lange Muskeln der Wirbelsäule.

Diese theilweise schon an den zur Halswirbelsäule gelangenden Portionen erscheinende Differenzierung wandelt die oberen Abschnitte der langen Rückenmuskeln zu anscheinend selbständigen Muskeln um, als welche sie auch aufgefaßt und bezeichnet wurden. Die Gleichartigkeit in Ursprung und Insertion, sowie der Zusammenhang mit den indifferenteren über Lenden- und Brustregion der Wirbelsäule sich erstreckenden Abschnitten lehren, dass jene Muskeln nur Hals- oder Schädelportionen mehr oder minder weit an der Wirbelsäule sich herab erstreckender Muskels-Complexen sind.

Mit der größeren oder geringeren Sonderung dieser Muskeln steht die Beziehung zu Fascien in engem Zusammenhange. Zwischen unvollständig gesonderten Muskeln fehlen die Fascien, während sie bei selbständigeren und somit gesonderten, als umhüllende Bündelgewebschichten vorkommen, die mit der selbständigeren Action der Muskeln auch selbständiger sich darstellen. Die von der Hinterfläche des Kreuzbeins sowie auch vom
Muskeln des Stammes.

Darmbeinkamme aus auf die Lendenwirbelsäule sich erstreckende gemeinsame Muskelmasse wird nur äußerlich von einer starken Fasce (Fig. 245 F. l. d.) umhüllt, einem Blatte der Fascia lumbo-dorsalis. Diese besitzt auch ein tiefes Blatt (F. l. d'), die Vorderfläche jener Muskulatur von den Querfortsätzen der Lendenwirbel an bekleidend, und am lateralen Rande des Lendenabschnittes jener Muskelmasse mit dem oberflächlichen, die hintere Fläche überziehenden Blatte verschmelzend. Dieser oberflächliche Theil der Lumbo-dorsal-Fasce stellt eine vom Kreuzbein in die Lendengegend sich erstreckende Aponeurose vor, die an den Wirbeln der wie an dem hinteren Theil des Darmbeinkamms befestigt, auwfärts allmählich sich verdünnt, und über den Thorax nur selten stärkere Sehnenfaserzüge aufweist. In dem Maße als aus der von der Fascia lumbo-dorsalis umschlossenen, gemeinsamen Fleischmasse oder von ihr selbst auwfärts allmählich einzelne Muskeln hervorgehen, treten sie trennende Bindegewebschichten als

Die nach einem und demselben Typus sich darstellenden Muskeln repräsentiren demnach einzelne Abschnitte oder Strecken eines und desselben Systems, die mit den aus ihnen gesonderten Muskeln in Folgendem zu unterscheiden sind.

1. Spino-transversalis. (Splenius.)

Der M. splenius (Fig. 244) bildet eine der oberen Brustregion und dem Nacken zukommende Muskelschichte, vom Trapezius, Rhomboïdes und Serratus post. sup. bedeckt. Der Muskel entspringt von den Dornen der oberen sechs Brustwirbel, des 7. Halswirbels und dem unteren Abschnitte des Lig. nuchae. Der platte Muskelbauch steigt schräg aufwärts nach außen und sondert sich dabei in

Innervirt vom N. occipitalis magnus.

2. Sacrospinalis.

Im Lendenabschnitt erscheint eine Sonderung in eine laterale und eine mediale Portion. Die erstere bildet sich aus den vom Darmbeinkamme entspringenden Fleischmassen, und von solchen, die von der lateralen Außenfläche der in die gemeinsame Muskelsmasse sich einsenkenden Schenkelstreifen entstehen. Sie repräsentirt den M. ileocostalis, die übrige, mediale Muskelsmasse den M. longissimus. Die Scheidung dieser beiden Theile des Sacrospinalis wird durch Blutgefäße und Nerven vervollständigt, welche zwischen ihnen aus der Tiefe empor treten.
M. ileocostalis (Fig. 246). Am Ursprunge mit dem Longissimus vereint, umfaßt er die vom hinteren Theile des Darmbeinkamms mit starker Sehne entspringende laterale Portion des Sacrospinalis und erstreckt sich längs der Rippen medial von deren Winkeln liegend aufwärts zum unteren Theile der Halswirbelsäule. Die lateral aus dem Muskel aufsteigenden Insertionszacken verlaufen, die untersten breit und fleischig, die oberen nach und nach dünner und länger werdend, zu den Rippenwinkeln am Thorax und zu den hinteren Zacken der Querfortsätze von 3—4 unteren Halswirbeln.

M. longissimus (Transversalis, z. Th.) (Fig. 246). Sein gemeinsamer Bauch wird von
größten Theile der vom Kreuzbein und der Fascia lumbo-dorsalis kommen-
den Muskelmasse vorgestellt, und ist in der Tiefe dem Transverso-spinalis (Mul-
tifidus) enge angeschlossen. Er tritt, starke, von den Dornfortsätzen der
Lendenwirbel kommende Schenkenbänder, die sich weit über ihn hinaufstrei-
kenden noch als feinere Ursprungsschienen besitzend am medialen Rande des
Ileocostalis empor, bis zum Kopfe. Seine Insertionen sind wiederum unten mäch-
tiger als oben, und bilden unten fleischige Zacken, während sie weiter aufwärts
allmählich schlankere, in schmale Schenen endigende Bündel vorstellen. Am
Lenden- und Brusttheile besitzt der Muskel doppelte Insertionen: mediale, die
am Lendentheile zu den accessorischen Fortsätzen der Wirbel gelangen, und am
Brusttheile an die Querfortsätze der Wirbel inserirt sind; laterale, am Lenden-
theile zu den Querfortsätzen der Wirbel, am Brusttheile zu den Rippen tretend,
medial von den accessorischen Ursprüngen des Ileocostalis.

Am Halstheile bestehen einfache Insertionen zu den hinteren Zacken der
Querfortsätze des 2. bis 6. Halswirbels. Sie sind meist verschmolzen mit den
Insertionen des Ileocostalis cervicis. Die Schädelportion endlich steigt zum
Zitzenfortsätze empor, an dessen hinterem Rand sie inserirt ist, bedeckt vom
Splenius capitis.

Die vom Sacrum aus emporsteigende Ursprungsportion ist zur Abgabe all'
dieser Insertionen unzweck. Sie ist mit Abgabe der Lenden- und Brust-
insertionen erschöpft. Damit repräsentirt sie einen besonderen Abschnitt des
Longissimus, der als L. dorsi (Transversalis dorsi) zu unterscheiden ist. Die
Fortsetzung zum Halse bedingen accessorische Ursprünge, die mit langen Schenen
von den Querfortsätzen der Brustwirbel, unten meist vereinzelt, oben mehr in
continuierlicher Reihe hervorkommen. Die unteren bieten auch dem L. dorsi Ver-
stärkungen dar. Die Mehrzahl dieser Ursprünge setzt sich in die Halsportion des
Muskel fort, in die auch ein Bündel des L. dorsi eingeh. Diese erscheint damit
wieder als ein gesonderter Abschnitt: L. cervicis (Transversalis cervicis).

Die Kopfportion des Longissimus setzt sich aus einem vom L. cervicis sich
ablösenden Bündel, sowie gleichfalls aus accessorischen Ursprüngen zusammen,
die theils von den Querfortsätzen oberer Brustwirbel (oft mit den in den L. cervi-
cis tretenden Ursprungssehnen verwachsen), theils von den Querfortsätzen und
den Gelenkfortsätzen der unteren Halswirbel stammen. Longissimus capitis
(Tracheo-mastoides, Transversalis capitis, Complexus minor).

Im Lendentheile des Longissimus dorsi erscheint die geringste Sonderung der In-
sertionen, die hier vom Muskelbauche völlig bedeckt sind. Die lateralen Insertionen er-
strecken sich zuweilen über die Querfortsatzenden hinaus in das an diese befestigte tiefe
Blatt der Fascia lumbo-dorsalis. Sehr variabel erscheinen die accessorischen Ursprünge
des L. cervicis und capitis.

Das System des Spinalis wird durch Muskeln gebildet, die von Wirbeldornen
entspringen und an solche sich inseriren, mit Überspringen mindestens Eines

M. spinalis dorsi. Von den langen, von Dornen der Lendenwirbel (2, 3) in den Longissimus dorsi eingehenden Ursprüngen entspringen meist oberflächlich verlaufende, zur Seite der Dornen der Brustwirbel hinziehende Fleischbündel, welche einen dünnen, platten Muskelbauch vorstellen. Im Aufsteigen löst er sich in einzelne Insertionen auf, die meist mit schlanken Schneiden und mit den Insertionen des darunter liegenden Semispinalis dorsi verwachsen, an den Dornen oberer Brustwirbel, vom 2. bis zum 8. sich ansetzen.

Nicht selten ist die Reihe der Ursprünge nicht continuirlich. Auch die Insertionen schwanken bedeutend. Der ganze Muskel fehlt zuweilen.

Ein Spinalis capitis wird durch einige Bündel repräsentirt, die den Dornen der Halswirbel entspringen und sich dem Semispinalis capitis anfügen.

4. Transverso-spinalis.

Ein theilweise vom Longissimus bedecktes, durch dessen laterale Ablenkung an Brust und Hals medial von ihm zum Vorscheine kommendes, bis zum Kopfe emporksteigendes Muskelsystem bietet in verschiedenen Schichten, wie in einzelnen Abschnitten eine verschiedenartige Ausbildung. Als allgemeiner Charakter erscheint die Zusammensetzung des Transverso-spinalis aus sehräg aufsteigenden Fasern, die von Querfortsätzen entspringen und an Dornen inserirt sind, also transverso-spinalen Verlauf besitzen. Für die einzelnen Schichten macht sich als Eigenthümlichkeit bemerkbar, dass in der oberflächlichen Schichte ein steiler ansteigender Verlauf besteht, so dass von den einzelnen Bündeln 4 — 6 Wirbel und mehr übersprungen werden. In den tieferen Schichten tritt ein minder steiler, mehr schräger Verlauf der Fasern auf. Es werden nur 2 — 3 Wirbel übersprungen. Daran reihen sich dann die tiefsten Schichten, in denen die Fasern der queren Richtung sich nähern, so dass entweder nur ein Wirbel von ihnen übersprungen wird, oder der Verlauf von Wirbel zu Wirbel stattfindet. Diese Schichten sind am Lenden- und Brusttheile nur durch die an-

1. **M. semispinalis.** Der durch den steilsten Faserverlauf ausgezeichnete, oberflächlichste Theil des transversospinalen Systems läßt nach den Regionen seiner Verbreitung drei Portionen unterscheiden.

c. **Semispinalis capitis** (Fig. 216). Die Kopfportion des Semispinalis setzt sich aus Ursprungszacken zusammen, deren unterste größtenteils mit den Ursprüngen des Semisp. cervicis gemeinsam sind; nämlich meist vom 5. oder 6. Brustwirbel an aufwärts bis zum 1. Halswirbel. Der daraus geformte platte Muskelbauch steigt über den Semispinalis cervicis zum Schädel empor, und inserirt sich verschmälernd aber dicker werdend unterhalb der Linie nuchae superior bis gegen die Medianlinie hin.

Der Muskel ist durch eine Zwischenschicht ausgezeichnet, welche besonders mächtig und constant dem medialen am tiefsten abwärts entspringenden Theile des gemeinsamen Bauches angehört, sich aber auch sehr häufig in den lateralen Theil des Bauches fortsetzt. Da dieser mediale und laterale Theil des Muskelbauches nicht selten auch longitudinal von einander gesondert erscheinen, oder sich leicht so darstellen lassen, hat man sie als besondere Muskeln, den medialen als **Biventer cervicis**, den lateralen als **Complexus** (Compl. major) unterschieden.

2. **M. multifidus.** Bildet eine zweite Schichte des Transversospinalis und erstreckt sich von der hinteren Fläche des Kreuzbeins bis zum 2. Halswirbel, durch minder steilen Faserverlauf vom Semispinalis unterschieden, indem die einzelnen Ursprungszacken nur über 2—3 Wirbel hinwegziehen. Der am Sacrum
entspringende, auf die Lendengegend sich fortsetzende Abschnitt des Muskels ist weit mächtiger und fleischiger als der weiter aufwärts folgende Theil, und mit dem Longissimus eng verbunden, so dass beide hier eine gemeinsame Masse zu bilden scheinen. Der obere schwächere Abschnitt wird von Ursprungs- und Endsehnen vielfach durchsetzt. Brust- und Nackentheil des Muskels sind mit dem Semispinalis dorsi und Sem. cervicis in unmittelbarem Zusammenhange, und nur durch den Faserverlauf davon verschieden. Wie sich die Richtung des Faserverlaufes im Semispinalis derart ändert, dass in den tieferen Lagen minder steil aufsteigende Züge auftreten, die allmählich in den Multifidus übergehen, so ist auch im letzteren eine fernere Abnahme des Aufsteigens bemerkbar, und die tiefsten Züge des Muskels laufen nur über 2 Wirbel hinweg.

3. Mm. rotatores bilden die tiefste von dem Multifidus nur künstlich trennbare Schichte des Transverso-spinialis, aus platten Muskelbündeln bestehend, welche an der Brustwirbelsäule entweder nur einen Wirbel überspringen, vom oberen Rande der Querfortsätze zur Basis der Dornfortsätze verlaufen (Rotatores longi) oder vom Querfortsatz zum nächst höher gelegenen Wirbelbogen ziehen (R. breves). In den letzteren ist der schräge Verlauf fast zum queren geworden.

Die Wirkung der langen Rückenmuskeln äußert sich theils an der Wirbelsäule, theils am Kopfe. An letzterem mit den selbständiger entfalteten Kopfportionen. Bei der Wirkung auf die Wirbelsäule kommen vorzüglich die, mit längeren Endsehnen ausgestatteten Systeme in Betracht, deren einzelne Abschnitte mehrere Wirbel überspringen, und deren Wirksamkeit um so bedeutender ist, je näher der Ursprung dem Becken liegt. Daher spielt hierbei der Sacrospinalis die wichtigste Rolle als Opisthostenar, Rückenstrekker, während der Transversospinalis bei beiderseitiger Wirkung diese Function thätigt, aber bei einseitiger Wirkung mehr als der Sacrospinalis die Drehbewegungen beeinflusst. Am Kopfe bringen die bezüglichen Muskeln bei beiderseitiger Wirkung gleiche Streckbewegungen hervor, bei einseitiger Wirkung seitliche Bewegungen in dem Maße, als sie laterale Insertionen besitzen; in ähnlicher Weise sind sie auch an den Drehbewegungen des Kopfes beteiligt.

2. Kurze Muskeln der Wirbelsäule.

Regel. An der Brustwirbelsäule kommen sie meist nur zwischen den zwei untersten Wirbeln vor und treten wieder am ersten auf, indem sie an der Halswirbelsäule von einer Spize des Wirbelornes zu der der nächsten empor verlaufen.

Die Muskulatur des Rückens findet in der Regel ihre unterste Grenze auf der hinteren Künsbeinfläche, so dass auf die Caudalwirbel nur noch sehne Züge fortgesetzt sind. Aber zuweilen findet sich noch ein Rest dorsaler Muskulatur auch am letzten Abschnitte der Wirbelsäule: der *M. extensor coccygis,* der noch am Schlusse der Stammesmuskulatur Erwähnung findet.

Eine Gruppe kleiner, aber im Verhältnis zu ihrer geringen Länge starker Muskeln lagert in der Tiefe des Nackens und erstreckt sich von den beiden letzten Halswirbeln zum Hinterhaupt. Sie sind nicht alle auf bereits aufgeführte Systeme der Rückenmuskeln beziehbar, stellen Differenzirungen des obersten Theiles der tiefen Rückenmuskulatur vor, die in Anpassung an die mächtigere Entfaltung der Insertionsfläche am Hinterhaupt, wie an die größere Beweglichkeit des Kopfes und des ersten Halswirbels in etwas anderer Art als bei den übrigen Rückenmuskeln erfolgte.

Wirkt beim Strecken des Kopfes.
M. rectus capitis minor (R. cap. posticus min.). Kleiner als der vorhergehende, aber ähnlich gestaltet. Entspringt vom Tuberc. atlantis posticum, und tritt verbreitert zum Hinterhaupte, wo er sich unterhalb des medialen Drittels des Lin. nuchae inferior, lateralwärts vom vorhergehenden Muskel bedeckt, inserirt.

Er wird die Wirkung der Strecker unterstützen.

M. rectus capitis lateralis. Entspringt vom Querfortsatz des Atlas, zuweilen recht ansprechend, oft aber schwach, und verläuft gerade empor zum Hinterhauptsbein, wo er sich seitlich und hinter dem For. jugulare inserirt.

Der Muskel repräsentiert einen Intertransversarius.

Bei einseitiger Wirkung hilft er den Kopf drehen.

Die ganze Muskelgruppe wird vom N. suboccipitalis (Ramus posterior N. cerv. 1) innerviert.

richtung durch die weiter lateralwärts verlegte Befestigungsstelle am Atlas be

stituirt wird. So entstehen aus der lateralen Portion die beiden Musculi obliqui.

CHAPUS, Zeitschr. für Anatom. u. Entwicklungs geschichte Bd. II.

II. Muskeln des Kopfes.

§ 106.

a. Muskeln des Antlitzes und des Schädeldaches.

Die Antlitz- oder Gesichtsmuskeln besitzen das Gemeinsame, dass sie, soweit sie in oberflächlicher Lagerung sich finden, großentheils einer deutlichen Fascienumhüllung entbehren. Sie lagern also unmittelbar unter dem Integumente, mit dem an bestimmten Stellen ihre Insertionen verbunden sind und gehören so-nach zu den Hautmuskeln. Da es sich bei dieser Verbindung mit Integument-
strecken um leicht bewegliche Theile handelt, stellen die einzelnen Muskeln wenig voluminöse, meist platte Gebilde vor. Ihre wenig scharfe Abgrenzung unter sich, wie die in Untermischung einzelner Muskelparthien mit Bindegewebe und Fett sich ausprägende Sonderung gestattet der Willkür in der Aufstellung einzelner Muskeln einen größeren Spielraum, als an anderen Theilen des Körpers.

Sie werden stümmtlich vom N. facialis innervirt, der ebenso einen suben
tanen Muskel des Halses, das Platysma myoides oder den Latissimus colli versorgt, und mit diesem zum Gesichte emportretenden und sich auch da verbreitenden Hautmuskel ergibt sich auch mancher andere anatomische Zusammenhang. Bringt man hiernach in Erwägung, dass viele der als discrete Theile aufgefästten Muskeln unter einander in Verbindung stehen durch Faserzüge, die man als aberrirrende deutet, so gelangt man zu der Einsicht eines morphologischen Zusammenhanges der gesamten Muskulatur des Gesichtes. Man erkennt dann in derselben eine aus dem Platysma hervorgegangene Differenzierung in einzelne um die Öffnungen im Integumente angeordnete Muskelpopulationen. Die denselben zukommende Selbständigkeit ergibt sich aus der durch die Be-

ziehungen zu jenen Öffnungen erworbenen Function, und erhöht sich in dem
Maß, als diese Muskulatur am Kopfskelett Ursprungsstellen fand. Jene mannigfachen Verbindungen jedoch, wie die sogenannten aberrirenden Muskelbündel, ergeben sich dann als ein Rest eines primitiven Zustandes und sind für das Verständnis des Ganzen von großer Wichtigkeit. Dieser Auffassung gemäß stellt das Platysma den Mutterboden der Gesichtsmuskeln vor, es ist der unverbrauchte Rest einer auf den Kopf fortgesetzten Muskulatur, die am Halse in indifferenterer Form sich forterhalten, oder vielmehr vom Kopfe her auf den Hals sich ausgebreitet hat.

Wir stellen demnach das Platysma zu den Muskeln des Antlitzes und unterscheiden die übrigen nach den Beziehungen, die sie zu den verschiedenen am Antlitz sich findenden Öffnungen besitzen, in einzelne Gruppen.

§ 107.

1) Platysma myoides (Latissimus colli, Subentanens colli) (Fig. 250, 255). Ein dünner, platter, meist aus biassen Bündeln bestehender Hautmuskel, der am Gesichte theils in der Wangenregion, theils am Unterkiefer beginnt, und sich hier mit verschiedenen Abtheilungen der Muskulatur des Gesichtes in unmittelbarem Zusammenhange darstellt, aber auch in der Haut inserirt ist. Eine Reihe von Bündeln ist am Unterkieferrande bis gegen das Kinn zu befestigt. Vom Gesichte aus begibt sich der Muskel abwärts. Am Kinne kreuzen sich zuweilen die beiderseitigen. Im Verlaufe am Halse tritt in der Regel eine Divergenz beider Muskeln ein, so dass die Regio mediana colli von ihnen unbedeckt bleibt. Der Muskel ist nur von einem dünnen Fasienblatte bedeckt, während er eine stärkere Fascie, die oberflächliche Halsfascie, unter sich hat. Nach unten gewinnt der Muskel größere Breite, tritt über die Clavicula, medial dicht an der Articulatio sterno-claviculairis in die obere Brustgegend, mit seinen lateralen Bündeln in die Schulterregion. An diesen Orten findet ein Ausstrahlen der Bündel statt, die hier zum Theil in der Haut inseriren.

Beim Verlaufe im Gesichte schließt sich das Platysma nicht nur einem Theile der Muskulatur des Mundes an, sondern es setzt sich in einzelne dieser Muskeln direct fort (M. triangularis und M. quadratus labii inferioris), wie denn seine Bündel, besonders die lateralen hier im Gesichte außerordentlich verschiedene Bahnen einschlagen können. Aus diesem Verhalten zur Muskulatur des Gesichtes geht die Zusammengehörigkeit mit jenen Muskeln hervor.

Die Vertheilung des Platysma am Kopfe zeigt sich bei Säugethieren nach zwei verschiedenen Richtungen, woraus zwei große Abtheilungen von Muskeln hervorgehen. Eine hintere Gruppe umfaßt die am Hinterhaupte und die hinter dem äußeren Ohre gelegenen Muskeln, eine vordere die Muskeln des Gesichtes, der Stirne und die vorderen Muskeln des Ohrs, so dass letzteres die Grenze abgibt. Wenn wir diese Scheidung nicht auch der speziellen Darstellung zu Grunde legen, so geschieht das, um die functionell vereinigten Gruppen nicht trennen, auch anatomische Verbindungen, wie sie z. B. im Epicaninus bestehen, nicht lösen zu müssen.

2. Muskeln der Mundöffnung.

Diese treten sämmtlich zu den Lippen und sind theils in radiärer, theils in scheinbar circulärer Anordnung in mehrere Schichten vertheilt.

Erste Schichte.

M. triangularis (Depressor anguli oris) (Fig. 248). Geht mit breiter Basis vom Unterkieferrande aus, sich aufwärts verschmälernd, zum Mundwinkel. Er entspringt vorne seitlich von der Kinne, und erstreckt sich mit seiner zuweilen unterbrochenen Ursprungslinie bis gegen die Mitte der Randlänge, wo sich Fasern des Platysma dem Muskel beismischen, so dass ein Theil des Muskels aus jenem fortgesetzt ist. Der durch die Convergenz aller Fasern gebildete Muskelbauch tritt aufwärts zum Mundwinkel und theils in die Haut über, theils tritt er mit dem Caninus sich kreuzend in den Buccolabialis der Oberlippe.

Der Muskel zieht den Mundwinkel herab.

Bei starker Ausprägung des Triangularis treten die Ursprünge der vordersten Bündel über den Kieferrand herab, und vereinigen sich mit denen der anderen Seite zu einem
quer unter dem Kinn hinziehenden Muskelbauche: \emph{M. transversus menti}. Das deutet auf die Zugehörigkeit des Triangularis zu einer queren Muskelanschmie.

An den lateralen Rand des Triangularis schließen sich nicht selten Muskelzüge an, die in mehr transversalem Verlaufe von der Fascia masseterica, auch von der Haut der Wange kommen. Sie bilden bei mächtigerer Entfaltung einen mit convergirenden Fasern breit entspringenden, zum Mundwinkel laufen den Muskel: \emph{M. risorius Santorini.} Er liegt über dem zum Gesichte tretenden Theile des Platysma, und ist dadurch von einem anderen Muskelzuge unterschieden, welcher durch gegen den Mundwinkel convergirende Platysm fasern gebildet wird. Er zieht den Mundwinkel lateralwärts.

\emph{M. zygomaticus} (Zyg. major) (Fig. 215). Entspringt vom Jochbeine dicht an dessen Verbindung mit dem Process. jugalis des Schläfenbeins, und verläuft meist vom Fett der Wange umgeben mit ründlichem Bauche schräg vor und abwärts zum Mundwinkel. Theilweise mit den Fasern des Triangularis sich kreuzend, strahlt er in der Haut aus und sendet auch Bündel zur Ober- und Unterlippe.

Unter dem Zygomaticus liegt eine mit Fett gefüllte Grube, deren Boden der \emph{M. buccinator} bildet; die hintere äußere Begrenzung dieser Grube bildet der Vorderrand des \emph{M. masseter}, unter welchen die Vertiefung sich noch etwas erstreckt.

Der Zygomaticus zieht den Mundwinkel nach hinten und aufwärts. Mit vereinzelten Faserzügen schließt er sich zuweilen dem folgenden an, zeigt auch zuweilen seine untere Grenze mit der oberen des Risorius zusammenfallend, und wird sehr häufig durch laterale Faserzüge des Orbicularis oculi, die sich seinem vorderen Rande anschließen, bedeutend verbreitert.
M. quadratus labii superioris Henle (Fig. 218). Geht von oben herab zur Oberlippe. Er besitzt seinen Ursprung an einer Linie am Margo infraorbitalis, medial an den Stirnfortsatz des Oberkiefers bis gegen den inneren Augenwinkel emporsteigend, lateral auf das Jochbein bis in einige Entfernung vom Ursprunge des Zygomaticus ausgedehnt. Ein Theil des Ursprungs wird vom M. orbicularis oculi bedeckt. Der vierseitige platte Muskel besitzt nicht selten an seinem Ursprungse Unterbrechungen, so dass die mediale Portion von der lateralen getrennt besteht. Die erstere schliesst sich enge an den Orbicularis oculi. Er sendet seine Fasern, die medialen senkrecht, die lateralen etwas schräg vorwärts zur Oberlippe, einen Theil des am Augenwinkel entspringenden Abschnitts zum Nasenflügel.

Zweite Schicht.

M. quadratus labii inferioris (Depressor labii infer.) Fig. 218). Ein dünn, rhomboidal gestalteter Muskel, theilweise vom Triangularis bedeckt. Er entspringt vom Unterkiefer unterhalb des Foramen mentale, und von da mit einzelnen Bündeln lateralwärts, von Ursprüngen des Triangularis durchsetzt. Der Verlauf seiner Fasern erscheint in der Richtung des Platysma, von dem ein Theil sich in den Quadratus unmittelbar fortsetzt. Er endigt in der Unterlippe.

Der Antheil des Platysma an der Bildung des Quadratus ist sehr verschieden. Am häufigsten besteht ein unmittelbarer Übergang im lateralen Theile des Muskels.

Der Quadratus zieht die Unterlippe herab.

M. caninus (Levator anguli oris) (Fig. 219). Wird größtenteils vom Quadratus lab. sup. bedeckt, an dessen seitlichem Rande nur ein kleiner Theil des Muskels zum Vorschein kommt. Er entspringt breit aus der Fossa canina des Oberkiefers, unterhalb des Foramen infraorbitale und verläuft schräg lateral herab zum Mundwinkel, wo er sich mit Fasern des Triangularis kreuzt, und theils direct zur Haut, theils in den Buccolabialis der Unterlippe tritt.

Zuweilen schliesst sich sein Ursprung lateral an den Buccinator an, so dass er mit diesem einen Muskel vorsellt.

Zicht den Mundwinkel in die Höhe.

Dritte Schicht.

Mm. incisivi. Kleine, durch mannigfache Beziehungen zu anderen Muskeln sehr variable Muskelnchen von geringer Bedeutung. Sie finden sich lateral
Muskeln des Stammes.

331

von den Juga alveolaria der äußeren Schneidezähne des Ober- wie des Unterkiefers entspringend, im schrägen Verlaufe lateralwärts zum Mundwinkel, die oberen abwärts, die unteren aufwärts divergirend.

Sie werden als Incisivi labii superioris und inferioris unterschieden, und verbinden sich häufig schon vor dem Mundwinkel mit der Muskulatur der betreffenden Lippe.

bemerkt. Die Fasern des Buccinator treten von den radiär angeordneten Muskeln durchsetzt in die Lippen als Bucco labialis, so dass obere Fasern zur Unterlippe, untere zur Oberlippe verfolgbar sind.

Der in die Lippen fortgesetzte Theil des Buccinator mit den sich anschließenden Zügen des Triangularis und Caninus wird als Orbicularis oder Sphincter oris beschrieben. Durch die Verbindung der queren Faserzüge des Buccinator mit der radialen Musculatur der Lippen entsteht der Wulst der letzteren.

Einen besonderen, der Beziehungen zu der den Mund umgebenden Musculatur entspringenden Muskel repräsentirt der

M. mentalis (Henle) (Levator menti). Wird zum großen Theil vom Quadratus labii inferioris bedeckt. Er entspringt zuweilen mit getrennten Bündeln vom Jugum alveolare des äußeren Schneidezahnes oder etwas lateral von dieser Stelle, und verläuft abwärts gegen das Kinn. Seine Fasern divergiren und endigen in der Haut des Kinnes.

Die äußeren Nasenöffnungen besitzen eine sie verengende oder erweiternde Musculatur. Sie wird einerseits durch zur Nase verlaufende Theile anderer Muskeln vorgestellt, andererseits ist sie der äußeren Nase eigenthümlich. Erstere repräsentirt der zum Nasenflügel verlaufende Theil des Quadratus labii superioris (Levator lab. sup. alaeque nasi). Der Nase selbst gehört ausschließlich an der

M. nasalis (Henle) (Fig. 249). Bildet eine dünne, platte, vom Oberkiefer entspringende Muskellage, die sich aufwärts auf die knorpelige äußere Nase erstreckt. Die Ursprünge sind in der Regel mit denen des Incisivus lab. sup. verbunden und werden vom Quadratus labii superioris bedeckt, mit dem gleichfalls zuweilen ein Zusammenhang vorkommt. Sie gehen am Oberkiefer vom Jugum alveolare des Eckzahns und des äußeren Schneidezahns aus, steigen zur Nase empor, wobei der lateralen Portion zuweilen ein Bündel aus dem Caninus sich beilegt. Die laterale Portion begibt sich zum Rücken der knorpeligen Nase, geht mit dem anderseitigen Muskel in eine dünne Aponeurose über, und wird als Compressor narium unterschieden. Die mediale Portion verläuft mehr oder minder an die vorhergehende angeschlossen, zum Knorpelrande des Nasenflügels, den Depressor alae nasi bildend. Daran reiht sich in der Regel noch eine Fortsetzung
Muskeln des Stammes.

zur Nasenscheidewand, wohin auch von der Muskulatur der Oberlippe Bündel gelangen — *Depressor septi mobilis nasi*.

Vom Nasalis gelangen auch Bündel auf die knöcherne Nase, und können dann in die vom M. frontalis auf den Nasenrücken verlaufenden Züge, die als *M. procerus nasi* bezeichnet werden, sich fortsetzen. Der Übergang von Muskelnbündeln aus der Muskulatur des Mundwinkels in die laterale Portion des Nasalis bezeugt noch den ursprünglichen Zusammenhang der Muskulatur des Mundes mit jener der Nase.

Außer einem in der Orbita gelagerten Muskel (s. unten bei den Sinnesorganen) kommt den über das Auge sich erstreckenden Hautduplicaturen der Augenlider noch ein oberflächlich gelageter Muskel zu, der

M. orbicularis oculi (Fig. 249). Er bildet eine dünne, platte, die Augenlidspalte umziehende Schichte, welche sich noch breit über den Orbi

Die *Pars orbitalis* dagegen ist dicker, lebhafter gefärbt und besteht aus größeren Bündeln. In ihrer Circumferenz erscheint sie selten scharf abgegrenzt, sondern läßt Bündel nach verschiedenen Richtungen, theilweise in benachbarte Muskeln, so in den Zygomaticus, Frontalis, Quadratus labii sup. übergehen.

Die *Pars palpebralis* entspringt sowohl von der Crista des Thränenbeins, als auch von dem mit seinem medialen Ende dem oberen Theil des Thränenzacks umgreifenden Lig. palp. mediale, auf welches er sich bis zum inneren Augenwinkel fortsetzt. Der vom Thränenbein an dessen Crista, aber auch hinter derselben entspringende tiefe Theil läuft am Thränenzack vorüber und ist auch als Hornhöckercher *Muskel* (Compressus sacri lacry
cialis) beschrieben worden. Er setzt sich mehr gegen die Augenlidränder fort, während die vom Lig. palp. med. ausgehenden Bündel auf die Flächen der Lidknorpel sich ausbreiten und erst in dem Maße als ihre Ursprünge dem Augenwinkel sich nähern, den Lidrändern sich anschließen. Die im oberen und unteren Augenlidflach ausgebreiteten Muskelschichten convergiren am äußeren Augenwinkel und gehen hier theilweise in das Ligamentum palpebrale laterale über, Bindegewebzüge, welche vom lateralen Ende der Lidknorpel zum lateralen Rande der Orbita sich erstrecken. Eine Schichte der dem unteren Augenlid zugeteilten Bündel zweigt sich schon vom inneren Augenwinkel an ab zur Haut der Wange (Merckel). Die *Pars orbitalis* entsteht mit mehrfachen gesonderten Ursprüngen, die theils an der medialen Orbitalwand, theils außerhalb derselben befestigt sind. Die oberen Portionen stehen mit Ursprüngen des M. frontalis in Zusammenhang, und gehen theils vom Thränenbeine, theils vom Stirnbeine ab, einige Bündel auch von
Lig. palp. med. Außere, gegen die Glabella zu entspringende Bündel nehmen, von Ursprüngen des M. frontalis durchsetzt, einen transversalen Verlauf und verstärken die obere Portion der Pars orbitalis. Man hat diese Bündel als Corrugator supercilii unterscheiden. Die Wirkung der beiden Haupttheile des Orbicularis oculi ist verschieden. Den Schluß der Augenlider vollführt die Pars palpebralis, während die Pars orbitalis Faltungen der Haut in der Umgebung des Orbita hervorbringt, vorzüglich mit ihrer oberen Portion senkrechte Fal tung der Stirnhaut (Corrugator) erzeugt. Vom Lig. palp. med. wie vom Saccus lacrymalis und vom Infraorbitalrande geht der Ursprung der unteren Portion hervor, und setzt sich auf dem Stirnfortsatz des Oberkiefers mit Ursprüngen in Verbindung, die gegen die Wange hin abzweigen. Mit anderen von der lateralen Peripherie der Pars orbitalis an die Haut der Wange tretenden Bündeln bilden sie den Musc. malaris (Henle) (Fig. 250).

5. Muskeln des äußeren Ohres.

Dies sind theils solche, welche der knorpeligen Ohrmuschel aufgelagert, Theile derselben bewegen, theils solche, durch welche die Ohrmuschel als Ganzes bewegt wird. Erstere werden bei der Ohrmuschel selbst zu behandeln sein (s. Gehörtorgan). Die zur Bewegung des ganzen äußeren Ohres dienenden Muskeln entspringen sämmtlich vom Kopfe und nehmen am Knorpel des äußeren Ohres ihre Insertion. Da sie nur bei wenigen Individuen eine Wirkung besitzen, auch in ihrer Ausbildung zahlreichen Schwankungen unterworfen sind, dürfen sie den beim Menschen rudimentären Muskeln zugezählt werden, die bei der Mehrzahl der Säuge thiere in oft mächtiger Entfaltung und hochgradiger Sonderung zu treffen sind.
M. auricularis anterior (Attrahens auris) (Fig. 250). Ein platter, dünner Muskel, der in sehr variabler Ausdehnung auf der Schläfenfascie lagert und gegen das äußere Ohr verläuft, wo er sich befestigt. Zuweilen geht er in den folgenden über. Nicht selten wird er durch wenige, das Ohr nicht erreichende Züge vertreten, oder er ist mächtiger und bildet einen zur Spina helicis tretenden platten Bauch.

Zuweilen schließt er sich mit einigen Bündeln an den M. frontalis an, eine Beziehung, die er bei manchen Säugethieren in ausgesprochener Weise besitzt. So erscheint er bei einigen Prosimiern als eine Portion des M. frontalis, auch bei manchen Affen (Inuus). Wenn der Muskel in zwei Lagen gesondert ist, erreicht nur die tiefere das Ohr.

M. auricularis superior (Atollens auris) (Fig. 250). Constanter als der vorige Muskel, mit dem er eine einzige Schichte bilden kann. Er liegt über dem Ohre, entspringt ausgebreitet von der Galea oder der Fascia temporalis und verläuft convergirend zum Ohre herab, an dem er jedoch nicht immer eine deutliche Insertion gewinnt.

M. auricularis posterior (Retrahens auris) (Fig. 251). Liegt hinter dem Ohre, und wird meist durch ein oder mehrere kurze, aber starke Bündel vorgestellt. Entspringt vom Schläfenbein an der Basis des Zitzenfortsatzes, über der Insertion des Stero-eleido-mastoidens, und verläuft horizontal nach vorne, wo er an der medialen Fläche der Concha kurzsehnig inserirt.

Über das Schädeldach erstreckt sich, locker mit dem darunter gelegenen dünnschichtigen Perioste, aber sehr innig mit der behaarten Kopfhaut verbunden, und schwervon ihr trennbar, eine zwar dünne aber feste Aponeurose, die Schenkelanhe, Galea aponeurotica.

Sie liegt vom oberen Theile der Stirn an über den Scheitel, bis zum Hinterhaupe ausgebreitet, und setzt sich lateral an der äußeren Schläfenlinie in die oberflächliche Fascia temporalis fort. Von jener Schläfenlinie an geht der innige Zusammenhang mit der Kopfhaut allmählich verloren, und die Fascia erscheint daselbst mit dem Schädeldache in Verbindung.

M. frontalis (Fig. 250, 251). Der frontale Bauch des Epicanus nimmt als eine dünne, plate Muskelschichte die Stirnregion ein. Er entspringt von der Nasenwurzel, am Augenwinkel vom Stirnschädel des Oberkiefers, mit tieferen Bündeln auch vom Stirnbein am medialen Orbitalrand, Ursprungs-
portionen der Pars orbitalis des Orbicularis oculi durchsetzend, dann vom Arcus superciliaris, und auch noch vom Margo supraorbitalis. Seine Fasern verlaufen auf- und etwas lateralwärts, so dass zwischen beiderseitigen, am Ursprunge median sich berührenden Muskeln ein Theil der Stirnfläche frei bleibt (Glabella). Am schrägesten läuft der laterale Theil des Muskels empor. Auf der Stirne geht der Muskel meist in der Höhe des Tuber frontale in die Galea über.

Wirkung: Erzeugt Querfalten auf der Stirne. Hebt die Augenbrauen.

M. occipitalis (Fig. 251). Der occipitale Bauch des Epicranius nimmt die laterale Hinterhauptsgegend ein, wo er eine meist dünn Muskellage vorstellt. Entspringt am Hinterhauptsbeine über der Linæa nuchae sup., bis über die Wurzel des Zitzenfortsatzes. Seine Fasern verlaufen schräg auf- und lateralwärts und gehen, eine meist unregelmäßige Grenzlinie bildend, in die Galea über.

Der Occipitalis zieht die Galea nach hinten, glättet die Stirne.

Dass dem Epicranius die Mm. auriculares nicht beigezählt werden dürfen, geht daraus hervor, dass diese Muskeln die Galea nicht bewegen, wie denn wenigstens der Aur. post. nicht die mindeste anatomische Beziehung zur Galea besitzt.

Als sehr häufig vorkommend ist endlich noch der M. transversus nuchæ hier anzuführen. Er bildet einen dünnen, von der Protuberantia occipit. externa und dem medialen Theile der Lineæ nuchæ sup. entspringenden Bauch, welcher lateral verläuft und in seiner Endigungsweise vielfachen Variationen unterworfen ist. Er kann in den Auricularis posterior
Muskeln des Stammes.

übergehen, oder mit seiner Sehne diesem sich anschließen oder über der Insertion des M. sterno-cleido-mastoidens, zuweilen auch tiefer abwärts auf diesem Muskel endigen.

§ 108.

Diese noch dem Kopfe angehörige Muskulatur wird von Muskeln gebildet, welche vom Cranium aus zum Unterkiefer und zum Zungenbein gehen, sowie jenen, die zwischen Unterkiefer und Zungenbein sich finden. Sie begreift somit Muskeln für Skelettheile, die aus den Kiemenbogen (S. 77) sich hervorgebildet haben. Demzufolge gehören auch die den Gehörknöchelchen (S. 199) zukommenden Muskeln hierher, die jedoch aus Zweckmäßigkeitsgründen mit dem Gehörorgan selbst beschrieben werden sollen.

1. Muskeln des Unterkiefers (Kaumuskeln).

Diese Muskulatur stellt in niederen Wirbelthieren einen einheitlichen Muskel vor, der allmählich in mehrere Portionen und in daraus hervorgehende Muskeln mit verschiedener Wirkung sich sondert. Spuren jenes ursprünglichen Zustandes erhalten sich in manchen Verbindungen der gesonderten Muskeln.

M. masseter (Fig. 250). Liegt unterhalb des Jochbogens der Außenfläche des Unterkiefers an. Er besteht aus zwei Lagen. Eine oberflächliche, entspringt mit weit auf den Muskelbauch sich herabstreckender Sehne vom unteren Rande des Jochbeins und daran anschließend vom Jochfortsatz des Oberkiefers, verläuft schräg nach hinten und abwärts, um sich an der Außenfläche des Unterkieferwinkels breit zu inseriren. Eine tiefe, von der oberflächlichen bis auf den hintersten vom Jochfortsatz des Schläfenbeins entspringenden Abschnitt bedeckt, wird aus fast senkrecht herabsteigenden Fasern gebildet, welche in einer ausgedehnten, von der Außenfläche des Gelenkfortsatzes schräg

Gegenbaur, Anatomie.
bis vor die Insertion der oberflächlichen Lage verlaufenden Linie sich inserieren. Beide Lagen des Muskels gehen vorn in einander über.

Wirkung: Zieht den abgezogenen Unterkiefer an.

M. temporalis [M. crotaphytes] (Fig. 252). Ein platter, dem Planum temporale des Schädels aufliegender Muskel, der von der Fascia temporalis bedeckt wird. Er entspringt vom Planum temporale bis herab gegen die untere Grenze der Schläfengrube, nach vorne nicht ganz die Schläfenfläche des großen Keilbeinfliessels einnehmend. Die Muskelfasern convergiren sämmtlich gegen die Schläfengrube, und lassen eine starke End sehne hervorgehen. Die hintersten Fasern verlaufen fast horizontal über die Wurzel des Jochfortsatzes vorwärts, die folgenden schräg vor- und abwärts, bis allmählich die vordersten ziemlich steil abwärts verlaufen. Zu diesen von der Schläfenfläche des Schädels entspringenden Fasern treten noch solche, die von der dem Muskel selbst angehörrigen, tiefen Fascia temporalis entspringen, und eine dünne Lage bildend an die Außenfläche der fächerförmig ausgebreiteten Endsehne übergehen. Dadurch kommt die End sehne ins Innere des Muskels zu liegen. Gegen die Schläfengrube eine mehr ober flächige Lage gewinnend, inserirt sich die an Stärke zunehmende Sehne endlich am Processus temporalis (coronoides) des Unterkiefers, den sie umschließt.

hervorgeht. Dicker, aber lockerer gefügt ist die Fascia temp. superficialis, welche mit der Galea in Zusammenhang steht.

Wirkung: Zieht den abgezogenen Unterkiefer an und unterstützt dadurch die Masseterfunction. Zieht aber auch den aus der Gelenkpresse vorwärts, mit dem Gelenkkopf auf das Tuberculum articulare getretenen Unterkiefer in die Pfanne zurück.

M. pterygoideus internus (Fig. 253). Liegt wie der vorige medial vom Unterkieferaste. Entspringt von der ganzen Fossa pterygoidea und bildet einen etwas abgeplatteten, abwärts und lateralwärts nach hinten verlaufenden Bauch, der sich der medialen Fläche des Unterkiefers nähert und daselbst am Unterkieferwinkel, gegenüber der Masseter-Insertion sich festsetzt. Nicht selten geht eine accessorische Portion in den Muskelbauch über. Diese liegt vor der unteren Portion des M. pterygoideus externus und entspringt unterhalb des Tuber maxillare, auch von einer schmalen Stelle der Außenfläche der äußeren Lamelle des Flügelfortsatzes.

(Ohre Zungenbeinmuskeln.)

Die hierher gehörigen Muskeln bilden eine in nächster Beziehung zum Unterkiefer stehende Gruppe, welche zum Theil sogar auf die Bewegungen desselben wirkt, allein auch mit dem Zungenbein sich verbindet. Außer ihrer Lage hinter und unter dem Unterkiefer ist es vorzüglich ihre Innervation, die sie der Muskulatur des Kopfes anschließen läßt. Sie erhalten sämtlich von Gehirnnerven Zweige, und scheiden sich in eine laterale und eine mediale Gruppe. Da man die unterhalb des Unterkieferrandes befindliche Region dem Halse zuzuschreiben pflegt, greift diese Muskulatur in die Halsregion über.

z. Laterale Gruppe.

M. biventer maxillae inferioris (Digastricus) (Fig. 254). Er repräsentirt eine oberflächliche Lage der über dem Zungenbein befindlichen Muskeln. Sein hinterer Bauch entspringt aus der Incisura mastoidea des Schläfenbeins und tritt, von der Insertion des M. sterno-pecto-mastoideus bedeckt, schräg vor- und abwärts, um allmählich verschmäler in eine starke, cylindrische Sehne überzugehen, welche über dem großen Zungenbeinhorne hinweg verlaufend, einen breiten, zweiten Bauch entspringen läßt. Dieser vordere Bauch verläuft vorwärts zum Unterkiefer, wo er sich kurzsehnig in der Fossa digastrica inserirt.

Der Muskel beschreibt einen abwärts convexen Bogen, welcher die Glandula submaxillaris umzieht, und wird durch den die Zwischensehne umgreifenden Stylogoichyoiden in seiner Lage gehalten und in Beziehung zum Zungenbein gebracht. Letzteres wird dem Muskel fast regelmäßig auch dadurch zutheil, daß sein vorderer Bauch nur theilweise aus der Zwischensehne hervorgeht, zum anderen Theile schrag vom Körper des Zungenbeins entspringt oder daß von der Zwischensehne her eine Abzweigung zum Zungenbein tritt. Auch ein Ausstrahlen eines Theiles dieses Bauches nach der Medianlinie kommt nicht selten vor, und dann wird eine quere, dem M. mylohyoiden ähnliche Muskellage gebildet.

Wirkung: Zieht bei abwärts fixiertem Zungenbein den Unterkiefer herab.
Muskeln des Stammes.

341

M. stylo-hyoides (Fig. 254). Ein schlanker, spindelförmiger Muskel, der median vom hinteren Bauche des Biventer herabsteigt. Entspringt vom oberen äußeren Theile des Proc. styloides des Schläfenbeins und verläuft schräg abwärts und vorwärts, gegen das Ende spaltet er seinen Bauch in zwei Zwischensehne des Biventer umfassende Bündel, deren dünne, platte Endsehnen sich am großen Zungenbeinhorn nahe am Körper inseriren (vergl. auch Fig. 325).

Wirkung: Zieht das Zungenbein auf- und rückwärts. Innervirt vom N. facialis.

unterbrochen ist. Der Muskel bildet den Boden der Mundhöhle, daher auch Diaphragma oris (H. Meyer) benannt.

Wirkung: hebt das Zungenbein, wenn es herabgezogen war. Innervation durch den N. mylo-hyoides (Trig. III).

Über dem Muskel liegt der in die Zunge tretende M. genio-glossus, der mit den übrigen Muskeln der Zunge bei diesem Organe beschrieben wird.

Wirkung: zieht das Zungenbein vorwärts. Innervirt vom N. hypoglossus.

III. Muskeln des Halses.

§ 109.

Man rechnet zur Halsregion auch eine dem Kopfe zukommende Strecke, in
dem man die obere Grenze des Halses zum Rande des Unterkiefers legt. Der re-
gelehrten Orientierung thut das keinen Eintrag, zumeist bei der Muskulatur auf eine
schärfere Scheidung bereits Rücksicht genommen ward. Wir greifen daher bei
bei der Eintheilung des Halses auf jenes andere Territorium über.

An der vorderen Halsregion scheidet man einen mittleren Abschnitt von den
beiden seitlichen, indem man von jedem Sternoclaviculargelenk eine Linie bis
zur Seite des Kinnes sich gezogen denkt. Die zwischen diesen beiden parallelen
Linien befindliche Regio mediana colli zeigt zu unterst eine Vertheilung über dem
Manubr. sterni, die Fovea jugularis. Weiter oben bildet der Kehlkopf (Cart.
thyroides) einen beim Manne sehr, beim Weibe kaum bemerkbaren Vorsprung:
Prominencia laryngea. Über dieser liegt das Zungenbein, nach welchem die be-
zügliche Gegend Reg. hyoidea heißt. Von da erstreckt sich die Halsfläche, streng
betachtet schon zum Kopfe gehörig, zum Kieferrande, und wird als Reg. sub-
mentalisis unterschieden. Die beiden seitlichen Halsregionen sind durch einen
schrag von unten und medial aufwärts und lateral ziehenden Wulst, den der M.
sterno-cleido-mastoideus (Kopfnicker) bildet, in zwei Dreiecke geschieden. Das
Trigonom cervicale inferius hat seine Basis am Rande der Clavicula. seine Spitze
sieht nach oben. Über der Clavicula erscheint, besonders bei mageren Indivi-
duen ausgeprägt, eine Einsenkung als Fovea supraclavicularis. Der hintere
Bogen des M. omo-hyoideus grenzt diese Grube nach hinten und oben ab. Das
Trigonom cervicale superius läßt seinen oberen, vom Unterkiefer abgegrenzten
Theil als Regio submaxillaris unterscheiden.

Für die Fascien des Halses ist das im Allgemeinen über die Fascien Be-
merkte im Auge zu behalten. Eine oberflächliche Fascie setzt sich bis zum Ge-
sichte fort. Eine tiefere erstreckt sich zwischen die Muskeln, als interstitielles
Bindegewebe überall da reichlicher erscheinend, wo andere Organe vom Kopf
zur Brusthöhle verlaufend bei einander lagern, und wo Lücken zwischen diesen
ausfüllen. Die in der Umhüllung der Muskeln bedingte lamellöse Be-
schauffenheit jenes Gewebes geht dann verloren, und die Schichten fließen in der
Umgebung jener Organe mit dem sich indifferent verhaltenden, jene Theile um-
hüllenden Gewebe zusammen.

a. Vordere Halsmuskeln.

Sie werden durch Muskeln dargestellt, welche mehr oder minder vollständig
von dem vom Antlitze herabsteigenden Platysma überlagert sind. Unter diesem
begegnet wir einem vorn von Sternum und Clavicula zum Kopfe emporsteigenden
Muskel, M. sterno-cleido-mastoideus, der eine besondere Schichte repräsentirt.
Dann folgen, eine tiefere Schichte vorstehend, zum Zungenbein gelangende
Muskeln.
§ 110.

Die **Wirkung** des Sterno-cleido-mastoideus hat man in einer Vorwärtsbewegung des Kopfes gesucht, wenn beide Muskeln thätig sind. Daher »Kopfnicker«. Indem die Insertion des Muskels am Hinterhaupte hinter den Condylen des Schädels liegt, kann an der Nickbewegung nicht beteiligt sein. Nach Henle hebt er den Kopf bei gestreckter
Muskeln des Stammes.

345

Körperlage. Bei einseitiger Wirkung wird jene Bewegung auch mit einer Rotation nach der andern Seite begleitet.

Innervirt vom N. accessorius Wilhii, sowie von einigen Cervicalnervenzweigen.

Untere Zungenbeinmuskeln.

§ 111.

a. Erste Lage.

M. sternohyoidens (Fig. 255). Ein platter, meist schmaler Muskel, der vom Sternum zum Zungenbein emportritt. Er entspringt an der hinteren Fläche des Manubrium sterni, des sternalen Endes der Clavicula, und des Sterno-claviculargelenkes. Vom Sterno-cleido-mastoideus gedeckt, verschmälert er sich im Aufwärtssteigen etwas, zugleich mit dem anderseitigen convergirend, so dass beide Muskeln nahe bei einander zur Insertion gelangen, die an der Basis ossis hyoidei liegt.

Fig. 255.

Aus diesen Varietäten ergibt sich der Omo-hyoideus als eine laterale Portion eines mit dem Sterno-hyoideus zusammengehörigen Muskels, der an seinem Ursprunge sich längs der Clavicula bis zum Coracoid und zur Scapula ausgedehnt hat. Der am meisten lateral entspringende Theil davon bleibt bestehen, indes der mehr mediale entweder zu einer dann den hinteren Bauch an die Clavicula befestigenden Fascie sich rückbildete oder, weiter medianwärts, vollständig verschwand. Bei Negern soll der Clavicularursprung des Muskels häufiger sein. Auch Verdoppelung des Muskels ist beobachtet, sie ist wie
Muskeln des Stammes.

347

Wirkung: zieht das Zungenbein abwärts, zugleich etwas nach hinten.

b. Hintere Halsmuskeln.

§ 112.

Sie werden von den vorderen durch die vom Kopfe zur Brust herabsteigenden Speise- und Luftwege sowie durch die großen Halsgefäßenstämme getrennt, und bilden eine unmittelbar der Vorderfläche und der Seite der Hals-Wirbelsäule
angeschlossene Muskulatur. Sie zerfällt wieder in zwei Muskelgruppen, eine mediäle und eine laterale.

Die mediäle Gruppe liegt an der Vorderfläche der Halswirbelsäule. Sie beginnt an der Brustwirbelsäule und erstreckt sich bis zur Basis des Schädels, und stellt ein System in drei verschiedenen Richtungen verlaufender Muskelzüge dar. Einmal nehmen Muskelzüge einen geraden Weg auf den Wirbelkörpern, derart, dass die am tiefsten entspringenden am weitesten aufwärts inseriert sind. Dann treten von Wirbelkörpern entspringende Muskelzüge schräg lateralwärts zu Querfortsätzen der Halswirbel empor, endlich verlaufen von Querfortsätzen entspringende Muskelbündel schräg medianwärts zu Wirbelkörpern.

Längs der minder beweglichen Wirbel ist diese Muskulatur wenig voluminos und die in verschiedenen Richtungen verlaufenden Züge sind in ihren einzelnen Abschnitten nicht scharf von einander gesondert. Dagegen ist die zur Schädelbasis gelangende Portion mächtiger und selbständiger entfaltet. Es wiederholen sich damit Verhältnisse wie bei den langen Rückenmuskeln, denn auch die Gliederung in einzelne aufeinanderfolgende Bündel an die Metamerie jener Rückenmuskeln erinnert. Diese Muskulatur zerfällt in zwei Hauptschnitte, die als M. longus colli und M. longus capitis unterschieden sind.

* Innervirt wird diese Muskelgruppe von vorderen Ästen der Cervicalherven.

M. *longus colli* (Fig. 256). Stellt ein langgezogenes Dreieck vor, dessen Basis längs der Wirbelsäule sich erstreckt und in zwei spitze Winkel sich fortsetzt, während ein stumpfer Winkel lateral gerichtet ist. Die drei vorhin für die ganze Gruppe unterschiedenen Portionen sind in verschiedenem Maße nachweisbar. Der auf die Wirbelkörper beschränkte Theil entspringt mit einzelnen Bündeln von der Vorder- und Seitenfläche der 3 ersten Brust- und der 2—3 untersten Halswirbel, und gibt Insertionen an die Körper der ersten 3 oder 4 Halswirbel ab, zum Atlas an dessen Tuberculum. Von dem Bauche des Muskels zweigen sich bereits vom untersten Ursprunge an lateral aufsteigende Bündel ab, welche an die vorderen Zacken der Querfortsätze unterer Halswirbel
Muskeln des Stammes.

(von beugt meist der an diesem dieser entspringen oberen dritter läuft wirbel des und Halswirbelquersäften entspringen und medial zu der Wirbelkörperportion emporsteigen."

Die zum Tuberc. atlantis gehende, mit einer medialen Zacke verbundene Portion ist häufig etwas stärker und ward als Longus atlantis aufgeführt (Henn.) Eine besondere Function besitzt sie kaum, da ihre Bündel ziemlich steil zum Atlas sich begeben.

Wirkung: beugt die Halswirbelsäule und unterstützt bei einseitiger Wirkung die Drehbewegung.

Wirkung: beugt den Kopf vorwärts.

M. rectus capitis anticus (R. c. a. minor) (Fig. 256). Wird vom Ende des Bauches des Longus cap. bedeckt. Entspringt von der vorderen Fläche des Seitentheiles des Atlas, zuweilen dem R. cap. lateralis angeschlossen, und verläuft etwas schräg zur Basis des Hinterhauptsbeins empor, wo er sich unmittelbar hinter der Insertion des Longus capitis vor dem Foramen magnum festheftet.

Die laterale Gruppe erstreckt sich von den Querfortsätzen der Halswirbel zu den oberen Rippen. Sie wird gebildet durch die

Mm. scaleni. Diese repräsentiren einen ungleich dreiseitigen, von den Halswirbelquerfortsätzen zur Umgrenzung der oberen Thoraxapertur sich erstreckenden Muskelekomplex. Indem ihre Insertionen eine Bogenlinie beschreiben, stellen sie die Hälfte eines Kegelmantels dar, unter welchem die jederseitige Pleurahöhle eine Strecke weit aufwärts sich fortsetzt. Nach Ursprung und Insertion werden drei Scaleni unterschieden.

M. scalenus anticus (Fig. 257). Liegt am weitesten nach vorne, mit seinem oberen Theile am lateralen Rande des M. longus. Entspringt von den vorderen Höckern der Querfortsätze des 3. — 6. Halswirbels, bildet einen kurzen, etwas abgeplatteten Bauch, der lateral und vorwärts herabsteigend an der Oberfläche der ersten Rippe (Tuberculum scaleni) bis nahe an den Rippenknorpel inserirt. Zuweilen besitzt er nur drei Ursprungszacken, selten ist deren Zahl vermehrt.

M. scalenus medius (Fig. 257). Entspringt mit 6 — 7 Zipfeln von den Querfortsätzen der Halswirbel, meist nahe an dem vorderen Höcker jener Fortsätze, divergirt in seinem Verlaufe nach abwärts vom Sc. anticus, so dass zwischen beiden ein dreieckiger, zum Durchlasse der Art. subelavia und des Plexus brachialis dienender Raum entsteht. Die Insertion nimmt der Muskel an der oberen Fläche der ersten Rippe, nach hinten, und durch jenen Raum vom Scalenus
Die oberste Ursprungszacke des Muskels ist in der Regel fleischig und gelangt nicht in den gemeinsamen Bauch, sondern läuft in die Ursprungsschne der folgenden Zacken ein. Das ist noch eine Andeutung der Metamerie dieses Muskels.

M. scalenus posticus (Fig. 257). Schließt sich hinten dicht an den Scalenus medius an. Entspringt mit zwei oder drei Zipfeln von den hinteren Zacken der Querfortsätze der zwei oder drei untersten Halswirbel, verläuft über die erste Rippe herab, um sich an dem oberen Rande und der Außenfläche der zweiten Rippe zu inseriren. Zuweilen erstreckt er sich auch zur dritten Rippe, oder er sendet Insertionen zu beiden. Auch kann er mit dem Sc. medius innig verbunden sein.

Je nach ihren Ursprüngen von den vorderen oder hinteren Höckern der Querfortsätze der Halswirbel (S. 124) gehören die Scaleni verschiedenen Systemen an. Der vordere schließt sich wie auch der mittlere dem System der Intercostalmuskeln an (S. 356); der hintere dagegen entspricht den Levatores costarum (S. 355). Aus der Rückbildung der Rippen der Halsregion wird verständlich, wie an der Halswirbelsäule entspringende Muskeln ihre Insertionsbezirke weiter abwärts auf die bleibenden Rippen verlegten.

Die Ableitung der Scaleni von entschieden metameren Muskeln ist nicht nur deßhalb von Wichtigkeit, weil darin eine typische Übereinstimmung mit der Musculatur des Thorax erkannt wird, sondern auch, weil dadurch auch für den Hals das gleiche Verhalten mit der gesamten vorderen resp. ventralen Muskulatur sich zu erkennen gibt. Wie die Scaleni den Intercostalmuskeln, so sind diesen wieder die breiten Bauchmuskeln morphologisch äquivalent, während die vordere Gruppe der Halsmuskeln (Omo-sterno-hyoideus und Sterno-thyreoides) zusammen dem Rectus der Bauchmuskulatur entsprechen.

Wirkung: Heben die Rippen und erweitern dadurch den Thorax.

Innervirt von Zweigen der vorderen Cervicalnervenäste.
IV. Muskeln der Brust.

§ 113.

Die oberflächliche Muskellage wird von der Brustfascie bedeckt, welche aus der Bauchfascie sich fortsetzt und in das oberflächliche Blatt der Halsfascie übergeht. Lateral setzt sich die Brustfascie theils zum Rücken, theils in die Achselhöhle fort, mit deren lockerdem, sie theilweise füllendem Bindegewebe sie zusammenhängt. — In der Umgebung der Brustdrüse ist das Bindegewebe reichlicher vorhanden (s. beim Integumente).
Dritter Abschnitt.

a. Gliedmaßenmuskeln der Brust.

§ 111.

a. Erste Schichte.

M. pectoralis major (Fig. 258). Er überlagert den größten Theil der Vorderfläche des Thorax und entspringt von der Pars sternalis clavicularis, vom Claviculursprünge des Delta-Muskels häufig durch eine Lücke geschieden, geht dann mit dem Ursprunge auf das Sternum über, nahe der Medianlinie an der vorderen Fläche herab, und empfängt unten noch eine meist breite Ursprungszacke von der aponeurotischen Scheide des M. rectus abdominis. Endlich finden sich lateral von dem sternalen Ursprunge noch mehrere tiefe Ursprungszacken von den Knorpeln der Rippen. Diese Ursprungspartien schließen sich den sternalen an.

Danach unterscheidet man eine claviculare und eine sterno-costale Portion, welche zuweilen vom Ursprunge an etwas von einander getrennt sind. Die von diesen Ursprungsstellen lateralwärts ziehenden Muskellmassen convergiren nach dem Humerus zu. Die sterno-costale Portion sendet ihre Bündel, die lateralsten dem media
ten Rande des Deltamuskel angeschlossen, abwärts. Je weiter der Ursprung gegen das Sterno-claviculare Gelenk liegt, desto schräger ist der Verlauf nach außen und abwärts gerichtet. An der sterno-costalen Portion gehen die oberen Bündel gleichfalls schräg nach außen und abwärts, die mittleren quer nach außen, und die unteren nach außen und aufwärts.
Die Insertion findet mittels einer an der Hinterfläche des Muskels sich entwickelnden Endsehne an die Spina tuberculi majoris statt. Indem die claviculare Portion des Muskels ihre Insertion weiter abwärts nimmt als die sternocostale, deren Bündel sich immer unter die vorhergehenden aufwärts schieben, kommt ein eigentümliches Verhalten der Endsehne zu Stande. Diese bildet eine aufwärts offene Tasche (Fig. 259), an deren vordere Wand die claviculare Portion tritt, indem die hintere Wand die sternocostale Portion aufnimmt.

Der Muskel zieht den Arm an. Innervirt wird er durch die Nn. thoracici anteriores.

M. pectoralis minor (Serratus anticus minor) (Fig. 259). Wird vom M. pectoralis major vollständig bedeckt. Setzt sich aus drei, mit dünnen Sehnen an der 3.—5. Rippe entspringenden Zacken zusammen, die aufwärts und etwas lateral convergirend einen gemeinsamen platten Bauch herstellen. Dieser nimmt erst gegen sein schmales Ende etwas an Dicke zu, und befestigt sich mit kurzer Endsehne am Proc. coracoïdes. Häufig empfängt der Muskel noch eine Zacke von der 6. Rippe, zuweilen auch noch von der zweiten.

Die Ursprünge liegen am Ende der knöchernen Rippen, greifen aber meist noch auf den Knorpel über. Von der Endsehne des Muskels geht häufig ein aponeurotisches Gegenbauer, Anatomie.
Dritter Abschnitt.

Blatt zu der den Subelavius deckenden Fascie. Mit dem Ursprunge des kurzen Biceps-Kopfes steht die Insertion nicht selten in Zusammenhang.

Wirkung: zieht den Schultergürtel an und herab.

Innervirt von einem N. thorac. anterior.

M. subelavius (Fig. 259). Liegt zwischen Schlüsselbein und der ersten Rippe von einem derben Fascienblatte bedeckt. Er entspringt von der oberen Fläche der ersten Rippe an einer dem Rippen-Knopel nahe liegenden Rauhigkeit mit einer starken Schne. Seine Fasern steigen schräg lateralwärts zur unteren Fläche der Pars acromialis claviculæ empir, wo sie ihre Insertion finden. Im Verlaufe zur Insertion findet eine fächerförmige Ausbreitung der Fasern statt.

Selten geht die Insertion des Muskels auf das Acromion über. Die den Muscle deckende aponeurotische Fascie setzt sich bis zum Proc. coracoides fort, als dünnere Schichte auch gegen den M. pectoralis minor (*Fascia coraco-claviculæ*).

Wirkung: Er fixirt das Schlüsselbein im Sterno-claviculargelenk.

Innervirt vom N. subelavius aus dem Pl. brachialis.

γ. Dritte Schichte.

Der Muskel bildet die mediale Wand der Achselhöhle. Das Verhalten der mittleren Portion ist mannigfaltig. Zuweilen ist dieser Theil des Muskels sehr schwach; variabel sind die untersten Zacken der dritten Portion. Die **Wirkung** des Muskels besteht in
Vorwärtsbewegung der Scapula, was vorwiegend in deren unterem Winkel sich äußern kann, da die Scapula oben durch die Verbindung mit der Clavicula fixirt ist. Dadurch wird die vom M. serratus ausgeführte Bewegung der Scapula zu einer rotirenden.

innervirt vom N. thorae, longus aus dem Pl. brachialis.

b. Muskeln des Thorax.

§ 115.

Die dem Brustkorbe eigenen Muskeln scheiden sich in Muskeln der Rippen und den Zwerchfellmuskel. Die ersteren dienen der Bewegung der Rippen. Wenn auch functionell noch andere Muskeln — die von Rippen entspringenden Muskeln der oberen Gliedmaßen — die Rippen bewegen können, so geschieht solches doch nur als Nebenwirkung dieser Muskeln, die bereits als besondere Gruppe betrachtet sind. Andere auf die Rippen wirkende Muskeln, wie die Sca-

leni, sind schon bei der Halsmuskulatur aufgeführt.

Die eigentliche Muskulatur des Thorax ist somit eine eine dem Volum nach sehr be-

schränkte, was vor Allem aus dem schon oben (S. 308. Ann.) angeführten Umstande: der durch die Entfaltung der Gliedmaßen bedingten Reduction der Seitenrumpfmuskeln, sich erklärt, so dass nur noch die zur Bewegung der Rippen dienenden Partien fortbestehen.

Mm. levatores costarum. Reißen sich lateral an die tiefen Schichten des Transverso-scapinalis, und werden vom Sacrospinalis bedeckt. Es sind platte, von den Querfortsätzen des letzten Halswirbels und der Brustwirbel, bis zum 11. herab, entspringende Muskeln, die lateral und abwärts fächerförmig sich aus-

breiten und an jeder nächstfolgenden Rippe bis gegen den Angulus costae hin sich inseriren. Vom 9.—11. Levator erstrecken sich die mehr medial liegenden Portionen über die je nächste Rippe hinweg; zur zweitnächsten herab, welche Portionen man als Levatores longi von den übrigen, Levatores breves unter-

scheiden hat. Zuweilen ist dieses Verhalten auch für höher gelegene Levatores in Geltung.

Die Levatores costarum gehen theils mit sehnen Ausbreitungen, theils auch mit Fleischfasern unmittelbar in die äußeren Zwischenrippenmuskeln über. Dem System der Lev. costarum gehört noch der Scalenus posticus an. (S. 350.)

innervirt werden die Mm. levatores costarum von Zweigen der Intercostalnerven, der erste vom letzten Cervicalnerven.

Mm. intercostales. Eine die Zwischenrippenräume einnehmende Mus-

kulatur, welche in zwei Lagen gesondert ist, die sich in der Richtung des Faser-

verlaufs different verhalten. Sie entspringen vom unteren Rande je einer Rippe,
und treten zum oberen Rande der nächstfolgenden herab. Mit ihrem Ursprung fassen sie den Suleus costalis zwischen sich.

Mm. intercostales interni. In der Richtung ihres Faserverlaufes kreuzen sie die Intercostales externi, indem ihre Fasern von oben und vorn schräg nach hinten und abwärts treten. Sie beginnen hinten meist in der Gegend des Rippenwinkels, schwächer als die äußeren, und verlaufen von den äußeren bedeckt bis zum vorderen Ende des Intercostalraumes, so dass sie derselben noch vor dem Ende der äußeren zum Vorscheine kommen. In diesem Verlaufe ist eine Zunahme ihres Volums erfolgt, so dass sie zwischen den Rippenknorpeln am mächtigsten sind. Der schräge Faserverlauf ist im Allgemeinen nicht so bedeutend wie bei den äußeren Interostalmuskeln und nimmt von oben nach unten zu ab. — Die beiden letzten Intercostales interni gehen zuweilen continuirlich in den M. obliquus internus über, wenn nämlich der Muskelbauch desselben sich bis über die Knorpel der beiden letzten Rippen hinaus erstreckt. Dass hierin eine innigere Beziehung zwischen diesen beiden Muskeln sich ausspricht, belegen auch jene Fälle, in denen von dem Ende einer der beiden letzten Rippen aus ein Sehnenstreif in dem fleischigen Theil des Obliquus internus sich erstreckt, und, indem er eine Rippenverlängerung vorstellt, einem Theile des Obliq. int. eine intercostale Bedeutung gibt. Das zuweilen zu beobachtende Vorkommen eines Knorpelstückes in jenem Sehnenstreif begründet diese Auffassung.

Dem System der Intercostalmuskeln gehören noch die Intertransversarii anteriores der Halswirbelsäule, sowie die Intertransversarii lat. der Lendenwirbel an. Es sind entsprechend der Rückbildung der Rippen dieser Regionen rudimentäre Intercostalmuskeln. Der Ursprung sowie die Insertion des Scaleni anticus macht es wahrscheinlich, dass auch er aus intercostalen Muskeln hervorging, die mit einer allmählichen Rückbildung der Halsrippen sich zur ersten Brustrippe erstreckten, und hier in wichtiger Function stehend, sich bedeutender ausbildeten.

Den Thoraxmuskeln schließe ich noch den Transversus thoracis an, der nur eine weiter aufwärts an der vorderen Brustwand liegende Portion des M. transversus abdominis ist. (Vergl. S. 367.)

c. Zwerchfellmuskul (Diaphragma).

§ 116.

Das Zwerchfell bildet die untere Begrenzung der Brusthöhle, die dadurch von der Bauchhöhle geschieden wird. Es schließt sich dadurch der Muskulatur des Thorax an. Dargestellt wird es durch einen platten, rings von der Begrenzung

Nach den Ursprungsstellen des muskulösen Theils des Zwerchfells werden für diesen drei verschiedene Strecken unterschieden: Pars lumbalis, Pars costalis und Pars sternalis.

1) Die Pars lumbalis (P. vertebralis) (Fig. 260) des Zwerchfellmuskels erscheint in eine mediale und eine laterale Portion gesondert. Die mediale geht an der Vorderfläche der Lendenwirbelsäule hervor, mit einer mit dem Lig. longitud. anterius in Zusammenhang stehenden Ursprungssche ne, die rechts etwas tiefer [3. Lendenwirbel] herabsteigt als links. Aus beiderseitigen Scheinen entfalten sich (rechts in der Höhe des 2. Lendenwirbels) pfeilerartig emportretende Muskelmassen, die eine auf dem Körper des ersten Lendenwirbels gelagerte, aber höher emportretende, und dabei von der Wirbelsäule sich nach vorne zu eröffnenden spaltförmigen Öffnung zwischen sich fassen, durch welche die große Körperarterie (Aorta) von der Brusthöhle zur Bauchhöhle tritt. Dieser Hiatus aorticus empfängt von einer Fortsetzung der Ursprungssche ne dieser Zwerchfellportion eine Umr hlung, auf welche der Ursprung von Muskelfasern fortgesetzt ist. Rechterseits ist dieses am bedeutendsten ausgeprägt. Über dem Aortaschlitzte vereinigen sich die beiden vertebalen Muskelpfeiler, um nach einer Durchkreuzung eines Theiles ihrer Bündel zur Begrenzung eines zweiten Schlitzes aneinanderzuweichen. Diese Öffnung (Hiatus oesophageus) dient dem Durchtritte der Speiseröhre, und liegt ganz nahe
am Centrum tendineum, in welches der mediale Abschnitt des Pars vertebralis sich ausbreitend von hinten her übergeht.

3) Die Pars sternalis ist die unanschaulichste und besteht aus einem Paar von der hinteren Fläche des Processus xiphoideus sterni entspringender platter Zacken von geringer Länge, welche in das Centrum tendineum von vorne her eingehen.

Das Centrum tendineum. Der schni ge Theil des Zwerchfells nimmt die ringsum an ihn herantretenden fleischigen Ursprungsportionen auf, und bildet eine derbe, glänzende Membran, in welcher die Züge der Sehnenfasern in verschiedener Richtung sich durchkreuzen. Die Gestalt dieses Centrum tendineum erscheint in die Quere gezogen, durch die weiter einspringende Übergangsstelle der medialen Portion von hinten her eingebuchtet. Zu den dadurch unterscheidbaren, in der Mitte zusammenhängenden seitlichen Theilen des Centrum tendineum tritt mehr oder minder deutlich noch eine mittlere Ausbreitung nach vorne zu, wo durch dem ganzen Gebilde eine Kleeblattform zu Theil wird.

Die von dem Centrum tendineum eingenommene Wölbung des Zwerchfells ist hinten steiler, aber von einem minder anschaulichen Theile des Centrum tendineum gebildet als vorne. Sie ist asymmetrisch, indem sie in die rechte Brusthöhlenhälfte höher emportritt, in Anpassung an den unter dieser Wölbung liegenden grösseren rechten Leberlappen.

Muskeln des Stammes.

361
dieser in functionellem Übergewichte über die von minder fest gefügten Skelettheilen entspringenden älteren sternocostalen Ursprungs-Portionen sich findet. Auch die Bahn des N. phrenicus, indem sie vor Herz und Lungen verläuft und so von vorne zum Zwerchfell herantritt, läßt noch einen Rest des primitiven Zustandes des Muskels erkennen, und zeigt zugleich, wie wichtig für das Verständnis der Muskeln deren Nervenbahnen sind.

V. Muskeln der Bauchwand.

§ 117.

Die vorne und seitlich die Bauchhöhle umschließende Wand wird von Muskeln gebildet, welche von Skelettheilen in der Umgrenzung des Bauches entspringen. Da die Rippen sich auf den Thorax beschränken, besteht die Muskulatur der Bauchwand aus gar nicht oder nur andeutungsweise in Metameren geordneten Muskeln, die aber größtentheils aus den diesem Theile des Körpers ursprünglich zukommenden Muskelsegmenten entstanden sind. Ein Zeugnis hiefür geben die Nerven ab, welche Fortsetzungen der unteren Intercostalnerven und der ersten Lumbalnerven sind. Auch sonst sind noch manche Zeugnisse dafür vorhanden, dass wir es hier mit metameren Muskeln zu thun haben.

untere Abgrenzung durch die Beugefalte des Oberschenkels und stellt die Regio inguinalis dar.

Die Muskulatur wird von einer lockeren aber ziemlich mächtigen Fascie, der F. superficiale abdominalis, überkleidet, welche sich oben in die Brustfascie fortsetzt. Sie läßt sich besonders am unteren Abschnitte in mehrere Lamellen zerlegen, von denen die oberflächlichen sich allmählich ins Unterhautbindegewebe verlieren und bei beleibten Individuen reichlich mit Fett durchsetzt sind. Bei solchen zeigt auch das Unterhautbindegewebe in der Unterbauchgegend eine mächtige Fett schichte.

Wir sondern die Muskeln der Bauchwand in vordere und in hintere, von denen die ersteren auch über die seitliche Bauchregion verbreitet sind.

a. Vordere Bauchmuskeln.

Die höher zu rechnende Muskulatur setzt sich theils aus schräg oder quer verlaufenden breiten, theils aus longitudinal verlaufenden Muskeln zusammen. Die letzteren liegen zur Seite der Medianlinie der vorderen Bauch wand, als plate, vom Brustkorb zum Becken gerade herabsteigende Bäuche, die in eine von den membranösen Endsehnen (Aponeurosen) der breiten Bauchmuskeln gebildete Scheide eingeschlossen sind. Indem diese Aponeurosen der breiten Bauchmuskeln in der Medianlinie zusammentreten, bilden sie einen die Scheiden der geraden Bauchmuskeln verbindenden sehnen Streifen, der vom Schwertfortsatz bis zur Schambeinfuge sich herabstreckt — die Linea alba abdominalis.

Anders ist der gerade Bauchmuskel zu beurtheilen. Er ist zwar gleichfalls in metamere Abschnitte gesondert, und wird von denselben Nerven wie die breiten Bauchmuskeln versorgt, allein es bestehen Gründe, ihn als einen ursprünglich weiter oben gelegenen, erst mit der unteren Gliedmaße abwärts gerückten Muskel zu betrachten, so dass er nicht mit den breiten in eine und dieselbe Kategorie gehört.

M. rectus abdominalis (Fig. 261). Dieser Muskel gehört einem Systeme der Ventralfläche des Körpers zugetheilter Muskeln an, welches, vom Brustkorbe unterbrochen, erst am Halse wieder ihm zugehörige Muskeln besitzt. Seine Fasern verlaufen in longitudinaler Richtung.

Der Rectus liegt in einer von den Aponeurosen der breiten Bauchmuskeln gebildeten Scheide zur Seite der vom Schwertfortsatz des Sternum zur Schamfuge ziehenden Linea alba. Er entspringt breit von der Außenein der Thorax
mit drei mehr oder minder deutlich unterscheidbaren Zacken, die von den Knorpeln der 5.—7. Rippe herabsteigen, so zwar, dass die laterale Zacke am weitesten oben, die mediale am meisten abwärts liegt, und den Schwerfortsatz bedeckt. Der breite Muskelbauch verläuft gerade herab, verschmälert sich etwas, und gelangt an seinem letzten Viertel bedeutend verschmälert mit einer kurzen starken Endscheibe zur Insertion am oberen Rande des Schambeines zwischen Tuberenculum pubicium und Schamfuge.

Der Verlauf der Muskelfasern des Rectus wird unterbrochen durch querlaufende sehnbige Streifen, Inscriptiones tendineae, die ihn oberflächlich in 4—5 Bäuche scheiden. Drei dieser unregelmäßig gestalteten Zwischensehnen liegen oberhalb des Nabels, eine unterhalb desselben. Diese fehlt nicht selten. Mit der Vorderwand der Scheide des Rectus sind die Zwischensehnen verwachsen. An der hinteren Fläche des Muskels treten sie nur teilweise hervor, so dass hier der Faserverlauf größtenteils ununterbrochen sich darstellt.

Die Endscheine des Rectus gibt noch ein Bündel ab, welches sich vor der Schamfuge mit dem anderseitigen kreuzt und mit Fasern aus der Linea alba zum Penisrückens (beim
M. pyramidalis (Fig. 261). Liegt in der Scheide des Rectus, am unteren Ende des letzteren. Entspringt breit vor der Insertion des Rectus am Schambein und verläuft neben der Linea alba aufwärts, unter Verschmälerung seines Bauches, um sich schräg an der Linea alba zu inseriren. Er fehlt nicht selten, und dann nimmt die Insertion des Rectus eine größere Fläche ein.

2. Bauchmuskeln mit schrägem oder querem Verlaufe. (Breite Bauchmuskeln.)
Übergangslinie des Muskels in die Sehne tritt unten, in der Höhe der Spina iliaca anterior superior in bogenförmiger, abwärts gerichteter Rundung noch mehr zur Seite und erreicht den Anfang des Darmbeinkammes, an dessen Labium externum die kurzsehnige Insertion des hinteren Theiles des Muskels stattfindet.

Die breite Endsehne oder Aponeurose des M. obliquus externus tritt von oben an herab über den geraden Bauchmuskelf, hilft die vordere Wand von dessen Scheide bilden und endigt in der Linea alba. An der Aponeurose sind schräge, in der Richtung der Muskelfasern fortgesetzte Sehnenfasern unterscheidbar, die von anderen in entgegengesetzter Richtung gekreuzt werden. Die ersteren nehmen gegen das untere Ende der Aponeurose zu, und schließen dieselbe endlich mit einem schrägen sehnnigen Strange ab, der von der Spina iliaca anterior superior zum Tuberculum publicum straff ausgespannt ist, dem Leistenbande (Lig. inguinale, Lig. Pouparti.) (Fig. 217). Ein Theil der im Leistenbande verlaufenden Sehnenfasern gelangt nicht bis zum Tuberculum pubicurn, sondern zweigt sich vorher als eine drieckige, horizontale Platte zum medialen Ende des Peetu ossis pubis ab: Gimbernatsches Band (Fig. 217). Unmittelbar über der Stelle, wo die Abzweigung des Gimbernatschen Bandes vom Leistenbande stattfindet, ist die Aponeurose des M. obliquus abd. externus von einer schräg gerichteten ovalen Spalte durchbrochen, die beim Weibe unansehnlich, bedeutender beim Manne ist. Außerer Leistenring: Annulus inguinalis externus (Fig. 262). Diese Öffnung wird durch Auseinanderweichen der schräg herabziehenden Sehnenfasern der Aponeurose bedingt. Am äußeren oberen Winkel der Spalte treten Sehnenbündel aus der Richtung ihres bis dahin eingeschlagenen Weges und wenden sich schräg aufwärts, während andere steiler abwärts zur medialen Endstrecke des Leistenbandes treten. Die ersteren (Crus superius) bilden mindestens teilweise die obere Umrandung des äußeren Leistenringes, die unteren (Crus inferius) stellen den unteren Rand her. Dieser äußere Leistenring ist die Mündung des die Bauchwand schräg durchsetzenden Leisten-Canales, durch welchen beim Manne der Samenstrang, beim Weibe das runde Mutterband verläuft.

Die in die Linea alba auslaufenden Fasern der Aponeurose des Obl. ext. durchkreuzen sich daselbst besonders deutlich am unteren Ende der Linea. Die aus dem oberen Schenkel des äußeren Leistenringes zur Linea alba herabstießenden Fasern setzen sich über die Schamfuge zum Rücken des Penis fort, und bilden mit anderen aus der Schamfuge dahin tretenden Faserzügen das Ligamentum suspensorium des Penis (S. 364).

Das Leistenband ist durch die Bauchdecken als ein leistenartiger Vorsprung fühlbar. Es erstreckt sich nicht vollkommen gerade, sondern verläuft etwas nach abwärts und vorwärts gebogen.

In der Verlaufsrichtung seiner Fasern entspricht der Muskel dem Intercostalis externus. Wenn er sich nicht unmittelbar an diesen anschließt, sondern die Thoraxwand teilweise überlagert, so ist das als eine Modifikation der Ursprünge, als eine Erstreckung derselben auf die Außenfläche der Rippen anzusehen, zumal er bei der Rückbildung der vordersten Theile jenes Intercostalmuskels und dem Anschluß der Knorpel der S.—10. Rippe an die Knorpel der je vorhergehenden von einem unmittelbaren Zusammenhange mit dem M. intercostalis externus ohnehin ausgeschlossen ist.

Der M. obliq. int. entspricht nicht nur in seinem Faserverlaufe dem M. intercostalis internus, sondern er setzt sich nicht selten direct in diesen Muskel fort. Wenn der Bauch des Obliquus internus erst weiter vorne in die Aponeurose übergeht, so dass der letzte oder der vorletzte Intercostalraum nicht mehr an ihrem vorderen Ende ihm begegnen, dann trifft man den M. intercostalis internus in unmittelbarem Anschluss an den Obliquus internus (Fig. 263). In der Verlängerung des Knorpelendes der 11. Rippe zeigt der Obliquus internus dann häufig eine Inscriptio tendinea, oder es umschließt

Dem Cremaster des Mannes entsprechende Fasern gehen beim Weibe aus dem Obliquus internus auf das runde Mutterband über.

Die als Linea Douglasii bezeichnete untere Grenze der aponeurotischen hinteren Lamelle der Rectus-Scheide ist sehr häufig undeutlich und löst sich in einzelne sehnige Züge auf.

M. transversus abdominis (Fig. 264). Liegt unter dem Obliq. internus, und ist von den beiden anderen breiten Bauchmuskeln durch den queren Verlauf seiner Fasern ausgezeichnet. Er bildet die abdominale Fortsetzung des oben (S. 357) beschriebenen M. transversus thoracis, von dem er nur durch Ursprungszacken des Diaphragma getrennt ist. Wie der M. transversus thoracis entspringt er von der Innenfläche der Knorpel von Rippen und zwar der 6 unteren, geht dann mit dem Ursprunge auf das tiefe Blatt der Fascia lumbodorsalis über und gewinnt dadurch Beziehungen zu den Querfortsätzen der Lendenwirbel.
Endlich setzt sich der Ursprung auf das Labium internum des Darmbeinkamms fort und endet am mittleren Drittel der Länge des Leistenbandes. Der Übergang des platten, an seinem Lendenteil breiten Muskelaumes in seine aponeurotische Endschicht erfolgt in einer lateraalwärts convexen Linie (Linea Spigeli).

Die Innenfläche des Transversus wird von der Fascia transversa bedeckt, welche vom Peritoneum überkleidet wird. Diese Fascie setzt sich unterhalb der Linea Douglassii nach abwärts, median bis zum Schambeln fort, und stellt hier mit dem Peritoneum den einzigen Bestandtheil der hinteren Wand der Scheide des M. rectus vor. Die gesamte Scheide des M. rectus abdominis zeigt also sehr verschiedene Befunde, je nachdem man sie oberhalb oder unterhalb der Douglass'schen Linie untersucht. Oberhalb dieser Linie (Fig. 265. A) findet sich in der vorderen Wand der Scheide 1) die Aponeurose des M. obliquus abdominis externus, 2) die vordere Lamelle der Aponeurose des M. obliquus abdominis internus; die hintere Wand der Scheide besitzt dagegen 1) die hintere Lamelle des M. obliquus abdominis internus und 2) den oberen Theil der Aponeurose des M. transversus abdominis und den oberen Theil des Bauches dieses Muskels. Unterhalb der Douglass'schen Linie (Fig. 265. B) treffen wir die vordere Wand 1) von der Aponeurose des M. obliquus abdominis externus, 2) der vorderen Lamelle des M. obliquus abdominis internus und 3) von unteren Abschnitten der Aponeurose des M. transversus abdominis dargestellt. Die Aponeurosen sind auf diesen Strecken innig mit einander verschmolzen und namentlich der untere Abschnitt der Aponeurose des M. transversus, der mit dem vorderen Blatte der Aponeurose des M. obliquus internus verschmilzt, wird nur durch ganz kurze Sehnenzüge vorgestellt, die unmittelbar in jene übergehen.

Die Linea alba besteht als die Vereinigung aller Aponeurosen ein derberes aus sich durchflechtenden Fasern gebildetes Gefüge. In ihr liegt der Nabel, an dieser Stelle ist sie regelmäßig etwas verbreitert. Auch oberhalb des Nabels ist sie ver-
breitet, indem sie nach unten zu sich verschmälert, aber im sagittalen Durchmesser zunimmt. Sie erfährt eine allgemeine Verbreiterung beim Weibe während der Schwangerschaft, wie in pathologischen Fällen, die mit einer Vergrößerung der Bauchhöhle verbunden sind.

b. Hintere Bauchmuskeln.

M. quadratus lumborum (Fig. 260). Ein vierseitiger platter Muskel, der den Raum zwischen der letzten Rippe und dem Darmbeinkamme zur Seite der Lendenwirbelsäule einnimmt, und hinten an das tiefe oder mittlere Blatt der Fascia lumbo-dorsalisgrenzt. Er zerfällt in zwei oft wenig gesonderte Theile, die als ursprünglich selbständige Muskeln zu betrachten sind. Ein Abschnitt entspringt von dem unteren Rande der letzten Rippe, und verläuft, durch Ursprungszacken von den Querfortsätzen der ersten vier Lendenwirbel verstärkt, abwärts zum Darmbeinkamme auch auf das Lig. ileo-lumbale sich erstreckend, wo er sich mit breiter Sehne einserit. Ein zweiter Abschnitt liegt der vorderen Fläche des vorigen innig an, und besteht ans Zügen, die von den Querfortsätzen des letzten und einiger höherer Lendenwirbel ausgehen und lateralwärts bogenförmig ausweichend zur letzten Rippe emporsteigen. Ein Theil dieser Bündel tritt medial zum Querfortsatz des ersten Lendenwirbels. Übrigens bestehen auch manche andere Anordnungen der Bündel.

Ursprung der lateralen Portion der Pars lumbalis des Zwereckstifts zu einem bogenförmigen Schenkelstreif verdichtet ist. Diese Fascie wird auch als tiefstes Blatt der Fascia lumbodorsalis bezeichnet, mit deren mittleren Blatte sie am Rande des Quadra-
tus lumborum zusammenhängt. (S. Fig. 215.)

Leistencanal.

§ 118.

Dieser stellt den beim Manne vom Samenstrang, beim Weibe vom Ligamentum uteri teres durchzogenen schrägen Canal dar, der zwischen dem inneren und äußeren Leistenringliegend, die von Muskeln und deren Aponeurosen gebildete Bauchwand durchsetzt. Die innere Mündung des Canals ist der innere Leisten-

Der am inneren Leistenringe beginnende Canal hat eine Länge von 3—5 cm, die sich aus dem Abstande des inneren vom äußeren Leistenringe ergibt. Der die Richtung des Canals bestimmende Boden wird durch das Leistenband gebildet, welches hier sowohl durch seinen Zusammenhang mit der Aponeurose des M. obli-

Durch den schrägen Verlauf des Leisteneanals durch die Bauchwand erscheinen in der letzteren zwei Stellen, an denen ihre Schichten Unterbrechungen besitzen. Diese entsprechen den beiden vorbeschriebenen Leistengruben, die wieder den beiden Leisten-
ringen correspondiren. Sie bilden somit Loc. minoris resistentiae und disponirem unter

Muskeln des caudalen Abschnittes der Wirbelsäule.

§ 119.

M. extensor coeeygis. Dieser Muskel ist als dünne Muskelschichte auf der hinteren Fläche der Caudalwirbel zu finden. Sie entspringt vom letzten Sacralwirbel, oder dem ersten Caudalwirbel, und setzt sich an einem der letzten Caudalwirbel an. Der Ursprung kann sogar weiter aufwärts gegen das Lig. tubero-sacrum ausgedehnt sein. Häufig wird der Muskel völlig vermißt.

Der Muskel ist das Rudiment eines bei geschwänzten Säugethieren ausgebildeten M. extensor s. levator caudae.

Der ventralen Rumpfmuskulatur ist zuzurechnen:

1) M. abductor coeeygis (M. coeeygeus). Entspringt mit sehnigen Zügen untermischt von der Spina ischiadica und verläuft unter fächerförmiger Ausbreitung zum Steißbein, an dessen Seitenrand er inserirt. Dabei ist er an das Ligamentum spinoso-sacrum angeschlossen. Häufig ist er so von Sehnenfasern durchsetzt, dass er wie ein Theil jenes Bandes erscheint, und nicht selten ist er in eine sehnige Masse verwandelt oder er fehlt.

Bei Säugethieren repräsentirt er einen Seitwärtsbeweger des Schwanzes.

Er ist homolog dem Depressor caudae der Säugethiere, fehlt übrigens den anthropoiden Affen gänzlich.
Dritter Abschnitt.

B. Muskeln der Gliedmaßen.

§ 120.

I. Muskeln der oberen Gliedmaßen.

a. Muskeln der Schulter.

Diese bedecken das Schultergelenk, über dem sie die Wölbung der Schultergegend bilden, und überlagern die Scapula derart, dass nur deren Spina mit dem Acromion von ihnen unbedeckt bleibt.

Auf die Schulter setzt sich von der Brust wie vom Rücken her die oberflächliche Fascie dieser Regionen fort, und bildet eine Schichte, welche nach unten in die zwischen den Enden der Bänche des M. pectoralis major und Latissimus dorsi gegen das Schultergelenk zu sich vertiefende Achselhöhle, Fossa axillaris, sich einzieht. Sie steht hier mit dem viele andere Theile (Gefäße, Lymphdrüsen, Nerven umhüllenden Bindegewebe in Zusammenhang. Zwischen den Endsehnen der genannten Muskeln sich ausspannende Faserzüge verstärken die Bindegewebschichte, und bilden, indem sie über jene Theile hinweglaufen, den Achselbogen (LÄNGER). Die engere Verbindung dieser Fascien-Schichte mit dem Integumente lässt dieses hier zwischen jene Muskeln eingezogen erscheinen und bedingt so die Vertiefung der Achselhöhle.
1. Oberflächliche Schichte.

M. deltoïdes. Deltaförmiger Schultermuskel. Entspringt kurzschmig am acromialen Dritttheil der Clavicula, vom Clavicularursprunge des Pectoralis major meist durch eine deutliche Lücke geschieden (S. 352 u. Fig. 258), geht dann mit seinem Ursprunge lateralwärts auf den Rand des Acromion über, von da auf den unteren Rand der Spina scapulae, unter allmäßlicher Entfaltung einer breiteren Ursprungsschne, welche besonders am hintersten Theile der Spina scapulae deutlich und zuweilen mit der Fascie des darunterliegenden M. infraspinatus verschmolzen ist. Häufig ist auch der acromiale Theil der Ursprungsschne anschm. Die aus der Ursprungsschne hervorgehenden Muskelbündel bilden einen das Schultergelenk bedeckenden Bauch, und treten convergirend in eine starke an der Innenfläche des Muskels sich entfaltende Endsehne über, die an der Tuberositas humeri inserirt. Ein Theil der oberflächlichen Muskelbündel senkt sich früher in die Tiefe zur Endsehne, indeb. benachbarte sich weiter herab erstrecken.

Der Muskel wird innervirt vom N. axillaris.

2. Tief Schichte.

Besteht aus Muskeln, welche nur vom Schulterblatte entspringen. Sie scheiden sich in solche, welche an der hinteren, und solche, die an der vorderen Fläche des Schulterblattes ihre Ursprünge haben.

a. Von der hinteren Fläche der Scapula entspringen:

M. supraspinatus (Fig. 266). Ein die Fossa supraspinata der Scapula bedeckender Muskel, der vom größeren Theil der genannten Grube, häufig auch von einer aponeurotischen hinteren Strecke seiner Fascie entspringt. Seine Bündel convergiren lateralwärts, und bilden einen unter dem Acromion hinwegziehenden Bauch, dessen Endsehne in die Kapsel des Schultergelenkes sich abziegt, um dann, darüber hinweg gelangend, an der obersten Facette des Tubeculum majus humeri sich zu inseriren.

Der Muskel unterstützt die Wirkung des Deltoïdes und spannt dabei die Kapsel. Eine an der Spina scapulae sich festhaftende Fascie gleichen Namens bedeckt ihn.

Innervation vom N. suprascapularis.

M. infraspinatus (Fig. 266). Entspringt aus der Fossa infraspinata, den lateralen Rand derselben sowie die hintere Fläche des unteren Winkels frei lassend. Er kann in drei Portionen geschieden werden. Die ausschüchste mittlere Portion nimmt den größten Theil der Untergrätengrube ein. Von der Basis scapulae an lateralwärts convergirend entwickelt sie an ihrer Oberfläche, meist jenseits der Mitte ihrer Länge eine Endsehne. An diese legt sich eine von der
unteren Fläche der Spina scapulae entspringende obere Portion des Muskels an und bedeckt sie von oben her. Eine von einem Theile des lateralen Randes der Scapula entspringende untere Portion legt sich von unten her über die Endsehne, die somit größtentheils von Muskelmassen bedeckt ist, die in sie übergehen. Die starke Endsehne gelangt, theilweise vom Acromion überragt, über die Kapsel des Schultergelenkes, mit der sie sich verbindet, zur mittleren Facette des Tuberculum majus humeri.

Der Muskel rollt den Arm auswärts, spannt dabei die Kapsel des Schultergelenkes. Die den Muskel bedeckende Fascie ist durch Befestigung an der Basis und Spina scapulae ziemlich straff gespannt und besitzt aponeurotische Einlagerungen. Selten findet sich zwischen der Endsehne des Muskels und der Gelenkkapsel in der Nähe der Scapula ein Schleimbeutel.

M. teres minor (Fig. 266). Entspringt der unteren Portion des Infraspinatus angeschlossen, vom lateralen Rande der Scapula bis zum Halse des Schulterblattes. Häufig ist der Ursprung auf ein den M. infraspinatus von ihm sonderndes Aponeurosenblatt übergetreten, zuweilen ist er mit der unteren Portion des Infraspinatus verschmolzen. Die nahezu parallel verlaufenden Bündel des Muskels ziehen lateral aufwärts, und treten theils in die Kapsel des Schultergelenkes, theils inseriren sie an der untersten (hinteren) Facette des Tuberculum majus humeri.

Unterstützt die Wirkung des Infraspinatus und spannt dabei die Gelenkkapsel.

Innervation vom N. axillaris.

M. teres major (Fig. 266). Der Ursprung des Muskels findet sich am unteren Winkel der hinteren Fläche der Scapula, schräg aufwärts gegen den lateralen Rand zu erstreckt. Von da aus tritt der von vorne nach hinten abgeplattete Bauch, anfänglich an den Unterrand des Teres minor angeschlossen, aber allmählich von ihm nach vorne zu divergirend in eine platte Endsehne über, die an der Spina tuberculi minoris inserirt. Die Endsehne verbindet sich mit ihrem unteren Rande mit jener des Latissimus dorsi, nachdem vorher ein Schleimbeutel beide Sehnen scheidet. Durch jene Verbindung erscheint der T. major als ein accessorischer Kopf des Latissimus dorsi, mit dem er die Wirkungtheilt.

Innervirt durch den N. subscapularis.
β. Von der vorderen Fläche der Scapula entspringt:

M. subscapularis (Fig. 267). Dieser kräftige Muskel nimmt die gleichnamige Grube ein, von der er bis auf je eine schmale, den unteren und den oberen medialen Winkel abgrenzende Strecke entspringt. Die Ursprungsfläche dehnt sich über die Hälfte der Breite der Scapula aus und endet gegen das Collum hin, oben vor der Incisura scapulae, unten an der Tuberositas infraglenoidalis. Indem mehrere an den sogenannten Costae scapulae befestigte Ursprungssehnen in den Muskel sich erstrecken, zwischen denen lateral convergirende Endsehnen im Muskelbauche entstehen, stellt der Subscapularis einen mehrfach gefiederten Muskel vor. Die gegen das Schultergelenk convergirende Muskelmasse tritt oben um die Wurzel des Coracoid-Fortsatzes, unten und seitlich springt sie bedeutend über den lateralen Rand der Scapula vor. Die starke Endsehne begibt sich über eine unter das Muskelende gerichtete Ausstülpung der Gelenkkapsel, inserirt sich theils in der Kapselwand, zum größeren Theile an dem Tuberculum minus humeri.

Der Muskel rollt den Arm einwärts.

Innervirt von den Nn. subscapulares.

b. Muskeln des Oberarms.

§ 121.

Die Muskulatur des Oberarms ist größtentheils für die Bewegung des Vorderarms im Ellbogengelenke bestimmt. Sie ist in zwei, den Humerus vorne und hinten umlagernde, aber ihn auch an beiden Seiten bedeckende Gruppen gesondert, welche man als vordere, oder Beugemuskeln, und als hintere, oder Streckmuskeln unterscheidet. Beide Gruppen werden an ihrem obersten Abschnitte von dem M. pectoralis major und M. deltoïdes bedeckt, von wo aus die oberflächliche Fascie der Gliedmaße sich über sie fortsetzt.
Diese bin und wieder durch ringförmig eingewebte Sehnenfasern verstärkte Fascie setzt sich an den aus der Muskulatur hervortretenden Epicondylen des Humerus fest, und verbindet sich mit einer über der Mitte der Länge des Humerus beginnenden, an den beiden seitlichen Kanten des Knochens befestigten Membran. Diese besteht vorzüglich aus schlanken Langfasern, beginnt schmal, verbreitert sich aber gegen den Epicondylus, vorwiegend an der medialen Seite entwickelt, und trennt die vordere Muskelgruppe von der hinteren (daher Membrana inter-muscularis), wobei sie auch zur Vergrößerung der Ursprungsf lächen einiger Muskeln dient.

1. Vordere Muskeln des Oberarms.

Die Muskeln dieser Gruppe werden sämtlich vom N. musculo-cutaneus versorgt.

M. biceps brachii (Fig. 268). Dieser Muskel setzt sich aus zwei Köpfen zusammen. Der lange Kopf entspringt mit einer langen, theilweise abgeplatteten Sehne von der Tuberositas supraglenoidalis scapulae. Die Sehne läuft innerhalb der Kapsel des Schultergelenkes über den Gelenkkopf des Humerus, und tritt von einer dünnhäutigen Fortsetzung der Kapsel, eine Scheide empfangend, in den Sulus intertubercularis, um am Ende desselben in einen Muskelbauch überzugehen. Der kurze Kopf nimmt vom Ende des Coracoödfortsatzes gleichfalls sehni seinen Ursprung, gemeinsam mit dem M. coracobrachialis, der mit jener Ursprungssche ne verbunden ist. In ziemlich gleicher Höhe mit dem langen Kopf entwickelt sich aus der Ursprungssche ne ein Muskelbauch, der mit dem des anderen Kopfes verschmelzend den gemeinsamen Bauch des Muskels bildet. Die im Inneren des gemeinsamen Bauches sich bildende Endsehne tritt über den unter dem Biceps gelagerten M. brachialis internus herab in die Ellbogenbeuge und inserirt sich etwas verbreitert an der Tuberositas radii. Vor der Einsenkung in die Tiefe zweigt sich vom Anfange der Sehne ein breites aponeurotisches Bündel (Lucertus fibrosus) ulnarwärts ab und verliert sich in der Fascie des Vorderarmes, die es verstärken hilft.
Der Bauch des Biceps setzt meist von dem unter ihm liegenden Muskel derart ab, dass zu beiden Seiten eine solche Längsfurche gebildet wird, *Soleus bicapitalis medialis* und *lateralis*. In der anschließenden medialen Furche verlaufen die Armgefäße.

Der Muskel beugt den Vorderarm, und hat durch den in die Faszie übergehenden Zipfel seiner Sehne den Angriffspunkt am gesamten Vorderarme. Als Nebenwirkung vermag er die Supination mit auszuführen. Auch kommt er durch seinen Ursprung an der Scapula bei dem Heben des Oberarmes unter Streckung des Vorderarmes in Betracht.

M. coracobrachialis (Fig. 268). Entspringt theils mit eigener kurzer Sehne, theils mit der Ursprungsschiena des kurzen Kopfes des Biceps verbunden vom Processus coracoides, bildet einen schlanken, dem Biceps medialis angelagerten Bauch, der sich am medialen Rande des Humerus, in der Mitte der Länge desselben inserirt. Zuweilen findet die Insertion an einem aus dem medialen Zwischenmuskelschlaufe aufwärts fortsetzenden Sehnenstreifen statt, der über die Insertion des M. latissimus dorsi und M. teres major hinwegläuft, und über derselben, unter dem Tuberculum minus befestigt ist.

Der Coracobrachialis wirkt, indem er die Hebemuskeln unterstützt. Er wird vom N. musculo-cutaneus schräg lateral und abwärts durchbohrt (daher N. perforans) und in zwei Portionen gesondert.

M. brachialis internus (Fig. 269). Der unter dem Biceps gelegene Muskel entspringt mit zwei die Insertion des Deltoides umfassenden Zacken vom Humerus, setzt seinen Ursprung auf die abwärts liegende Vorderfläche des Humerus bis zur Kapsel des Ellbogengelenkes fort, und erstreckt ihn oben auch
etwas auf die Membrana intermuscularis lateralis, unten auf die Membrana intermuscularis medialis in bedeutenderem Maße. Sein abwärts stärker werdender Bauch entwickelt eine ihn oberflächlich umfassende Endsehne, welche an die Tuberositas ulnae inserirt. Die untersten, tiefsten Bündel des Muskels treten zuweilen an die Gelenkkapsel, welche dem Muskel eng verbunden ist.

2. Hintere Muskeln des Oberarmes.

Die allen drei Köpfen gemeinsame Endsehne befestigt sich am Olecranon. Am lateralen Rande setzt sich die Endsehne in eine aponeurotische Faszie fort, welche am Vorderarm in dessen Fascie übergeht, und den Ancon. quartus bedeckt, an dessen medialen Rande sie an die Ulna befestigt ist. Die Lagerung der Muskeln am Oberarme läßt medial eine dem Sulcus bicapitalis medialis entsprechende Lücke übrig, in welcher Blutgefäß- und Nervenstämme verlaufen (s. Fig. 271). Distal verläuft diese Stelle nach der Ellbogenbeuge aus. Dadurch werden die Bungembrusten medial vollständiger als lateral von den Streckmuskeln geschieden.

Mit dem Extensor triceps steht noch ein Muskel in morphologischem wie physiologischem Zusammenhange, der bereits am Vorderarme liegt. Es ist der Anconaeus quartus (A. parvus) (Fig. 270). Er entspringt von der hinteren Seite des Epicondylus lateralis humeri mit einer kurzen, sich theilweise auf die Oberfläche des Muskels erstreckenden Sehne und tritt fächerförmig sich ausbreitend, zur lateralen Fläche des oberen Endes der Ulna. Die unteren Bündel des Muskels sind schräg abwärts gerichtet, die oberen verlaufen quer zum Olecranon, und schließen sich nicht selten unmittelbar an die untersten queren Bündel des Anconaeus internus an.

c. Muskeln des Vorderarmes.

§ 122.

Die dem Vorderarme angehörigen Muskeln sind nur zum geringsten Theile zur Bewegung der Vorderarmknochen, zum größeren zur Bewegung der Hand und ihrer Finger bestimmt. Sie nehmen demnach einen vorwiegend longitudinalen Verlauf. Da ihre Bäuche größentheils am proximalen Abschnitte liegen, sogar noch am Humerus entspringen, indem die langen Sehnen gegen den distalen Abschnitt des Vorderarmes sich entwickeln, gewinnt der Vorderarm eine etwa kegelförmig zu bezeichnende Gestalt.

Außer den Ursprüngen, welche noch am Humerus liegen, finden sich noch solche an den Vorderarmknochen. Diese verhalten sich aber sehr ungleichartig, indem sie fast alle an der Ulna verlegt sind und der Radius sich nur mit untergeordneten Portionen daran betheiligt. Dieses leitet sich von der Rotation des Radius ab, der durch diese Bewegung für Muskelursprünge ungünstige Verhältnisse bieten würde.

Die Fascie setzt sich vom Oberarm her, vorne über die Ellbogenbene hinweg, hinten am Olecranon befestigt, auf den Vorderarm fort, und heißt sich, durch sehnsige Einlagerungen verstärkt, vom Olecranon aus abwärts an die hintere Kante der Ulna. Von den beiden Epicondylen aus erstrecken sich gleichfalls sehnsige Verstärkungen in die Fascie des Vorderarmes. Bedeutende Verstärkungen von sehnsig verlaufenden oder queren Sehnenfasern empfängt die Fascie in der Nähe des Handgelenkes. An der vorderen Fläche setzt sie sich zur Hand fort, an der hinteren, dorsalen dagegen heift sie sich, ebenso wie zu beiden Seiten, durch die erwähnten transversalen Sehnenfasern verstärkt, an Versprünge des distalen Endes der Vorderarmknochen, und bildet dadurch für die zwischen jenen Versprünge verlaufenden Sehnen der dem Rücken des Vorderarmes zugeheilten Muskeln bestimmte, den Sehnenverlauf und ihre Action siehernde Bahnen.

An den in der Nähe des Ellbogengelenkes befindlichen Vorsprüngen der Knochen finden sich subcutane Schleimbeutel. Sel tener an den Epicondylen des Humerus, dagegen fast regelmäßig am Olecranon kommt ein solcher vor (Bursa olecrani), meist von einer derben Lamelle der Fascie umgeben.

1. Muskeln der Beugefläche des Vorderarmes.

Sie sind in zwei übereinander liegenden Abtheilungen angeordnet, die durch den Verlauf von Nerven und Blutgefäßenstämmen von einander getrennt sind. Sie bestehen theils aus Bengern der Hand, theils aus Bengern der Finger, theils aus Muskeln, welche den Radius und damit die an ihm befestigte Hand vorwärts drehend, die Pronation vollziehen. Ihre Nerven erhalten sie theils vom N. medianus, theils vom N. ulnaris.

Erste Gruppe.

Die Muskeln dieser Gruppe entspringen von einer gemeinsamen Masse am Epicondylus medialis humeri, theils direct, theils von Sehnenblättern, die, am Epicondylus befestigt, in die-Muskelmasse eindringen oder als Verstärkungen der Fasie oberflächlich vom Epicondylus aus auf sie treten. Diese Muskelnmasse sondert sich distal in ihre einzelnen Bäuche, welche in zwei übereinander liegende Schichten angeordnet sind.

Oberflächliche Schichte.

M. pronator teres (Fig. 272). Am meisten medialwärts gelagert verläuft der erst mit seiner distalen Hälfte frei werdende Muskel schrag über den Vorderarm zum Radius. Er begrenzt mit seinem oberen Rande die Ellbogenbeuge. Die oberflächlich hervortretende Endsehne inserirt an einer in der Mitte des Außenrandes des Radius gelegenen Rauhigkeit.

Dreht den Radius, und pronirt damit die Hand. Da er bei aufwärts gewendeter Hand der Vorderfläche des Radius frei auflagert, löst er sich bei der Pronation von dieser Stelle: wickelt sich ab. — Nebenwirkung: Beugung.

Innervation von N. medianus.

Eine Ausdehnung des Ursprungs des Muskels aufwärts am Oberarme erstreckt sich beim Bestehen eines Processus supracondyloides humeri (S. 236 Anm.) auf diesen Fortsatz.

M. flexor carpi radialis (Radialis internus) (Fig. 272). Am Ursprunge mit dem Pronator teres wie mit dem folgenden Muskel verbunden, tritt der schlank Muskelbanch vom Pronator divergirend gegen die Radialseite zu. Die Endsehne kommt schon weit oben am Banne oberflächlich zum Vorschein und tritt an der Basis des Daumenballens in einen theilweise von einer Rinne des Trapezium und vom Scaphoides begrenzten, von dem Durchlasse der Sehnen der langen Fingerbender abgeschlossenen Canal, um an der Volarfläche der Basis des Metacarpale II zu inseriren.
Auf dem Wege durch die Hohlhand treten Verbindungen der Endsehne mit der radialen Wandfläche des von ihr durchsetzten Canales ein. Eine Schnecke umgibt die Endstrecke der Sehne und ist an der oberen Fläche des Canals befestigt.

Beugt die Hand nach der Radialseite.

Innervirt vom N. medianus.

M. palmaris longus (Fig. 272). Löst sich meist mit einem schlanken, spindelförmigen Bauche aus der gemeinsamen Muskelsmasse ab und geht in eine schmale, abgeplattete Sehne über, welche zum Handgelenke verläuft. Sie nimmt daher eine oberflächlichere Lage ein als jene des Flexor carpi radialis, mit dem sie parallel angeordnet ist. Am Handgelenke verbreitert sich die Endsehne und geht zur größten Theile in die Palmar-Aponeurose der Hand, zum geringeren in die Ursprungssehne der Muskeln des Daumenballens über.

Er ist ein Beuger der Hand.

Innervirt vom N. medianus.

M. flexor carpi ulnaris (Ulnaris internus) (Fig. 272). Nimmt den ganzen ulnaren Seitenrand der Volarfläche ein. Entspringt oben theils vom Epicondylius medialis, theils von der Ulna, und geht mit seinem Ursprunge auf eine an der hinteren Kante der Ulna befestigte Aponeurose über, die den Muskel anch oberflächlich theilweise bedeckt. Der platte Muskelbauch tritt bis zum Handgelenke herab, nachdem schon an der oberen Hälfte die Endsehne an ihm zum Vorschein kam. Insertion am Os pisiforme, von wo durch das Lig. piso-metacarpeum und
Muskeln der Gliedmaßen.

383

piso-hamatum der Angriffspunct an Carpus und Mittelhand verlegt wird. Das Piso-forme spielt damit die Rolle eines Sesambeines.

Der Muskel beugt die Hand nach der Ulnarseite.

Die Innervation besorgt der N. ulnaris,

Die Schichte.

Die vier Schenben des oberflächlichen Fingerbenders treten, von ihren Scheiden umhüllt, unter dem Ligamentum carpi transversum in die Hohlhand und verlaufen dort unter der Palmar-Aponeurose zu den Fingern (Fig. 278). Jede Schene des oberflächlichen Beugers tritt mit einer Schene des tiefen Fingerbegers in einen an der Volarfläche der Finger
Dritter Abschnitt.

befindlichen Canal (s. unten bei der Musculatur der Hand). Auf dem Verlaufe
an der Grundphalange spaltet sich jede Sehne der oberflächlichen Beuger in zwei
breite, plate Sehenkel (Fig. 273 A), die aneinander weichend eine schlitz-
förmige Öffnung begrenzen, durch welche die Sehne des tiefen Beugers hindurch-
tritt. Die beiden Senkel der Sublimis-Sehne convergiren wieder, nachdem sie
die Profundus-Sehne umfaßten, und treten unterhalb der letzteren gegen das
Ende der Grundphalange wieder gegen einander, um einen Theil ihrer Fasern
auszutauchen (Chiasma tendinum) (Fig. 273 B) und schließlich an der Volar-
fläche der Basis der Mittelphalange zu inseriren.

Der Flexor sublimis tritt am distalen Theile des Vorderarms durch die Divergenz des
Palmaris longus und des Flexor carpi ulnaris in oberflächlicher Lagerung (Fig. 272). Die
Portionen beider Lagen des Muskels tauschen zuweilen Muskelnándel aus.

Vom Boden des Canals, in weshem die Sehnen an der Volarfläche der Phalangen
gleiten, erstrecken sich lockere, binedgeweibige Züge zu den Seen. So ist jede
Sublimis-Sehne schon am Ende der Grundphalange in Verbindung mit dem Canal. Längere
Sehnenfähden treten meist schon vor jener Stelle an die Sublimis-Sehne, und gelangen,
am regelmäßigen von dem Sehnen-Chiasma aus an die von da an oberflächlich liegende
Profundus-Sehne. Es sind die Vincula oder Retinacula tendinum, deren Bedeutung
wohl nur darin liegen dürfte, dass auf ihrer Bahn Blutgefäße zu den Beugesehnen ge-
langen.

Das Verhalten der Endsehne hat dem Muskel den Namen des Flexor perforatus
verschafft.

Die Wirkung des Muskels ist die eines Fingerbeugers mit dem Ungriffspanete an
, der Mittelphalange.

Innervirt wird der Muskel durch den N. medianus.

Zweite Gruppe.

Diese repräsentirt eine tiefste Schichte der Muskulatur der Volarfläche des
Vorderarmes. Die Ursprünge der Muskeln dieser Schichte sind von jenen der
beiden oberen Schichten fast vollständig gesondert. Nerven- und Blutgefäß-
stämme ziehen zwischen beiden Gruppen hindurch.

M. flexor digitorum profundus (Perforans) (Fig. 274). Ein breit
auf der Ulna und dem Zwischenknochenbaude zur Hand herabziehender Muskel.
Entspringt im Anschlusse an den oberen Theil des Flexor carpi ulnaris von der
Ulna, und empfängt auch Ursprünge von der ihn ulnarwärts deckenden aponeu-
rotischen Fascie des Vorderarmes. Auf der Vorderfläche der Ulna geht der Ur-
sprung bis ans distale Drittel der Länge herab, und greift auch auf die Membrana
interossea über, nach abwärts bis gegen den Radius.

Die gemeinsame Muskelsmasse sondert sich in vier neben einander liegende
Portionen, auf deren Oberfläche ebensoviele Sehnen hervorgehen, die unter denen
des oberflächlichen Beugers zur Hohlhand gelangen. Anfänglich auch an den
Fingern unter den Sublimis-Sehnen gelegen, durchbohren sie dieselben (s. oben)
und inseriren sich an der Basis der Endphalange.

Von den vier Portionen des Muskels ist die für den Zeigefinger bestimmte die
selbständigste. Ihren Ursprung trennt die Insertion des Brachialis internus vom übrigen
Muskeln der Gliedmaßen.

Bei den Prosimiern ist die Endsehne des Flexor dig. profundus einheitlich und spaltet sich erst in der Hand in die einzelnen Sehnen für die Finger, wie hier auch eine Schne mit der des Flexor pollicis longus sich verbindet. Die niedersten Affen zeigen die Endschnellen des Flexor dig. profundus gleichfalls noch gemeinsam, erst bei den Anthropoiden tritt eine Sonderung der Schnellen und damit der Beginn einer Auflösung des Muskelbauches auf. Damit steigert sich die Selbständigkeit des Gebrauches der einzelnen Finger.

M. flexor pollicis longus (Fig. 274). Liegt der Vorderfläche des Radius auf, von dem er entspringt. Er bleibt daher bei der Rotation des Radius in denselben Lagebeziehungen. Der Ursprung beginnt oben nicht weit unterhalb der Tuberositas radii, erstreckt sich verbreitet und dann sich wieder verschmälernd bis gegen das Ende herab, und greift auch auf die Membrana interossea über. Die weit oben entstehende Schne läßt den Muskel halbgefiedert erscheinen. Sie verläuft mit den Schnellen der Fingerbenger in die Hohlhand, legt sich da zwischen den kurzen Daumenbenger und den Adductor, und tritt an der Volarfläche der Grundphalange des Daumens, unter sehnigen Querbrücken, ähnlich wie die Bengesehne der Finger, zur Basis der Endphalange.

Nicht selten empfängt der Muskel ein Bündel vom Flexor dig. sublimis. Er beugt den Daumen mit der Wirkung auf die Endphalange.

Innervirt vom N. medianus.

Der Flexor pollicis longus ist bei den Prosimiern ein anschneller Muskel, welcher seine Endschnelle mit der des Flexor digit. profundus verbunden zeigt und somit eine

Gegenbaur, Anatomie.

Dreht den Radius in die Pronation und wickelt sich dabei von der Ulna ab. Innervation vom N. medianus.

Diese Muskeln bilden eine theils über und an dem lateralen Epicondylus (Epicondylus extensorius), theils tiefer am Vorderarme entspringende Masse, welche mit ihren Bäuchen den Radius lateral und nach hinten zu bedeckt. Die schlanken Endsehnen verlaufen größentheils über das Ende des Vorderarmes rückens zur Hand. In diesem Verlaufe wird den Sehnen durch die als Ligamentum carpi dorsale bezeichnete Verstärkung der Fasie des Vorderarmes eine bestimmte Lage und Richtung angewiesen, indem jenes Band an Vorsprüngen des Radius und der Ulna befestigt, sechs Fächer formirt (Fig. 279), welche den Sehnen zum Durchlaufe dienen. Sämtliche Muskeln versorgt der N. radialis.
In der Anordnung der Muskeln besteht eine oberflächliche und eine tiefe Schicht. Die erstere läßt eine Gruppe von Muskeln unterscheiden, welche am Oberarme entspringen und ihren Verlauf längs des Radius nehmen. Sie bilden oben einen die Ellbogenbeuge lateral begrenzenden Muskelbauch.

Oberflächliche Schichte.

Radiale Gruppe.

M. brachio-radialis (Supinator longus) (Fig. 275). Entspringt von der lateralen Kante des Humerus, mit einem langen, platten Bauch, der dem M. brachialis internus angelagert am radialen Rande des Vorderarmes, über den Bauch des folgenden Muskels sich herab erstreckt. An der unteren Hälfte der Länge des Radius kommt seine sich verschmälernde Endsehne näher an den Radius, an dem sie sich oberhalb des Processus styloides inseriert.

Der Muskel begrenzt mit seinem Bauche die Ellbogenbeuge an ihrem radialen Rande und kreuzt dann das Ende des Pronator teres.

M. extensor carpi radialis longus (Radialis externus longus) (Fig. 275). Entspringt im Anschlusses an den Ursprung des Brachio-radialis von der lateralen Kante des Humerus bis zum lateralen-Epicondylus herab. Bildet einen etwas abgeplatteten Bauch, der noch an der proximalen Hälfte des Vorderarmes eine lange Endsehne oberflächlich hervorgehen läßt. Diese tritt am Radius herabverlaufend, gemeinsam mit der Sehne des folgenden Muskels durch das zweite Fach des Ligamentum carpi dorsale zum Handrücken, und inseriert an der Dorsalfläche der Basis des Metacarpale II.

Die Wirkung des Muskels äußert sich in Streckung und Dorsalflexion der Hand nach der Radialseite.

M. extensor carpi radialis brevis (Radialis externus brevis). Vom lateralen Epicondylus, theilweise noch vom Lig. annulare radii und einem ihn vom folgenden Muskel scheidenden und sich an der Innenfläche des Banches herabstreckenden Sehnblatte entspringend, wird der Bauch zum Theil vom vorhergehenden bedeckt. Er entwickelt seine Endsehne mehr distal als der Extensor longus und läßt sie neben derselben am Radius herabverlaufen und mit ihr durch dasselbe Fach des Lig. carpi dorsale zum Handrücken gelangen. Insertion an der Basis des Metacarpale III.

Ulnare Gruppe.

Schließt sich zwar am Ursprunge an die radiale Gruppe unmittelbar an, wird aber im weiteren Verlaufe schärfer von ihr getrennt, indem zwischen beiden Muskelbäuche aus der tiefen Schicht zu oberflächlicherem Verlaufe emportreten.

M. extensor digitorum communis (Fig. 275). Entspringt, radial mit dem M. extensor c. radialis brevis verbunden, vom Epicondylus lateralis sowie einem dort befestigten, auf dem Muskelbauche sich herabstreckenden aponeurotischen Theile der Vorderarmfascie, sondert sich an der proximalen Hälfte des Vorderarmes in drei parallele Portionen, von denen die beiden ersten je eine, die letzte dagegen zwei Schen hervorheben lassen. Diese treten durch das vierte Fach des Ligamentum carpi dorsale zum Handrücken. Hier divergieren sie und verlaufen verbreitert zum 2.—5. Finger, wo sie eine breite, den Rücken der Finger deckende Schenhnah, die *Dorsalaponeurose* der Finger, bilden helfen (s. über diese Membran bei der Hand).

Durch die Befestigung der Dorsalaponeurose der Finger an der Basis der Mittelwange der Endphalanx der Angriffspunkt auf diese Theile verlegt.

M. extensor digiti quinti proprius (Fig. 275). Der schlanke, spindelförmige Bauch
dieses Muskels ist der Ulnarseite des vorgenannten enge angeschlossen, indem sich ein beiden Ursprünge lieferndes Sehnenblatt zwischen sie herabstreicht. Die an der distalen Hälfte des Vorderarmes zum Vorschein kommende Endsehne verläuft selbständig herab, tritt durch das fünfte, vom Lig. carpi dorsale überbrückte Fach und nimmt in diesem einen ulnaren Verlauf zum Handrücken. Sie geht in die Dorsalaponeurose des fünften Fingers ein.

Wirkung und Innervation wie beim vorhergehenden Muskel.

M. extensor carpi ulnaris (Ulnaris externus) (Fig. 275). Dieser der Dorsalseite der Ulna entlang verlaufende Muskel entspringt von einer mit dem Extensor dig. communis gemeinsamen Ursprungsshne. Diese erstreckt sich so- wohl oberflächlich, besonders weit aber in der Tiefe über den Muskel herab. Der obere Theil des Muskels grenzt an den Anconaeus quartus. Die der Ulna folgende Endsehne tritt durch das sechste Fach des Ligamentum carpi dorsale am Capitulum ulnae vorüber zum Handrücken, und inserirt am Ulnarrande der Basis des Metacarpale V.

Wirkung: Streckung und Dorsalflexion der Hand nach der Ulnarseite. Mit dem M. flexor carpi ulnaris ulnare Abduction der Hand.

Tiefe Schicht.

M. supinat or (Supinator brevis) (Figg. 274. 276). Dieser platte, den oberen Theil des Radius umfassende Muskel entspringt theils vom oberen Ab- schnitte der lateralen Kante der Ulna, neben der Insertion des Anconaeus quartus, theils vom Lig. annulare radii. Die Fasern des Muskels divergiren, indem die oberen schräg, die unteren steiler abwärts gerichtet sind. Die Insertion findet am Radius, mit den tiefer liegenden Theilen an der Außenseite des oberen Endes, mit der oberflächlichen Partie mehr nach vorne zu bis zu einer unterhalb der Tuberositas radii beginnenden, gegen die Insertion des Pronator teres herabziehenden Leiste statt.

Wirkung: dreht den Radius in die Supination.

M. abductor pollicis longus (Fig. 276). Schließt mit seinem Ursprung an den Ulnarursprung des Supinator an, setzt sich aber von da aus auf die Membrana interossea und, dem unteren Rande des Supinator folgend, auf den Radius fort. Der frei werdende schlanke Bauch läuft schräg über den Radius nach außen, wobei er sich über die Endsehnen der Extensores carpi radiales hinweg
begiebt. Die an der Innenseite des Muskelbauches schon weiter oben hervortretende Endsehne verläuft über der Insertion des Brachio-radialis durch das erste Fach des Lig. c. dorsale und inserirt an der Basis des Metacarpale I. Die Endsehne ist sehr häufig gespalten und ein Zipfel derselben setzt sich in den Ursprung des Abduktor pollicis brevis fort.

Häufig geht der Ursprung des Muskels noch auf einen an den Radius befestigten und die Sehnen der Extensores carpi radiales überbrückenden Sehnenstreif über.

Abducirnt den Daumen.

M. extensor pollicis brevis (Fig. 276). Wird am Ursprunge vom Vorhergehenden bedeckt, an den er enge sich anschließt. Er geht theils direct von der Ulna, theils von einem an dieser befestigten Sehnenblatte hervor, zieht dann noch Ursprüng von der Membrana interossea schräg bis zum Radius herüber und verläuft mit seinem Bauche über den Radius, immer dem Abductor pollicis longus angeschlossen, wie dieser die Sehnen der Extensores carpi radiales schräg kreuzend und durchs erste Fach des Lig. carp. dorsale zur Hand gelangend. Dort tritt die Endsehne der Rückenfläche des Mittelhandknochens des Daumens entlang zur Basis der Grundphalange des letzteren, wo sie ganz oder theilweise inserirt, oder sie geht mit der Endsehne des langen Daumenstreckers eine Dorsalaponeurose bildend, zur Endphalange.

Die schräg über den Radius hinwegtretenden Bäuche des Abductor poll. longus und Extensor poll. brev. sind auf dieser Strecke während der Wirkung leicht zu beobachten.

Streckt den Daumen.

M. extensor pollicis longus (Fig. 276). An den Vorhergehenden angeschlossen, und ihn theilweise deckend, gewinnt der Muskel theils von der Ulna, theils vom Zwischenknochenbande Ursprünge, die wieder einen schlanken Bauch zusammensetzen. Mit seinem frei gewordenen Abschnitte liegt er dem Radius an, und läßt seine Endsehne am radialen Rande des ihn sonst bedeckenden Extensor digitor. comm. (aus der oberflächlichen
Schicht) zum Vorschein kommen. Durch das dritte Fach des Lig. carpi dors. schlägt die Endsehne eine schrägl zur Radialseite der Hand verlaufende Richtung ein und kreuzt dabei die Sehnen der Extensores carpi radiales. Sie tritt zum Mittelhandknochen des Daumens, geht an der Grundphalange desselben durch Verbindung mit der Sehne des kurzen Streckers die Bildung einer Dorsalaponeurose ein und befestigt sich an der Basis der Endphalange.

Bei gestrecktem und abduziertem Daumen ist die über die Handwurzel verlaufende Strecke der Endsehne durch das Integument hindurch leicht wahrnehmbar.

M. extensor indicis proprius (Fig. 276). Von allen Muskeln der zweiten Schicht am weitesten distal gelegen, entspringt er von der Ulna, mit einigen Fasern auch noch vom Zwischenknochenbande, sendet seinen dünnen Bauch unter den Sehnen des gemeinsamen Fingerstreckers durch das vierte Fach des Lig. carpi dorsale und läßt die während des Durchtrittes frei werdende Endsehne jene aus dem Extensor dig. com. für den Zeigefinger begleiten. Am Rücken des Zeigefingers endet die Sehne in der Dorsalaponeurose.

Von diesem Gesichtspunkte sind auch die Fälle zu beurtheilen, in welchen beim Menschen Abweichungen der Endsehnen bestehen. Das gilt auch für die Abweichung des Extensor indicis zum Daumen, wozu noch ein besonderer Ext. pollicis et indicis hervorgeht, wie er bei Nagern vorkommt.

Die sechs unterhalb des Lig. carpi dorsale liegenden, zum Durchlaufe der Strecksehnen dienenden Fächer sind von der Radialseite gezählt, folgende: 1) für Abdiiict. pollicis longus und Extensor pollicis brevis, 2) Extensor carpi radialis longus et brevis. 3) Ext. pollicis longus. 4) Ext. dig. communis und Ext. indicis proprius. 5) Ext. dig. V propr. und 6) Ext. carpi ulnaris.
Bei dem Verlaufe durch diese Fächer sind die Sehnenscheiden am vollständigsten entfaltet. Die für Ext. carpi rad. longus et brevis erstrecken sich nur wenig über das Ligament hervor. Weiter reichen die Zipfel der Scheiden des vierten Faches und des dritten. Diese communicirt zuweilen mit jener des zweiten Faches. Am weitesten, zuweilen bis zum Capitulum metacarpi, erstreckt sich die Scheide des Ext. dig. v. propr. Kleine Ausstülpungen der Sehnenscheiden drängen sich nicht selten zwischen den Faserzügen des Lig. e. dors. hervor. Größere derartige Ausstülpungen bilden die sogenannten Ganglien (Über die Sehnenscheiden s. M. Schülter, l. c.).

\[\begin{array}{ccc}
\text{Extension} & \text{Adduction} & \text{Abduction} \\
\text{Radialis ext.} & \text{Ulnaris ext.} & \text{Radialis int.} \\
\text{long. et brev.} & \text{Ulnaris int.} & \\
\end{array}\]

d. Muskeln der Hand.

§ 123.

Der schon durch die vom Vorderarme her zur Hand gelangenden Muskeln bedeutende Grad von Beweglichkeit dieses Endabschnittes der Obergliedmaße wird durch eine der Hand selbst angehörige, reiche Muskulatur noch erhöht. Diese dient vorwiegend zur Bewegung der einzelnen Finger, und findet ihre Anordnung an der Volarfläche, welche der Beugefläche des Vorderarmes entspricht. Die an den beiden Rändern gelegenen, also auf einer Seite freien, und damit selbständiger agirenden Finger besitzen als die beweglichsten die bedeutendste Muskulatur. Diese bildet zu beiden Seiten der Mittelhand einen polsterförmigen Vorsprung, welcher als Daumen-Ballen (Thenar) und Kleinfinger-Ballen (Hypothenar) unterschieden wird. Die dazwischen liegende Fläche gestaltet sich dadurch zu einer Vertiefung (Hohlhand), nachdem die schon am Skelet sich darstellende Hohlfläche durch Muskeln und Sehnen ausgefüllt ist. Die Faszie des Vorderarmes setzt sich auf die Hand fort. An der Volarfläche ist sie als eine lockere Schichte über die beiden Ballen ausgebreitet und geht von da sowohl in die Tiefe der Hohlhand als in den Raum zwischen beiden Ballen einnehmendes, gegen die Finger zu verbreiteretes Sehnenblatt über: die Palmar-Aponeurose (Fig. 272), in welche die Endsehne des Palmaris longus ausstrahlt. An den 4 Fingern geht diese Aponeurose in den die Beugesehnen an die Volarfläche der
Phalangen festhaltenden Bandapparat über, die *Ligg. vaginalia*. Mit dem Integumente ist die Aponeurosis palmaris durch straffes, kurzfasermes Gewebe in Zusammenhang, welches das subcutane Gewebe durchsetzt.

Die *Aponeurosis palmaris* zeigt außer den radiär verlaufenden Längsfasern noch eine quere Faserlage, die am Anfange mit den Faserzügen des *Ligamentum carpi transversum* in Verbindung steht, und erst am Ende der Aponeurose, wo sich dieselbe in vier Zipfel spaltet, oberflächlich hervortritt. Das ganze Sehnenblatt deckt die unter ihm zu den Fingern verlaufenden Beugesehnen, sowie die zu jenen sich vertheilenden Nerven und Blutgefäße.

Das *Ligamentum carpi transversum* ist eine aus dem tiefen Blatte der Vorderarmfaszie unterhalb der oberflächlichsten Muskelschichte zur Hand fortgesetzte sehnmige Verstärkung, die beiderseits an die volaren Vorsprünge des Carpus befestigt ist. Sie bildet eine derbe Faserlage, welche die vom Carpus gebildete Rinne vorau zu einem Canale abschließt, in welchem die Beugesehnen der Finger verlaufen.

Am Handrücken geht die Fascie des Vorderarmes nach der Bildung des Lig. carpi dorsale (S. 386) in ein oberflächliches, mehr oder minder mit den Strecksehnen zusammennahängendes Blatt über, und ein tieferes, welches Interstitia interossea überbrückend, mit den Dorsalflächen der Metacarpalia verbunden ist. —

Die Muskeln der Hand sondern sich in jene der Ballen und jene der Hohlhand, und dazu kommt noch ein oberflächlicher Muskel, der als *Hautmuskel* eine exceptionelle Stellung einnimmt. Dies ist der:

M. palmaris brevis. Liegt unmittelbar unter der Fettschichte des Kleinfingerballens. Entspringt von dem Ulnarrande der Palmar-Aponeurose mit mehreren quer nach unten verlaufenden parallelen Bündeln, welche am Ulnarrande des Kleinfingerballens an die Haut sich befestigen (s. Fig. 272). Zuweilen ist der Muskel durch zwischenlagerndes Fett in mehrere Portionen getrennt oder er besitzt auch schräge Bündel.

Er wölbt durch Einziehen der Haut den Kleinfingerballen. Bei energischem Beugen der Finger wird die Wirkung des Muskels leicht sichtbar, indem die Insertionsstelle sich durch eine Grübchen-Reihe am Integumente kundgibt.

a. Muskeln des Daumenballens.

M. abductor pollicis brevis (Fig. 278). Entspringt vom Lig. carpi transversum und vom Kammbeinvorsprung, und bildet einen oberflächlich ge-
legenen lateral ziehenden Bauch, der mit einer kurzen Endschne zum Seitenrande der Basis der Grundphalange des Daumens tritt.

Abducirt den Daumen.
Innervirt vom N. medianus.

M. flexor pollicis brevis (Fig. 278). Liegt dem Abductor brevis gegen die Hohlhand hin an, und wird in der Regel durch einen vom Lig. carpi transversum entspringenden Muskelbauch vorgestellt, der am radialen Sesambeine der Articulatio metacarpo-phalangea des Daumens inserirt. Ein zweiter, diesem Muskel zugetheilter anschmaler Bauch, der aus der Tiefe der Hohlhand entspringt und am lateralen Sesambein inserirt, gehört nicht dem Flexor brevis, sondern dem Adductor an. Da gegen findet sich nicht selten neben jenem noch ein dünnes, in der Tiefe entspringendes Bündel, welches einen tiefen Bauch des Flexor brevis vorstellt und entweder mit dem oberflächlichen oder Hauptbauch des Flexor brevis verschmilzt oder sich in zwei Schenkel spaltet, deren einer, wie vorhin angegeben, während der andere mit dem Adductor inserirt.

M. opponens pollicis (Fig. 280). Wird vom Abductor brevis, teilweise auch vom Flexor pollicis brevis bedeckt. Entspringt vom Lig. carpi transversum sowie vom Os trapezium, und verläuft mit schräg nach außen gerichteten Fasern zum Metacarpale des Daumens, wo er sich längs des ganzen seitlichen Randes inseriert.

Bewegt den Daumen gegen die Hohlhand, und bringt ihn in Gegenstellung zu den übrigen Fingern.

Inner. vom N. medianus.

M. adductor pollicis. Liegt zum großen Theile in der Hohlhand, wo er in der ganzen Länge der Volarfläche des Metacarpale III sowie vom Lig. carpi volare profundum entspringt. Seine Fasern convergiren nach der Radialseite zu, und treten mit einer im Innern des Muskels sich bildenden Endschne an das innere Sesambein der Articulatio metacarpo-phalangea, teilweise auch an die Innenseite der Basis des Grundphalange des Daumens.

Am Muskcl sind in der Regel zwei Portionen unterscheidbar: Ein Caput obliquum, welches vom Ligam. carpi profundum entspringt und ein Caput transversum, welches die metacarpale Ursprungsportion umfaßt. Das Caput obliquum wird häufig als tiefer Kopf des Flexor brevis betrachtet. Das Volum wie die Verschmelzung oder die Sonderung der beiden Portionen bietet verschiedene Stufen dar.

Der Ursprung erstreckt sich nicht selten weiter: auf das Os capitatum, auf die Basis des zweiten oder aufs Köpfchen des zweiten oder des vierten Metacarpale.

Zieht den Daumen an.

Innerw. vom N. ulnaris.

M. abductor digiti quinti (Fig. 279). Nimmt den Ulnarrand des Kleinfingerballens ein. Entspringt vom Pisiforme, teilweise auch von der Endschne des Flexor carpi ulnaris und verläuft zur Ulnarfläche der Basis der Grundphalange des fünften Fingers, wo er sich inserirt.

Abducirt den fünften Finger.

Innerw. vom N. ulnaris.

M. flexor brevis digiti quinti (Fig. 279). Liegt weiter gegen die Hohlhand zu. Entspringt theils vom Lig. carpi transversum, theils vom Hamulus des Hakenbeines und verläuft mit dem Abductor convergirend zur Basis der Grundphalange des Kleinfingers, wo er sich ulnarwärts an der Volarfläche inserirt.

Am Ursprunge ist er vom Abd. dig. V durch einen breiten Schlitz getrennt, durch welchen der R. prof. n. ulnaris hindurchtritt. Auf seinem Verlaufe ist er häufig enge
mit dem Opponens desselben Fingers verbunden, stellt mit ihm einen einzigen
Muskel dar.
Beugt den Kleinfinger.
Innervirt vom N. ulnaris.

M. opponens dig. quinti (Fig. 280). Wird von den beiden vorher-
gehenden bedeckt. Entspringt vom Hamulus des Hakenbeins sowie vom Lig.
carpi transversum und zieht mit schrägem Faserverlauf zum Metacarpale V, an des-
sen Ulnarrand er inserirt.

Zuweilen erstreckt sich die Ursprungs-
schne weit über den Bauch des Muskels, und dann ist er vom Flexor brevis vollstän-
dig getrennt.

Bewegt den Kleinfinger gegen den
Daumen.
Innervirt vom N. ulnaris.

γ. Muskeln der Hohlhand.

Zu diesen gehört theilweise auch der
Adductor pollicis. Die übrigen werden
repräsentirt durch die Mm. lumbricales
und Mm. interossei.

Musculi lumbricales (Spul-
wwurmmuskeln). Die vier Lumbrikal-
sehnellen stellen lange und dünne, drehrunde,
nur am Ursprunge und Ende abge-
plattete Muskeln vor, welche in der Hohlhand von den Sehnen des Flexor
digitorum profundus entspringen. Der zweite entspringt zuweilen, der dritte
und vierte in der Regel von je zwei jener Sehnen, ist somit zweiköpfig. Jeder
dieser Muskeln verläuft mit den Beugesehnen gegen die Basen der Finger,
wo sie zwischen den Zipfeln der Palmaraponeurose zum Vorschein kommen
(Fig. 278 1, 2, 3, 4). An der Radialseite jedes der vier Finger treten sie, in
Endsehnen übergehend, empor zur Dorsalaponeurose der Finger, in die sie ihre
Endsehnen fächerförmig ausstrahlen lassen.

Der Lumbricales I und II spaltet sich nicht selten in zwei Bäuche, von denen je
einer auch an die Ulnarseite des benachbarten Fingers tritt. — Wegen des Ursprungs
von den Sehnen des tiefen Fingerbeugers ist die Wirkung der Lumbricales von der Wirkung
des letzteren Muskels abhängig. Sie beugen die Finger an der Grundphalange.

Innervirt wird der Lumbr. I und II vom N. medianus, der III und IV vom N.
ulnaris.

Musculi interossei (Fig. 280). Sie füllen die Räume zwischen den
Metacarpalien aus, dringen sämtlich mit ihren Bäuchen gegen die Hohlhand
vor und dienen der seitlichen Bewegung der Finger, soweit diese Wirkung nicht
schon von den Ballenmuskeln an Daumen und Kleinfinger besorgt wird. Sie wer-
den in äußere oder dorsale, und innere oder volare unterschieden.
M. interosse i externi. Füllen die Spatia interossea von der dorsalseite her, wo sie vom tiefen Blatte der Rückenfascie der Hand bedeckt, sammlich sichtbar sind. Sie sind zweiköpfig, indem sie von den gegen einander gekerbten Rändern je zweier Metacarpalien entspringen. Der erste ist der mächtigste, sein vom Metacarpale I entspringenden Kopf ist besonders stark (Fig. 275).

Die Endsehne des ersten geht zur Radialseite der Basis der Grundphalange des Zeigefingers, theilweise auch in die Dorsalaponeurose; der zweite inserirt sich in ähnlicher Weise an der Radialseite des Mittelfingers, der dritte an der Ulnarseite desselben Fingers, und der vierte an der Ulnarseite des vierten Fingers. Der Mittelfinger empfängt somit zwei Interossei dorsales.

Die Interossei externi sind somit Abductoren der Finger, indem sie, den zweiten und vierten vom Mittelfinger, und diesen selbst von einer durch sein Metacarpale gezogen gedachten und distal verlängerten Linie abziehen. Mit der beim Spreizen der Finger sich äußernden Wirkung erfolgt als Nebenwirkung Streckung der Finger.

Innervirt vom N. ulnaris.

M. interosse i interni. Deren bestehen drei, die nur an der Volarfläche sichtbar sind. Sie entspringen einköpfig von je einem Metacarpale, an dessen Finger sie inseriren, und zwar wie die externi, theils an der Seite der Basis der Grundphalange, theils an der Dorsalaponeurose des Fingers. — Der erste Interossens internus liegt im zweiten Interstitium interosseum, und inserirt an den Zeigefinger von der Ulnarseite her. Der zweite liegt im dritten Interstitium und inserirt an den vierten Finger von der Radialseite her. Der dritte Interosseus internus endlich liegt im vierten Interstitium und inserirt am fünften Finger gleichfalls von der Radialseite her.

Die volaren Interossei bewegen die Finger, an denen sie inseriren, gegen den Mittelfinger zu, sind somit Adductoren, Antagonisten der Externi.

Als Nebenwirkung beugen sie die Finger.

Innervirt vom N. ulnaris.

Dorsalaponeurose der Finger.

Die Rückenfläche der vier Finger ist von einer sehnnigen Membran bedeckt, welche durch die Vereinigung der Endsehnen verschiedener Muskeln entsteht.

Die Endsehnen der Lumbricales, auch Theile der Endsehnen der Interossei bilden an der Seite der Grundphalangen der vier Finger emporsteigend, je ein dreieckiges sehnnblatt (Fig. 282†), dessen Basis gegen den Fingerrücken gerichtet, dort mit der verbreiterten Strecksehne sich zu der den Fingerrücken deckenden Aponenurose verbindet. Der von den Strecksehnen dargestellte Theil bildet am Ende der Grundphalange zwei nach beiden Seiten auseinanderweichende

![Fig. 281.](image-url)
Faserzüge, die erst auf der Mitte der Mittelphalange wieder zusammenschließen, und so an der Basis der Endphalange zur Insertion gelangen (**). An der durch das Auseinanderweichen der longitudinalen Faserzüge entstehenden Lücke treten die schrägen, aus den Endsehnen der Lumbricales und Interossei stammenden Sehnenfasern, mit wenigen longitudinalen gemischt zusammen, die Lücke ausfüllend, und an der Basis der Mittelphalange eine Insertion herstellend (**). Die Dorsalaponeurose der Finger ist also am Mittel- und Endgliede inserirt. Auf der Grundphalange besitzt sie eine nur lockere Befestigung.

VIII. Muskeln der unteren Gliedmaßen.

§ 121.

A. Muskeln der Hüfte.

Sie nehmen mit wenigen Ausnahmen vom Becken ihren Ursprung, und decken dasselbe zum großen Theile derart, dass nur einige Stellen desselben von außen her zugängig bleiben.

Von den Fascien erstreckt sich ein oberflächliches Blatt von der Hinterfläche her über das Gesäß und deckt locker, nur durch wenige schräge Sehnenfasern verstärkt, den großen Gesäßmuskel, dessen unterer freier Rand die Glutäalfalte von oben begrenzt, und damit zugleich die obere Grenze gegen die hintere Fläche der Oberschenkelregion abgibt. Wo sich die Fascie oben vom Muskelsbauche entfernt, tritt sie zur Darmbeincrista und nimmt an derselben bis zur Spina anterior superior ihre Anheftung, von da nach vorne an das Poupart’sche Band übergelend. Von jener Befestigungsstelle an der Darmbeincrista ändert sie ihre Beschaffenheit, wird aponeurotisch und erstreckt sich als derbe Sehnenhaut längs der ganzen äußeren Seite des Oberschenkels bis zum Kniesgelenk herab als Fascia lata, die bei der Muskulatur des Oberschenkels genauer betrachtet wird.

Der aponeurotischen Beschaffenheit der von der Hüfte herabsteigenden Oberschenkelbinde entspricht die Beziehung zu manchen Muskeln, denen sie theils Ursprung-, theils Endsehne ist.

Die Hüftmuskeln theilen sich in äußere und innere.
M. iliopsoas (Fig. 288). Setzt sich aus zwei, auch als getrennte Muskeln aufgefassten Portionen zusammen, einem Lenden- und einem Darmbeintheil.

Die Darmbeinportion, M. iliacus, nimmt die Fossa iliaca ein. Sie entspringt vom Rande dieser Grube und der angrenzenden Strecke der Fläche derselben medial bis zur Linea innominata, vorne bis zur Spina iliaca ant. inferior herab. Der medial, vor- und abwärts convergirende Bauch formt eine Rinne zur Aufnahme des Psoas, und begibt sich über die Eminentia ileo-pectinea, auch die Spina iliaca anterior inferior bedeckend, unter dem Poupart'schen Bande hervor längs der vorderen Fläche der Kapsel des Hüftgelenkes herab, auf welchem Wege er mit dem Psoas sich vereinigt.

Der Lendentheil des Muskels M. psoas major liegt als ein anschaulicher Muskelbauch zur Seite des Lendenabschnittes der Wirbelsäule (Fig. 245). Er entspringt von der Seite des letzten Brustwirbelkörpers, sowie von den Seitenflächen der Körper und von den Querfortsätzen des ersten bis vierten Lendenwirbels, auch noch vom Querfortsatz des fünften Lendenwirbels. Der daraus gebildete cylindrische Bauch tritt über die Ileo-sacralverbindung herab, und begibt sich, der andern Portion angelagert, die kleine Beckenöhle lateral und oben begrenzend, unter dem Poupart'schen Bande hindurch.

Die im Innern des Psoas sich entwickelnde Endsehne tritt in der Nähe des Poupart'schen Bandes zu Tage, nimmt am lateralen Rand einen großen Theil des Iliacus auf, und setzt sie als gemeinsame Endsehne, in der Tiefe verbreitert und vom Iliacus bedeckt zur Insertion am Trochanter minor fort. Beim Austritt aus dem Becken verläuft der Muskelbauch in der Rinne des Darmbeins, welche medial vom Tuberculum ileo-pubicum abgegrenzt wird.

Die vorderen Ursprungportionen des M. iliacus sind nicht selten bedeutend verstärkt durch außerhalb des Beckens von der Spina iliaca anterior inferior zur Kapsel des Hüftgelenkes sich erstreckende Ursprünge.

Zwischen dem am Schambein befestigten Theile der Kapsel des Hüftgelenks und dem Ileopsoas liegt ein großer Schleimbeutel, ein zweiter kleinerer liegt unter der Endsehne dicht vor dem Trochanter minor.

Der Muskel hebt den Oberschenkel, und rollt ihn zugleich einwärts. Der von der Kapsel des Hüftgelenks entspringenden Portion des Iliacus kommt eine Wirkung auf die vordere Wand der Kapsel zu. —

Innervirt wird der Ileopsoas aus dem Plexus lumbalis.

M. psoas minor (Fig. 288). Erscheint als eine aus dem oberen Theile des Psoas major sich ablösende Portion, welche eine auf dem Bauche des letzteren herabsteigende platte Endsehne hervorgehen lässt. Diese wendet sich nach
Der Muskel ist inconstant und beim Menschen ohne Bedeutung, dagegen ist er bei Carnivoren, Nagern u. a. mächtig entfaltet, und dient zur Bewegung des Beckens.

b. Äußere Hüftmuskeln.

Erste Schicht.

Beim Stehen deckt der Muskel den Sitzbeinknorren, zieht sich aber beim Heben des Oberschenkels über den Sitzbeinknorren aufwärts hinweg.

M. tensor fasciae latae (Fig. 285). Ein an der Seite der Hüfte liegender Muskel. Entspringt am Darmbeinkamme, unmittelbar nach außen von der Spina anterius superior und bildet einen mit fast parallelen Fasern abwärts steigenden oberflächlich platten Bauch. Die Fascia lata bedeckt den Muskel mit einem oberflächlichen Blatte, während ein tiefes Blatt sich unter dem Muskel fortsetzt, und in dieselbe Fascie läuft dem Muskel, vor dem Trochanter major aus. Die Fascia lata ist damit zugleich Endsehne des Muskels und entspricht diesem Verhältniss durch ihre aponeurotische Modification an der lateralen Seite des Oberschenkels.

Bei der Wirkung des Muskels als Spanner der Fascia lata wird der Angriffspunkt durch die Fortsetzung der Fascie über das Kniegelenk hinweg auf den Unterschenkel verlegt. Er wird deshalb auch bei der Streckung des Unterschenkels, und bei der Abduction der unteren Extremität mitwirken.

Innervirt vom N. glut. sup.
Beachtenswerth ist auch die Convergenz der in die Fascia lata sich inserirenden oberen Theile des Glutaeus maximus mit dem Tensor. — Mehrmals sah ich vom Tensor fasciae eine starke Partie sich ablösen und dem Gl. medius sich anfügen, was mit dem auch bezüglich der Innervation bestehenden Verhalten die engere Zusammengehörigkeit beider ausdrückt.

Zweite Schichte.

M. glutaeus medius (Fig. 283). Wird an seinem hinteren Abschnitte vom Glutaeus maximus bedeckt. Entspringt von der äußeren Fläche des Darmbeins, am hinteren oberen Abschnitte desselben, zwischen der Linea glut. ant. und post. und erstreckt sich mit dem Ursprunge unterhalb der Darmbeinerista nach vorne bis zum Ursprunge des Tensor fasciae. Der den Muskel deckende, an der Darmbeinerista befestigte Theil der Fascia lata bietet fernere Ursprünge. Der aus convergirenden Bündeln gebildete Muskelbauch läßt eine starke Endsehne hervorgehen, die am Trochanter major, an dessen äußerer Fläche vorne tiefer herabsteigend, sich befestigt.

Die Endsehne ist vom oberen Theil des Trochanter major durch einen Schleimbeutel getrennt. — Zuweilen geht der Muskel in den tiefen Theil des Tensor fasciae über.

Die Wirkung besteht in Abduction des Oberschenkels.

Innervirt wird der Muskel vom N. glut. superior.

Dritte Schichte.

M. glutaeus minimus (Fig. 284). Vollständig vom vorhergehenden Muskel bedeckt. Entspringt an der Außenfläche des Darmbeins unterhalb der Linea glut. ant., und erstreckt sich da bis zu dem sich gegen den Pfannenrand erhebenden Theil jener Fläche herab. Hinten grenzt der Ursprung an die Incis. ischiad. major, vorne nahe an die Spina ant. sup. Die Bündel des Muskels convergiren und gehen in eine oberflächlich sich bildende Endsehne über, die in einer Grube an der medialen Fläche des Trochanter major inserirt.

Auf dem Verlaufe über die Kapsel des Hüftgelenkes ist die Sehne des Glut. minimus mit der Kapsel durch straffes Gewebe in Zusammenhang, der Muskel spannt daher die Kapsel. Außerdem ist die Wirkung jener des Glut. medius gleich.

Innervation vom N. glut. superior.

Die folgenden Muskeln dieser Schichte kommen zwar schon nach Entfernung des Glut. max. zum Vorscheine, aber die Insertion einiger von ihnen wird erst
nach Entfernung des Glut. med. übersichtlich. Ihrer Function gemäß bezeichnet man sie als Rollmuskeln des Oberschenkels.

lung der Endsehne sich verschmälernde Bauch verläuft nach außen, und inserirt an der medialen Fläche des Trochanter major.

Der Muskel theilt das Foramen isch. majus in einen oberen und einen unteren Abschnitt, durch welche Blutgefäße und Nerven die kleine Beckenhöhle verlassen. Zuweilen tritt ein Bün-

del des N. ischiadicus durch den Muskel hindurch, und bewirkt eine Theilung des Muskels in zwei Bäuche.

Die Endschne ist mit der Kapsel des Hüftgelenkes verwachsen. Der Muskel rollt den Oberschenkel nach außen.

Innervirt aus dem Pl. ischiadicus.

M. obturator internus (Fig. 284). Besteht aus einem größeren, im kleinen Becken entspringenden Bauche und zwei außerhalb desselben liegenden accesso-

rischen Köpfen, die in der Regel als besondere Muskeln, Gemelli superior und inferior, angeführt werden. Entspringt in der Umgebung der Innenfläche des Foramen obturatum, theils vom Schambein an der medialen Umgrenzung jener Öffnung, und von da an von der Membrana obturatoria bis gegen den Canalis obtu-

ratorius hin, dann an dem vorderen und oberen Abschnitte der Innenfläche des Sitzbeines bis zur großen Incisur. Die Muskelbündel convergiren nach der Incisura ischiadica minor und liegen dabei dem größeren Theile der Innenfläche des Sitzbeines auf. Die hier sich entfaltende Endsehne tritt mit einem Theile des Muskelbauches über die überknorpelte Fläche der Incisura isch. minor nach außen und inserirt sich an der Innenfläche des Trochanter major.

Beim Austritte aus dem Foramen ischiadicum majus treten die beiden Ge-

demelli zur Endsehne. Der Gemellus superior entspringt von der Außen-

fläche der Spina ossis ischi, tritt lateralwärts und verbindet sich mit der End-

schne des Obt. internus. Der Gemellus inferior nimmt seinen Ursprung von der unteren und äußeren Begrenzung der überknorpelten Fläche der Incisura
Muskeln der Gliedmaßen.

403

ischiadica minor, und geht von da auf den Sitzbeinhöcker über. Er legt sich von unten her an die gemeinsame Endsehne, die er theilweise überlagert.

Das Verhalten zum Obturator internus ist so aufzufassen, dass die Gemelli auf der Außenfläche des Beckens liegen gebliebene Portionen eines Muskels vorstellen, der zwischen beiden hindurch seinen Ursprung auf die Innenfläche des Beckens ausgedehnt hat.

Innervirt von N. ischiadicus.

M. quadratus femoris (Fig. 283). Liegt unmittelbar unter dem unteren Rand des Gemellus inferior. Entspringt lateral am Sitzbeinknorpren und erstreckt sich mit parallelen Bündeln quer über das Femur, wo er sich meist nach außen von der Linie intertrochantérica inserirt.

Dicht am unteren Rande des Muskels findet sich der Trochanter minor. Der Muskel dreht gleichfalls den Oberschenkel nach außen.

Innervirt vom N. ischiadicus.

B. Muskeln des Oberschenkels.

§ 125.

Die den Oberschenkel bekleidende Muskulatur umhüllt denselben derart, dass nur am distalen Ende Theile des Knochens — die Seiten der Condylen des Femur — in oberflächliche Lage kommen. Die Muskeln dienen theils der Bewegung des Oberschenkels, theils nehmen sie am Unterschenkel ihren Ansatz und wirken auf diesen Abschnitt der Gliedmaße.

Die straffe Oberschenkelfascie, Fascia lata, längs der ganzen Außenfläche des Oberschenkels aponeurotisch, ist oben und außen, wie bereits bei der Hüfte erwähnt, an der Crista ossis ilei festgeheftet, vonnach dagegen verbindet sie sich mit dem Leistenbande.

An der vorderen wie an der medialen Fläche hat sie den aponeurotischen Character aufgegeben und bietet nur leichte sehnmere Einwölbungen dar. An der Patella ist sie mit dieser verbunden. Hier bietet sie einen Schleimbautel (Bursa praepatellaris).

Am Kniegelenke setzt sich ein Theil der Fascie in die seitlichen Theile der Kapsel fort und steht mit den Seitenbändern im Zusammenhang.

Der vom Darmbeinkamm entspringende Theil der Fascia lata, von der Spina ossis ilei anterior superior bis zu dem größten seitlichen Vorsprung der Crista, bildet einen sehr derben, bis zum Unterschenkel sich herab erstreckenden Abschnitt der Fascie, dem man auch als Tractus ilio-tibialis unterschieden hat. Der vorderste Abschnitt nimmt oben den Bauch des M. tensor fasciae latae auf, so dass die Fascia lata hier eine Scheide für diesen Muskel abgibt. Das oberflächliche Blatt bedeckt als eine etwas dünnere Lage die Oberfläche des Muskels, indeß das tiefe Blatt nicht nur hinter dem Muskel emporzicht, sondern mit sehr starken Fasermassen sich zur Spina ilei anterior inferior abzweigt und somit auch hier einen Befestigungspunkt für die Fascia lata gewinnt. Dieser
Dritter Abschnitt.

Bezüglich besonderer Einrichtungen an der Fascie s. S. 413.

Die Muskeln lassen sich in drei Gruppen sondern: Vordere, hintere und mediale.

a. Vordere Muskeln des Oberschenkels.

Sie gehören sämtlich dem Gebiete des N. cruralis an.

Erste Schicht.

M. sartorius. Ein langer Muskel, der von zwei Lamellen der Fascia lata umschlossen, schräg von oben und lateral nach unten und medial über den Oberschenkel herabzieht. Entspringt unter der Spina il. ant. sup. und bildet bald einen platten Bauch, der medial gegen den unter dem Leistenbande hervortretenden Ileo-psoas sich anlegt, über die tieffere Schicht hinweg; in die zwischen dieser und den Adductoren des Oberschenkels befindliche Rinne sich einbettet, und mit dieser an die mediale Fläche des Oberschenkels gelangt. Hier tritt der breite Muskelbauch an die mediale und etwas nach hinten gewendete Fläche des Condylius und geht unter allmählicher Verschmälerung in seine Endsehne über, die schon während des Verlaufs über den Condylius am vorderen Rande und an der inneren Fläche des Muskels sichtbar wird. Die anfänglich schmale Endsehne verbreitert sich am Condylius medialis tibiae in eine ansgedehnte Aponeurose, welche nach vorn und abwärts verläuft, und sich an der medialen Fläche der Tibia bis zur Crista hin inserirt (vergl. Fig. 286).

Unter der Endsehne befindet sich ein Schleimbefall, der sich häufig auch unter die Endsehnen des M. gracilis und semitendinosus erstreckt. Die obersten Fasern der sich ausbreitenden Endsehne sind bis zur Tuberositas tibiae verfolgbare. — Zuweilen besteht im Sartorius eine Zwischensehne. — Die Wirkung des Sartorius ist bei dem unbedeutenden Querschnitt des Muskels im Verhältnis zu seiner Länge eine wenig mächtige. Der ihm ehemals zugeschriebenen Function des Hebens des Unterschenkels beim Uebereinanderschlagen der Beine — daher der Name...
Zweite Schicht.

M. extensor cruris quadriceps (Fig. 258). Dieser den größten Theil des Oberschenkelknochens vorne wie seitlich deckende Muskel (Fig. 257) besteht aus vier mehr oder minder discreten Köpfen, die zu einer gemeinsamen Endsehne zusammentreten. Diese inserirt sich an der Basis patellae und läßt den Muskel durch das zur Tuberositas tibiae tretende Lig. patellae, auf das Schienbein wirken. Man muß daher das Ligamentum patellae als eine Fortsetzung der Endsehne betrachten, wobei die Patella ein in der gemeinsamen Endsehne liegendes Sesambein vorstellt. Die vier Köpfe sind:

a. M. rectus femoris. Dieser oberflächlichste und selbstständigste Kopf entspringt mit einer aus zwei Zipfeln sich zusammensetzenden Sehne, theils von der Spina iliaca anterior inferior, theils vom oberen Rande der Hüftgelenkpfanne. An letz-
terer Stelle erstreckt sie sich noch auf die Kapsel des Gelenkes. Die Ursprungsschne setzt sich auf der Oberfläche des sich allmählich etwas verbreiternden Muskelbauches fort und läßt die Bündel schräg nach beiden Seiten zu der an der hinteren Fläche des Muskels weit emporsteigenden Endschne treten. Diese wird ziemlich von der Patella entfernt frei und verbindet sich allmählich mit der Streckschne.

b. M. femoralis (*Cruralis, Vastus medius*) (Fig. 289). Liegt unmittelbar unter dem Rectus. Entspringt an der vorderen und der lateralen Fläche des Femur, unter der Linea obliqua beginnend, und häufig hier allein von dem medial sich ihm verbindenden Vastus medialis gesondert. Die oberen Bündel verlaufen gerade herab, die lateralen und medialen schräge zu der auf der Vorderfläche des Muskels herabsteigenden breiten Endschne, welche über der Patella in die gemeinsame Streckschne übergeht.

c. M. vastus medialis (internus). Schließt sich medial an den Femoralis an, von dem er zuweilen so wenig gesondert ist (vergl. Fig. 287), dass zur Beurtheilung beider Muskeln als eines einzigen einiges Recht besteht. Er entspringt von der Linea obliqua und geht von da auf das Labium mediale der Linea aspera femoris über, wobei die aus schräg abwärts und vorwärts gerichteten Fasern gebildete Ursprungsschne an der hinteren und medialen Fläche des Muskels sichtbar wird. Am unteren Drittel des Muskels tritt der Ursprung vom Femur ab, auf die Endschne des Adductor magnus, bis nahe an deren Befestigungsstelle am Condylus medialis femoris. Die Bündel des Muskels verlaufen sämtlich schräg von hinten und oben nach unten und abwärts. Am oberen Abschnitt des Muskels gehen sie entweder in eine an der Innenfläche des Muskels sich entwickelnde Endschne über, die erst am unteren Drittel sich mit der Endschne des Femoralis verbindet, oder sie inseriren sich so-
gleich an die Endsehne des Femoralis, und dann sind beide Muskeln innig verschmolzen. Die unterste Partie des Muskels sendet ihre Fasern zum medialen Rande der gemeinsamen Strecksehne.

d. M. vastus lateralis (externus). Lagert an der Außenseite des Femoralis. Entspricht am Trochanter major und einer von da weit über den Muskelbauch sich erstreckenden Sehne, geht vom Trochanter aus auf den zum Femur tretenden Abschnitt der Endsehne des Gluteus maximus über, dann auf das Labium laterale der Linea aspera femoris, bis nahe zum Condylus herab. Der mächtige Muskelbauch bedeckt den größten Theil des Femoralis (Cruralis) (Fig. 287) und entwickelt an der letzterem zugewendeten Fläche eine breite Endsehne, die erst mit jener des Rectus, dann mit der gemeinsamen Strecksehne sich verbindet.

Die tiefsten Ursprungsportionen des Femoralis treten nicht in die gemeinsame Endsehne über, vielmehr verlaufen sie gewöhnlich als zwei platte Bündel zur Kapsel des Kniegelenkes herab. Sie werden als M. subfemoralis (Subcruralis) bezeichnet und spannen die Kapsel. Eine ähnliche Wirkung auf die Kapsel des Hüftgelenkes hat der äußere Zipfel der Ursprungssche ne des Rectus. — Unterhalb des M. femoralis gegen das Knie zu liegt ein Schleimbeutel (B. muc. subfemoralis), welcher häufig mit dem Kniegelenk communicirt.

b. Mediale Muskeln des Oberschenkels.

Sie füllen den Raum zwischen dem unteren Abschnitte des Beckens und dem Femur, und lassen bei aneinandergezogenen Oberschenkeln zwischen beiden keine Lücke. Da sie den abgezogenen Oberschenkel gegen die Medianlinie oder darüber hinaus bewegen, repräsentiren sie die Adductoren-Gruppe. Dieselbe wird in mehrere Schichten zerlegt. Der N. obturatorius verzweigt sich an sie.

Erste Schichte.

M. pectineus (Fig. 288). Liegt dem medialen Rande des Endabschnittes des Ilopsoas an. Entspringt am Pecten ossis pubis bis gegen das Tuberculum pubicum hin, zuweilen noch etwas tiefer gegen das Foramen obturatum zu. Er bildet einen platten, lateral nach unten verlaufenden Bancl, der sich kurzsehig unterhalb des Trochanter minor an die mediale Lippe der Linea aspera femoris inserirt, häufig auch hinter dem Trochanter höher hinauf greift.
Obwohl der N. cruralis in der Regel den Muskel versorgt, erhält er doch auch nicht selten vom N. obturator einen Zweig. Er kann auch nach dieser Innervation in zwei Portionen geteilt sein. — Mit dem Ileopsoas bildet er den Boden der Fossa ilio-pectinea.

M. adductor longus (Fig. 288). Liegt medial vom vorigen, an seinem Ursprünge unterhalb des Tuberculum pubicum ihn berührend. Der gleichfalls abwärts und lateral tretende Bauch nimmt allmählich an Dicke ab, aber an Breite zu, und tritt am mittleren Drittel der Linea aspera femoris an die mediale Lippe derselben zur Insertion. Die Endsehne ist mehr oder minder innig mit der des dahinterliegenden Adductor magnus in Zusammenhang.

Adducirt den Oberschenkel.

M. gracilis. Verläuft längs der medialen Fläche des Oberschenkels. Entspringt mit einer platten Sehne vom Schambein, zur Seite der unteren Hälfte der Symphyse bis an die Seite des Arcus pubis herab. Der anfänglich platte Muskelbauch grenzt vorne an den Adductor longus, divergirt aber dann von ihm, und setzt sich verschmälert in eine lange cylindrische Endsehne fort, die hinter dem Condylus medialis über das Kniegelenk verläuft. Sie geht hinter der Sehne des Sartorius, und vor jener des Semitendinosus, ersterer näher als letzterer, um den Condylus medialis tibiae herum in eine aponeurotische Ausbreitung über, welche von der gleichen Sehnenausbreitung des Sartorius bedeckt, und weiter nach vorne auch mit ihr verbunden bis zur Crista tibiae verläuft (vergl. Fig. 286).

Wie die Sartorius-Endsehne und die des Semitendinosus, schickt auch jene des Gracilis am Beginne ihrer Endverbreiterung ein Faseikel abwärts zur Fascie des Unterschenkels.

Die Adduktionswirkung des Muskels trifft sich nur bei gestrecktem Knie. Nebenwirkung ist bei gebeugtem Knie Rotation des Unterschenkels nach einwärts.

Zweite Schicht.

M. adductor brevis (Fig. 289). Entspringt vom Adductor longus bedeckt
Muskeln der Gliedmaßen.

Dritte Schichtte.

M. adductor magnus (Fig. 290) Als der mächtigste der Adductoren erstreckt sich der Muskel hinter denen der oberflächlichen Schichten, vom Scham- und Sitzbeine aus längs des ganzen Oberschenkels. Er entspringt schmal vom Schambeine, dicht neben dem Adductor brevis und Gracilis; von da geht der Ursprung wenig breiter auf den Sitzbeinast über, verbreitert sich aber allmählich gegen den Tuber ischii unterhalb der Ursprungsstelle des Quadratus femoris. Vom Ursprunge aus divergiren die Muskelbündel. Die am weitesten oben und vorne entspringende Portion verläuft, den unteren Abschnitt des M. obturator externus von vorne bedeckend, fast quer lateralwärts, grenzt hinten mit ihrem oberen Rande an den unteren des Quadratus femoris und inserirt in einer unterhalb der Linea intertrochanterica beginnenden senkrechten zur Linea aspera fem. herabsteigenden Rauhigkeit. Die folgenden Portionen treten im Anschluss an die vorhergehende gegen die Linea aspera femoris, und zwar um so weiter an dieser herab, je weiter abwärts sie vom Sitzbeine an der Seite des Tubert entspringen. Die Insertion an der Linea aspera reicht bis gegen das untere Drittel ihrer Länge. Aber

Die Insertion der anschlussl. zur Linie aspera tretenden Masse des Adductor magnus wird durch ein System sich interferierender Sehnenbogen vermittelt, die an der Linie aspera befestigt sind, theilweise auch durch aus dem Muskel kommende dünne Schenzenzüge verstärkt werden. An jeden dieser Bogen tritt je eine Lage von Muskelbündeln. Dadurch wird die Insertion mächtiger Massen an beschränkter Stelle ermöglicht. Die vom Femur sich abhebenden Bogen dienen theilweise auch zum Durchlaß von Arterien (A. perforantes aus der A. prof. fem.). Sie stellen somit im Kleinen vor, was durch den Sehnenbogen am Ende des Adductor größer ausgeführt ist.

Der Muskel adducirt den Oberschenkel.

Die am nächsten den Beugemuskeln entspringende Portion empfängt häufig vom N. ischiadicus Zweige.

Vierte Schichte.

Die Endsehne ist von hinten her zwischen dem Gemellus inferior und Quadratus femoris zugängig. Sie verbindet sich auch mit der Hüftgelenkkapsel. Der Muskel schließt sich functionell den Rollmuskeln des Oberschenkels an, wir glauben ihn aber mit den Adductoren vereinigen zu sollen, da er nicht nur vom N. obturatorius versorgt wird, sondern auch topographisch mit den eigentlichen Adductoren eine einheitliche Gruppe bilden hilft.
Muskeln der Gliedmaßen.

c. Hintere Muskeln des Oberschenkels.

Sind die Antagonisten des Extensor uroris quadriceps und beugen den Unterschenkel im Kniegelenk. Gemeinsamen Ursprungs am Tuber ossis ischi; ziehen sie an der hinteren Fläche des Oberschenkels herab, und sondern sich am unteren Drittel nach beiden Seiten, so dass zwischen ihren Bäuchen eine gegen die Condylen des Femur zu breit werdende Grube, Fossa poplitea, gebildet wird, deren Boden das Planum poplitenum femoris vorstellt. Obgleich die Oberschenkelspance sich über die Grube und zwar mit reich eingewebten queren Sehnenfasern hinweg fortsetzt, treten doch die Muskelbäuche wulstförmig zur Seite der Grube hervor. Lateral liegt der Biceps femoris, medial der Semitendinosus und Semimembranosus. Sie werden sämtlich vom N. tibialis aus dem N. ischiadicus versorgt.

M. biceps femoris (Fig. 291). Entspringt mit seinem langen Kopf mittels einer anschnlichen, auf der Innenfläche des Muskelbauches sich herab erstreckenden Sehne von der hinteren Fläche des Tuber ischi; Der spindelförmige Bauch tritt erst neben dem des Semitendinosus herab, mit dem er am Ursprung zusammenhängt (vergl. Fig. 287), divergirt dann von diesem, und nimmt am unteren Viertel der Länge des Oberschenkels den kurzen Kopf auf. Dieser hat seinen Ursprung am mittleren Drittel der Linea aspera femoris, und geht, einen meist platten Bauch formierend, an die auf der Außenfläche des langen Kopfes sich entwickelnde Endsehne. Diese inserirt sich am Capitulum fibulae.

Außer der Beugung bewirkt der Muskel bei schon gebogenem Knie noch eine Rotation des Unterschenkels nach aussen.

(Fig. 291.)

Tiefe Schichte der äußeren Hüftmuskeln und hintere Muskeln des Oberschenkels.
M. semitendinosus (Fig. 291). Der Ursprung dieses schlanken Muskels ist mit dem des langen Kopfes des Biceps verbunden, mit dem er herabläuft, um allmählich eine mediale Richtung einzuschlagen. Der am Ursprunge platte Bauch wird dabei mehr drehrund und liegt in einer von der Ursprungssehne des Semimembranosus gebildeten Halbrinne. Die schon weit oben an dem bedeutend verjüngten Bauche sichtbare Endsehne wird noch oberhalb des Condylus med. femoris frei, und tritt hinter diesem auf dem Bauche des Semimembranosus über das Kniegelenk, am medialen Condylus der Tibia in ihre terminale Ausbreitung über, welche mit der des Sartorius und Gracilis verschmilzt. Insertion an der medialen Fläche der Tibia bis zur Crista hin (Fig. 286). Der Bauch des Muskels wird durch eine schräg von oben und medial lateral und abwärts verlaufende Inscription tendinea in zwei Theile geschieden.

Außer der Beugung im Kniegelenk kommt dem Muskel noch eine Nebenwirkung zu: den Unterschenkel bei gebeugtem Knie einwärts zu rotieren.

M. semimembranosus (Fig. 291). Entspringt über dem vorhergehenden Muskel, völlig von ihm getrennt und etwas mehr lateral vom Tuber ischii (vergl. Fig. 287 Sm). Die anfänglich schmale, platte Sehne verbreitert sich bald und bildet mit dem aus ihr hervorgehenden Bauche, weit auf demselben sich herabstreckend, eine Halbrinne zur Aufnahme des Bauches des Semitendinosus. Die an der vorderen Fläche des Muskels verlaufende Endsehne ist noch bis zum Kniegelenke vom Muskelaubere begleitet, der hier die Fossa poplitea medial begrenzt. Über die Wölbung der Condylus medialis tritt die Endsehne zur Tibia, und theilt sich derselben in drei Fascikel (vergl. Fig. 221 auf S. 276). Eines davon tritt am infraglenoidalen Rande des Condylus medialis tibiae herum, unter dem medialen Seitenbänder des Kniegelenkes, und inserirt dann an der Tibia. Ein zweites Fascikel setzt sich, gerade abwärts verlaufend, an die Tibia an und ein drittes gelangt unterhalb des Condylus medialis fem. zur Kapsel des Kniegelenkes. Hier verlaufen seine Fasern schräg auf- und auswärts in der hintern Kapselwand, und enden an der medialen Fläche des Condylus lateralis. Sie stellen das sogenannte Ligamentum popliteum obliquum vor.

Der Ursprung der drei Beugemuskeln vom Tuber ischii gestattet diesen Muskeln auch ein Heben des Oberschenkels nach hinten.
Fossa iléo-pectinea und Schenkelringe.

§ 126.

Das die Fossa iléopectinea deckende Blatt des Oberschenkels wird von zahlreichen Blutgefäßen durchsetzt, die theils von der Arteria femoralis stammen, theils zur gleichnamigen Vene treten. Von den Venen ist eine von besonderer Mächtigkeit, die V. saphena magna. Sie tritt an der medialen Fläche des Oberschenkels aufwärts mit etwas schräger lateraler Richtung und senkt sich dem tiefen Blatt der Oberschenkelfaszie entlang zur Vena femoralis ein. Über der Einsenkestelle ist das Gewebe des oberflächlichen Fascienblattes lockerer, gleichfalls

Diese im Einzelnen sehr wechselnd gestaltete Einrichtung beruht also wesentlich auf dem Durchtritte einer großen Vene durch die Fascie, und der Processus falciformis bildet eine sehnmige Begrenzung jener Durchtrittsstelle, wie sie auch sonst beim Durchtritte von Venen durch oberflächliche Fascien stattfindet.

Gegen andrängende Eingeweidetheile bildet der Anulus cruralis internus einen Locus minoris resistentiae, da ihn nur dünnne und dehnbare Membranen verschließen. Hier stattfindende Hernien (Schenkelhernien) nehmen ihren Weg an der Seite der Femoralgefäße, und gelangen an der Fovea ovalis, als der einzigen Stelle, an der die Fascien kein Hindernis darbieten, nach außen. Durch die herabgetretene Hernie sind dann äußerer und innerer Schenkelring unter einander in Zusammenhang, indem sie die innere und äußere Öffnung eines Canalis bilden, den Schenkelkanal, Canalis cruralis. Auf diese Weise wird also die Beziehung beider Ringe zu einander hergestellt.

Von dieser Darstellung weicht jene Auffassung ab., welche als inneren Schenkelring den ganzen unterhalb des Leistenbandes medial vom Ileo-psoas gelegenen Raum betrachtet,
so dass dann die Schenkelgefäße durch den inneren Schenkelring treten. Man spricht dann wohl auch von einem Verlaufe der Schenkelgefäße durch den Schenkelkanal. Da sie aber nicht zum äußeren Schenkelring austreten, könnte derselbe auch nicht als äußere Mündung eines Schenkelcanals gelten. Nach unserer Auffassung existirt also normal kein Schenkelkanal, wohl aber bildet sich ein solcher mit der Entstehung einer Schenkelhernie, und dann treten die beiden Ringe in ihre Bedeutung als innere und äußere Öffnung jenes Canals ein.

C. Muskeln des Unterschenkels.

Ähnlich wie am Vorderarme sind die Muskeln des Unterschenkels am oberen Abschnitt mit starken Bäuchen versehen, in denen distal ihre Sehnen entsenden, daraus entspringt die gegen das Sprunggelenk zu sich verjüngende Gestalt des Unterschenkels. Die an der Hinterfläche mächtiger entwickelten Muskeln tragen dieselbst eine gewölbte Vorrang auf, die Wade (Sura).

An der Vorderseite des Ober- oder Unterschenkels setzt sich die Fascie vom Kniegelenke her auf die Crista tibiae fort und ist dieselbst wie an der ganzen medialen Fläche dieses Knochens festgeheftet. Oben besitzt sie longitudinalale Züge sehnder Fasern eingelagert, die auch zu Muskelursprüngen dienen. Sie empfängt dabei Verstärkungen von Abzweigungen der verbreiterten Endschne des Sartorius, Gracilis und Semimembranosus, sowie auch lateral von der Endsehne des Biceps femoris Fasern in sie ausstrahlen.

Unten treten allmählich quere Faserzüge auf. Oberhalb der beiden, Befestigungsstellen für die Fascie darbietenden Malleoli sehr mächtig werdend, bilden sie einen der vorderen Muskeln mit ihren Sehnen an den Unterschenkel anschließenden Halteapparat: Ligamentum annulare.

An der lateralen Seite des Unterschenkels beginnt sich die Fascie über die die Fibula bekleidende Muskulatur hinweg zur hinteren Fläche, überzieht die Wadenmuskeln, an der Achillessehne mit den Seitenrändern verbunden, und erscheint an der Kniekehle mit der diese deckenden Fortsetzung der Fascie des Oberschenkels in Zusammenhang.

Die Muskulatur des Unterschenkels ist im Vergleiche mit dem Vorderarme durch eine nur geringe Anzahl von Muskeln vertreten, was der geminderten Mannigfaltigkeit der Bewegungen des Fußes entspricht. Die Muskeln zerfallen in drei Gruppen: a. vordere, b. laterale und c. hintere Muskeln.

a. Vordere Muskeln des Unterschenkels.

Sie füllen den nach hinten von dem Zwischenknochenbande abgegrenzten Raum zwischen Tibia und Fibula und verlaufen sämtlich zum Fuße. Sie werden vom N. peronaeus versorgt.

M. tibialis anticus (Fig. 292). Liegt unmittelbar der Tibia an. Entspringt von derselben unterhalb ihres Condylus lateralis, und von da abwärts von der oberen Hälfte der lateralen Fläche. ferner von der Membrana interossea bis
gegen das untere Drittel herab. Oberflächliche Ursprünge zieht der Muskel noch von dem aponeurotischen Theile der Fascie. Der der Tibia angelagerte Muskelbanch entfaltet an seiner vorderen Fläche eine starke Endsehne, welche unter dem oben erwähnten Bandapparate hindurch, und über die vordere Fläche des Endes der Tibia hinweg zum medialen Fußrande tritt, wo sie sich an der Verbindung des Cunefiforme I mit dem Metatarsale I verbreitert an beiden Knochen inserirt.

Der Muskel hebt den inneren Fußrand (Supination).

M. extensor digitorum longus (Fig. 292). Liegt lateral vom Tibialis anticus. Entspringt theils noch vom Condylus lat. tibiae, theils von der vorderen Kante der Fibula und der aponeurotischen Fascie, tiefer herab auch auf die Membrana interossea übertretend. An der vorderen Fläche des Muskels erscheint die Endsehne, welche sich noch am Unterschenkel in vier oder fünf Selen spaltet. Diese treten durch ein besonderes Fach des Ligamentum cruciatum zum Fußrücke und verlaufen zur 2.—5. Zehe, die Grundlage einer Dorsalaponeurose wie an den Fingern abgebend. Besteht noch eine fünfte Sehne, so tritt diese schrag lateralwärts, und inserirt sich an den Rücken der Basis des Metacarpale V. Dieses Verhalten ist das erste Stadium der Sonderung eines neuen Muskels: Peroneus tertius.

Der Ursprung des Muskels ist oben mit jenem des Peroneus longus durch ein zwischen beide sich einsenkendes Sehnenblatt in Zusammenhang.

Außer der Beziehung zum Peroneus tertius bietet der Extensor digitorum longus wechselnde Verhältnisse zu seinen Endsehnen, bezüglich der früheren oder späteren Theilung derselben, und die den einzelnen Selenen zukommenden Muskelportionen besitzen zuweilen eine große Selbständigkeit.

Wirkung: streckt die 4 Zehen.

M. peroneus tertius. Obwohl ziemlich regelmäßig vorkommend, erscheint er doch
Muskeln der Gliedmaßen. 417

nur als eine selbständig gewordene Portion des Extensor digit. comm. longus, und wird in allen Übergangsstadien von völliger Verbindung mit jenem bis zu größter Selbständigkeit angetroffen. Im letzteren Falle entspringt sein Bauch von der unteren Hälfte der Fibula, bis weit herab, auch noch mit einzelnen Fasern von der Membrana interossea. Er legt sich aber stets dem Ext. dig. comm. an und tritt mit ihm durch das gleiche Fach unter dem Kreuzbande zum Fußrücken. Die Endsehne verläuft zum lateralen Fußrande und inserirt an der Basis des Metatarsale V, an der Grenze gegen das Metatarsale IV hin, und greift nicht selten auf dieses über.

Der obere Theil des Ursprunges des Peron. tertius tritt wie jener des Ext. dig. comm. von der Fibula aus auf ein auch den Wadenbeinmuskeln (Peron. longus und brevis) Ursprungsstellen darbietendes Sehnenblatt.

Wirkung jener des Peroneus brevis und longus ähnlich.

Die Endsehne des Ext. digit. longus sammelt der des Peroneus tertius wird bei ihrem Durchtritte unter dem Lig. cruciatum (S. 415) durch einen besonderen Apparat in situ erhalten. Aus dem vorderen Theile des Sinus tarst vom Calcaneus entspringende, ins Lig. cruciatum übergehende Bandzüge umgreifen die Sehne medial, und halten sie wie in einer Schlüte gegen den Fußrücken (Schleuderband, Lig. fundiforme).

M. extensor hallucis longus. Liegt zwischen dem Tibialis anticus und Extensor digit. comm. longus, am Ursprunge von beiden bedeckt. Der Ursprung beginnt an der Fibula, etwas über dem mittleren Drittel der Länge, erstreckt sich dann an diesem Knochen herab, um ihn zu verlassen und allmählich auf die Membrana interossea, mit einzelnen Bündeln auch auf die Tibia überzugehen. Die an der Oberfläche des halbegedeckten Muskelbauches frei werdende Endsehne verläuft zwischen den Sehnen des Tibialis anticus und Ext. dig. comm. longus zum Fußrücken. Sie tritt durch ein besonderes Fach des Lig. cruciatum über Tarsus und Metatarsus zur großen Zehe, an deren Endphalange sich festheftet.

Ein von der Endsehne sich ablösender Sehnenstreif tritt sehr häufig zur Grundphalange der Großzehe.

Wirkung: streckt die Großzehe.

b. Laterale Muskeln des Unterschenkels.

Bedecken das Wadenbein, von dem sie entspringen, bis gegen das untere Drittel herab. Der N. peroneus versorgt sie.

M. peroneus longus. Entspringt mit zwei nahe bei einander liegenden Portionen, zwischen welchen der Nervus peroneus hindurchtritt. Die vordere Portion entspringt theils vom lateralen Condylus der Tibia, vom oberen Tibiobulargelenke und vom Köpfchen der Fibula, theils von einem zwischen dem Muskel und dem Extensor dig. longus gelegenen Sehnenblatte und erstreckt sich längs der vorderen Kante der Fibula an deren oberem Drittel herab. Die hintere Portion beginnt ihren Ursprung meist unterhalb des Capitulum fibulae, erstreckt sich aber
weiter herab, bis gegen das untere Drittel der Fibula. Zwischen beiden Portionen ist eine schlitzelförmi ge Öffnung darstellbar, die von Bündeln der Ursprungsehne umrandet wird. Die im Innern der vorderen Portion weit oben auftretende Endsehne tritt allmählich verbreitert auf der äußeren Fläche des Muskels hervor, und läuft dann über den Peroneus brevis herab hinter den Malleolus lateralis, wo sie mit der Sehne jenes Muskels durch einen Bandapparat (Retinaculum peroneorum) [Fig. 293] festgehalten wird. Sie tritt dann an der Außenseite des Calcaneus schräg herab zum Cuboides, bettet sich in dessen Sulcus, kreuzt schräg die Fußsohle und inserirt an der Basis des Metatarsale I.

Wirkung: Hebt den äußeren Fußrand und bewirkt die als »Pronation« bezeichnete Bewegung des Fußes.

M. peronens brevis. Liegt tiefer und weiter abwärts an der Fibula. Er entspringt in der Fortsetzung des Ursprungs der vorderen Portion des Peroneus longus. Von da erstreckt sich der Ursprung über die hintere Fläche der Fibula, weiter abwärts auf deren hintere Kante bis in die Nähe des Malleolus lateralis übergehend. Die auf der Außenfläche des Muskels entwickelte Endsehne verläuft anfänglich hinter jener des Peroneus longus herab, zu der an der Hinterfläche des Malleolus befindlichen Furche und tritt von da vor der Endsehne des Peronens longus schräg zum
Muskeln der Gliedmaßen. 419

lateralen Fußrande, wo sie an der Tuberositas metatarsi V meist dorsalwärts verbreitet inserirt (Fig. 293).

Eine Vermehrung der M. peronei betrifft vorwiegend Muskeln, welche als selbständig gewordene Theile des Per. brevis erscheinen.

Wirkung jener des Per. longus ähnlich.

c. Hintere Muskeln des Unterschenkels.

Diese Gruppe zerfällt in 2 Abtheilungen, welche eine schichtenweise Anordnung zeigen. Die oberflächlichen, die tieferen größtenteils deckenden Muskeln bilden den Bauch der Wade (Fig. 294), und setzen sich mit einer gemeinsamen mächtigen Sehne (Achilles-Sehne) am Tuber calcanei fest. Der N. tibialis sendet ihnen Zweige.

M. gastrocnemius (Fig. 295). Dieser oberflächliche Wadenbauchmuskel entspringt mit zwei Köpfen von der hinteren oberen Fläche der Condylus femoris. Aus den Köpfen gehen zwei Bäuche hervor, auf deren hinterer Fläche die Ursprungssche ne sich weit herab erstreckt. Die Lage dieser Sehne ist zugleich seitlich und deckt den Muskelbauch, auf dem sie verläuft, gegen die Endsehnen der Beugemuskeln, die hier auf ihr spielen. Der laterale Kopf nimmt seinen Ursprung etwas tiefer als der mediale, wenig stärkere. Indem beide Köpfe zwischen den Endsehnen der Beugemuskeln des Unterschenkels an der hinteren Fläche des Oberschenkels hervortreten, begrenzen sie die Fossa poplitea von unten her. Beide Bäuche verlaufen ein-
ander parallel und eng aneinander geschlossen bis zur halben Länge des Unterschenkels, und treten in eine breite, an der Vorderfläche der Bäuche weit hinaufreichende Endsehne über, welche abwärts sich verschmälert und die Achillessehne bildet hilft.

M. soleus (Schollenmuskel) (Fig. 296). Wird fast vollständig vom Gastrocnemius bedeckt. Er entspringt vom Capitulum fibulae und von da herab vom oberen Drittel dieses Knochens, dann von einem von der Fibula her schräg zur Tibia herab verlaufenden Sehnenstreif, der unterhalb der Linea poplitea befestigt ist. Von da an erstreckt sich der Ursprung auf die Linea poplitea und tritt über das zweite Viertel der Länge der Tibia herab. Der aus diesen Ursprün gen gebildete ansehnliche Muskelbauch tritt unter den Seitenrändern der Gastrocnemiusbäuche etwas hervor, erstreckt sich auch weiter als diese abwärts und fügt sich allmählich in die, auf seiner Oberfläche weit abwärts ausgedehnte Endsehne ein. Diese verbindet sich dann mit jener des Gastrocnemius zur Achillessehne.

Von dem tibialen Ursprunge her setzt sich eine Sehne auch in den freien Theil des Muskelbauches fort. Auch die Endsehne senkt sich ins Innere des Bauches, und kommt mit einem starken Streifen bis in die Nähe des Capitulum fibulae aufwärts steigend, auch an der Vorderfläche zum Vorscheine. Durch diesen Streif wird der Muskelbauch in zwei Portionen getheilt, und erscheint an der Vorderfläche gefiedert.

Durch die Vereinigung der Endsehnen des Gastrocnemius und Soleus zur Tendo Achilles bilden beide Muskeln einen Einzigen: den M. triceps surae.

Da die Achillessehne von den tiefer gelegenen Muskeln sich abhebt (vergl. Fig. 299), entsteht unter ihr ein Raum, der von lockerem Bindegewebe und Fett ausgefüllt wird. Die Sehne tritt am Cal-
Muskeln der Gliedmaßen.

421
caneus über der hinteren Fläche desselben, etwas verbreitert herab und nimmt am unteren Rande dieser Fläche ihre Insertion.

Der Triceps surae streckt den Fuß. Durch den Ursprung des Gastrocnemius oberhalb des Kniegelenkes kann er auch zur Flexion des Unterschenkels im Kniegelenke beitragen.

M. plantaris. Dieser unschönlische Muskel entspringt über dem lateralen Kopfe des Gastrocnemius, theils über dem Condylus lateralis femoris, theils von der Kapsel, und verläuft schräg gegen die Kniekehle herab, wo sein kurzer, rasch verjüngerter Bauch in eine sehmale, platte Endsehne übergeht. Diese verläuft zwischen Gastrocnemius und Soleus medialwärts herab und verschmilzt entweder mit der Achillessehne, oder tritt medial hervor, um entweder früher oder später in der Fascie zu endigen, oder die mediale Fläche des Caleaneus zu erreichen, wo sie Befestigung gewinnt (Fig. 296).

3. Tiefe Schichtte.

M. popliteus (Fig. 297). Der Kniekehlenmuskel bildet mit seinem platten dreiseitigen Bauche einen sehr geringen Theil des Bodens der Kniekehle, da er größentheils von den beiden Köpfen des Gastrocnemius überlagert wird. Er entspringt mit einer starken Sehne an der äußeren Seite des lateralen Condylus aus einer queren Grube darzelsst, bedeckt vom lateralen Seitenbande des Kniegelenkes, empfängt dann noch Verstärkungen durch Ursprünge von der Kapsel des Kniegelenkes und erstreckt sich mit schräg verlaufenden Fasern abwärts und medial. Die Insertion findet an der Tibia statt, unterhalb des medialen Condylus bis herab zur Linie obliqua.

Wirkung: Spannt die Kapsel des Kniegelenks bei der Beugung und unterstützt die Rotation der Tibia nach innen.
M. tibialis posticus (Fig. 297). Ist der mittlere der drei longitudinalen Muskeln dieser Schichte und nimmt größtenteils den Raum zwischen beiden Knochen ein. Er entspringt theils von der Tibia, unterhalb der Insertion des Poplitus, theils von der Fibula und der Membrana interossea. Der obere Ursprungsrund bildet einen Ausschnitt, welchem die zum Durchlaß von Gefäßen dienende Lücke des Zwischenknochenbandes entspricht. Der fibulare Ursprung erstreckt sich weiter herab, und ebenso jener vom Zwischenknochenbande, indeß der tibiale Ursprung bald dem folgenden Muskel Platz macht. Die schon oben zwischen beiden Köpfen beginnende Endsehne wird abwärts bedeutender und legt sich mit dem unteren Theile des Muskelbauches allmählich an die Tibia an. Sie erreicht den medialen Malloceleus und zieht in einer Rinne an dessen hinterer Fläche zum Innenrande des Fußes, wo sie an der Tuberosität des Kahnbeins, sowie an der Plantarfläche des Cuneiforme I sich festheftet, und auch einen schwächeren, lateralen Sehnenzipfel noch schräg in die Tiefe der Planta zu den beiden anderen Keilbeinen entsendet. Der obere Abschnitt des Muskels erscheint gefiedert.

Der fibulare Ursprung des Muskels geht abwärts auf einen Sehnenstreifen über, welcher lateral auch dem Flexor hallucis longus als Ursprungsschne dient. Die Endschehe des Tibialis posticus wird auf ihrem Wege hinter dem Knöchel von der oberflächlicherliegenden Endschehe des Flexor dig. comm. longus gekreuzt. Fixirt wird die Endschehe hinter dem Malloceleus durch ein sie scheidensformig umschließendes Band. Die Lage des Muskelbauches zu beiden Unterschenkelknochen ersehe man auf dem in Fig. 294 gegebenen Querschnitte.

M. flexor digitorum pedis longus (Fig. 297). Liegt an der medialen Seite des Tibialis posticus. Entspringt von der Tibia unterhalb der Insertion des Poplitus und erstreckt sich halbfiedert bis unter die Hälfte der Länge der Tibia herab. Von daläuft der Muskelbanch frei der Tibia entlang, dem Tibialis posticus angeschlossen, tritt aber allmählich über die Endschehe des letzeren und sendet seine hinter dem Fußgelenke frei gewordene Endschehe zur Fußsohle. Sie liegt dabei

Das Verhalten des accessorischen Kopfes wird beim Fuße aufgeführt.

Häufig erstreckt sich vom Ursprungsanfange des Flexor digitorum longus eine Sehne über den Muskelbauch herab, die sich unten auf verschiedene Weise festheftet und meist mit einem dem Tibialis posticus angehörigen Sehnenblatte verbindet. Sie läßt in den Flexor digit. longus übergehende Muskelfasern entspringen. Der Sehnenstrang tritt zuweilen auch fibularwärts und verbindet sich mit der Ursprungssehne des Flexor hallucis longus. Die dadurch gebildete Spalte läßt die Art. peronea durchtreten. Accessorische Ursprungsportionen treten nicht selten selbständiger auf, so kommt zuweilen ein Kopf von der Fibula her, geht in die Endsehne über und ersetzt sogar den accessorischen Plantarkopf.

Wirkung: beugt die Zehen.

Bei den Affen gibt der bedeutend anschließende Muskel meist noch die perforierenden Sehnen für die 3. und 4., bei Hylobates auch die für die 2. Zehe ab, ergänzt damit den Flexor dig. longus, der hier nur die 2. und 5., oder nur die 2. Zehe versorgt. Die
große Zehe empfängt dagegen meist nur eine schwache Sehne, die beim Orang sogar ganz fehlt (Bischop).

Daraus erheilt die Zusammengeschöbigkeit des Flex. hall. longus zum Flex. dig. longus, die auch die Verbindung der Sehnen beider Muskeln in der Fußsohle erklärt.

Das Verhalten der sich kreuzenden Endsehnen des *Flexor digit. longus* und des *Flexor hall. longus* zu der Fußsohle ist derart, dass in der Mehrzahl der Fälle die Flexor hallucis-Sehne an der Kreuzungsstelle einen lateralen Zweig entsendet, welcher sich wieder in zwei Sehnen spaltet, die für die 2. und 3. Zehe bestimmt sind und sich den bezüglichen Sehnen des Flexor digitorum longus zugesellen. Seltener geht auch zur 4. Zehe eine Sehne ab (ein solcher Fall ist in Fig. 298 dargestellt); häufig dagegen geht die abgezweigte Sehne nur zur 2. Zehe. Nie erhält die 5. Zehe einen Zweig vom Flexor hallucis. Der Flexor digit. longus wird also durch die Abzweigungen des Flexor hallucis longus verstärkt und letzterer tritt dadurch mehr als ein zweiter Flexor digit. longus [als *Flexor fibularis* von dem *tibialen Flexor* (Fl. dig. comm. long.) unterscheidbar, denn als bloßer Flexor hallucis auf. Er empfängt übrigens auch sehr häufig noch ein Sehnenbündel vom Flexor digitorum longus, welches an der Kreuzungsstelle an den medialen Rand seiner Sehne sich anlegt. (Vergl. Fig. 298.)

Zwischen der oberflächlichen und der tiefen Gruppe der hinteren Unterschenkelmuskeln verlaufen Blutgefäße und Nerven und bedingen eine vollständigere Scheidung dieser Gruppen (vergl. Fig. 294). Diese Trennung nimmt abwärts in dem Maße zu, als die Endsehnen von Gastrocnemius und Soleus sich zur Achillessehne vereinigt haben, die sich um den Calcaneus zu erweichen, von der tiefen Gruppe abhebt. Mit der Bildung der Achillessehne entfaltet die gemeinsame Fasie der tiefen Gruppe immer mehr sehnhafte Fasern in transversaler Anordnung und umschließt damit enger jene Muskeln. Sie lässt dadurch allmählich einen Bandapparat entstehen, der gegen die Malleoli zu sich bedeutender verstärkt und endlich in die an jedem Malleolus vorhandenen Haltebänder der Sehnen übergeht. Die Anordnung der Muskeln am distalen Ende des Unterschenkels bietet der in obenstehender Figur dargestellte Querschnitt.
D. Muskeln des Fußes.

§ 128.

Auf die Rückenfläche setzt sich die Faszie des Unterschenkels fort und bildet dort ein oberflächliches Blatt, in welches das Ligamentum cruriatum eingewebt ist. Es besteht aus sich kreuzenden Schneufaserzügen, welche vom Malleolus medialis zum äußeren, vom Malleolus lateralis zum inneren Fußrand verlaufen.
Dritter Abschnitt.

Der vom Mallicolus lateralis kommende Schenkel des Kreuzbandes ist meist nur schwach entwickelt. (Vergl. S. 115.)

Die Plantaraponeurose ist insofern jedoch der Palmareponeurose ähnlich, als auch sie Beziehungen zu einem Muskel besessen haben wird. Die Existenz des M. plantaris verdeutlicht auf eine ursprüngliche Funktion, welche er verlor und damit die Reduktion antrat, in der wir ihn finden. Jene Function besteht aber, wie uns jene Säugethiere lehren, bei denen er sehr ausgebildet vorkommt, in seinem Verhalten zur Plantaraponeurose, in die er seine Endesche übergehen läßt, so daß er dadurch als ein die Plantarflexion des Fußes bewirkender Muskel erscheint. Es ist begreiflich, dass nach der von Menschen erreichten ausserlichen Verwendung des Fußes als Stützorgan, wobei die ganze Sohlfäche den Boden berührt und dadurch der Fuß in Winkelstellung zum Unterschenkel tritt, die Plantaraponeurose durch erworbene Befestigung am Calcaneus für den Fuß eine wichtige Function dadurch erhält, dass sie zur Erhaltung der Wölbung des Fußes beiträgt. Indem sie in diesen Zustand gelangt, wird der zu ihr gehende Muskel überflüssig und ging demgemäß Rückbildung ein, während seine Function, soweit sie sich auf den ganzen Fuß erstreckte, von dem mächtiger sich entfaltenden Extensor triceps übernommen ward. (S. 421.)

Die Muskeln scheiden sich in Muskeln des Rückens und in Muskeln der Sohlfäche des Fußes.

a. Dorsale Muskeln.

Wirkung: Streckt die Grundphalange der Großzehe.

Innervirt vom N. peron. prof.

M. extensor digitorum brevis. Liegt lateral vom vorhergehenden, neben dem er am Calcaneus, bedeutend auf die laterale Fläche des vorderen, den Eingang zum Sinus tarsi begrenzenden Theiles dieses Knochens übergreifend.
Muskeln der Gliedmaßen.

Seltener kommt auch noch eine Sehne für die kleine Zehe hinzu.
Wirkung: streckt die 2.—4. Zehe.
Innervirt vom N. peron. prof.

b. Plantare Muskeln.

Wie an der Volarfläche der Hand bestehen diese in bedeutender Anzahl, und sind zugleich in ähnlicher Weise gruppiert. Sie ordnen sich in Muskeln des lateralen und des medialen Fußrandes, dann in solche der Mitte der Sohle, welche wieder in mehrere Schichten gesondert sind.

1. Muskeln des medialen Randes (Großzehenseite).

M. abductor hallucis [Fig. 300]. Nimmt die ganze Länge des medialen Fußrandes bis zur Grundphalange der Großzehe ein. Entspringt theils von dem medialen Höcker des Calcaneus, theils noch vom Beginn der Plantaraponeurose, theils vom Lig. laeiniatum und dem die Endsehne des Flexor dig. longus überbrückenden Bandapparate. Der vorwärts verlaufende Muskelbauch entfaltet eine starke oberflächliche Endsehne, welche dem medialen Fußrande entlang zur Basis der Grundphalange der großen Zehe tritt, und dort, nach Verschmelzung mit dem medialen Kopfe des Flexor brevis hallucis sich theils an der Gelenkkapsel, theils an der Grundphalange inserirt.

Wirkung: abduzirte die Großzehe.
Innervirt vom N. plantaris internus.

M. flexor brevis hallucis [Fig. 300]. Entspringt schräg in der Tiefe der Sohlfäche, theils von der Plantarfläche des Cuneiforme I, theils von dem benachbarten Bandapparate, auch noch vom Ligamentum calcaneo-cuboideum plantare und einem kurzen Sehnenblatte, welches von einem lateralen Zipfel der Endsehne des M. tib. post. hervorgeht. Er sondert sich bald in zwei etwas divergirende Bäuche, welche die Endsehne des Flexor hallucis longus zwischen sich fassen. Der mediale Bauch legt sich an die Endsehne des Adductor hallucis, verbindet sich teilweise mit ihr, und tritt dann zum medialen Sesambeine der Articul. metatarsophalangea der Großzehe, wo er sich inserirt. Der laterale Bauch gelangt dagegen am lateralen Sesambein zur Insertion, mehr oder minder mit dem Adductor verschmolzen. Er gehört auch seiner Innervation
gemäß zum Adductor, bildet eine selbständiger gewordene Portion desselben, während der mediale Bauch den eigentlichen Flexor brevis vorstellt.

Wirkung: Beansprucht die Großehe an der Grundphalange.

Innervirt von N. plant. medialis (int.); der laterale Bauch vom tiefen Endaste des N. plant. lateralis. — Der am Daumen der Hand vorhandene Opponens fehlt am Fuße, kommt aber da einigen Amü zu (Orang, Cercopithecus).

M. adductor hallucis (Fig. 302). Ist in zwei Portionen gesondert; die erst an der Insertion zusammenrentren. Die eine Portion (Caput obliquum) liegt in der Tiefe der Fußsohle, wo sie theils vom Lig. calcaneo-cuboideum plantare longum, von der plantaren Wand des Canals für die Endschme des M. peron. longus, theils vom Cuneif. III und den Basen des Metatarsale II und III entspringt. Schräg vorwärts zur Großehe verlaufend nimmt sie die zweite Portion auf und inserirt sich mit dieser theils am lateralen Sesambein, theils an der der Basis der Grundphalange der Großehe. Die zweite Portion (Caput transversum) entspringt meist mit drei getrennten Köpfen von der Plantarfläche des Kapselbandes der Art. metatarso-phasisgea der 3.—5. Zehe, und verläuft quer nach innen zur Großehe.

Bemerkenswerth ist ferner die in gewissen embryonalen Stadien relativ mächtige Ausbildung dieses Muskels und die später erfolgende Reduction (Rütz). In manchen Fällen bleibt jedoch auch später noch der Anschiuf des Ursprungs des Caput transversum ans Cap. obliquum erhalten und der Muskel erscheint dann in einheitlicher Gestalt.

Wirkung: Adducirt die Großehe.

Innervirt vom R. prof. des N. plant. lateralis.

2. Muskeln des lateralen Randes (Kleinzeheenseite).

M. abductor digitii quinti (Fig. 300). Nimmt ähnlich wie der Abductor hallucis den ganzen Kleinzehenrand der Fußsohle ein. Entspringt breit von der Unterfläche des Calcaneus und ist theilweise mit der Plantararopeurose verbunden. Er verläuft schräg gegen die Tuberositas ossis metatarsi V, wo er mit einem Theile sich inserirt, indem der übrige Theil des Muskelbauches sich zur Basis der Grundphalange der fünften Zehe begibt.

Die Endschehen entfallen sich an der Innenfläche des Muskels und erscheint nur auf kurzer Strecke frei.

Wirkung: Abducirt die fünfte Zehe. — Innervirt vom N. plantaris lateralis.
M. flexor brevis digit I V (Fig. 300). Ein am medialen Rande des Abductor zum Vorschein kommender Muskel. Entspringt vom Lig. calc. cub. plant., sowie von der Basis des Metatarsale V und läuft gerade vorwärts zur fünften Zehe, wo er sich an der Basis der Grundphalange inserirt.

Er ist häufig von anschließender Breite und inseriert dann nicht selten auch an dem Metatarsale V, wodurch er zugleich einen in diesem Falle als selbständiger Muskel fehlenden Opponens dig. V repräsentiert.

Wirkung: Abducirt die fünfte Zehe. — Innervirt wie der vorige.

M. opponens digiti V. Entspringt gemeinsam mit dem vorhergehenden, der ihn teilweise bedeckt, und verläuft schräg zum vorderen Theile des Seitenrandes des Metatarsale V, wo er sich inserirt. Dass er aus einer tieferen Portion des Flexor brevis hervorging, lehrt die häufig vorkommende Verbindung mit diesem, sowie die Mannigfaltigkeit der einzelnen Sonderungsstadien.

Er fehlt nicht selten. Zuweilen erscheint er sehr selbständig.

Wirkung: Jener des Opp. dig. V der Hand ähnlich. — Innervirt wie der vorige.

3. Muskeln der Mitte der Fußsohle.

A technical translation into English of a section from an anatomical text in German.

- **M. flexor brevis digit I V (Fig. 300).** A muscle that appears medially. It originates from the ligament calcaneus cuboid plantar, and the base of the fifth metatarsal and runs straight forward to the fifth toe, where it inserts at the base of the intermediate phalanx. It is often of similar width and may insert at the fifth metatarsal bone, making it appear as a separate muscle in this case.

- **Opponens digiti V.** Originates as a common source with the preceding muscle, partially covering it, and runs obliquely to the front part of the side edge of the fifth metatarsal bone, where it inserts. It is often found in a deeper portion of the flexor brevis, as seen from the frequent connection with this muscle and the variety of the individual stages of separation.

- **Wirkung:** Abduces the fifth toe. — Innervates like the previous one.

3. Muscles of the Mid Foot Sole.

Situated between the muscles of the medial and lateral foot edges, covered by the plantar aponeurosis, apart from the muscles of the hand that are homologous to the lumbricals and interossei, there are additional, foot-specific muscles.

- **M. flexor digitorum brevis.** Lies immediately under the plantar aponeurosis. Originates from the rear section of the last muscle and the calcaneus, from its medial prominence, and gradually splits into three to four bellies, from which as many tendons emerge. These run to the 2nd, 4th, or 5th toe, lie above the tendons of the long toe flexors, with which they enter the ligamenta vaginalia on the plantar surface of the toes. The tendon of the flexor brevis splits into two parts at the arch, which form...
Sehne des Flexor longus durchlassenden Schlitz umfassen und sich an die Basis der Mittelphalange inseriren. Das Verhalten der Endsehnen des Flexor brevis kommt daher jenem des Flexor dig. sublimis an der Hand völlig gleich, der Muskel ist ein Flexor perforatus. [Fig. 301.]

Die Sehne für die fünfte Zehe ist, wenn sie vorhanden, doch häufig rudimentär, eine Rückbildung die bei den anthropoiden Affen noch weiter geht, indem hier der Muskel nur die zweite und dritte (Gorilla, orang, Chimpanse), oder sogar nur die zweite Zehe (Hylobates) versorgt. — Innervirt wird der Muskel vom N. plant. medialis.

Der Muskel tritt mit seinem Ursprung häufig auf das Lig. calc. cuboid. plantare über, oder ist mit der Ursprungsscheide des Abduct. hallucis in Zusammenhang. Die Verbindung mit der Sehne des Flexor longus findet bei einer Theilung des Muskels in mehrere Bündel für das mediale Bündel an der oberen Fläche der Sehne statt.

Das Caput plantare verstärkt die Wirkung des Flex. longus, und gibt derselben eine andere Direction. — Innervirt vom N. plantaris lateralis.

Sehr häufig ist die Insertion der Lumbricales, oder einzelner von ihnen an der Kapsel des oben genannten Gelenkes, oder auch direct an der Seite der Grundphalange.

Innervirt vom N. plant. medialis und Ram. prof. des N. pl. lateralis.

Mm. interossei. Obwohl im Allgemeinen mit jenen der Hand übereinstimmend, bieten sie doch in Manchem bemerkenswerthe Abweichungen dar. Sie scheiden sich in äußere oder dorsale und innere oder plantare.

Die Mm. interossei externi nehmen die Spatia interossea von der Dorsalseite her ein, dringen dabei aber auch gegen die Fußsohle vor. Sie entspringen von den gegen einander gerichteten Flächen je zweier Metatarsalia; nur der erste ist auf die Großzehenseite des Metatars. II beschränkt, und bezieht seinen zweiten Kopf gewöhnlich nicht vom Metatars. I., sondern als schwaches Bündel von der Dorsalfläche des Cuneiforme I. Er inserirt sich an dem medialen Rand der Basis der Grundphalange der 2. Zehe. Die übrigen drei Interossei externi inseriren sich an der lateralen Seite der Grundphalange der 2., 3. und 4. Zehe. [Vergl. Fig. 303.]

Alle sind Abductoren, deren also die 2. Zehe zwei empfängt.

Sämtliche Interossei wirken also auf die seitliche Bewegung der Zehen und werden durch die bereits an den Fußrändern beschriebenen Muskeln dahin ergänzt, dass jedem der Zehen zwei die Adduction oder Abduction bewirkende Muskeln zukommen.

Die dorsalen sind gleichfalls ursprünglich in planterer Lage und rücken erst allmählich in die Interstitien empor, wobei die plantaren ihnen folgen. Daraus erklärt sich auch die Versorgung der dorsalen durch Nerven von der Plantarseite. — Vom M. extensor dig. brevis her treten nicht selten abgelöste Bündel zu den Interossei dorsales, was bei den letzteren auch wie ein Übergreifen des Ursprungs auf den Fußrücken sich darstellt. In diesen Fällen sind die betreffenden Mm. interossei dorsales keine einheitlichen Muskeln mehr, sondern sie sind aus zwei einander sehr fremden Bestandteilen zusammengesetzt. Diese lassen sich eben sowohl nach ihrem Innervationsgebietes sondern, als auch durch Beachtung der Zwischenstufen, welche den Extensor brevis zugehörigen, den Interosseis sich anschliessenden Portionen nicht selten deutlich erkennen lassen.

Indem so die M. interossei dorsales, und zwar zumeist der zweite, aus einem ihnen ursprünglich fremden Gebiete einen Zuwachs erhalten können, erklärt sich daraus die Angabe von der Innervation dieser Muskeln durch Zweige des N. peroneus profundus.

Vierter Abschnitt.

Vom Darmsystem.
(Nutritious- und Respirationsorgane.)

Allgemeines.

§ 129.

Das zur Aufnahme und Veränderung der Nahrung bestimmte Organsystem tritt uns in dem frühesten Zustande in sehr einfachem Verhalten entgegen. Es erscheint aus zwei Abschnitten dargestellt; der eine davon beginnt mit der Mundöffnung, und stellt die im Kopfe liegende obere, von der Basis des Craniums begrenzte Strecke des gesammten Tractus intestinalis vor, welche Strecke anfänglich seitliche, wenn auch unvollständige Durchbrechungen seiner Wand, die Kiemenspalten aufweist (vergl. oben § 40).

Die Wandungen dieses Abschnittes, den wir als Kopfdarm bezeichnen, treffen mit der Körperwandung der bezüglichen Strecke zusammen. Diese Cavität bleibt nur bei niederer Wirbeltieren (Fischen, Amphibien) in diesem einfachen und einheitlichen Zustande. An den hier von Kiemenspalten durchbrochenen Wandungen bilden sich, von den Kiemenbogen getragen, die als Atmungsorgane dieser Thiere fungirenden Kiemen aus, so dass die primitive Mundhöhle, dadurch auch respiratorische Beziehungen gewinnt, die sich bei den höheren Wirbeltieren, bei denen es zu keiner Kiemenbildung mehr kommt, in anderer Weise gestalten.

Gegenbaur, Anatomie.

Durch diese morphologische Scheidung ist auch eine funktionelle Differenzierung bedingt. Die auch die Nasenruhe (vergl. S. 78) aufnehmende und damit zugleich als
Riechorgan fungierende Nasenhöhle dient als Luftweg, und die Mundhöhle bleibt der anfriühenden Nahrung als Speiseweg überlassen. Erst in dem indifferent gebliebenen Abschnitt der Kopfdarmhöhle (im Pharynx) findet eine Begegnung jener Wege, ja eine Kreuzung derselben statt, welche an dieser Stelle wieder neue Einrichtungen hervorruf

Von den Schleimhäuten.

§ 130.

Als Schleimhaut Membrana mucosa wird die Membran bezeichnet, welche das gesamte Hohlraumsystem des Tractus intestinalis auskleidet, so- wohl die Hauptstrecken desselben wie alle jene Organe, welche vom Nahrungs- canal von verschiedenen Bildungen aufgegeben werden, welche aber für den Unterschied der Kopfdarmhöhle (im Pharynx) nicht. Allen sind bestimmte Charaktere gemeinsam, die sie von anderen membranösen Bildungen leicht unterschieden lassen.

An den äußeren Öffnungen der mit Schleimhaut ausgekleideten Binnenräume setzt sich die Schleimhaut unmittelbar ins Integument des Körpers fort.

§ 131.

Die Drüsen der Schleimhäute erscheinen zwar nach den betreffenden Organsystemen, und auch da wieder nach einzelnen Localitäten verschieden, sowohl in der allgemeinen Form wie im besonderen Verhalten der bei ihnen verwendeten Epithelien. Im Allgemeinen können sie jedoch in zwei Hauptformen gruppirt werden, die bereits früher (§ 17) als tubulöse (schläuchförmige) und

Von den serösen Hauten.

§ 132.

Auf der Strecke seines Verlaufes durch die Bauchhöhle empfängt der Darmcanal noch eine besondere Umhüllung, welche continuirlich an die Wandung der Höhle sich fortsetzt. Eben solche Bekleidungen werden auch anderen in die Bauchhöhle einragenden Organen zu Theil, nicht minder wie den in die Brusthöhle eingelagerten (Lungen und Herz). Das all diesen Einrichtungen Eigenthümliche kann in Folgendem zusammengefaßt werden. Die jene Binnenräume auskleidenden Membranen werden als seröse bezeichnet, die bezüglichen Hohlräume sind seröse Hölzer, so genannt, weil eine, wenn auch geringe Menge des Serums (Blutwasser) ähnlicher Flüssigkeit in ihnen sich vorfindet, die Oberflächen der Wände durchfeuchtet. Diese Flüssigkeit hatte man als ein Secretionsprodukt der Wandungen, speziell der serösen Membranen angesehen. Diese Höhlen bilden geschlossene Säcke, deren Innenfläche von einer dünnen und völlig glatten Membran gebildet wird, die sich an einer Stelle auf den in die Höhle eingelegten Eingeweidehöhlen fortsetzt und, nachdem sie derselben überzogen,
Von den serösen Häuten.

437

wieder zur Wandung sich zurückschlägt. Man kann sich das Verhältniss so vorstellen, als ob das betreffende Eingeweide, außerhalb des serösen Sackes gelegen, an einer Stelle sich gegen den Sack eingedrängt, und einen Theil der Wand des Sackes vor sich her in den Sack eingestülpt habe (vergl. Fig. 304 A). Je nachdem das bezügliche Organ (\(i\), mehr oder minder weit in die seröse Höhle (\(s\), eingetreten ist, wird es mehr oder minder vollständig von der Membrana serosa überkleidet, die, wenn das Organ am vollständigsten in der Höhle liegt, sich als eine Doppellamelle (Duplicatur) von der Wand her zu ihm begibt (Fig. 304 B. m). Man unterscheidet bei diesem Verhalten den die betreffenden Eingeweide überziehenden Theil der Serosa als viscerales Blatt (\(A. B. v\)), den die Wand der Cavität auskleidenden als parietales Blatt (\(A. B. p\)). Den Übergang von einem zum andern bildet eben die genannte Duplicatur.

Die serösen Höhlen entstehen aus einer Spaltung des mittleren Keimbrettes, und die serösen Häute gehen aus einer Differenzirung der Wandflächen dieser Spaltung hervor. Die anfänglich einheitliche Leibeshöhle (Cölom, Pleuro-peritonealhöhle) scheidet sich mit der Entstehung des Zwerchfelles in die Bauchhöhle, (Peritonealhöhle), und die beiderseitigen Cavitätten des Thorax (Pleurahöhlen), zwischen denen eine besondere, das Herz bergende seröse Höhle (Pericardialhöhle) eingebettet ist.

Im Baue der serösen Membranen ergeben sich sehr einfache Verhältnisse. Eine meist dünne Bindegewebschichte bildet die Grundlage der Membranen, welche von einem einschichtigen Plattenepithel, dessen Elemente sehr innig aneinander und an der Grundlage haften, überzogen wird. In dem Bindegewebe verbreiten sich Blutgefäße und Lymphbahnen.

Das unterhalb der serösen Membranen befindliche Bindegewebe, welches sie mit anderen, die serösen Cavitätten umwandernden Körpertheilern in Verbindung setzt, wird als besondere Schichte (Subserosa) unterschieden.

§ 133.

Die an der primitiven Kopfdarmhöhle eintretende Sonderung in mehrere, verschiedenen Verrichtungen dienende Abschnitte, veranlaßt für jeden derselben eine gesonderte Vorführung, zumal jedem den differenten Verrichtungen gemäße, sehr verschiedenartige Strukturen zukommen. Wir haben also die mit der Mundöffnung beginnende secundäre Mundöhle, die darüber befindliche Nasenhöhle und den hinter beiden gelagerten Pharynx als hierher gehörige Räume zu betrachten.

Von der Mundöhle.

Diese Cavität bildet den ersten Abschnitt des gesammten Nahrungseeals, in welchem manigfache, für die Ernährung wichtige Functionen durch besondere Organe vollzogen werden. Diese Functionen bewirken die erste Veränderung der aufgenommenen Nahrung in deren Zerkleinerung durch das Gebiß, in Durchtränkung mit dem Drüsensecrete der Mundöhle und Formierung zu einzelnen in den Pharynx zu befördernden Bissen. Aber auch der Zusammenhang der Mundöhle mit den Luftwegen bringt ihr functionelle Beziehungen zu den Atemorganen, indem nicht nur unter gewissen Umständen der Luftweg durch die Mundöhle geht, sondern auch eine bedeutende Betheiligung der letzteren an der Sprachbildung vorhanden ist.

In dem Cavum oris wird das Dach durch den Gaumen gebildet, dessen von der Seite her erfolgtes Vorwachsen die Scheidung von der Nasenhöhle vollzog. Soweit derselbe durch Knochen (Maxillare sup. und Palatinum) eine Grundlage empfängt, wird er als harter Gaumen (Palatum durum) von dem hinten an ihn sich anschließenden weichen Gaumen (Palatum molle) unterschieden. Letzterer bildet schräg nach hinten und abwärts gerichtet auch eine Strecke der hinteren Wand (vergl. Fig. 305). Unter dieser, d. h. unterhalb des weichen Gaumens, findet die Verbindung der Mundöhle mit der Rachenhöhle durch den Isthmus faucium statt. Vom Boden der Mundöhle erhebt sich in der Mitte die Zunge, deren Rücken nach hinten unter dem weichen Gaumen nach abwärts zum

Die bei der Mundhöhle zu betrachtenden Theile sind:

1. Die Schleimhaut und die aus ihr hervorgehenden Gebilde:
 a. Drüsen, b. Zähne;

2. Die muskulösen Organe:
 a. Zunge, b. weicher Gaumen.
I. Schleimhaut der Mundhöhle.

§ 134.

Die Schleimhaut des harten Gaumens zeigt eine mehr oder minder deutliche mediane Erhebung, die constant am vorderen Abschluft vorkommt (Raphe). Seitlich davon bietet sie einige (2 — 4) quere Leisten, meist in bogenförmigem Verlaufe, während der hintere Abschluft stets glatt erscheint. Diese Gaumenleisten (Gaumenfalten) sind beim Neugeborenen in größerer Ausdehnung und Entfaltung vorhanden und nehmen einen großen Theil der Fläche des harten Gaumens ein. Später erfahren sie eine Rückbildung und im höheren Alter können sie vollständig verschwinden, so dass dann die ganze Gaumenfläche glatt erscheint.

Am vorderen Ende der medianen Raphe findet sich eine papillenartige Vorragung, die sehr verschiedenartige Verhältnisse darbietet; zuweilen trägt sie eine Vertiefung, die Mündung eines blindgeendigten kurzen Canals, der das Rudiment eines bei Säugthieren bestehenden, den Gaumen durchsetzenden Canalis nasopalatinus (C. incisivus) vorstellt. Bei Säugthieren bildet dieser Canal, aufwärts paarig werdend, den Stenson'schen Gang, der ein am Boden der Nasen-
höhle, beiderseits an der Scheidewand liegendes Sinnesorgan, das Jacobson‘sehe Organ, in sich einmünden lässt und mit dem Cavum oris in Verbindung setzt.

Was den Bau der Schleimhaut der Mundhöhle betrifft, so ist eine sehr verschiedene Entfaltung ihrer Papillen zu bemerken. Diese sind am stärksten am Lippenrande, wo sie ein reicheres Netz von Blutgefäßen führen (Fig. 306). Nach innen zu werden die Papillen einfacher, nur am vorderen Theile des harten Gaumens und nahe am Zahnfleischrande sind sie wieder anschnelliger, führen jedoch nur einfache Capillarschlingen.

Die Dicke der Schleimhaut ist an den einzelnen Gegendern der Mundhöhle sehr verschieden, am bedeutendsten ist sie am harten Gaumen, auch am Zahnfleisch noch ansehnlich. Die Submucosa bildet meist keine gesonderte Schichte, nur an der Wangenschleimhaut ist sie selbständiger. An den Lippen wie am weichen Gaumen steht sie mit der Muskulatur dieser Theile in engerer Verbindung, indem Bündel und Züge jener Muskulatur in sie eintreten, sich in ihr auflösen und mit der Schleimhaut sich in Zusammenhang setzen.

Das Epithel der Mundschleimhaut ist allgemein ein mehrfach geschichtetes Plattenepithel, dessen Elemente auch in den obersten Schichten noch mit je einem Kern versehen sind (Fig. 307).

Vierter Abschnitt.

Organe der Mundsuschleimhaut.

a. Drüsen.

§ 135.

Die Schleimhaut der Mundhöhle ist mit einem reichen Drüsennapparat ausgestattet, dessen einzelne Bestandtheile nach dem acinösen Typus gebaut sind. Ihr Secret bildet die Mundhöhlenflüssigkeit, ein Gemisch der verschiedenartigen Drüsenprodukte (Speichelflüssigkeit und Schleim) mit abgestoßenen Epithelzellen. Die kleineren dieser Drüsen lagern in der Dicke der Schleimhaut oder erstrecken sich noch in die Submucosa. Bei einer Vermehrung des Drüsenvolums bettet sich die Drüse unter die Schleimhaut, dringt in die daselbst befindliche Muskulatur der Wandung der Mundhöhle und bei noch größerem Umfange wird die Schleimhaut nur vom Drüsenausführungsgang durchsetzt und der voluminöser Körper der Drüse gewinnt seine Lage an einer von der Mündung mehr oder minder entfernten Stelle der Nachbarschaft der Mundhöhle.

Wir scheiden die Drüsen nach ihrem Volum in zwei Gruppen, deren jede aus Drüsen mit verschiedenartiger Secretbildung gebildet wird.

1. Kleine Drüsen (Schleimdrüsen).

Diese traufig gestalteten, in der gesammten Mundhöhlen-Schleimhaut vertheilten Drüsen liegen entweder in der Schleimhaut selbst oder bilden doch, selbst wenn sie dieselbe nur mit ihrem Ausführungsgange durchsetzen, minder voluminöse Organe, als in der anderen Gruppe bestehen. Sie besitzen einen kurzen, vor seiner Ausmündung meist etwas erweiterten Ausführungsgang, der sich innerhalb des Drüsenkörpers in mehrere Äste teilt. Diese verzweigen sich in die Läppchen (Lobuli) der Drüse, und innerhalb dieser zu den kleinsten Läppchen (Acini). Diese Drüsen unterscheiden wir wieder nach den Regionen, denen sie zugetheilt sind.

Glandulae labiales bilden eine gürtelförmi ge Schichte nach innen von den Lippenrändern, werden spärlich gegen den Mundwinkel und sind zum Theile zwischen die Muskulatur der Lippen eingebettet. Nicht selten durchsetzen einzelne dieser Drüsen jene Muskulatur.

Gl. buccales. Eine Anzahl der Wangeschleimhaut angehörige Drüsen, welche häufig den M. buccinator durchsetzen. Die hinterste, an der Umsehlagstelle der Wangeschleimhaut in das Zahnfleisch der Kiefer befindliche Gruppe bilden die Gl. molares (HENLE).

Gl. palatinae. Etwas kleinere Drüsen als die vorhergehenden bilden eine continuirliche Schichte am harten Gaumen und kommen vereinzelt auch in der Schleimhaut des weichen Gammens vor.
Gl. linguales, scheiden sich in mehrere Abtheilungen. Sie liegen theils an den Rändern der Zunge, an der Spitze beginnend, wo sie oft zu einem Complexe (BLANDIN-NICH'sche Drüse) vereinigt und mehr oder minder in die Muskulatur der Zunge eingebettet sind: theils finden sich sie am Rücken der Zunge, und zwar von den Papillae vallatae aus nach hinten zu. Die in der Umgebung der Papillae vallatae befindlichen sind von denen der Zungenwurzel verschieden.

2. Große Drüsen (Speicheldrüsen).

Ein Theil der bezüglichen Drüsen sondert ein schleimhaltiges Secret ab und stellt sich dadurch den kleineren Drüsen näher, während ein anderer Theil eine mehr seröse Flüssigkeit secernirt. So hat man Schleim-Speicheldrüsen und seröse Speicheldrüsen unterschieden, von denen die letzteren die durch ihre chemische Constitution charakteristische Speichelflüssigkeit liefern.

Diese Drüsen sind die Untergungendrüse, die Unterkieferdrüse und die Ohrspeicheldrüse.

Gl. sublingualis. Eine bedeutendere Gruppe größerer Schleimdrüsen am Boden der Mundhöhle bildet eine compacte, von der Carunenula sublingualis an nach hinten bis zum Rande des Mylo-hyoidens reichende, letzterem Muskel aufliegende, etwas abgeplattete Drüsemasse, welche bezüglich der Ausführungsgänge differente Befunde darbietet. Bald münden die Drüsen vereinzelt in einer dem Unterkiefer parallelen Reihe aus (Ductus Rivini), bald sind die Mündungen
vermindert, indem einzelne Drüseguppen einem gemeinsamen Ausführungsgang an gehören, oder es vereinigt ein Ausführungsgang den größeren Theil des Drüsencomplexes, indessen noch mehrere einzelne Drüsen besonders münden. Der größere, häufig sämtlichen Drüsen angehörige Ausführungsgang [Ductus Bartholomewanus] führt dann zur Caruncula sublingualis. So tritt an die Stelle zahlreicher kleiner Drüsen eine einzige größere, die hier in verschiedenen Stadien ihrer Ausbildung zu erkennen ist. Eben dadurch gibt sie auch die Vermittlung ab zu den zahlreichen kleinen Schleimdrüsen.

Das Wechselverhalten dieses Befundes ist nicht so anzusehen, als ob bei der Bildung einer einheitlichen Drüse eine Concurrenz zuvor getrennter Theile eine Rolle spiele, vielmehr hat man sich vorzustellen, dass die größere Drüse aus der Ausbildung einer kleineren hervorgegangen, und dann die Entwicklung anderer kleiner Drüsen hemmte, denn es findet sich beim Vorkommen einer größeren immer noch eine Anzahl kleiner Drüsen vor.

Bei einer geringeren Längenentfaltung des Ausführungsganges bleibt die Gl. submaxillaris auf dem M. mylo-hyoideus liegen und erscheint dann wie ein Theil der Gl. sublingualis (Turner).

— Die Vereinigung der Ausführunggänge der Submaxillaris mit der Sublingualis macht es wahrscheinlich, dass beide zusammen eine einzige Drüse darstellen, Differenzierungen einer einheitlich angelegten Drüse sind.

Eine dritte größere Drüse, die aber durch ihr Speichelser von dem der bisher aufgeführten sich unterscheidet, ist die Ohrspeicheldrüse:

Glandula parotis (Fig. 309). Sie liegt von allen Drüsen der Mundhöhle letzterer am entferntesten, und ist eine ansehnliche, den Raum un-

Bezüglich der feineren Structure dieser Drüsen ist folgendes hervorzuheben. Die Drüsen-Acini besitzen eine Umhüllung durch eine Membrana propria, welcher ramifizierte Zellen zugehören. Diese Schichte setzt sich auch auf die Ausführungsgänge der Acini fort und stellt an den größeren Ausführungsgängen, welche aus der Vereinigung kleinerer hervorgingen, eine an Stärke zunehmende Bindegewebsschicht vor. Die Auskleidung der Ausführungsgänge bildet eine Schichte Cylinderepithel (Fig. 311 a). Verschieden ist das Verhalten des Drüsenepithels der Acini.

In der Sublingualis sind zweierlei Zellenformationen im Epithel der Acini erkennbar. Den größten Theil besitzen größere, das enge Lumen begrenzende Zellen (s. Fig. 310), welche an der Basis einen Fortsatz erkennen lassen, der sich platt der Acinuswand anlagert und unter den Körper je einer nebeneinanderliegenden Zelle tritt. Diese Zellen sind die secernierenden. Dazu kommen noch an einzelnen Stellen der Acini außerhalb den das Lumen begrenzenden Zellen der Acinuswand angelagerte Schnitt durch einen Theil der Submaxillaris des Hundes. a Ein Ausführungsgang. b Acini mit ihrem Epithel. c Randzellengruppen.
halbmondförmige Gebilde, Complexe kleinerer Zellen, welche als Ersatz für die erstgenannten größeren bestimmt scheinen (Randzellen) (Fig. 311 c).

1. Zähne.

§ 136.

Die Zähne sind Gebilde der Mundhöhlenschleimhaut. insofern sie von ihr aus ihre Entstehung nehmen. Die letztere gibt uns ein Verständniss für die Zusammensetzung jener Hartgebilde, indem sie die Bestandtheile derselben mit bestimmten Geweben der Schleimhaut in Beziehung zeigt.

1. Bau der Zähne.

Jeder ausgebildete Zahn läßt den frei vorstehenden Theil als Krone unterscheiden (Fig. 312), welche an einer meist wie eingeschnürt sich ausnehmenden Stelle, dem Halse, in einen in die betreffende Alveolarhöhle des Kiefers eingesenkten Fortsatz, die Wurzel, übergeht. Am Halse wird der Zahn vom Zahnfleisch umfaßt. Die Krone ist nach den Arten der Zähne verschieden gestaltet und auch die Wurzel bietet Differenzen, vorzüglich bezüglich ihrer Stärke, aber auch dadurch, dass sie bei manchen Zähnen getheilt ist, so dass mehrere Wurzeln bestehen. Am Ende der Wurzel ist eine feine Öffnung bemerkbar; sie führt in den die Wurzel durchsetzenden, meist etwas sich erweiternden Zahncanal, der bis in die Krone zur Zahnhöhle sich fortsetzt. Bei mehrwurzigen Zähnen nimmt die einfache Zahnhöhle die mehrfachen, der Zahl der Wurzeln entsprechenden Zahncanäle auf (Fig. 313). Zahncanal und Zahnhöhle sind von einem weichen, Blutgefäße und Nerven führenden Gewebe, der Papilla (Pulpa) dentis ausgefüllt. An der Spitze der Wurzel steht diese mit anderen Theilen in Zusammenhang. Von da aus
erstreckt sich noch eine Bindegewebschicht, als Periost der Alveole die Wurzel umgebend, zum Zahnfleisch empor. Dieses Periost der Alveole umschließt zugleich die Wurzel des Zahnes und gehört ebenso dieser an.

Das feste, den Zahn formende Material setzt sich aus drei sehr verschiedenen Bestandtheilen zusammen. Die Grundlage des Ganzen bildet das Zahnein (Dentium, Substantia eburnea). Darüber lagert sich eine auf die Krone be- schränkte, dicke, bis zum Halse herabreichende und hier dünn endigende Schichte eines härteren Gebildes, der Schmelz:Email. Subst. vitrea s adamantina). Endlich wird das Zahnbein noch an der Wurzel von einer besonderen Lage, dem Cement (Substantia ossea) umschlossen. Bezüglich der feineren Textur dieser Bestandtheile ist folgendes hervorzuheben:

Sie werden dabei nur allmählich feiner und senden gleich am Anfange feine Zweige in spitzen Winkeln ab. Nähern der Oberfläche des Zahnbeins gehen die Kanälchen bedeutendere Ramificationen ein (Fig. 314) und lassen Anastomosen mit den Verzweigungen benachbarter wahrnehmen. In der oberflächlichsten Lage münden sie in nicht selten desselbst vorhandene weitere und manngfach ausgebuchtete Räume (Interglobularräume) ab. Diese Zahnrohren werden von einer weichen, wahrscheinlich protoplasmatischen Substanz, den Zahnfasern, ausgefüllt. Um diese findet sich noch eine sehr vielfältig umgebende, feinste Schichte von elastischer Beschaffenheit und größerer Resistenz, die sie von der festen Zahnbeinsubstanz trennt.

Die Verschiedenheit der chemischen Zusammensetzung der Grundsubstanz des Zahnbeins von jener der Knochen trifft vorzüglich die quantitativen Verhältnisse. Bei alle-
dem ist dieses Gewebe vom Knochengewebe nicht fundamental verschieden, bildet viel-
mehr nur eine Modifikation desselben, was histologisch sich darin ausdrückt, dass bei
seiner Bildung nicht die ganzen Zellen, sondern nur Fortsätze von solchen, eben die
die Zahnelemente füllende Substanz, in es übergreifen. Da dasselbe Gewebe bei vielen
Fischen das ganze Skelet herstellt (Kölliker), ist die Zugehörigkeit zum Knochenskelett
noch weiter dargetan.

Der den vom Zahnbein gebildeten Theil der Krone mützenartig deckende
Schmelz, an Härte das Zahnbein übertreffend (im Härtegrad dem Apatit gleich-
kommand), erscheint auf Schnitten durchscheinend, weiß mit bläulichem Schimmer.
Er wird aus primatischen, zur Oberfläche des Zahnbeines senkrecht stehenden und dicht aneinander gereihten Fasern gebildet, welche bald welig gebogen, bald in schrägeren Zickzacklinien die Dicke der Schmelzkuppe durch-
setzen. Der Faserverlauf bietet übrigens im speziellen sehr mannigfache Ver-
hältnisse und nicht selten sind Kreuzungen einzelner Züge zu beobachten.

Die einzelnen Fasern oder Prismen sind vollkommen solide und ohne wahrnehmbare
Zwischensubstanz an einander gefügt. Sie zeigen in regelmäßigen Abständen
dunklere und hellere Stellen wechselnd, so dass eine Art von Querstreifung gegeben
ist, die auf eine Schichtung zurückführt. Behandlung mit verdünnter Salzsäure läßt
diese Erscheinung deutlicher hervortreten.

Den Schmelz deckt eine besondere Schichte, das Schmelzoberhäutchen, gegen welche
die äußeren Enden der Schmelzprismen unmittelbar gelegen sind. Es erscheint als
eine sehr feste, resistentne Cuticularbildung, die aus verhornten Zellen hervorgegangen
angegeben wird (Waldeyer).

Die Cementsubstanz überkleidet als eine meist nur dünne Lage, an der
Grenze des Schmelzes beginnend, die Wurzel, an deren Ende sie meist beträchtlich
dicker erscheint, so dass sie etwas zur Verlängerung der Wurzel beiträgt. Sie wird
durch Knochenskelett gebildet, welches von dem Alveolen-Periost aus entsteht.
Die Interzellularsubstanz läßt eine Schichtung erkennen und die innerste Lage ist
von senkrecht auf das Zahnbein stehenden Schichten durchsetzt (Fig. 314 d).
Seltener kommen Gefäßcanäle vor, die den Havers'schen Canälen der Knochen
entsprechen.

Die Zahnpapille (Pulpa) wird aus feinfaserigem, viele Zellen enthaltendem Binde-
gewebe gebildet, welches Blutgefäße und Nerven führt und an der Oberfläche mit einer
Schichte cylindrischer Zellen, Odontoblasten (Waldeyer), unmittelbar unter dem Zahn-
bein sich abgrenzt. Diese epithelialartige Schichte läßt ihre Elemente durch Fortsätze mit
unmittelbar unter ihr liegenden Zellen in Zusammenhang stehen und andererseits gehen
von den Odontoblasten feine Fortsätze ins Zahnbein, die eben die «Zahnfasern» vorstellen.
Die markhaltigen Nerven der Pulpa erstrecken sich gegen die Odontoblasten-Schichte
to, wobei sie in feine marklose Fasern übergehen, die sich zu verzweigen scheinen.

2. Entwicklung der Zähne.

§ 137.

Die genetische Beziehung der Zähne zur Mundöhnhenschleimhaut zeigt sich
für die beiden die Schleimhaut constituirenden Gewebe, das Epithel und das dar-
unterliegende Bindegewebe. An der Oberfläche der Kieferränder ist bei Embryonen
gegen Ende des zweiten Monates eine Furche bemerkbar, durch eine Einsenkung
des Epithels entstanden und von zwei wallartigen Vorsprüngen überragt; die an der ganzen Ausdehnung der Kiefer verlaufende Vertiefung, Zahnfurche, entspricht einer von ihr aus in die Bindegewebschichte eingedrungenen Epithellamelle, dem Schmelzkeim (Fig. 315 1. s), welcher in der ganzen Ausdehnung der Kieferränder sich erstreckt. Die Zahnfurche wird durch Epithelwucherung bald wieder ausgefüllt, verstreicht, und über ihr bildet das Epithel sogar einen bedeutenden leistenartigen Vorsprung. Der Schmelzkeim setzt sich weiter in die Tiefe fort, wobei er nicht immer die senkrechte Richtung beibehält. An seinem Ende bilden sich an einzelnen, der Zahl der anzulegenden Zähne entsprechenden Stellen Wucherungen der Epithelzellen aus, wodurch diese Stellen von den dazwischen liegenden sich auszeichnen. Diese Sprossen des Schmelzkeimes gestalten sich, weiter in die Schleimhaut einwachsend, kolbenförmig und stehen mit einem dünnen Halse mit dem Schmelzkeim in Verbindung. Die dem betreffenden Kiefer zugewendete Seite des Kolbens wird nun von einer gegen sie gerichteten Erhebung der Bindegewebschichte der Schleimhaut eingestülpt (Fig. 315 2. 3. 0). Die Erhebung geht in Papillenform über, wird zur Zahnpapille (Fig. 315. 4. p). Sie repräsentiert eine große Schleimhantpapille, über welcher der eingestülpte Epithelkolben (o) wie eine Mütze sich gelagert hat. Er bildet das Schmelzorgan. Die dieses darstellenden Epithelzellen ließen inzwischen eine Sonderung auftreten indem die im Innern gelegenen theilweise eine Interzellularsubstanz abscheiden und nur noch mit Fortsätze unter einander in Verbindung bleiben (Gallertgewebe), indessen die peripherischen als continuirliche Zellschichte sich forterhalten. An der concaven Fläche stellen sie eine Schichte von hohen Zylinderzellen vor, das Schmelzepithel. An der Oberfläche der Zahnpapille hat sich gleichfalls eine dem Schmelzepithel zugewendete epithelartige Schichte differenziert, indeß im Innern der Papille ein Blutgefässreichthum sich entfaltete.

Die Zahnpapille und das sie überlagernde Schmelzorgan werden, nachdem das letztere seinen Zusammenhang mit dem Kieferepithel verlor, indem es davon abgeschnürt wurde, von dem umgebenden Bindegewebe der Schleimhaut zu einem einheitlichen Ganzen, dem Folliculus dentis, Zahnsäckchen, umgeformt. In der Umhüllung des Zahnsäckchens ordnen sich die Bindegewebszüge zu Schichten und stellen damit eine allerdings in das benachbarte Bindegewebe der Schleimhaut übergehende Membran (Fig. 316 a) vor. Wir haben also in einem Zahnsäckchen die von seinem Grunde her in es einragende Papille Fig. 316 h) und das sie überlagernde...
Schmelzorgan zu unterscheiden. Erstere bildet sich nach der Form des bezüglichen. im Zahnsäckchen entstehenden Zahnes verschieden aus und empfängt ein bestimmtes Oberflächenrelief, welchem das Schmelzorgan sich anpaßt. Die Oberfläche der Papille grenzt die epithelartige Odontoblasten-Schicht ab (Fig. 316/). Diese wird überlagert von der Zellschichte des Schmelzepithels /Schmelzmembran/, auf welche das Gallertgewebe des Schmelzorgans folgt, welches gegen die Bindegewebschichte des Zahnsäckchens zu wieder von einer niedrigen Epithellage abgegrenzt wird.

Von den beiden gegeneinander gekehrten, aneinander schließenden Zellen- schichten, dem Schmelzepithel und der Odontoblastenschichte, geht um die Mitte des Fötalebens ein neuer Differenzierungsprozeß aus. Die Odontoblastenschichte an der Oberfläche der Zahnpapille scheidet eine neue Substanzschichte ab, indem ihre Zellen von der Oberfläche her in Zahnbein sich umwandeln und nur mit feinen Fortsätzen dieses durchsetzen. Sie stellen sich damit als Keime des Zahnbeins dar und lassen unter Fortgang jenes Processes eine immer dicker werdende Zahnbeinschichte um die Zahnpapille sich bilden.

Mit diesem Vorgange ist eine analoge Erscheinung auch am Schmelzepithel eingetreten. Seine Zellen wandeln sich von ihren freien Flächen her in Schmelzsubstanzzum, und so sondert sich allmählich eine zusammenhängende Schmelzschichte ab (Fig. 316 1), welche die von den Odontoblasten gelieferte Zahnbeinschichte überlagert. Unter fortgesetzter Schmelzbildung atrophirt das Schmelzorgan.

Mit der Rückbildung des Schmelzorgans wird das eine Zeitlang seine Hauptmasse ausmachende Gallertgewebe im Inneren reduziert, bis es gänzlich schwindet, so daß diesem Theile gar keine direkte Beziehung zur Genese eines Zahngewebes zukommt. Es erscheint vielmehr nur als ein Ernährungsapparat des Schmelzepithels.

Die erfolgende Anlage und fortschreitende Entwicklung der Zähne zu einer Zeit, die von der des Gebrauches dieser Organe sehr fern liegt, wie an einem Orte, an welchem sie nicht wirksam sein können, lehrt deutlich, daß die Entstehungsgeschichte der Organe aus der individuellen Entwicklung allein nicht verständlich ist. Die Thatsachen der Ontogenie empfangen auch hier von der vergleichenden Anatomie helles Licht, indem wir erfahren, daß die Bezahnung des Kiefers aus einer bei niederen Wirbelthieren (Selachiern) das gesamte Integument bedeckenden, hier als Schutzorgan fungirenden Form von Hautzähnchen hervorgeht, welche auch in die Mundhöhle sich.

Waldeyer, Entwicklung der Zähne in Stricker's Handb. S. 343; ferner Kölliker, Entwicklungsgeschichte S. 815.

§ 138.

Die in Ober- und Unterkiefer aufgereichten Zähne formiren das Gebiß.

Während des siebenten Monats des Fötallebens beginnt die Entwicklung der Zahnkronen an allen für das Milchzahangebiß bestehenden Anlagen. Die daraus hervorgehenden Zähne sind jenen der späteren Dentition ähnlich, aber von geringerem Volum. Es sind deren 20, je 10 im Ober- und Unterkiefer. Wir unterscheiden drei verschiedene Formen: Schneidezähne, Incisores, Dentes incisivi, Eckzähne, Dentis canini, Backzähne, Mahlzähne, Molares. Die Schneidezähne (Fig. 317 i'v') zeichnen sich durch eine breite, meißelförmige Krone aus. Sie nehmen die Mitte in beiden Kiefern ein, je zu vieren vorhanden; im Oberkiefer kommen sie dem einem Praemaxillare (S. 193) entspre-
ehenden Knochentheile zu. Die Eckzähne (c) besitzen eine in eine Spitze auslaufende Krone, daher Dentes cuspidati; je einer reihet sich lateral an die Schneidezähne an. Auf den Eckzahn folgen jederseits und in jedem Kiefer zwei Backzähne \(m, m' \), durch eine breite, vierseitige, mit mehreren Höckern versehene Krone charakterisirt und auch durch mehrfache Wurzeln von den übrigen Zähnen unterschieden. Bei der Geburt sind sämtliche Milchzahnkronen, allein in verschiedenen Grade, gebildet, und diese Differenz entspricht jener des Durchbruchs. Derselbe wird durch die Bildung der Wurzel eingeleitet, wodurch der Zahn gegen die ihn bedeckende Schleimhaut drängt. Diese wird allmählich dünner und es erfolgt so der Durchbruch, und der Zahn tritt unter fortgesetzter Ausbildung der Wurzel mit seiner Krone auf dem Kieferrande hervor. In der zweiten Hälfte des ersten Lebensjahres brechen die Schneidezähne durch, und zwar die beiden medialen des Unterkiefers zuerst, worauf jene des Oberkiefers folgen. Die lateralen des Unterkiefers gehen dann jenen des Oberkiefers wieder voran. Meist zu Anfang des zweiten Lebensjahres, nicht selten auch später, erscheinen die vorderen Molarzähne, zuerst die des Unterkiefers; gegen Ende des zweiten Jahres die Eckzähne, woran sich dann der Durchbruch der hinteren Molarzähne anschließt, der bis ins dritte Jahr sich verzögern kann. Für das Milchzahngesäß ergibt sich also folgende Formel:

\[
\begin{array}{cccccc}
M. & C. & l. & C. & M. \\
O. & 2 & 1 & 4 & 1 & 2 \\
U. & 2 & 1 & 4 & 1 & 2 \\
\end{array} = 20.
\]

§ 139.

Noch bevor die Zähne des Milchgebisses ihre Ausbildung erreicht haben, erscheinen schon die Anlagen der bleibenden Zähne differenzirt, denn bald nach dem Hervorsprossen des Schmelzorgans für die Milchzähne tritt an der Verbindungsstelle dieses Organs mit der Schmelzleiste die Anlage des für einen bleibenden Zahn bestimmten Schmelzorgans, wieder in Gestalt eines hervorsporensen Epithelkolbens auf (Vergl. Fig. 315, 3. 4. o'). Die nun folgenden Vorgänge sind die gleichen mit der Genese des Milchzahngesäßes. So bildet sich die Einleitung für die mit 32 Zähnen ausgestattete zweite Dentition.

Diese bestehen wieder aus denselben schon im Milchzahngesäß unterschiedenen Formen, aber die Zahl der Molarzähne ist um einen in jeder Kieferhälfte vermehrt, und zwischen dem Eckzahn und dem vorderen Molarzahn sind für jede Kieferhälfte zwei, einen neuen Typus repräsentirenden Zähne, Praemolares (Vorderen Backzähne), eingeschaltet. Die Zahnformel des ausgebildeten Gebisses des Menschen gestaltet sich also in folgender Weise:

\[
\begin{array}{cccccc}
M. & Pm. & C. & Inc. & C. & Pm. & M. \\
O. & 3 & 2 & 1 & 4 & 1 & 2 & 3 \\
U. & 3 & 2 & 1 & 4 & 1 & 2 & 3 \\
\end{array} = 32.
\]

In der Form der Krone wie der Wurzeln stimmen die Zähne der zweiten Dentition, wie oben bemerkt, mit jenen der ersten überein. Von den Incisoren

Die Formdifferenzen der Krone bei den verschiedenen Abtheilungen der Zähne sind insofern keine fundamentalen, als Übergänge bestehen. An den Incisores (Fig. 318, 319. 1. 1. 2) läuft die schmale Kaufläche ursprünglich in drei kleine Zacken aus, welche jedoch bald nach dem Verbrauche sich abschleifen, so dass sie später selten mehr wahrnehmbar sind. An der inneren, lingualen Fläche bildet die Krone nahe an ihrer Basis einen Vorsprung (a., der zuweilen zu einem Höcker sich ausbildet. Diese beiden Facta führen zu den Caninen. An diesen ist ein mittlerer Höcker an der Kaufläche charakteristisch, er ist auf Kosten der seitlichen mächtig entwickelt, und letztere treten meist völlig zurück. Die an der inneren Kaufläche vorhandene Verdickung (a. verhält sich wie jene der Incisores, tritt aber nicht
Vierter Abschnitt.

sehrt als deutlicher Höcker auf. Es besteht also ein äußerer größerer und innerer kleinerer Höcker. Das verknüpft mit den Praemolares (Fig. 318, 319. P. 1. 2), an denen der innere höcker (a) nur noch bedeutender vortritt, so dass er an der Kaufläche sich betheiligt. Aber an den Caninus erinnert der Umstand, dass der äußere Höcker den inneren überragt. Der letztere ist am unteren P1 zuweilen noch ganz manischulich. Der Kaufläche der Praemolares entspricht also keineswegs blos die Kante der Incisivi oder die Spitze des Caninus, sondern die ganze innere Fläche dieser Zähne bis zur Basis der Krone herab. Bei den Incisivi und dem Caninus ist ein äußerer Höcker nöthig entfaltet, verbreitert oder zugespitzt, weil der innere Höcker unentwickelt bleibt. Bei den Praemolares scheidet eine Furche die beiden Höcker und läßt von ihren grubig vertieften Enden seichte Vertiefungen gegen die Innenfläche des äußeren Höckers verlaufen, so dass von diesen ein vorderer und ein hinterer Abschnitt abgetrennt wird und die Kaufläche sich mhrhöckerig gestaltet. Dabei dominiren jedoch fast stets die beiden charakteristischen Haupthöcker.

An den Molares ist die Krone der oberen und unteren verschieden gestaltet. An den oberen waltet eine rhomboidale, an den unteren eine quadratische Form. An der oberen ist der quer, an der unteren der sagittale Durchmesser in der Regel der bedeutend. M. 3. Am Relief der Kaufläche von M 1 ist ein vorderer äußerer Höcker (Fig. 318 M 1 1.), durch eine Furche von einem vordere inneren (2) und von einem hinteren äußeren (3) getrennt, aber die beiden letzteren (2, 3) stehen durch eine schräge, wenig eingesattelte Leiste mit einander in Zusammenhang. Eine hinter dieser Leiste und etwas nach innen vortretende schräge Furche grenzt einen inneren hinteren Höcker (4) ab. Vor diesem, an der inneren Fläche des inneren Höckers ist ein fünfter Höcker (5) vorhanden, der nicht immer die Kaufläche erreicht, zuweilen nur spärweise vorkommt. Ich habe ihn nie gänzlich vermißt. An M 2 fehlt dieser flüchtige Höcker in der Regel und der innere vordere Höcker (2) ist dafür mit einer Verdickung versehen. Die Einseitlung auf der Verbindungsleiste des vorderen inneren und hinteren äußeren Höckers hat sich zu einer Furche ausgeprägt. Der hintere innere Höcker ist zuweilen sehr reducirt. Auch an M. 3 ist die Verbindung des vorderen inneren und hinteren äußeren Höckers aufgehoben. Der hintere innere Höcker ist wenig selbständig, und zuweilen ist die Kaufläche mit einer mittleren Längsfurche versehen, von der kleine Furchen ausstrahlen, oder jene Furche ist durch eine Grube dargestellt.

Die unteren Molares zeigen ihre Höcker in anderer Combination (Fig. 319). M 1 bietet vier durch ein Furchenkreuz getrennte Höcker, aber der hintere Schenkel des Kreuzes gabelt sich und umfasst einen fünften hinteren Höcker (M 1 5). Dieser tritt an M 2 mehr an die Seite und fließt mit dem zweiten äußeren Höcker zusammen. Senmdure Furchen, welche vom vorderen Schenkel und von den Querschenkeln des Kreuzes aus auf die Höcker verlaufen, lassen an diesen von der Mitte der Kaufläche her eine
Strecke sich sondern, womit auch \(M1 \) übereinstimmt. \(M3 \) bietet die Kreuzfurche zuweilen mit noch feineren secundären Furchen. Bei mächtiger Ausbildung trägt er auch den fünften Höcker wie \(M1 \).

Die obere und untere Zahnreihe fügt sich bei geschlossenem Gebisse direct zusammen, so dass die oberen Zähne etwas über die unteren übergreifen. Die äußeren Höcker der Prämolaren und Molaren greifen dabei in die Furchen, welche zwischen innern und äußeren Höckern der oberen Zähne sich finden. Dadurch ist eine vollständige Verwendung der Kauflächen gestattet.

Jene Verschiedenheit ist aber das Product einer bei jenen Säugerthieren mächtigen Entfaltung der Canini. Indem der obere Caninus zwischen den ersten Prämolari und den unteren Caninus sich eingedrängt hat, empfängt die untere Zahnreihe eine Lücke, während der oberen Zahnreihe eine gleiche Lücke zwischen dem Caninus und dem zweiten Incisor eingeht wurde. Dieses ist die phylogenetische Bildung der Lücke. Ontogenetisch ist sie bei jenen Thieren vorhanden noch bevor die betreffenden Zähne ihre volle Ausbildung erhalten haben, so dass also hier ein ererbtes Verhältniss sich ausspricht.

§ 140.

Der Durchbruch der Zähne der zweiten Dentition ist zum Theile an den Ausfall der Milchzähne geknüpft. Letzterer wird durch Resorption der Wurzeln eingeleitet, die in dem Grade erfolgt, als die Krone der bleibenden Zähne sich ausbildet und die Wurzel sich anzusetzen beginnt. Der wurzellose Milchzahn sitzt dann nur mit seinem Halse im Zahnfleisch, bis er auch aus dieser Verbindung sich löst. Das Hervorbrechen der Zähne der zweiten Dentition, als Zahnwechsel bezeichnet, erfolgt milder rasch als jenes der ersten, wie denn der ganze Entwicklungsgang sich bedeutend verzögert. Schon beim Neugebornen sind außer den weit vorgeschrittenen Kronen der Milchzähne die Kronen bleibender Zähne \(M1 \) mehr oder minder in der Entstehung begriffen und gewinnen allmählich ihre Ausbildung, so dass sie in den Kiefern darstellbar sind. Aber erst in den fünften oder sechsten Lebensjahre beginnt der Durchbruch des ersten Molarzahns \(M1 \), der sich noch auf einige Zeit dem bestehenden Milchzahngebisse anschließt, indem er hinter \(m^1 \) erscheint (Fig. 317, Oberkiefer). Im 6—8. Jahr beginnt mit dem Ausfall der Milchzähne der eigentliche Wechsel, die medianen Incisores wechseln zuerst, dann folgen ein Jahr später die lateralen. Im 10. Jahre erscheint der erste Prämolzarzahn. Im folgenden der zweite. Daran schließt sich der Caninus, dem der zweite Molarzahn folgt, so dass meist im 12—13. Jahre der Wechsel beendet ist. Erst viel später kommt der dritte Molarzahn zum Durchbruch, im 17—30. Lebensjahre \(Dens serotinus \), D. sapien".
In diesem Verhalten spricht sich eine Rückbildung dieses Zahns (M3) aus, der auf allen Stufen der Ausbildung stehen bleiben kann, auch als bloßes Rudiment im Kiefer eingeschlossen angetroffen wird. Dieser Zahn ist also auf dem Wege dem menschlichen Gebisse verloren zu gehen, und das Gebiß erscheint dadurch in einer Vermindernng seiner Theile begriffen, welche Erscheinung auch bei carnivoren Säugethieren nachgewiesen ist. Sie äußert sich auch sehr häufig an dem sonst ausgebildeten Zähne in dessen geringerem Volum (Fig. 318 M3), sowie in dessen minderer Höhe, so dass seine Kaufläche nicht in das Niveau jener der übrigen Molares gelangt, und der Zahn außer Funktion steht.

II. Muskulöse Apparate der Mundhöhle.

In die Begrenzung der Mundhöhle treten mannigfache Muskeln ein, die zum Theile schon bei dem Muskelsystem ihre Darstellung fanden, wie die um die Mundspalte gruppirten Antilitzmuskeln sammelt den M. buccinator, der die Wandung der Wangenhöhle abgrenzt und als Bucco-labialis mit andern Muskeln in den Lippen sich verbindet. Ebenso der am Boden der Mundhöhle befindliche M. mylo-hyoides. Außer diesen bestehen aber noch besondere Muskelcomplexe, welche bewegliche Organe bilden, die Zunge und das Gaumensegel.

a. Zunge.

§ 141.

Sie bildet ein wulstförmig vom Boden der Mundhöhle her in letztere vorspringendes Organ, welches bei geschlossenem Munde mit seinem vorderen Theile gegen den Gaumen sich anlegt und den größten Theil der Mundhöhle füllt. Seine Beweglichkeit gestattet ihm eine belangreiche Betheiligung bei der Nahrungsaufnahme, bei der Gestaltung des Bissens und der Beförderung desselben in den

Schleimhaut der Zungenoberfläche.

An der die Oberfläche der Zunge überkleidenden Schleimhaut müssen zwei Strecken unterschieden werden, eine vordere den größten Theil des Zungenrückens bedeckende, im Cavum oris liegende und eine hintere, welche dem weichen Gaumen und dem Pharynx zugekehrt ist.

Die vordere Schleimhautstrecke ist durch den Besitz dicht gestellter Erhebungen, die Zungenpapillen, ausgezeichnet, welche die Oberfläche der Zunge uneben erscheinen lassen und in ihren extremen Formen drei verschiedene Zustände darbieten.

1) Papillae filiformes, fadenförmige Papillen bilden die verbreiteste Form, welche die größte Anzahl der Zungenpapillen darbietet. Sie bilden cylindrische
Erhebungen der Schleimhaut, welche in eine Anzahl büschelförmig gruppirter feinerer Fortsätze auslaufen. Nach hinten zu werden sie kleiner. Zwischen diesen zuweilen in ziemlich regelmäßigen Abständen vertieft, finden sich die

2) Papillae fungiformes (clavatae), pilz- oder keulenförmige Papillen, etwas größer als die vorgenannten. Sie besitzen eine abgerundete Oberfläche und verschmälern sich gegen ihre Basis hin, was ihnen im ausgeprägteren Zustande eine Keulenform verleiht. Gegen den Zungenrand werden sie niedriger und erscheinen mehr abgeplattet.

Der feinere Bau der Zungenpapillen lehrt sowohl das besondere Verhalten der primären Schleimhautpapillen, sowie Modifikationen des Epithels kennen. — An den Papillae filiformes (Fig. 321) erhebt sich die Zungenschleimhaut mit einer Anzahl kleiner Papillen, die auf einem gemeinsamen Boden stehen. Es sind kleine Gruppen von Einzelpapillen. Mit anderen Papillen der Mundschleimhaut stimmen diese Einzelpapillen auch darin überein, dass jede eine Blutgefäßschlinge empfängt, welche von einem in der gemeinsamen Erhebung befindlichen Theile des Blutgefässnetzes der Schleimhaut sich fortsetzt. Am auffallendsten verhält sich das Epithel der Papillen. Nachdem es den gemeinsamen Stamm überkleidet, setzt es sich in eine der Zahl der Einzelpapillen entsprechende Menge bald kürzerer, bald längerer fadenförmiger Ausläufer fort (Fig. 331 f). Die Epithelzellen derselben erscheinen in den oberflächlichen Lagen in dachziegelförmiger Anordnung mit dem freien Rande gegen die Basis sehend. Sie sind resistentester als andere Epithelien der Mundhöhle und nähern sich in ihrem Verhalten gegen Reagentien den verhornnten Formelementen der Epidermis. Dadurch wird an die Verhältnisse des Epithels der Papillae filiformes mancher Carnivoren (der Katzen) erinnert, bei welchen die Papillen auf dem Rücken der Zunge rückwärts gerichtete hornige Stäbchen tragen. — Die Epithelfortsätze bieten im Ganzen ein sehr variables Verhalten. Selten sind sie gleichmäßig lang, wie die Fig. 321 es darstellt. Mit längeren kommen in der Regel auch kürzere vor, oder solche, die nur konisch erscheinen. Dieses Verhalten kann sich auch an sämtlichen filiformen Papillen zeigen, oder es wird die Reduction der epithelialen Anhänge eine allgemeine und die sonst filiformen Papillen stellen nur geringe Erhebungen dar, an denen der Epithelüberzug sich wenig von dem der Umgebung unterscheidet. Solche Verhältnisse scheinen im höheren Alter zu den häufigen Befunden zu gehören. — Die epithelialen Ausläufer der filiformen Papillen sind sehr häufig der Sitz eines auch an den Zähnen vorkommenden Fadenpilzes (Leptothrix buccalis), dessen fein granulirte Keimlager die Fortsätze umwachsen und zwischen die einzelnen Epithelzellen der Oberfläche eindringen.

Die Papillae fungiformes (Fig. 322) zeigen den oberflächlich gewölbten Papillenstock mit zahlreichen Einzelpapillen besetzt. Darin, sowie in der Vertheilung der Einzelpapillen über eine gewölbte Fläche, liegt die Eigen tümlichkeit dieser Papillenstücke. Die Blutgefäßvertheilung ist ähnlich wie in den filiformen Papillenstocken, und jeder Einzelpapille kommt wieder eine Capillarschlinge zu. Dadurch, dass der Epithelüberzug den gesammtten Papillenstock mehr gleichmäßig überkleidet und über den Einzelpapillen keine Fortsatzbildungen herstellt, wird die bedeutendste Verschiedenheit von den filiformen Stücken ausgesprochen. Diese Differenz erfährt aber wieder eine Minderung durch den oben erwähnten Umstand der nicht selten bestehenden Reduction jener Epithelfortsätze.

Bezüglich der Papillae Vallatae (Fig. 323 A) ist zu bemerken, dass der sie umgebende Wall durch eine einfache ringförmige Erhebung der Schleimhaut gebildet wird. Die

damit die Basis der Papille umziehende Vertiefung ist von verschiedener Ausdehnung.
An den sie begrenzenden Schleimhaut-Flächen fehlen die Einzelpapillen oder sind nur ganz schwach angedeutet, sowohl an der Papillenbasis als an dem Wall (B). Dagegen finden sich einfache Papillen auf der Höhe des letzteren, sowie solche auch die Oberfläche des Papillenchostes einnehmen, wo sie in einer der Größe dieser Fläche entsprechenden Zahl bestehen. Das Epithel überzieht die Oberfläche in gleichmäßiger Weise, ähnlich wie bei den pilzförmigen Papillen. — Von den in der oben angeführten Gruppierung bestehenden Abweichungen ist die Verschmelzung einzelner Papillae vallatae anzuführen, die in verschiedenem Maße sich darstellen kann.

Die gesammte papillenträgende Schleimhaut ist mit der Muskulatur der Zunge dadurch im engsten Zusammenhange, dass Muskelfasern zur Schleimhaut empor treten und unter Eingehen mehrfacher Theilungen und feinster Verzweigungen daselbst ihr Ende finden. — In einem Theile der Zungenpapillen stehen Nerven mit Endapparaten in Zusammenhang, bilden damit Sinnesorgane, welche mit den übrigen Sinnesorganen abgehandelt werden.

Die Verdickung der Wandung dieser Schläuche ist durch adenoides Gewebe gebildet, indem Zellen des Bindegewebes die Schleimhaut reichlich erfüllen. Bald ist dieses Gewebe gleichmäßig vertheilt, bald finden sich in ihm einzelne sogenannte Pollikel (S. 136), oder die letzteren bilden die Hauptmasse der Schleim-
Von der Mundhöhle.

461

haut. und die Wand der Balgdrüse besteht vorwiegend aus Follikeln, welche in die Schleimhaut eingebettet sind. Sie bedingen auch den platten Vorsprung, mit dem sich die Balgdrüsen auf der Schleimhautoberfläche bemerkbar machen.

Was den Bau dieser Follikel betrifft, so bestehen sie aus einem feinen Gerüst von Bindegewebe (reticulärem Bindegewebe, s. S. 32), welches von einem Capillarnetz umgeben ist. Diese Formelemente entsprechen den Lymphzellen. Äußerlich sind die Follikel ohne scharfe Abgrenzung, insofern nur das Bindegewebe der Schleimhaut sich hier um die Follikel geschichtet zeigt. (Über das Verhältnis zum Lymphgefässystem siehe bei diesem.)

Die von den Balgdrüsen eingenommene Zone der Zungenschleimhaut gehört streng genommen nicht mehr der Mundhöhle an, sondern bildet mit dem weichen Gaumen zusammen einen zwischen Mundhöhle und Pharynx befindlichen, intermediären Apparat.

Muskulatur der Zunge.

§ 142.

Die mannigfachen Bewegungen der Zunge leitet eine complizirte Muskulatur, die aus denselben Formelementen besteht wie die Muskulatur des Skeletes. Wir sondern sie in zwei Gruppen: solche, welche von benachbarten Skelettheilen entspringen, und solche, die in der Zunge selbst Ursprung und Ende haben, in deren Bahnen aber auch teilweise Züge der ersten Abtheilung einlenken.

1. M. genio-glossus (Fig. 325). Entspringt dem anderseitigen angeschlossenen von der Spina mentalis (interna) und einem davon ausgehenden in den Muskel engen Schnabel, unmittelbar über dem Genio-hyoideus. Er bildet einen anschließenden in den Körper der Zunge von unten her eintretenden Bauch, der nach verschiedenen Richtungen, nach der Spitze, nach dem Rücken, sowie nach der Wurzel zu fächerförmig ausstrahlt (Vergl. Fig. 305). Beide Muskeln sind auf ihrem Verlaufe durch eine dünne Bindegewebschicht geschieden, die innerhalb des Zungenkörpers in eine derbe Lamelle, das Septum linguae übergeht. Dieses erstreckt sich etwas hinter der Zungenspitze beginnend durch den ganzen Körper der Zunge, wird nach hinten zu etwas höher, erreicht aber nicht die Rückenfläche der Zunge.

2) *M. hyo-glossus* (Fig. 325). Entspringt vom großen Zungenbeinhorne und einer Strecke des oberem Randes des Zungenbeinkörpers und tritt aufwärts, mit seinen vorderen Bündeln zugleich vorwärts gerichtet, zum Rande der Zunge, und mit seinen hinteren Bündeln zum Zungenrücken, wo beider ähnlich wie der Genio-glossus durch transversale ihn durchsetzende Bündel in eine Menge vertikaler Lamellen aufgelöst ist.

4) *M. stylo-glossus* (Fig. 325). Entspringt vom Processus styloides und verläuft ziemlich steil herab zum Seitenrande der Zungenwurzel, wo er durch Muskelzüge, die aus der Zunge zum Gaumensegel verlaufen, in ein oberes und unteres Bündel getrennt wird. Das obere schwächere tritt lateral vom Hyoglossus am Rande des Rückens nach vorne und sendet auch quere Fasern in die Zunge ein. Das untere stärkere Bündel legt sich dem oberen wieder an und tritt mehr an der Unterseite des Zungenrandes nach vorne. Gegen die Spitze zu gehen Züge nach der anderen Seite über. Durch Ursprung und Endigung gehören der Zunge ausschließlich die folgenden Muskeln an, welche nur durch den Verlauf ihrer Züge zu unterscheiden sind.

5) *M. longitudinalis inferior* (lingualis) (Fig. 326). Ein platter Muskelzug, der an der Unterfläche der Zunge vorne zwischen Genio- und Stylo-glossus, weiter hinten zwischen Genio- und Hyo-glossus verläuft und sich allmählich in einzelne, zwischen die transversale Muskulatur der Zunge eintretende verticale Züge auflöst. Er bildet
sich aus Bündeln, welche aus senkrecht die Zunge durchsetzenden Lamellen kommen.

6) M. transversus (Fig. 326). Von dem oben beim Genio-glossus beschriebenen Septum linguae entspringen in dessen ganzer Ausdehnung querverlaufende Muskelfasern, die vorne in senkrechte, hinten in schräge Lamellen geordnet, mit zwischen ihnen emportretenden Lamellen des Genio-glossus sich rechtwinkelig kreuzen und gegen den Rand zu Hyo-glossuszüge zwischen sich durchlassen. Die transversen Fasern strahlen dann lateral divergirend gegen den Rücken und den Rand zu aus und lassen, auseinander weichend, longitudinaline Züge hindurchtreten. In der Nähe der Zungenwurzel gehen sie theils in die Muskulatur des Gaumens (M. palato-glossus) (Fig. 326 A), theils in jene des Schlundkopfes über, deren Constrictorensysteme sie angehören.

Ein Theil der Transversus-Fasern, besonders gegen die Spitze zu, kreuzt die Medianlinie, ohne mit dem Septum Verbindungen einzugehen.

7) M. longitudinalis superior bildet Züge, die in der Fortsetzung des Chondro-glossus liegend, sich mit dem vorderen Theile desselben verbinden. In der Schleimhaut entspringende Muskelzüge senken sich unter die Schleimhaut der Rückenfläche ein und verlaufen bogenförmig nach vorn, um wieder emporzusteigen und in der Schleimhaut zu enden. Solche Züge kreuzen sich somit beständig unter einander.

Durch die unter dem Rücken liegende sagittale Muskelschichte werden die zum Rücken emporsteigenden perpendiculären Lamellen, welche zwischen den transversalen verlaufen, wieder aufgelöst, so dass daselbst eine innige Durchsetzung waltet. Diese
Vierter Abschnitt.

wird nach der Oberfläche zu immer bedeutender, bis endlich die Verbindung mit der Schleimhaut erfolgt. Die zur Schleimhaut gelagenden Muskelfasern lassen Ramifikationen erkennen, deren bereits bei der Schleimhaut Erwärmung geschah; bei manchen Thieren ist eine Fortsetzung der getheilten Muskelfasern in Bindegewebszellen der Schleimhaut beobachtet.

Im interstitiellen Bindegewebe der Zunge, auch in jenem des Septum, finden sich meist reichliche Fettzellen. Dass auch die Drüsen des Zungenrandes in die Muskulatur sich eindrängen, ist bereits oben erwähnt.

b. Gaumensegel.

§ 143.

Die Tonsille läßt auf ihrer im normalen Zustande nur wenig vorspringenden Oberfläche eine Anzahl grubehenförmiger Vertiefungen erkennen, welche den Mündungen von sog. Balgdrüsen (s. oben S. 460) entsprechen, wie denn das ganze Organ nur ein Aggregat dieser Gebilde ist. Abwärts setzt sich die von der Tonsille eingegnommene Fläche auf die Zungenwurzel fort, so dass die hier befindlichen Balgdrüsen an jene der Tonsillen sich anschließen. Somit wird der Übergang der Mundhöhle zum Pharynx unten und seitlich von einer Balgdrüsenzone begrenzt.

Die einzelnen, die Tonsille darstellenden Balgdrüsen liegen dicht gedrängt und besitzen eine bedeu-
tendere Ausdehnung als jene der Zunge. Doch finden sich an der unteren Grenze der Tonsillen auch wieder einfache Balgdrüsen vor (s. Fig. 327 unten). Zugleich ist die Einsenkung der Schleimhaut, welche den Binnenraum der Balgdrüse vorstellt, weiter und mit secundären Ausbuchtungen (Fig. 327) versehen, so dass daraus eine complicirtere Structur hervorgeht. Solche gebuchtete oder in zahlreiche Blindsäckchen auslaufende Räume münden auch mit ansehnlicher Öffnungen an der Oberfläche der Mandeln aus. Zwischen den Balgdrüsen oder auch an ihrem Grunde finden sich Schleimdrüsen vor.

Beim Erwachsenen hat das Gefüge der Balgdrüsen der Mandel meist Zerstörungen erfahren und besteht größtenteils aus diffusen adenoidem Gewebe mit einzelnen Resten folliculärer Bildungen.

Muskulatur des Gaumensegels.

Die Bewegungen des Gaumensegels vermitteln folgende Muskeln, welche zum Theile mit der Muskulatur des Pharynx in Zusammenhang stehen.

M. levator veli palatini (Petro-staphylinus) Fig. 328). Entspringt von der unteren Fläche des Petrosum vor dem Eingange des Canalis caroticus und noch von der benachbarten Strecke der Tuba Eustachii. Er verläuft mit dem anderseitigen convergirend abwärts, wobei er sich etwas verbreitert, und geht dann in den weichen Gaumen über, mit seinen Fasern bis an die Medianlinie, theilweise noch über dieselbe hinaus verfolgbar.

Die Wirkung des Petro-staphylinus beschränkt sich nicht auf das Heben des Gaumensegels, sondern äußert sich auch an der Tuba Eustachii, deren Mündung während der Contraction des Muskels sich verengt. Daher Compressor tubae Esth.

M. tensor veli palatini (Spheno-staphylinus). Entspringt an der Unterfläche des großen Keilbeinflügels am hinteren Umfange des Foramen ovale, und dehnt seinen Ursprung einerseits bis zur Spina angularis, andererseits auf die Wurzel des Flügelfortsatzes des Keilbeins aus, wobei er gleichfalls auf die Tuba Eustachii übergreift. Der platte, dem M. pterygoideus internus medial aufgelagerte Bauch erstreckt sich auf diesem Muskel mit einer breiten dünnen Endsehne gegen den Hamulus pterygoideus herab und lässt die Endsehne um letztern herum (daher Circumflexus palati mollis) in den weichen Gaumen ausstrahlen.

An der Umschlagstelle der Endsehne um den an dieser Stelle überknorpelten, eine Sehnenrolle vorstellenden Hamulus, befindet sich ein kleiner Schleimbeutel. — Das Ende der Schne setzt sich in der dem weichen Gaumen zu Grunde liegenden Membran fort, deren schon beim vorigen Muskel gedacht ward. Diese ist am hinteren Rande des harten Gaumens mit diesem in Zusammenhang und wird durch Bindegewebszüge verstärkt, die von der Spina nasalis posterior her in sie eintreten. Durch den Über-
gang der Sehnenfasern des Tensor veli palatini in diese Aponeurosis palatina wird die-

selbe in ihrer größten Ausdehnung durch jenen Muskel constituiert.

Fig. 32s.

Der Ursprung des Muskels von der Tuba Eusta-

tchii findet nur zum Theile an der knorpeligen

Tuba statt, zum anderen Theile an der die Halb-

rinne der Tuba zu einem Canale abschließenden

Membran. Deshalb beschränkt sich die Wirkung

des Muskels nicht auf das Heben des weichen

Gaumens, sondern äußert sich auch an der Tuba.

Durch die von jener Membran, sowie vom late-

ralen Theile des Tuben-Knopfels entspringende

Portion des Tensor veli palatini wird das während

der Ruhe dieses

Muskels geschlossene, resp. auf ein Minimum reduzierte Lumen der Tuba erweitert, so

dass der Muskel auch als Dilatator tubae erscheint.

M. levator uvulae (Palato-staphylinus). Entspringt von der Aponeu-

rosis palatina zunächst der Spina nasalis posterior, meist als ein dünner, in der

Regel deutlich paariger und nur selten mit dem anderseitigen zusammenfliessender

Muskel (daher Azygos uvulae), welcher sich in die Uvula herabstreckt und in
deren Schleimhaut endigt. Der ganze Muskel hat seine Lage an der hinteren Fläche

des Gaumensegels, so dass er bei seiner Wirkung die Uvula aufwärts krämt.

Die bisher aufgeführten Muskeln wirken sämtlich als Heber des weichen

Gaumens und Erweiterer des Isthmus faucium. Ihnen wirken entgegen:

M. palato-glossus (Glosso-staphylinus). Ein zum Theile vom Seitenrande

der Zunge, zum Theile aus dem Transversus linguæ kommendes (Fig. 326 A), in
den Arcus glossopalatinus sich fortsetzendes Muskelbündel, welches sich innerhalb

des Gaumensegels, näher dessen vorderer Fläche auflöst. Ein Theil seiner Fasern

krenzt sich mit den anderseitigen, ein anderer Theil mischt sich anderen bogen-

förmigen Faserrücken, welche den Levatoren angehören bei. Die aus dem Seiten-
Von der Nasenhöhle.

§ 144.

flügelknope, das Integument nicht um den freien Rand der Flügelknorpel (S. 159) nach innen, sondern erstreckt sich weiter herab, um gleichfalls als Duplicatur zur Herstellung des unteren Theils der Nasenflügel zu dienen.

Während die Nasenscheidewand mit ihren seitlichen Flächen die mediane mehr oder minder ebene Begrenzung der Nasenhöhlen abgibt, bilden die *Muscheln* (*Conchae*) von der lateralen Wand her einragende Vorsprünge. Die *untere Muschel* liegt fast wagerecht, doch vorne etwas höher als hinten. Sie ist die bedeutendste. Schräger, nach hinten zu etwas gesenkt, erscheint die *mittlere Muschel*. Indem ihr vorderer Theil weiter als der hintere herabtritt, wird die schräge Stellung kompensirt, und ihr unterer Rand verläuft parallel der unteren Muschel. Der untere freie Rand dieser beiden Muscheln ist einwärts gerollt, jener der unteren meist auch noch aufwärts (Fig. 331). Die obere Muschel ist die kleinste und am bedeutendsten nach hinten geneigt. Zuweilen besteht noch eine vierte Muschel (*Concha Sanguini*), die eine noch kleinere leistenförmige Erhebung über der oberen Muschel vorstellt. Sie ist bei Neugeborenen häufiger als bei Erwachsenen zu treffen, scheint also eine Rückbildung einzugehen. — Auf der medialen Fläche der mittleren Muschel ist sehr häufig ein wagerechter Eindruck vorhanden, der zu einer tieferen Grube sich steigern kann. — Die Scheidewand und der Boden der Nasenhöhle bieten plane Flächen dar. An letzterem senkt sich an der oberen Mündung des *Canalis incisivus* (S. 192) eine in verschiedenem Grade deutliche Vertiefung ein, die wohl in allen Fällen blind endigt. (Vergl. S. 441).

Der durch die Muscheln verengte Raum der Nasenhöhle wird durch dieselben zugleich in canalaartige Strecken zerlegt: die bereits beim Skelete (S. 212) unterschiedenen *Nasengänge* (*Meatus narium*). Den unteren Nasengang begrenzt der Boden der Nasenhöhle und die untere Muschel, der mittlere verläuft unter-
 Von der Nasenhöhle.

469

halb der mittleren, und der obere unterhalb der oberen Muschel. Wie die drei Muscheln, so convergiren auch die Nasengänge nach den Choauen zu.

Der gesamte Binnenraum kann auch in anderer Beziehung in Abschnitte zerlegt werden. Einen bildet der Vorhoff der Nasenhöhle, welcher auf den von der knorpeligen Nase überdachten Raum beschränkt ist. Einen zweiten bildet der große übrige Raum, dessen oberer Theil an seinen Wandungen die Endigungen der Rechnerven trägt, Regio olfactoria, indess der untere bis zur mittleren Muschel wesentlich als Luftweg verwendet wird und die Regio respiratoria vorstellt.

Diese Nebenhöhlen sind meist erst nach der Geburt durch Resorptionsvorgänge in den knöchernen Begrenzungen der Nasenhöhle entstehende Bildungen (vergl. S. 181), bei denen die Schleimhaut insoweit betheilt ist, als sie stets ihnen folgt und mit ihnen einwächst. Der Sinus maxillaris beginnt bei weitem am frühesten, schon vor der Hälfte des Fötallebens angelegt zu werden, erhält aber sehr spät seine vollkommene Ausbildung, während die gleichzeitig angelegten Sinus ethmoidales früher zur Entfaltung kommen. Im ganzen besteht eine bedeutende und individuelle Schwankung in der Zeit der Anlage und der Ausbildung dieser Räume, die jedenfalls erst mit der definitiven Gestaltung des Skeletes ihre volle Entfaltung erlangen.

In den mittleren Nasengang mündet der Sinus maxillaris, Sinus frontalis und vordere und mittlere Sinus ethmoidales (Cellulæ ethmoidales). Die Mündungen sind von der mittleren Muschel bedeckt, und erscheinen in einer tiefen, abwärts concaven, bogenförmig verlaufenden Rinne (Infundibulum benannt) mit gewulstetem Rande. Die Rinne vertieft sich vorne und hinten; vorne leitet sie aufwärts zum Sinus frontalis und zu vorderen Siebbeinzellen, hinten dagegen zum Sinus maxillaris (Fig. 331). Zuweilen läuft die Rinne hinten flach aus, dann ist die Mündung des S. maxillaris am vorderen Theil der Rinne. An der Oberrandung der Rinne münden mittlere Siebbeinzellen aus und besitzen hier zumeist eine selbständige Öffnung, deren untere Begrenzung eine starke, über den unteren Rand der Rinne medial vorspringende Wulstung vorstellt (s. Fig. 330). — In den oberen Nasengang münden hintere Siebbeinzellen und ebenso über der oberen Muschel. In den oberen Raum der Nasenhöhle öffnet sich hinten der Sinus sphenoidalis.

Die Auskleidung der Nasenhöhle wird von den äußeren Nasenöffnungen an eine Strecke weit durch das äußere Integument gebildet. Dieses setzt sich

In die *Nebenhöhlen* der Nase setzt sich die Schleimhaut bedeutend verdünnt fort; dem entsprechen auch Modifikationen ihres Baues. Der Drüsenapparat ist rudimentär geworden und erscheint nur in spärlichen Gruppen kurzer Schläuche, wie solche im Sinus maxillaris, auch im Sinus sphenoidalis beschrieben worden sind. Auch das Epithel bildet eine einfache Lage cylindrischer Wimperzellen.

Vom Pharynx.

§ 145.

durch die von der Wirbelsäule zum Schädel emporsteigende Muskulatur von der Basis des Occipitale und den Halswirbelkörpern getrennt. Sie erstreckt sich vom Tuberculum pharyngeum des Occipitale an ohne besondere Complication herab, und geht ohne scharfe Abgrenzung in die seitliche Wand über. Dagegen ist die Stelle einer vorderen Wand durch weite Com-

municationen und Vorsprünge complicirt (Fig. 328). Zu oberst münden hier die Choanen. Dann folgt das mit seinen hint-

eren Bogen in die seit-

liche Pharynxwand sich fortsetzende Gaumen-

segel, unter welchem der Isthmus faucium die Verbindung mit der Mundhöhle herstellt. Unterhalb der Rachen-

enge ist die Zungen-

wurzel dem Pharynx zu-

gleich, und unter die-

ser findet sich als dritte Com-

munication der vom Kehldeckel überragte Eingang in den Kehl-

kopf, welcher letzterer dann mit seinem Gerüst die vordere Pharynxwand bis zum Übergange in den Oesophagus bildet.

Im oberen Raume wird die der Schädelbasis zugekehrte Fläche als Gewölbe (Fornix) des Pharynx unterschieden. An der seitlichen Wand dieses Raumes ragt mit vorderer Concavität ein gebogener Wulst vor, der eine trichterförmige Öffnung von oben und hinten umzieht: das Ostium pharyngeum der Ohrtrompete (Tuba Eustachii) (Fig. 332). Dadurch communicirt der Pharynx mit der Pankenhöhle des Ohres. Hinter dem Wulste der Tuba, an dessen convexem Rande, buchtet sich der Pharynx in eine blind geendigte Einsenkung aus, die Rosen-

müllersche Grube. Legt sich der weiche Gaumen gegen die hintere Wand des Pharynx an, so trennt er den oberen Raum vom unteren. Ersterer bildet das Cavum pharyngo- nasale, letzterer wird als Cavum pharyngo-laryngeum unterschieden, da der Larynx mit ihm communicirt.

Gemäß seiner Bedeutung als indifferent gebliebener Raum der primitiven Mundhöhle oder Kopfdarmhöhle dient der Pharynx sowohl dem Nahrungs canal als den Atmungsorganen. Durch ihn passiren die aus der Mundhöhle unter dem
Vom Pharynx.

473

Die Wand des Pharynx wird von einer aus quergestreiften Muskeln gebildeten Membran und einer Schleimhaut dargestellt. Eine Bindegewebsschichte
Vierter Abschnitt.

zwischen beiden gewinnt oben über die Muskelschichte hinaus fortgesetzt an Selbständigkeit, indem sie sich direct an die Schädeldachse, median bis zum Tuberculum pharyngenum reichend, befestigt (Membrana pharyngo-basilaris).

Die Muskulatur ist in zwei Gruppen zu sonders: Levatores mit longitudinalen Verlaufe, und Constrictores mit schrägem oder querem Verlaufe ihrer Fasern.

Die Constrictores sind nach Lage und Ursprung verschieden, besitzen aber das Gemeinsame, dass ihre Züge von vorn nach hinten verlaufen und dort auf manngfache Art endigen. Entweder gehen sie hier in einen medianen Bindegewebsstreifen über, der man als Raphe pharyngis bezeichnet hat, oder die Züge kreuzen und durchflechten sich und dann ist eine Raphe nicht wahrnehmbar. Letzteres besteht nicht selten in der ganzen Länge des Pharynx, in der Regel aber ist es nur an dem unteren Theil des Pharynx vorhanden, und am oberen senkt sich ein Bindegewebsstrang als Raphe herab.

M. constrictor pharyngis superior (Cephalo-pharyngeus) (Fig. 334) entspringt von der innern Lamelle des Proc. pterygoïd., dann vom Hamulus pt. und im Anschlüsse daran vom Lig. pterygo-maxillare 'gegenüber dem Ursprunge eines Theiles des M. buccinator), ferner vom hinten Ende der Linie mylo-hyoidea des Unterkiefers. Dazu kommen noch Bündel aus dem Transversus linguae. Alle begeben sich um die seitliche Pharynxwand nach hinten, die oberen im bogenförmigen Verlaufe mit nach oben gerichteter Concavität, die unteren schräg abwärts sich ausbreitend und mit den anderseitigen sich verwendend. Ein Theil setzt sich in die longitudinaline Schichte fort. Die oberen Bündel enden in einem medianen Bindegewebsstrange, der sich am Tuberculum pharyngeum (S. 160) befestigt und den obersten Theil der sogenannten Raphe vorstellt.

Nach seinen einzelnen Ursprungsportionen hat man den Constrictor phar. superior in einen M. pterygo-, bucco-, mylo-, glosso-pharyngeus unterschieden. Der oberste Theil entsteht am vorderen Umfange des Einganges in den Canalis caroticus und greift mit seinem Ursprunge häufig sowohl auf die Gaumenaponeurose als auch auf das Petrosun über, — Die vom Unterkiefer entspringende Portion (Mylo-pharyngeus) entsteht in der Gegend des letzten Molarzahns. Die den Glosso-pharyngeus darstellenden Bündel des Transversus linguae treten vor und über dem großen Hörne des Zungenbeins theils durch den Hyoglossus, theils durch den Styloglossus, und gehen am Pharynx vorwiegend in die schräg absteigende Portion des Constrictor über. — Der obere bogenförmig ausge schweierte Rand des Constrictor phar. superior lässt hier die Membrana pharyngo-basilaris zum Vorscheine kommen (vergl. Fig. 334), so dass also hier kein continuirlicher Anschluss der Muskulatur an die Basis cranii besteht. Nicht selten lösen sich die obersten Bündel auf dieser Membran auf, und dann besteht keine scharfe obere Abgrenzung des Muskels.

M. constrictor pharyngis medius (Hyo-pharyngeus) (Fig. 334). Vom oberen Rande des großen und vom hinteren Rande des kleinen Zungenbeinhornes entspringend breitet sich der Muskel nach hinten zu gleichfalls fächerförmig aus, und deckt mit dem anderseitigen zusammentretend, einen Theil des Const. ph. superior an der hinteren Pharynxwand. Mit seiner oberen Spitze reicht er mehr oder minder weit gegen das Tuberculum pharyngeum empor.
Nach seinen beiden Ursprungsstellen ist auch dieser Muskel in Portionen trennbar. Die vom kleinen Horn des Zungenbeins wird als Chondro-pharyngeus unterschieden, und nimmt meist noch Ursprünge vom Lig. stylo-hyoidem auf. Diese Portion bildet wesentlich aufsteigende Züge. Die zweite, vom großen Zungenbeinhorn entspringende Portion — Cerato-pharyngeus — geht häufig von der Endstrecke des großen Hörnes ab, oder hat ihren Ursprung auf das knopfförmige Ende desselben beschränkt. In diesen Fällen besteht also kein unmittelbarer Anschluß an die vorige Portion. Immer breitet sich der Muskel (Fig. 334) fächerförmig aus und wird großentheils vom Constrictor inferior überlagert.

Fig. 334.

M. constrictor pharyngis inferior (Laryngo-pharyngeus) (Fig. 334). Entspricht von der Seite des Schildknorpels, nahe dem Hinterrande desselben, und nimmt hier noch Faserzüge aus dem Sterno-thyreoideus auf (Fig. 251), setzt sich dann mit dem Ursprunge auf das untere Horn des Schildknorpels und von da auf die Seite des unteren Randes des Ringknorpels fort. Die wiederum fächerförmig ausgebreiteten Fasern des Muskels treten theils aufwärts und decken den Constr.
medius. theils verlaufen sie transversal, theils abwärts und gehen damit in die Längsmuskulatur des Oesophagus über. Letzteres Verhalten ist nicht immer deutlich, wie überhaupt das untere Ende des Muskels mancherlei individuelle Schwankungen zeigt.

M. stylo-pharyngeus (*Levator pharyngis*) (Fig. 334). Von seinem Ursprunge am Grifffortsatze steigt der Muskel median ab- und etwas vorwärts herab, um mit mehreren Bündeln theils den Constr. ph. superior zu durchsetzen, theils in eine Lücke zwischen diesem und dem Constr. inferior sich einzusenken. Die Fasern verlaufen jedoch keineswegs ausschliesslich in die Pharynxwand, ein Theil begibt sich zum seitlichen Epiglottisrande, ein anderer zum oberen Rande des Schildknorpels, der kleinste endlich legt sich an den vorderen Rand des auf der hinteren und seitlichen Wand sich ausbreitenden Palato-pharyngeus und verbreitet sich in der seitlichen Wand des Pharynx. Die Auflösung dieses Muskels in einzelne Bündel erfolgt in der Regel schon nahe an seinem Ursprunge. Ziemlich häufig geht eine Portion des Muskels in den Constrictor superior über (S. Fig. 334 rechterseits).

Von Drüsen sind aemöse Formen reichlich in die Submucosa eingebettet (Schleimdrüsen). Oben bilden sie sogar eine zusammenhängende Schicht, nach unten gegen den Oesophagus zu nehmen sie an Zahl wie an Umfang ab, und treffen sich endlich nur noch in vereinzeltem Vorkommen.

Bezüglich der epithelialen Auskleidung scheidet sich das Cavum pharyngonasale von dem unteren Pharynxräume. In ersterem findet sich wie in der Nasen-
höhere Flimmerepithel, indeß der untere Raum, mit dem Epithel der Mundhöhle in Übereinstimmung, Plattenepithel trägt.

Vom Darmkanal.

Allgemeine Übersicht.

§ 146.

Den ersten Zustand des Darmrohres haben wir oben (S. 72) kennen gelernt. Nachdem der Darm sich vom Dottersack abgeschnürt, stellt er einen mit diesem nur durch den Ductus omphalo-entericus communicirenden Canal vor, und gibt später auch diese Verbindung auf. In diesem embryonalen Zustande erstreckt sich der ganze Darm als ein ziemlich gleichweites Rohr in geradem Verlaufe durch die Leibeshöhle. Allmählich tritt im Verlaufe dieses Rohrs eine spindelförmige Erweiterung auf, sie gewinnt an ihrer dorsalen, der Wirbelsäule zugeordneten Seite eine bedeutende Ausbuchung, und wird als Magen unterschiedbar, dessen Längsaxe anfänglich senkrecht steht. Mit der minder veränderten, zu ihm leitenden ersten Strecke des Darmrohrs zusammen stellt er den Vorderdarm vor. Während die erste Strecke, in geradem Verlaufe persistirend, den Ösophagus oder die Speiseröhre bildet, wird am Magen eine Lageveränderung eingeleitet, unter Modification seiner Form, wovon beim Magen Näheres angegeben wird.

Der auf den Magen folgende übrige Theil des Darmrohrs wird von ersterem später durch eine ringförmige Klappe abgegrenzt, wächst viel bedeutender in die
Länge aus, als die ihm anfänglich zugewiesene Strecke gestattet, und entfernt sich demgemäß von der hinteren Bauchwand, mit der er nur durch seinen Peritonealüberzug in Verbindung bleibt. Aus dem Längerwerden des Darms entsteht eine Schlinge, die *primitive Darmsschlinge* (Fig. 335 A), deren Scheitel in den Ductus omphalo-entericus (o) übergeht. Eine Drehung dieser Schlinge läßt den oberen vorderen Schenkel hinter den unteren hinteren gerathen. Der größere Theil des unteren Schenkels bis zum Ende des Darmes scheidet sich allmählich durch weiteres Kaliber von der zwischen ihm und dem Magen befindlichen Darmstrecke, an welche der Ductus omphalo-entericus inserirt. Somit bestehen auf den Vorderdarm folgend zwei Abschnitte des Darmrohrs. Ein engerer aus dem Magen hervorgehender, und den größten Theil der primitiven Darmsschlinge in sich begreifender Theil bildet den *Mittel- oder Dünndarm*, und eine weitere, nur das untere Ende der Darmsschlinge umfassende Strecke, welche in das Ende des Darmrohrs übergeht, wird als *End- oder Dickdarm* unterschieden (Fig. 335 B). Alle drei große Abschnitte des Darmrohrs sind durch Klappvorrichtungen von einander geschieden, wodurch den Ingestis eine bestimmte Richtung ihres Weges angewiesen wird. Die zwischen Vorder- und Mitteldarm befindliche Klappe werden wir als Pylorusklappe beim Magen, die Mittel- und Enddarm trennende Ileo-coecalklappe beim Enddarm kennen lernen.

Der Mittel- oder Dünndarm bildet unter fortgesetzter Verlängerung zahlreiche als Windungen erscheinende Schlingen, hat das ihn an die hintere Bauchwand befestigende Peritoneum mit sich ausgezogen und ist auch in seinem ausgebildeten Zustande durch diese Doppellamelle des Peritoneums an die hintere Bauchwand gehafet. Es ist das *Mesenterium* oder *Gekröse*. Der End- oder Dickdarm kommt durch die Drehung der primitiven Darmsschlinge auf einer Strecke über den Anfang des Mitteldarmes zu liegen (Fig. 335. B. C. co) und formt eine große, den Umfang der ganzen Bauchhöhle durchziehende Schlinge, bevor er zu seinem in der kleinen Beckenhöhle liegenden Ende gelangt. Hier steht er (r) mit dem Stiele der Allantois (S. 87) in Verbindung, in dessen Ende die Anlagen der Harn- und Geschlechtswerkzeuge einmünden, und dieser gemeinsame Abschnitt bildet die *Cloake*. Darin besteht eine Einrichtung, die allgemein bei Amphibien, Reptilien, Vögeln und selbst bei monotromen Säugethieren noch vorkommt. Erst mit der sich allmählich vollziehenden Scheidung der Cloake in eine Urogenitalöffnung und einen After empfängt das Darmrohr in letzterem seine selbständige Öffnung nach Außen.
Vom Darmcanal.

1. Vom Vorderdarm.

a. Speiseröhre (Oesophagus).

§ 147.

Der Oesophagus bildet wesentlich ein Zuleitener Rohr aus dem Pharynx zum Magen, und begibt sich am Ende des ersteren fast vollkommen gerade zu letzteren herab. Er liegt dabei als ein ziemlich gleich weiter, im leeren Zustande von vorne nach hinten abgeplatteter Canal vor der Wirbelsäule, anfänglich hinter der Trachea, die er von der Wirbelsäule trennt, und von der er dann etwas nach links zu abweicht, so dass er mit dem linken Aste der Trachea sich kreuzt. Von da entfernt er sich mehr und mehr von der Wirbelsäule, indem zwischen beide die Aorta sich einschiebt, und so gelangt er vor letzterer gelagert herab zum Hiatus oesophagus des Zwerchfells, wo er etwas verengt ist. Indem beim Durchtritte seine abgeplattete Form in eine mehr cylindrische übergeht, setzt er sich mit trichterförmiger Erweiterung in die Magenwand fort, welche Stelle äußerlich durch keine scharfe Grenze sich auszeichnet. An die benachbarten Organe ist der Oesophagus durch lockeres Bindegewebe befestigt, nur der hinteren Trachealwand liegt er etwas inniger an. Da die aufgenommene Nahrung im Oesophagus nicht zu verweilen, sondern ihn nur zu passiren hat, erscheint die Wandung damit in Zusammenhang von einfacher Beschaffenheit, als an irgend einem anderen Theile des Darmrohres.

Die Muskell wand der Speiseröhre hängt oben mit der Wand des Pharynx zusammen und zeigt im Anschluss an die Constrictoren, auch äußerlich ringförmige aber mehr in schräger Richtung angeordnete Fasern, bis in geringer Entfernung (1—2 cm) eine Umordnung statt hat. Von da an ist auf der ganzen Länge des Rohres eine äußere Längsfaser- und eine innere Ringfaser-Schicht vorhanden, die beide zum Magen sich fortsetzen. Nach unten nimmt die Muscularis etwas zu.

Abweichungen der Längsfaserschichte bilden eine nicht selten vorkommende Be- festigung des Oesophagus an benachbarte Theile. Da wo er den linken Bronchus kreuzt, tritt von der Hinterwand des letzteren ein plattes Muskelbündel (M. broncho-oesophageus) zur Längsfaserschichte, mit der er weiter verläuft. Ein anderes Muskelbündel geht von der linken hinteren Brustwand über die Aorta hinweg zur Speiseröhre und löst sich in die Ringfaserschichte derselben auf (M. pleuro-oesophageus). Die Unbeständigkeit dieser
Vierter Abschnitt.

b. Magen.

§ 477.

Dieser Vorgang ist noch beeinflusst durch die Fixirung des Anfangsstückes des Dünndarms an die hintere Bauchwand. Die Erstehung der Aussackung des Magens nach der durch die große Curvatur bezeichneten Richtung bedingt im Zusammenhalte mit einem auch an der kleinen Curvatur sich äußerenden Längenwachsthum die Abweichung von der senkrechten Richtung, und zwar so, dass die große Curvatur zuerst nach links und dann allmählich auch nach vorn gekehrt ist. Nach hinten findet der durch das Zwischenfell dicht über der Cardia fixirte Magen keinen Raum für seine Ausbuchtung, und der Weg nach links wird ihm durch die rechterseits zwischen Duodenum und Leberpforte verlaufenden Gefäße vorgeschrieben, sowie die spitze Lage der großen Curvatur nach vorne zu durch die voluminösere Entwicklung des unterhalb des Magens gelagerten Dünndarms bedingt ist. So erscheint die Lage des Magens als das Produkt der Anpassung des sich erweiternden Organs an gegebene Räumlichkeiten der Bauchhöhle.

Während der Magen noch senkrecht steht, tritt jederseits von der Wirbelsäule her eine Bauchfelllamelle zur Magenwand Indem der Magen von der hintern Bauchwand sich entfernt, gehen beide Bauchfellblätter, noch bevor sie zum Magen resp an dessen große Curvatur gelangen, eine Verbindung unter sich ein, bilden eine Doppellamelle *Duplizatur*, das sogenannte *Mesogastrium*. Von der großen Curvatur aus treten die beiden Lamellen auf die seitlichen Magenwände über, die von rechts her kommende übergießt die rechte, die von links her kommende die linke Magenwand. Vorne, an der kleinen Curvatur vereinigen sich beide Peritoneallamellen wieder zu einer neuen Duplizatur, welche zur Unterfläche der vor und über dem Magen gelegenen Leber tritt und als *Ligamentum hepato-gastricum* bezeichnet wird. Nach abwärts ist diese Duplizatur noch auf den Anfang des Dünndarms fortgesetzt, wo sie mit freiem Rande endigt, und als *Ligamentum hepato-duodenale* unterschieden wird.

Mit der Schrägstellung des Magens wird das Mesogastrium nicht bloß ausgezogen, sondern nimmt auch eine andere Gestalt an, indem es in einen von der Wirbelsäule entspringenden und an die Curv. major des Magens sich inserirenden Sac auswächst, die *Bursa omentalis*, von der weiter unten noch die Rede sein wird. Auch das Ligamentum hepato-gastricum ändert die Lage und nimmt mit dem Lig. hepato-duodenale eine Querstellung ein, wodurch letzteres rechts von ersteren zu liegen kommt.

Im ausgebildeten Zustande treffen wir den Magen in der beschriebenen Schrägstellung, wobei jedoch die Pylorusportion fast transversal lagert. Zugleich ist eine nach links und oben gerichtete Ausbuchtung vorhanden, *Fundus ventriculi*, eine Art Blindansackbildung, von welcher die große Curvatur sich continuirlich
herabsenkt. Wie dieser Magenblindsack dem Cardialtheile des Magens angehört, so findet sich auch an der enger werdenden Pars pylorica eine meist nur der gro-ßen Curvatur angehörige schwächere Ausbuchtung, welche bei bedeutenderer Entfaltung das Antrum pylori vorstellt.

Was die Lage des Magens betrifft, so ist diese je nach dem Füllungsgrade einigermaßen wechselnd. Er grenzt mit Cardia und Blindsack an das Zwerch-fell, welchem auch die vordere Fläche, soweit sie nicht von der Leber bedeckt ist, zugekehrt ist. Über der Pars pylorica liegt die Leber. Unter ihm zieht der quer-liegende Theil der großen Dick-darmsschlinge (Colon transversum) vorüber und weiter abwärts liegen die oberen Schlingen des Dünn-darms, theilweise auch hinter ihm, und links tritt sein Fundus mit der Milz in Berührung.

§ 149.

Die Wandung des Magens besteht 1. aus der bereits oben in ihrer Verbindung mit dem Magen beschriebenen Serosa, 2. aus einer Muskelhaut, und 3. aus der Schleimhaut, welche beide letzteren sich aus den Oesophagus fortsetzten und ebenso vom Magen auf den Mitteldarm übergehen.

Die Muscularis zeigt die einfacheren am Oesophagus herrschenden Verhältnisse, in Anpassung an die bedeutende einseitige Ausbuchtung, welche der Magen erfuhr, entsprechend umgestaltet. Die vom Oeso-phagus auf den Magen sich fortsetzende Längsfaserschichte verläuft nur längs der kleinen Curvatur ziemlich mächtig als geschlossene
Die Ringfaserschichte des Oesophagus erfährt am Magen die bedeutendsten Veränderungen. Sie geht an der Cardia gleichfalls in circuläre Fasern über, die mit einer am Fundus beginnenden und sich über den ganzen Magen erstreckenden Ringfaserschichte in Zusammenhang stehen. Diese Schichte gewinnt an der Pars pylorica größere Stärke. Ein anderer Theil der Ringfasern, die zwischen Cardia und Fundus sich finden, setzt sich zu innerst in eine auf beiden Flächen des Magens schräg gegen die große Curvatur verlaufende Schichte fort, die Fibrae obliqueae. Diese bilden nur an ihrem Anfange in der Nähe der Cardia, wo sie auch an die Ringschichte des Magenblindsacks sich anschliessen (Fig. 337) eine geschlossene Lage, lösen sich dagegen auf die beiden Seiten des Magens ausstrahlend auf, und setzen sich gegen die große Curvatur umbiegender in die daselbst befindliche Ringschichte fort. Am Pylorus bildet die Ringschichte an dem Übergange des Magens in den Dünndarm eine bedeutendere, gegen das Lumen vorragende Verdickung, die von der Schleimhaut überkleidet, die Pförtnerklappe Valvula pylori darstellt. Die hier als Schließmuskel (Sphincter pylori) wirkende Ringfasermasse nimmt zwischen ihren Zügen noch tiefe Lagen der Längsmuskulatur vom Magen her auf, die in ihr endigen. Durch dieses Verhalten wird bei der Wirkung der Längsmuskeln eine Erweiterung des Pylorus bedingt (Rüdinger).

Die Schleimhaut des Magens bildet eine relativ sehr mächtige Schichte, die durch reichliches submucöses Gewebe mit der Muscularis verbunden, und auf dieser leicht verschobbar ist. Im leeren Zustande des Magens bildet sie unregelmässige faltenförmige Erhebungen, die netzförmig unter einander zusammenhängen. Sie erscheint frisch leicht geröthet, von mattem Aussehen. Das letztere ist durch feine vorspringende Leisten bedingt, welche netz- oder gitterförmig verbunden sind und die Mündungen der Drüsen aufnehmende kleine Grübchen umziehen. Gegen den Pylorus werden diese breiter, indem hier die Drüsensehläuche mündungen dichter und hier bilden sie schmale oder breitere blattförmige
Fortsätze. *Placa villosae*, die seltener über andere Gegendern der Magensschleimhaut verbreitet sind.

Die Oberfläche der Magenschleimhaut wird von einer Cylinderepithel schichte überkleidet, deren Formelemente dadurch sich auszeichnen, dass sie an der dem Lumen des Magens zugekehrten Fläche keine Membran besitzen, somit sich wie offen darstellen und damit an die sog. Becherzellen (S. 187) erinnern.

2. Vom Mittel- oder Dünn darm (Intestinum tenue).

§ 150.

intensiv vor sich gehen. Damit sind Modificationen des Baues der Darmwand enge verküpf, welche vom Anfange bis zum Ende in allmählichen Übergängen verfolgt werden können.

Der gesamte Dünndarm bildet ein langes in zahlreiche Windungen — Schlingen — gelegtes Rohr von 5 1/2—6 1/2 m Länge; zuweilen erreicht er diese Länge nicht oder überschreitet sie. In dieser Länge spricht sich wesentlich eine Vergrößerung der mit dem Inhalte in Contact stehenden Oberfläche aus. Sein Caliber ist am Anfange am bedeutendsten und verjüngt sich allmählich gegen das Ende hin. Drei wenig scharf von einander abgegrenzte Strecken werden an ihm unterschieden: Duodenum (Zwölffingerdarm), Jejunum (Leerdarm), Ileum (Krummdarm). Von diesen ist die erste die kürzeste, sie soll zwölf Fingerbreiten betragen. An ihrer Convexität mißt sie ca 30 cm. In die übrige Strecke des Dünndarms theilen sich Jejunum und Ileum derart, dass ersterem 2/3, letzterem 3/5 zufallen.

Die Muskelhaut (Muscularis) ist am mächtigsten am oberen Theile; gegen das Ende des Ileum nimmt sie an Dicke ab. Sie besteht aus den beiden dem gesammten Darmrohr zukommenden Schichten, einer äusseren Längs- und einer inneren Ringfaserschichte. Erstere ist schwächer als die letztere und sehr innig mit der Serosa in Zusammenhang.

Eine andere Art der Oberflächenvergrößerung wird durch die Zotten (Villi intestinales) gebildet. Es sind konische, oder etwas abgeplattete Erhebungen der Schleimhaut, welche schon dem bloßen Auge wahrnehmbar, der letzteren ein samtartiges Aussehen verleihen. Die Länge der Zotten sowie ihre Dichtigkeit, bietet in der Länge des Dünndarms der Ausbildung seiner Falten entsprechende Ver-

Der gesammte Drüsenapparat der Dünnarmschleimhaut besteht aus zwei verschiedenen Formen, acinosen und schlauchförmigen, welche wieder zwei sehr differente Abtheilungen des Drüsenaaparates zusammensetzen. Die eine besteht aus kleinen aber zahlreichen Drüsenbildungen, die in der Schleimhaut selbst ihre Lage haben, oder doch nur bis in die Submucosa reichen. Die andere Abtheilung wird durch zwei sehr anschnittliche Drüsen gebildet, die ihre Lage mehr oder minder weit entfernt von ihrer ersten Bildungsstätte aus der Darmwand gewannen, und in diesem Maaße wie selbständige, nur durch ihre Ausführgänge mit dem Dünnarm verbundene Organe erscheinen. Dieses sind die in das Duodenum einmündende Leber und die Bauchspeicheldrüse, welche nach Abhandlung des gesammten Darmsrohrs vorzuführen sind. Die ersteren sind:

1) Brunner’sche Drüsen. Kleine, acinosöse, auf den Anfang des Duodenum beschränkte Drüsen, welche dicht stehend die Mucosa durchsetzen, nach und nach jedoch kleiner und spärlicher werden, und schließlich nur in der Dicke der Schleimhaut eingebettet liegen. Die vielfach verzweigten Ausführgänge
sind terminal mit rundlichen Acinis besetzt, die wie die Ausführgänge selbst von Cylinderepithel ausgekleidet werden.

§ 151.

Die einzelnen Abschnitte des vom Dünndarm vorgestellten langen Rohres bieten in ihrer Anordnung Eigenthümlichkeiten. Das Duodenum wendet sich vom Pylorus nach rechts und nach hinten, um dann ziemlich unvermittelt vor der rechten Niere sich abwärts zu krümmen (Fig. 341). Dabei empfängt es nur an der vorderen Fläche einen Peritonealüberzug, während seine hinterere Fläche der rechten Niere und der Wirbelsäule durch lockeres Bindegewebe verbunden ist. Das Ende dieses absteigenden Theiles begibt sich quer vor dem dritten LumbalWirbel, der unteren Hohlvene und der Aorta aufgelagert und dabei von der die

Mit der letzten Ileum-Schlinge gelangt das Ende des Ileum zu der rechten Fossa iliaca, wo es mit dem End- oder Dickdarm in Zusammenhang tritt.

3. End- oder Dickdarm (Intestinum crassum).

§ 152.

Der Enddarm übernimmt die bereits im Ileum allmählich in Facalmasse umgewandelten Reste des von Darmsecreten durchsetzten Chymus; indem er ihnen Flüssigkeit entzieht, bilden sie hier festere Massen, die sich schließlich zu Kothballen gestalten. Der ganze Enddarm bildet eine große Schlinge, welche an der rechten Fossa iliaca beginnt. Von da an steigt er gegen das rechte Hypochondrium empor, verläuft quer vor dem Magen nach dem linken Hypochondrium und senkt sich nach der linken Fossa iliaca, von wo unter Bildung mehrerer kleinerer Schlingen sich in die kleine Beckenhöhle begibt, wo er vor dem Kreuzbein herab zum After seinen Weg nimmt. Es werden an ihm drei Abschnitte unterschieden, als Coecum oder Blinddarm, Colon oder Gründdarm und Rectum oder Mastdarm. Den erstern bildet ein kurzer Abschnitt jenseits der Verbindung mit dem Ileum. das Rectum stellt die vor dem Sacrum herabverlaufende, gleichfalls kurze Endstrecke vor, so dass der größte Theil der Länge des Dickdarms auf das Colon trifft.

Die Entstehung der Haustra, und damit in Zusammenhang die Umordnung der Längsmuskelschichtete erscheint an die Funktion des Dickdarms geknüpft, und phylegetisch durch die festeren Faecalmassen hervorgerufen. Indem solche im Coecum und Colon sich ansammeln, müssen sie mechanisch auf die Wandungen wirken, und indem sie Ausbuchtungen, eben die Haustra, bedingen, rufen sie zugleich ein Auseinanderweichen der longitudinalen Muskelfaserzüge und deren Gruppierung in den Taeuñen hervor. Während wir so die Gestaltung des größten Theiles des Enddarmes von mechanischen Einflüssen seiner Contents ableiten, darf nicht vergessen werden, dass das Resultat dieser Wirkung bereits ein ererbtes ist.

§ 153.

Die einzelnen Abschnitte des Dickdarms bieten vorzüglich durch ihre Lageverhältnisse ziemliche Differenzen, aber auch sonst bestehen mancherlei Eigen tümlichkeiten.

Das den Anfang des Dickdarms darstellende Coecum, der Blinddarm, besitzt seine Grenze gegen das Colon durch die zwischen beiden liegende Verbindungsstelle mit dem Ileum bestimmt. Er ist ursprünglich ein relativ langer Abschnitt, der sich aber nicht gleichmäßig ausbildet. Das meist mehr als die Hälfte umfassende Endstück des primitiven Blinddarms entwickelt sich nicht in dem Maasse weiter, wie der ins Colon sich fortsetzende und diesem ähnlich sich ausbildende Theil. Somit gehen aus dem primitiven Blinddarm zwei Theile hervor, von denen der rudimentär bleibende als ein Anhang des andern sich darstellt, und wegen seiner Gestalt als Appendix oder Processus vermiciformis unterschieden wird. Noch beim Neugeborenen ist dieser wenig vom erweiterten Coecum abgesetzt (Fig. 342 coe), später tritt die Grenze schärfer hervor, und die Appendix geht bei einseitiger Erweiterung des Coecums nicht mehr am Grunde desseiben an es über, sondern gewinnt eine mehr seitliche (Fig. 343 p. v) Insertion, welche der Heoceocalklappe genähert ist.
Die Länge des Wurmfortsatzes ist sehr wechselnd und misst 6 — 8 cm. Selten fehlt er ganz, zuweilen erstreckt er sich bis zu 20 cm Länge und darüber. Er ist meist etwas gewunden, ragt gegen die kleine Beckenhöhle, oder hängt sogar dort hinab. Die Weite beträgt 1,2 bis 1 cm. Die Längsmuskelschicht bleibt an ihm continuirlich, und löst sich erst beim Übergange ins Coecum in die drei Taecien auf, die also nicht am Grade des Coecums, sondern an der Anfügestelle der Appendix beginnen. An der Einmündestelle ins Coecum findet sich, häufiger bei jungen Individuen, eine halbmondförmige, den Eingang in die Appendicix verengende Schleimhautfalte. Gegen das Ende der Appendix bietet die Schleimhaut dichtstehende Fallikel. In der Länge und Weite des Coecum bestehen beträchtliche individuelle Verschiedenheiten. Dieselbe terminale Verkümmerung des primitiven Coecums besteht auch bei anthropoiden Affen.

Das Colon beginnt sich vom Coecum aus als Colon adscendens an der hinteren Bauchwand gegen die Unterfläche des rechten Lappens der Leber, biegt hier (Flexura coli dextra) in den quer- oder eigentlich schräg liegenden Abschnitt (C. transversum) um, um im linken Hypochondrium die Flexura sinistra zu bilden, von der das C. descendens zur linken Fossa iliaca tritt. Dieser Verlauf wird nicht immer eingehalten: nicht selten findet man an der Stelle der rechten Flexur eine abwärts gelagerte Schlinge von wechselndem Umfange. Die linke Flexur steht in der Regel etwas höher als die rechte und reicht stets weiter nach

Am Colon adscendens tritt der seröse Überzug an der hinteren Fläche längs des dort sich erstreckenden Muskelbandes heran, am Colon transversum tritt er an dasselbe Muskelband, setzt sich aber an der vorderen Fläche des Colon von einem zweiten Muskelbande aus ins große Netz fort, um am C. descendens wieder längs des hinteren Muskelbandes die Verbindung mit der hinteren Bauchwand zu bewerkstelligen. — Der seröse Überzug bildet vorzüglich längs des am Colon adscendens und descendens medial gerichteten Muskelbandes, aber auch an andern Stellen der nicht mit dem Mesocolon verbundenen Muskelbänder eine Anzahl von kleinen oder größeren Fortsätzen, welche Duplicaturen vorstellen und bei gut genährten Individuen FettEinlagerungen umschließen, *Omentula, Appendices epiploicae*. Sie sind von sehr verschiedener Gestalt, bald breit blattförmig mit ausgezacktem freien Rande, zuweilen ramifizirt, bald wieder schmal oder kolbig verdickt.

Das Ende des Colon descendens, welches in das schlingenförmig angeordnete *S. romanaum* (*Flexura sigmoïdes colli*) übergeht, ist zuweilen wie letzteres durch eine längere Peritonealduplicatur mit der Bauchwand verbunden, und besitzt demgemäß eine größere Beweglichkeit. Die mehr oder minder bedeutende Länge der auf die Flexura sigmoïdes fallenden Colonstrecke hat eine verschiedenegradige Ausbildung der betreffenden *Meso-colonstrecke* zu Folge. Dieser Theil ist der beweglichste des ganzen Colon, denn das Colon transversum ist nicht bloß durch eine, aus dem Mesocolon transversum gebildete Peritonealduplicatur befestigt, sondern wird durch eine andere Duplicatur mit der Curvatura major des Magens in Verbindung gesetzt, über welche Verhältnisse beim Peritoneum und den Omentis berichtet wird. Vor dem linken M. psoas verläuft das Ende
dessen Abschnittes gegen das Promontorium und in die kleine Beckenhöhle, wo er ins Rectum sich fortsetzt.

In der kleinen Beckenhöhle liegt das Rectum beim Manne hinter der Harnblase und Prostata. Die zwischen hinterer Wand der Blase und vorderer Wand des Rectum eindringende Peritonealtasche bildet die Excavatio recto-vesicalis (Fig. 417). Beim Weibe tritt zwischen Rectum und Harnblase die Scheide mit dem Uterus empor. Von der vorderen Wand des Rectum schlägt sich der Peritonealüberzug über den Grund der Scheide zur hintern Fläche des Uterus und kleidet so eine Excavatio recto-uterina aus (Fig. 409).

Große Drüsen des Darmcanals.

§ 151.

Wie einige der Drüsen der Mundhöhle durch mächtigere Entfaltung eine von ihrer durch die Schleimhaut repräsentirten Bildungsstätte entferntere Lage erhielten, so gehen auch vom Mitteldarm ansehnliche Drüsenorgane hervor, welche nach ihrer Ausbildung nur noch durch die Ausmündung ihren ursprünglichen Connex erkennen lassen, mit ihrer Masse dagegen außerhalb des Darm-
rohrs liegen. Diese Drüsen sind 1) die Bauchspeicheldrüse, 2) die Leber, beide in ihrem Bau, wie in ihrer Genese verschieden. Die erstere repräsentirt das Galle bereitende Organ, die letztere liefert den Bauchspeichel, beides Secrete, die bei dem im Dünndarm vor sich gehenden Verdauungsprocesse eine wichtige Rolle spielen.

1. Bauchspeicheldrüse (Pancreas).

Diese Drüse entsteht aus einer unpaaren durch eine Ausstülpung der Darmwand gebildeten Anlage, von der immer neue Canälichen hervorgehen, die endlich mit Epithelsprossen sich besetzen. Das weitere Wachsthum des Organs geht dann von diesen Epithelsprossen aus, die theilweise in Ausführgänge sich umwandeln. So gestaltet sich das Organ zu einer aussehniichen platten Drüse, welche quer in der Bauchhöhle unmittelbar hinter dem Magen vor der Pars lumbalis des Zwerchfells gelagert ist. Der rechts gelagerte größere Theil der Drüse wird als ihr »Köpf« bezeichnet. Von ihm aus setzt sich der schmälere, aber längere Abschnitt der verjüngten Drüse nach links fort und läuft mit seinem Ende (Schwanz) bis zur Milz. Vor der Wirbelsäule und auf der Aorta tritt die Drüse zwischen Art. coeliaea und mesenterica superior, und lagert der letztzeit der wie der Vena mesenterica magna eine Strecke weit auf. Die vordere Fläche der Drüse wird vom Bauchfell bekleidet, die hintere Fläche ist theilweise von den erwähnten Arterien, sowie der untern Hohlvene und der vertebralen Ursprungs-Portion des Zwerchfells durch lockeres Bindegewebe verbunden, während der Köpf mit der Concavität der Dnoenalischehng innig zusammenhängt (Vergl. Fig. 341); der Köpf umgreift dabei mit seinem unteren Theile die Vena mesenterica magna.

Die Drüse besitzet im frischen Zustande eine leicht röthliche Färbung und weiche Beschaffenheit. Sie läßt überall größere, durch lockeres Bindegewebe verbundene Lappen, und an diesen wieder kleinere Läppchen unterscheiden, welche aus noch kleineren zusammengesetzt sind, so dass sie nach dem Typus einer acinösen Drüse gebaut scheint, obschon die feineren Strukturverhältnisse eine Modifikation des acinösen Dräsentypus zeigen. Die Ausführgänge der kleinsten Acini sammeln sich zu größeren, und diese treten in den gemeinsamen Ausführungsgang, welcher die Substanz der Drüse in deren Länge durchzieht. Der Ductus pancreatics (D. Wirsungianus) liegt in der linken Hälfte der Drüse näher der hintern Fläche — daher von da leichter zu finden — und auch etwas näher dem untern Rande, gelangt dann in der rechten Hälfte näher an die vordere Fläche. Er erscheint als ein weißlicher Canal, der von Strecke zu Strecke die Ausführungsgänge der Lappen und Läppchen aufnimmt. Im Köpf wendet er sich etwas abwärts, nähert sich dabei dem Ausführungsgange der Leber (Ductus choledochus) und tritt mit ihm zur Wand des Duodenum, wo er mit ihm gemeinsam auf einem papillenartigen Vorsprunge ausmündet. Ein aus dem oberen Lappeneomplexe des Köpfe entstehender Ausführungsgang verbindet sich mit dem Hauptgange, oder besitzt außer dieser Verbindung noch eine selbständige Mündung ins Duodenum (Ductus pancreatics accessorius) 2—3 cm über jener der normalen. Die Ver-
bindung des Ductus pancreaticus mit dem Ductus choledochus fehlt zuweilen, und jeder Gang besitzt seine besondere Mündung.

Bezüglich des *feineren Baues* des Pancreas ist zu bemerken, dass die kleinsten Läppchen sehr in die Länge gestreckt sind, und ein sehr enges Lumen aufweisen, so dass der größte Theil durch Epithelzellen gebildet wird. — Die Ausführungsgänge, — kleine wie größere — bestehen aus Bindegewebe mit elastischen Fasern und einer Auskleidung von Cylindrepithel.

2. Leber Hepar.

§ 155.

Diese größte Drüse des Körpers dient nicht nur zur Absonderung der Galle, welchem Secret eine Reihe wichtiger Functionen bei der Dünnarmverdauung wie bei der Resorption zukommt, sondern ist auch durch die Veränderung, welche die chemische Constitution des Blutes in ihr erfährt, bei dem gesammten Stoffwechsel der Organismus von Bedeutung.

Die erste Anlage der Leber wird durch zwei Ausbuchtungen der Wandung des Mitteldarms dicht unter der, den Magen vorstellenden Erweiterung gebildet, also nicht durch eine blosse Wucherung des Epithels, wie dies bei den meisten anderen Drüsen der Fall ist. Die beiden Ausbuchtungen formen sich allmählich zu blind sackähnlichen Gebälden, in denen auch die äußere oder Faserschichte der Anlage der Darmwand beteiligt ist. Von der die Blindsäcke auskleidenden Epithelschichte erfolgt ein Wucherungsproces, zunächst in das Gewebe der Wandung. Es sprossen Epithelchläüche hervor, mit welchen jenes Gewebe gleichfalls auswächst. Die Epithelschläüche treiben wiederum Sprossen und bei ferneren Verzweigungen derselben erscheinen, wie in den Anlagen tubulöser Drüsen cylindrische Stränge von Epithelzellen, welche sich netzförmig untereinander verbinden. Es kommt also hier nicht zur Bildung blind geengigter, etwa den Acinis anderer Drüsen ähnlicher Bildungen, sondern es entsteht ein Netzwerk von Epithelschläüchen, die alle näher oder entfernter in das Epithel der blindenschlauchartig anfretenden Ausbuchtung der Darmwand übergehen. Zwischen den Schläüchen, d. h. in den Maschen des Netzes, findet sich dann das aus der

Die zwei ursprünglich getrennten ersten Anlagen der Leber sind später nur noch durch die beiden Äste des Ductus hepaticus repräsentirt, sowie auch durch zwei nur oberflächlich, und da nur theilweise geschiedene grosse Abschnitte, die Lappen der Leber, die man nach ihrer Lage als rechten und linken unterscheidet. Beide Lappen sind anfänglich von fast gleichem Umfange und von so bedeutender Ausdehnung, dass die Leber sehr junger Embryonen den bei weitem größten Theil der Bauchhöhle in symmetrischer Lagerung einnimmt (siehe Fig. 344). Mit ihr vorderen gewölbten Fläche grenzt sie daher an die Convexität des Zwerchfells, zumeist aber an die vordere Bauchwand. Allmählich beschränkt sich das Wachsthum nach abwärts, und die Ausbildung beider Lappen hält nicht gleichen Schritt, sowie auch das gesammte Organ mit der Volumenfortschritt des Körpers nicht gleichmäßig fortwächst. Die rechte Hälfte der Leber gewinnt das Übergewicht gegen die linke, und schon beim Neugeborenen besteht zwischen beiden Hälften eine bedeutende, aber nach der Geburt noch weiter sich ausprägende Volumendifferenz. Diese ist begleitet von einem Zurücktreten des Gesammtvolums der Leber im Vergleich zum übrigen Körper. Bei der Geburt ragt sie mit ihrem vorderen und rechts-
seitigem Rande noch unter dem Thoraxrande vor. Später zieht sie sich mehr unter den Thoraxrand zurück, den sie normal nur im Epigastrium etwas über- schreitet. So nimmt das Organ allmählich auch an Ausdehnung in verticaler Richtung ab, und empfängt einen relativ geringeren Dickendurchmesser.

§ 156.

Die völlig ausgebildete Leber ist ein Organ von dunkelbraunrother Farbe. Da ihre obere Fläche (vergl. Fig. 353) der Convexität des Zwerchfells angepaßt ist, erscheint sie dieser entsprechend gewölbt. Diese Fläche ist mit der allmäßlichen Reduction des relativen Volums der Leber aus der vorderen hervorgegangen, und erscheint zum Theile auch noch in diesem Verhalten, indem sie von oben und hinten sich nach vorne herabsenkt. Die untere Fläche ist conca
dien, eine linke kleinere, und eine rechte grössere. Ein den Vorderrand theilender Einschnitt, in welchen jene Peritonealduplizatur sich einsenkt, drückt jene Scheidung noch vollständiger aus, und lässt beide Hälften als »Lappen« auf

fassen. Diese sind deutlicher auf der Unterfläche unterscheidbar, denn jener Ein-
schnitt setzt sich daselbst in eine nach hinten ziehende Furch e fort, die soge
nannte linke Längsfurche der Leber, welche als Hauptlängsfurche aufzufassen ist. In ihrer ganzen Länge verläuft in einem früheren Zustande des fotalen Kreis-

laus die Vena umbilicalis.

Diese Furch e trennt somit auf der Unterfläche die beiden grossen Lappen der Leber. Die Unterfläche ist die ursprünglich hintere Leberfläche, wenigstens zum grossen Theile, dem nach ist der hintere Abschnitt dieser Unterfläche in der Regel von dem vorderen abgesetzt und ist als hintere Leberfläche aufzufassen. Diese Abgrenzung ist jedoch nur an einem kleinen Theile der Leber ausgeprägt, und verliert sich nach den Hälften hin in die untere Fläche. In Fig. 345 ist dieses Verhältniss nicht unschwer zu erkennen.

An der unteren (und hinteren) Fläche finden manigfache Beziehungen zu anderen Organen statt, durch welche das Relief dieser Fläche sich complicirter als das der oberen Fläche gestaltet. Wir nehmen den Ausgang von der oben erwähnten Hauptfurche, welche die beiden grossen Lappen scheidet. Der in ihr ursprünglich verlaufende Venenstamm ist in der Mitte seines Verlaufes mit einer in die Leber tretenden Vene (der Pfortader) in Zusammenhang, erfährt aber Rückbildungen. Der in der vorderen Strecke der Längsfurche liegende Abschnitt ist bis zur Geburt Nabelvene, und wird nach derselben zu einem an dem linken Pfort
deraste endenden Strange, dem Ligamentum teres [Lig. hepato-umbilicale], um
gebildet, das vom Nabel her zur Leber zieht. Die fernere Fortsetzung jener Vene
Vom Darmcanal.

wird als Ductus venosus Arantii bezeichnet, hat sich schon früher zurückgebildet und stellt einen sehr unansehnlichen Bindegewebsstrang vor (vergl. Fig. 345), welcher den hinteren Abschnitt der Längsfurche einnimmt und am Ende derselben sich mit dem Stamme der unteren Hohlvene verbindet.

Wo die beiden Strecken der Längsfurche aneinander grenzen, buchtet sich die Vertiefung quer nach dem rechten Leberlappen zu aus, und stellt eine bedeutende durch mancherlei Gefässe ausgezeichnete Grube dar, die Fossa transversa oder Porta hepatis (Hilus). Zu ihr tritt die Pfortader (Vena portae) Fig. 345 V. P.,

welche sich in ihr in zwei zu den grossen Lappen der Leber sich vertheilende Äste spaltet. Dann findet sich in ihr 2) die viel schwächere Leberarterie, endlich 3) die hier austretenden Ductus hepatici, welche sich zu einem gemeinschaftlichen Ductus hepaticus verbinden. Angelagerete Theile bedingen an der Unter- und Hinterfläche der Leber Eindrücke; solche meist seichte Vertiefungen finden sich am rechten Lappen, auf dessen Vordertheil bis zum Rande hin die Gallenblase liegt. Hinten bewirkt der Stamm der unteren Hohlvene (Fig. 345) der eine Anzahl kleinerer und grösserer Venen aus der Leber aufnimmt (Venae hepaticae) einen ähnlichen Eindruck. Diese beiden Eindrücke werden als rechte vordere und hintere Längsfurchen bezeichnet, und mit Unrecht der (linken) Hauptlängsfurche parallelisirt, denn die durch sie vorgestellten Vertiefungen der Leberunterfläche besitzen unter sich keinen Zusammenhang, und namentlich die rechte hintere Längsfurche läuft niemals in die Querfurche aus. Durch jene Vertiefungen des rechten Leberlappen werden jedoch Theile des letzteren, die an die Querfurche
und an die Hauptfurche grenzen, besonders unterscheidbar. So tritt vorne ein Lobus quadratus auf, hinten ein Lobus Spigelii, der, weil er zuweilen in einen schlanken Fortsatz sich auszieht, auch Lobus caudatus heißt. Dieses sind also nur Theile der Unterfläche des rechten Leberlappens. Der an Breite sehr variable Lob. quadratus hilft den Vorderrand der Leber bilden, ist rechts durch die Gallenblase, links durch die Hauptfurche, hinten durch die Leberpforte abgegrenzt. Eine Substanzbrücke verbindet ihn nicht selten über die Hauptfurche hinweg mit dem linken Lappen (s. Fig. 345). Der Lobus Spigelii bildet meist eine bedeutende Prominenz, deren spezielle Gestalt sehr veränderlich ist. Nach links wird er von dem hinteren Abschnitt der Hauptlängsfurche, nach rechts durch die untere Hohlvene abgegrenzt, zu welcher hinter ihm der Ductus venosus Arantii zieht. Nach vorne stößt er an die Pforte, geht aber hinter dieser unmittelbar in den rechten Leberlappen über.

Das durch Furchen und Gruben an der Unterfläche dargestellte Relief bietet, wie auch die gesamte Form der Leber, vielerlei individuelle Variationen. Die gesammten, an der Unterfläche liegenden Vertiefungen pflegt man als Hförmig darzustellen, was man für die oberflächliche Betrachtung gelten lassen mag. Im Genauerem hat es keine Rich-
tigkeit, da eine kontinuierliche rechte Längsfurche nicht vorkommt.

Bau der Leber.

§ 157.

Die als Lobi (Lobus dexter und sinister, quadratus und Spigelii) unterschieden größeren Abschnitte der Leber repräsentiren wesentlich nur an der Oberfläche des Organes zum Ausdruck kommende Theile. Es sind Gestaltungen des Reliefs, welche die feinere Zusammensetzung der Leber in keiner Weise beeinflussen, wie denn die Leber in ihrem Innern keinerlei auf jene äußeren Be-
funde beziehbare oder davon ableitbare Structurverhältnisse aufweist, und über-
all eine gleichartige Zusammensetzung ihrer Substanz erkennen lässt.

Die Substanz der Leber besteht aus einer außerordentlich großen Zahl kleiner-
ster Läppchen (acieini oder Lobuli, von 1—2 mm Durchmesser), welche polyedrisch
gestaltet und durch interstitielles Bindegewebe von einander getrennt sind. An
der Oberfläche der Leber sind diese Läppchen deutlich sichtbar, und je nach dem
Füllungszustande ihrer Blutgefäße, entweder durch eine dunklere oder hellere
centrale Partie zu unterscheiden. In dem interlobulären Bindegewebe verlaufen
die drei an der Pforte der Leber angetroffenen Gefäße mit ihren Verzweigungen,
so dass das Bindegewebe ebensogut in Bezug auf diese Gefäße als interstitiell auf-
gefasst werden kann. Noch mehr tritt diese Bedeutung des interlobulären Ge-
webes an den größeren Verästelungen der Gefäße hervor, wo es, reichlicher vor-
handen, die Lücken zwischen ihnen füllt, und so bis an die Pforte zu verfolgen
ist. Es wird als Glisson'sche Kapsel bezeichnet. Diese ist also verschiedenartige Gefäße verbindendes. und auf ihren Verzweigungen begleitendes Bindegewebe, welches schließlich mit den Gefäßen zwischen die Läppchen eindringt.

Die interlobulären Verzweigungen der Blutgefäße vertheilen sich nach den benachbarten Läppchen (Fig. 347). Die Pfortaderzweige (v p) lassen vom Umfange jedes Läppchens her ein ziemlich engmaschiges Capillarnetz hervorgehen, welches das Läppchen durchsetzt, und im Innern desselben in einer kleinen Vena centralis (V. intralobularis) sich sammelt (v c). Die Capillaren des Netzes besitzen eine radiäre Anordnung, von der Vena centralis nach der der Peripherie der Läppchen. Die intralobulären Venen (Venae hepaticae) interferiren auf ihrem Verlaufe, aus den einzelnen Läppchen zusammenretend, die Vasa interlobularia, und bilden endlich gegen den hinteren Rand der Leber jene größeren Venenstämmchen, welche in die untere Hohlvene einmünden. Auch die Arteria hepatica verzwiegt sich, nachdem sie interlobulär schon die Wände der anderen Gefäße versorgte, nach den Läppchen in ein weitmaschiges Capillarnetz, welches allmählich in das venöse Capillarnetz der Läppchen übergeht. Somit findet in der Leber eine Verbindung aller Läppchen durch die Blutgefäße statt. Die Läppchen hängen durch letztere innig unter einander zusammen und können schon diesem Verhalten zufolge nicht als anderen Drüsenläppchen gleichartige Gebilde aufgefasst werden.

Das in jedem Läppchen bestehende Capillarnetz erstreckt sich in der ganzen Ausdehnung des ersteren und ist in seinen Maschenräumen von den Drüsenzellen ausgefüllt. Es sind in isolirtem Zustande (Fig. 346) unregelmäßig abgerundete, leicht gelblich gefärbte Elemente, deren Protoplasmà außer dem Kern viele feine Körnchen umschließt (f, g), zuweilen auch einzelne gelbe oder bräunliche Pigmentkörnchen und kleine Fetttröpfchen (d, e).

Dieser eigen tümliche Bau der Leberläppchen bietet somit von der Zusammensetzung anderer Drüsen bedeutende Abweichungen dar, welche jedoch aus der Art der Entwicklung, sowie durch die Betrachtung der Leberstruktur niederer Wirbeltiere verständlich werden. Es
Vom Darmcanal.

503

begrenzen, aber nicht bloß mit einer Stelle ihrer Oberfläche, sondern an verschiedenen Stellen derselben daran beteiligt sind. Es finden sich dann in den Leberläppchen dreierlei Netze vor: Erstlich das Capillarnetz der Blutgefäße (Fig. 349 b), dessen Lücken von einem zweiten Netze, welches die Leberzellen (\(i\)) bildet, ausgefüllt wird. Dazu kommt drittens das Netz der Gallengangeapillaren (\(g\)), welche von den Leberzellen begrenzt werden, so dass dieses Netz in dem der Leberzellen liegt. Jede Leberzelle begrenzt so mit mehreren Stellen ihrer Oberfläche das Lumen jener feinsten Anfänge der Gallenausführwege, und grenzt wieder mit anderen Stellen ihrer Oberfläche an die Wandung eines Capillargefäßes. Die letzteren scheinen im Inneren der Läppchen nur von minimalen Mengen von Bindegewebe begleitet zu sein, welches von dem interlobulären Bindegewebe her sich fortsetzt.

Der durch die Vereinigung der beiden, aus den grossen Leberlappen kommenden Ductus hepatici gebildete D. hepaticus nimmt meist noch in der Pforte oder doch nicht weit davon im Lig. hepato-duodenale den Ductus cysticus auf. Dieser kommt von der Gallenblase (Vesica s. cystis fellea (Fig. 345), welche von Birnenform, in eine flache Grube (die linke vordere Längsfurche) der Leber eingebettet und mit der Leber durch lockeres Bindegewebe verbunden ist. Ihr blinder Grund sieht meist etwas über den Leberrand vor, während ihr engerer Hals gegen die Fossa transversa der Leber gerichtet ist. Meist geht derselbe
Vierter Abschnitt.

etwas gebogen in den Ductus cysticus über, zeigt auch wohl an dieser Stelle eine Ausbuchung. Die untere Fläche der Gallenblase besitzt einen serösen Überzug, welcher den Fundus in dem Maaße, als derselbe vorragt, vollständiger überkleidet. Aus der Vereinigung des Ductus cysticus mit dem Ductus hepaticus geht der Ductus choledochus hervor (Fig. 350 ch), der im Lig. hepato-duodenale lateral herabsteigt, hinter das Duodenum tritt, und an der Concavität seiner Krümmung sich in die Wandung dieses Darmabchnittes einsenkt, wo er, meist von einer Schleimhautfalte bedeckt, ausmündet. Beim Eintritte in die Darmwand findet meist eine Verbindung mit dem Ductus pancreaticus statt. Die Ausmündestelle im Duodenum liegt sehr häufig auf einem papillenartigen Vorsprunge oder auf einer senkrechten Einragung der Wand. Eine dicht vor der Ausmündung befindliche Erweiterung bildet das Vater'sche Diverticulum.

Die Wandungen dieser Ausführwege constituiren sich schon innerhalb der Leber, indem die Bindegewebschicht der Gallengänge an Dicke zunimmt und die Epithelschicht allmählich aus Cylinderzellen geformt sich darstellt. Von den beiden Ästen des Ductus hepaticus an stellt eine innere Lage der Bindegewebschicht in Verbindung mit dem Epithel eine dünne Schleimhaut vor und nunmehr ist eine Schleimhautauskleidung auf dem ganzen Apparate der Ausführwege unterscheidbar. Diese zeigt feine punktförmige Mündungen von Schleimdrüsnen, bildet in der Gallenblase netzförmige, oder bienenwabenartige Vorsprünge, feine Fältchen verschiedener Ordnung, und geht im Ductus cysticus in eine spiralg Falte über (Valcula Heisteri) (s. Fig. 350), an der auch die äußere bindegewebige Hülle des Ganges sich beteiligt.

Die spiralg Anordnung der Heister'schen Klappe bietet sich oft in sehr ungleichmäßiger Weise dar, ist aber fast immer gegen den Blasenhals zu deutlicher. Es ergibt sich damit der Anschein, als ob die Gallenblase spiralg hervorwuchere.

Das Cylindrepithel dieser Ausführwege ist in der Gallenblase höher, und zeigt wie im Dünndarm auf seinen Zellen einen feinstreifigen Cubiculumsaum. In dem Bindegewebe sind in allen Abschnitten dieser Ausführwege, vereinzelt schon in den mittelgroßen Gallengängen, glatte Muskelfasern nachzuweisen, welche in der Wandung der Gallenblase eine sehr dünne Schicht bilden und in netzförmig angeordneten Zügen verbreitet sind, oder auch zuweilen eine Längs- und eine Ringschichte, freilich nicht sehr deutlich unterschieden lassen.

Von den beiden Ästen des Ductus hepaticus an kommen den Wandungen der Ausführwege traubige Schleimdrüsen zu, am reichlichsten an den Enden des Ductus hepaticus,
Vom Darmcanal.

sonst spärlicher, und in der Gallenblase nur in geringer Anzahl in der Gegend des Haltes. An den feinen Gallengängen der Leber erscheinen sie zuerst als einfache Ausbuchtungen, an den größeren sind dann solche mit traubenförmigen durchmischt wahrnehmbar. Diese Drüsen stellen sich nicht immer als selbständige Differenzierungen der Wandung der Ausführwege dar, erscheinen vielmehr, so besonders jene der Gallengangnetze der Leberpforte, als blindgedeckte Gallengangverzweigungen (Fig. 351). Sie gehören dadurch in die Kategorie der Vasa aberrantia, deren auch im Lig. triangulare sin. ziemlich constant vorkommen.

Verhalten der Leber zum Peritoneum.

§ 155.

Vierter Abschnitt.

In dieser sagittal gestellten Duplicatur führt der untere vom Duodenum ausgehende, mit freiem Vorderrande endigende Theil die oben bei der Pforte der Leber beschriebenen Gefäße. Wir haben uns also die Leber umschlossen zu denken von einem Bauchfellüberzug, welcher von der kleinen Curvatur des Magens und vom Anfange des Duodenums aufwärts und vorwärts zur Bauchwand zieht. Dieser Zustand ist in Fig. 352 schematisch versinnlicht. Dabei kann ein Theil des hinteren oberen Randes von Anfang an ohne jene seröse Überkleidung bleiben, jene Stelle nämlich wo schon mit der ersten Entwicklung des Organes die Lebervenen in die später die untere Hohlvene darstellende Vene eintreten. Diese Stelle bildet den Ausgangspunkt für eine andere Peritonealverbindung der Leber.

Die sagittale Duplicatur des Bauchfells ist durch die in sie eingebettete Leber in zwei Abschnitte gesondert. Der eine geht vom Darm zur Leber, das Lig. hepato-gastro-duodenale, der andere von der Leber zur Bauchwand, Lig. suspensorium hepatis benannt. Der untere, mit freiem Rand endende Theil der erstgenannten Duplicatur umschließt außer dem Ductus choledochus noch Pfortader und Arteria hepatica. Er wird als Lig. hepato-duodenale beschrieben, während der obere Abschnitt desselben Duplicatur das Lig. hepato-gastricum vorstellt.

Nach erfolgter Drehung des Magens nimmt das gesammtte Lig. hepato-gastro-duodenale gegen Magen und Duodenum zu eine transversale Stellung ein. Die im Lig. hepato-duodenale enthaltenen Gefäße liegen so, dass vorne rechts der Ausführung der Leber (Duct. choledochus), vorne links dagegen die Arteria hepatica, und hinter diesen beiden die Pfortader sich findet. Der vom Magen ausgehende Theil der Duplicatur — Lig. hepato-gastricum — schließt sich nach gewonnener mehr transversaler Lage, links ans Lig. hepato-duod. an, dessen unmittelbare Fortsetzung er vorstellt. Von der Pforte der Leber aus nach hinten zu hat es in seiner Verbindungsstelle mit der Leber seine sagittale Richtung bewahrt und verläuft längs des hintern Abschnittes der Hauptlängsfurche zum Hinterrande.

Die beiden serösen Lamellen, aus denen das Lig. hep. gastricum verwächst, erfahren mit der Zeit Durchbrechungen, so dass die Substanz der Lamellen auf größeren oder kleineren Strecken nur noch durch die netzförmig in ihr verbreiteten Blutgefäße dargestellt wird. Wegen dieser Beschaffenheit und der darin gegebenen Übereinstimmung mit dem großen Netz (Omentum majus), wird das Lig. hepato-gastricum auch als kleines Netz, Omentum minus, bezeichnet.

Der hinter dem Lig. hepato-duodenale und hepato-gastricum gelegene Raum, welcher sich hinter dem Magen abwärts und aufwärts bis zur Unterfläche der Leber fortsetzt, ist in dem oben erwähnten primitiven Stadium nach rechts vom Magen und vom Lig. hepato-gastro-duodenale gelegen und verhält sich mit einem links davon befindlichen völlig symmetrisch. Da nun aber mit der sich vollziehenden Drehung des Magens und dem Liegenbleiben des Duodenums vor der Wirbelsäule, jener Raum hinter den Magen zu liegen-kommt, wird er noch von rechts her zugängig bleiben, und dieß vermittelt eine oben von der Leber, unten vom Duodenum, und vorn vom Lig. hepato-duodenale begrenzte Öffnung: das Foramen Winslowi.
Die von der Pforte und von da bis zum Hinterrande der Leber an deren Unterfläche gelangenden Bauchfelllamellen treten hier aneinander zur Bildung eines serösen Überzugs dieser Fläche, wobei auch die Gallenblase, soweit sie aus ihrer Grube vorgart eine Hülle empfängt. Mit der Entfaltung der Leber in die Breite ist von der Stelle aus, die oben durch die Verbindung der Leber mit der untern Hohlvene als außerhalb der Serosa gelagert erwähnt wurde (S. 506), eine transversale Bauchfellverbindung entstanden. Diese erstreckt sich längs des hinteren Leberrandes und zerfällt an verschiedenen Strecken, an denen sie entweder einfache Umschlagstellen oder neue Duplicaturen bildet, in mehrfache Abschnitte. Hinten tritt die Serosa von der Leber zur hinteren Bauchwand, setzt sich vom rechten Leberlappen her auf die rechte Niere fort und stellt damit das sog. Lig. hepato-renale vor, welches die hintere Begrenzung des Foramen Winslowi abgibt. An den seitlichen Rändern der Leber tritt der seröse Überzug der Unterfläche mit dem Überzuge der oberen Fläche hinten in eine Duplicatur zusammen, die sich eine kurze Strecke weit fortsetzt. Es sind das die sog. Lig. triangularia hepatis (Fig. 353).

Sowohl am vorderen wie am seitlichen Rande gelangt der seröse Überzug auf die Oberfläche der Leber. Die jeden Lappen überziehende Lamelle trifft hier mit der anderseitigen an der Grenze des rechten und linken Lappens zusammen und setzt sich, da wieder eine Duplicatur bildend, in das schon vorhin erwähnte Lig. suspensorium hepatis fort, welches zur Unterfläche des Zwerchfells geht.

Fig. 353.

Vorne senkt sich das Lig. suspensorium an der vorderen Bauchwand bis zum Nabel herab und umschließt hier noch den als Lig. teres bezeichneten Strang.
Hinten dagegen tritt es in eine quere Umschlagsstelle des serösen Überzuges der Leber über. Von der Oberfläche jedes der beiden großen Lappen schlägt sich die Serosa zur hintern Bauchwand empor und beheitelt sich mit ihren seitlichen Fortsetzungen an der Bildung der Ligamenta trianguloría. Am linken Lappen tritt die obere Lamelle mit der von der Unterfläche kommenden zusammen. Am rechten dagegen, dessen hinterer Rand von bedentender Dicke ist, bleibt stets eine Strecke der Leberoberfläche ohne serösen Überzug, indem die Serosa der obren Fläche nach oben, jene der untern nach unten zur Bauchwand sich umschlägt, ohne dass beide Lamellen sich vorher zu einer Duplicatur vereinigt hätten. Die hintere Umschlagsstelle des serösen Überzugs zur Bauchwand wird als ein Band: *Lig. coronarium hepatis* aufgefasst. Eine Duplicatur ist dieses Band jedoch nur am linken Leberlappen (Fig. 353), am rechten ist es durch eine einfache Umschlagstelle des Leberüberzuges zum Zwerchfell vorgestellt, die man *Lig. hepato-phrenicum* heißen könnte und die erst mit dem Lig. hepato-renale zu einem Äquivalente des linkseitigen Lig. coronarium sich ergänzt.

Linkerseits schlägt sich zuweilen der Überzug der unteren Fläche über den hinteren Rand direkt zum oberen über, so dass dann das Lig. coron. von der Oberfläche des linken Lappens sich erhebt (Fig. 353). In dem linken Lig. triangulare finden sich häufig vereinzelte Gruppen von Leberlappchen, oder aberfrürende Gallengänge vor, welche auf eine partielle Rückbildung des linken Leberlappens hinweisen. Mit dieser Rückbildung stehen auch Falten des Peritoneum in Zusammenhang, die zuweilen die von v. Brunn beschriebenen Bursae phrenico-hepaticae abgrenzen. (Vergl. Zeitschr. f. Anat. u. Entw., Bd. 1, S. 205. — In der speziellen Gestaltung der Leber und ihrer einzelnen Lappen walten zahllose individuelle Verschiedenheiten.

Der Ausgang von der Entwicklung der Leber lässt die Verhältnisse des Peritoneums zu derselben in ihren Hauptpunkten sehr klar überschauen. Denkt man sich die einheitliche sagittale und senkrechte Duplicatur von einem Punkte an durch die sich hier entfaltende Leber in einen oberen und unteren Abschnitt getheilt, so kommt mit der Entfaltung der Leber in die Breite noch ein transversaler Ausschnitt hinzu. Die Peritonealduplicaturen gestalten sich kreuzförmig. Der Mittelpunkt des Kreuzes wird von der Verbindungsstelle der Vena cava inferior mit der Leber eingenommen. Die senkrechten Arme des Kreuzes bilden die sagittalen Peritonealzellen, das Lig. suspensorium oben, das Lig. hepato-gastro-duodenale unten. Die Querarme des Kreuzes stellen die transversalen Peritonealzellen vor, links das Lig. suspensorium mit dem linken Lig. triangulare, rechts das Lig. hepato-phrenicum, resp. die Fortsetzung der oberen Lamelle des Lig. coronarium und des Lig. hepato-renale, beide ins rechte Lig. triangulare ausgezogen. Um die untere Hohlvene treffen alle diese Falten zusammen. Je nachdem ein größerer oder kleinerer Theil des Hinterrandes des rechten Leberlappens vom serösen Überzuge ausgeschlossen ist, d. h. je nachdem die rechtseitige Strecke des Lig. coronarium mehr oder minder weit vom Lig. hepato-renale getrennt ist, kommt auch eine verschieden lange Strecke des unteren Hohlvenenstammes an diese Stelle zu liegen und dieses steht wieder mit dem Verhalten der Lebervenen in Zusammenhang. Münden nämlich, noch bevor jener Venenstamm den Hinterrand der Leber erreicht hat, Lebervenen in ihn ein, so ist die Vene auf einer größeren Strecke mit der Leber verbunden, und das beeinflusst auch den Peritonealüberzug.

Obwohl die Leber sowohl durch ihre Verbindungen, besonders mit dem Gefäßapparat, dann durch die Druckwirkung der unter ihr befindlichen Eingeweide in ihrer Lage
erhalten wird, zeigt sie doch in seltenen Fällen Abweichungen von jener Lage, die sich dann sehr verschieden verhalten können (Wanderleber).

Der seröse Überzug der Leber bietet eine eigenthümliche Anordnung der Blutgefäße dar. Die Leber durchsetzende Zweige der Leberarterie bilden theils sternförmige Vertheilungen, theils ein weitmaschiges Netz, wobei die einzelnen Arterien zuweilen einen geschlängelten Verlauf nehmen (Fig. 354). Aus diesen Arterien geht ein großmaschiges Capillarnetz hervor; die daraus entspringenden Venen verlaufen mit den Arterien und dringen in die Leber ein, um wenigstens an vielen Orten in Pfortaderäste einzumünden (KÖLLiKER, Handb. d. Gewebehlefe, 5. Aufl. S. 444).

Peritoneum.

Mesenterium und Omentum.

§ 159.

Diese Modificationen werden durch jene Organe verständlich, durch die sie hervorgerufen sind. Daher knüpft sich die Darstellung des Verhaltens des Peritoneums enge an jene anderen Organe, welche das Bauchfell als Serosa überkleidet und an die es sich umschlagend Falten oder Duplicaturen vorstellt, die man von der nicht immer richtigen Vorstellung ausgehend, dass jene Theile dadurch in ihrer Lage festgehalten würden, als Ligamente zu bezeichnen pflegt. Solcher besonderen Befunde des Peritoneums ist bereits bei verschiedenen dem Tractus intestinalis angehörigen Organen, dem Magen (S. 481), Dünndarm (S. 485), Dickdarm (S. 493) und dem Pancreas (S. 495), ausführlicher im vori-
gen § mit Beziehung auf die Leber Erwähnung geschehen, für manches Andere wird noch später beim Harn- und Geschlechtsapparat das Bauchfell berücksich-

Für das Mesenterium (Gekröse) muss an jenen Zustand des Darmrohrs angeknüpft werden, in welchem derselbe nicht mehr gerade vom Magen aus zu seinem Ende verläuft sondern bereits die Bauchhöhle an Länge übertreffend eine Schlinge bildet, die aus' einem oberen und einem unteren Schenkel besteht. (Vergl. Fig. 335). Der diese Schlinge bildende Theil des Darms hat sich von der Wirbelsäule entfernt und das ihn dort befestigende Bauchfell mit sich ausgezogen, d. h. es ist in gleichem Maaße fortgewachsen, als der Darm zu einer Schlinge auswuchs. Mit dem Eintritte der Drehung jener Schlinge, bei welcher der untere Schenkel über den oben sich emporschiebt (Vergl. S. 478) wird der zu letzterem tretende Abschnitt des primitiven Mesenteriums allmählich über jenen zu liegen kommen, welcher zum oberen Schenkel geht. Damit findet zugleich, durch Wachstumsvorgänge geleitet, eine entsprechende Verschiebung der Ursprungsstellen der betreffenden Mesenterialstrecken an der hinten Bauchwand statt, und da aus dem unteren Schenkel der Schlinge vorwiegend das Colon hervorgeht, so wird der als Mesocolon unterschiedene Theil des primitiven Mesenterium alsdann oberhalb der zum anfänglich oberen Schenkel tretenden Mesenterialstrecke von der hinten Bauchwand entspringen.

Das Mesocolon beginnt in der rechten Fossa iliaca, zuweilen mit einer das Coecum umfassenden und es beweglich erscheinen lassenden Duplicatur (Mesocoecum), welche in den meisten Fällen fehlt, so dass das Coecum nur an seiner

Grosses Netz (Omentum majus. Epiploon). Die Entstehung dieses Peritonealgebildes knüpft an die Drehung des Magens an (vergl. S. 480). Dessen seröser Überzug wird wie am primitiven Mesenterium anfänglich aus einer rechten und linken Bauchfellplatte gebildet, welche beim Übergange an die hintere Bauchwand eine Duplicaturbildung eingehen und das Mesogastrium vorstellen (vergl. Fig. 352). Mit der Richtung der großen Curvatur nach abwärts wächst dieses an sie tretende Mesogastrium in eine längere Strecke aus (Fig. 355), und gewinnt auch an seiner parietalen Anfügestelle eine quere Stellung. Mit fernerem Auswachsen bildet es einen von der großen Curvatur des Magens herabhängenden, aus zwei Bauchfelllamellen bestehenden schlaffen Sack, dessen vordere Wand oben vom Magen ausgeht, indessen die hintere Wand zur Bauchwand tritt. Hier gehen die beiden Lamellen auseinander. Die innere tritt aufwärts, überkleidet die vordere Fläche des Pancreas und begibt sich zum Zwerchfell, um von da ans auf die untere Fläche der Leber sich fortzusetzen. Die äußere Lamelle dagegen setzt sich auf das unmittelbar unter der parietalen Insertion des Mesogastrium entspringende Mesocolon transversum fort. Wie bereits oben (S. 506) dargestellt, ist der hinter dem Magenbefindliche Raum in den vom ausgewachsenen Mesogastrium gebildeten Sack fortgesetzt und besitzt nur einen Zugang, der hinter dem Lig. hepato-duodenale liegt, das Winslow'sche Loch. Der Sack des Mesogastrium ist die Bursa omentalis, der Netzbeutel (Fig. 356). Er hängt frei

Die Lageverhältnisse des größten in die Bauchhöhle eingebetteten Theiles des Tractus intestinalis zeigen sich in seltenen Fällen in einem abnormen Befunde, derart, dass die normal rechts liegenden Theile eine linksseitige Lage haben und umgekehrt. Das gleiche Verhalten bietet sich dann stets auch bezüglich der Organe der Brusthöhle. Bei dieser, in frühen embryonalen Zuständen sich ausbildenden Abnormität, Silus transversus viscerae benannt, wiederholen sich für alle einzelnen Organe die aus der Lage hervorgehenden Umgestaltungen der Form, so dass das Ganze ein Spiegelbild der normalen Verhältnisse darstellt.

Von den Luftwegen und Lungen.
[Athmungsorgane.]

§ 160.

Die wichtigste Beziehung des vordersten Abschnittes des Darmsystems (der Kopfdarmhöhle) zur Athmung ist durch die Entwicklung der Lungen aus der Wand jenes Abschnittes ausgesprochen und erhält sich durch die dauernde Verbindung der zu ihnen führenden Luftwege mit dem Pharynx. Als erste Anlage
Dieses Organsystems erscheint eine Verdickung der vorderen (ventralen) Schlundwand. Sie wird wesentlich durch eine Wucherung der beizüglichen Mesodermenschichte gebildet, in welche auch die endodermale Epithelschichte sich fortsetzt. Die Bildung gleicht somit einer Ausstülzung des obersten Theiles des Schlundes, oder des Endes des Pharynx. Indem sie sich allmählich weiter abwärts erstreckt, trennt sie sich mit ihrem unteren Ende vom Darmlumen und bildet bald zwei seitliche Ausbuchtungen, die nicht nur distal sondern auch dorsawärts sich vergrößern. Somit ist ein unparer Abschnitt und ein paariger angelegt. Ersterer repräsentirt die Anlage der Luftröhre, letzterer die der Lungen (Fig. 357). Im ferner Verlaufe treten unter allgemeiner Volumszunahme von der epithelialen Auskleidung der Lungenanlage neue Wucherungen in der dicken Mesodermenschichte auf, welche jenen Theilen zukommt. So bilden sich neue von Epithel ausgekleidete Blindschläuche, welche von den zuerst gebildeten Hauptstämmen (Fig. 358: in ziemlich regelmäßiger Anordnung abgehen. Der ganze Proceß gleicht der Bildung einer gelappten Drüse, und setzt sich in dieser Richtung auch fernerhin fort. Von den blinden Enden der Epithelschläuche sprossen neue, die wieder sich verzweigen, bis auf diese Weise jede Lunge aus einer außerordentlich reichen Verzweigung eines vom Epithel gebildeten Röhrensysteams dargestellt wird, welches eine gemeinsame, die Ramificationen unter einander verbindende Mesodermenschichte besitzt.

Wir haben also diese beiden Strecken der Luftwege gesondert zu betrachten.
Vom Kehlkopf (Larynx).

§ 161.

Außer der auch den übrigen Strecken der Luftwege zukommenden Funktion kommt diesem Abschnitt eine besondere Bedeutung als Organ der Erzeugung der Stimme zu, und demgemäß sind an ihm besondere Einrichtungen ausgeprägt, die fast alle darauf Bezug haben. Ein aus Knorpeln bestehender Stützapparat erscheint als eine mächtigere Ausbildung des auch den übrigen Luftwegen zukommenden Gerüstes. Jene Knorpel sind nicht nur durch Bänder unter einander in Zusammenhang, sondern sind auch in Gelenken beweglich und werden durch Muskeln bewegt. Über die ganze Innenafläche erstreckt sich eine Schleimhautbekleidung, die ebenso in jene des Pharynx übergeht, wie sie sich in die der Luftröhre fortsetzt.

Fig. 359.

Der Kehlkopf liegt median in der vorde- ren oberen Gegend des Halses, unterhalb des Zungenbeins und vor dem unteren Abschnitte des Pharynx, bedeckt von den zum Zungenbein empor steigenden Hals- Muskeln, seitlich auch theilweise noch von der Schilddrüse. Ein von seinem größten Knorpel gebildeter, beim Manne bedeutend entwickelter Vorsprung (Protuberantia laryngea, Poma- tum Adam) kennzeichnet äußerlich seine Lage. Sein Eingang findet sich am untersten Theile der vorderen Pharynxwand (Fig. 359).

Skelet des Kehlkopfes.

Dieses setzt sich aus Knorpelstücken zusammen, welche theils Modificationen derselben Knorpel sind, die den gesamten Luftwegen als Stütze dienen, theils kommen knorpelige Theile in Verwendung, welche jenem Skelete nicht angehören.

1) Der Schilddknorpel, Cartilago thyreoides (Fig. 359), ist der größte der Knorpel und besteht aus zwei, vorn in einem Winkel unter einander verbundenen Platten, deren oberer Rand median einen tiefen Ausschnitt besitzt und

Der beide Platten verbindende mediane Theil des Schildknorpels zeigt in der Regel eine von dem Haupttheile der Platten verschiedene Beschaffenheit durch etwas gelbliche Färbung. Der Knorpel ist hier elastisch modifizirt, bildet jedoch niemals einen gesonderten Theil, so dass man kein Recht hat, diese Strecke als Lamina mediana zu unterscheiden. An der Innenfläche, etwa in der Mitte der Höhe bietet der vordere Theil des Schildknorpels einen schwachen Vorsprung dar, welcher durch entschieden elasti sches Gewebe gebildet wird und der Verbindungsstelle mit den Stimmbändern entspricht. Auf der Seitenfläche nahe dem oberen Rande, findet sich nicht selten ein rundliches Loch im Schildknorpel vor (Fig. 361), welches in der Regel einem abnormen Verlaufe der Art. laryngea superior dient.

Der Schildknorpel steht durch Bänder mit dem Zungenbein in Verbindung. Von den oberen Hörnern des Schildknorpels erstreckt sich je ein Faserstrang zum Ende der großen Hörner des Zungenbeins. Jedes dieser Ligg. thyreo-hyoidea lateralia enthält in der Regel ein längliches Knorpelstückchen (Corpusculum triticeum, Fig. 360, 361), in der Mitte eines Verlaufs. — Ein zweites Band besteht vorwiegend aus elastischen Fasern und erstreckt sich von dem oberen Ausschnitte des Schildknorpels in ziemlicher Breite zum hinteren oberen Rande des Körpers des Zungenbeins empor. Ligg. thyreo-hyoideum medium (Fig. 360). Der Raum zwischen diesem Bande und dem seitlichen wird durch eine dünne Bindegewebslage ausgefüllt, welche man als Membrana thyreo-hyoidea darzustellen pflegt.

2 Der Ringknorpel, Cartilago cricoïdes (Figg. 360 bis 364), gleicht einem Siegellinge, dessen Platte nach hinten gerichtet ist. Sie tritt hier

An dieser Articulatio crico-thyreoida besitzt die Gelenkkapsel an ihrer unteren hinteren Seite eine Verstärkung durch straffe Faserzüge (Lig. crico-thyr. lat.). Eine zweite Verbindung beider Knorpel erfolgt durch das Lig. crico-thyreoidum medium (Lig. conicum). Dasselbe ist ein vorne vom Ringknorpel breit entspringendes elastisches Band, welches an dem entgegenstehenden unteren Rande des Schilddknorpels etwas verschmälert befestigt ist Fig. 366. Auf der Mitte seiner convexen Oberfläche ist meist eine kleine Öffnung zum Eintritte einer Arterie dienend bemerkbar. Der untere Rand der Spange des Ringknorpels steht mit der Trachea durch das Ligamentum crico-tracheale in Zusammenhang.

3) Gießbeckenknorpel, Cartilagines arytaenoidae, oder Stellknorpel Fig. 362 Ar. 363), weil sie durch ihre Stellung wichtige Veränderungen der Stimmbänder bewirken, sind zwei kleine auf dem oberen Rande

4. Auf dem abgestutzten oberen Ende jedes dieser Knorpel sitzt ein kleines Knorpelchen auf, Cartilago Santoriniana (Fig. 363), welches wie ein vom Stellknorpel abgelöstes Stückchen sich darstellt. Es ist nach hinten und medial gebogen (Corniculum) und setzt damit die Krümmung des Stellknorpels fort.

Endlich wird dem Skelet des Kehlkopfes noch ein Knorpel zugezählt, der eigentlich ein Gebilde der Schleimhaut ist, die Cartilago epiglottidis. Der Kehldeckel, Epiglottis, ist ein zungenförmig gestalteter, von einer Schleimhautduplicatur gebildeter Theil, welcher als ein beweglicher Deckel über dem Eingange in den Kehlkopf sich darstellt (Fig. 359). Die hintere Lamelle dieser Schleimhauterhebung ist in elastisches Knorpelgewebe umgewandelt, welches dem ganzen Apparat des Kehldeckels eine Stütze abgibt. So empfängt der Kehldeckel ein plattes Knorpelstück als Grundlage; dasselbe ist oben und seitlich abgerundet und läuft unten in einen stielartigen Fortsatz aus, mit dem es an der Innenfläche der Verbindungsstelle beider Schildknorpelplatten, oberhalb der Anfügestelle des Lig.
thyreo-arytaenoideum befestigt ist. Die vordere Fläche des Knorpels sieht gegen die hintere Fläche des Zungenbeinkörpers, mit dem sie durch lockeres elastisches Gewebe zusammenhängt. [Lig. hyo-epiglotticum der Autoren].

Zu den beschriebenen Knorpeln kommen noch mehrere accessorische Gebilde, von denen die Cartilagineous cuneiformes die constantesten sind. Sie werden bei der Schleimhaut, in der sie ausschließlich liegen, beschrieben. Andere Knorpelchen sind höchst variable Art und kommen zum Theil nur selten vor.

Das Gewebe des Schild-, Ring- und Stellknorpels gehört zum hyalinen Knorpel. Doch ist der mediane Abschnitt des Schildknorpels, der durch gelbliche Färbung sich auszeichnet, mit einer Querfaserung der Intercellularsubstanz versehen. Im Alter finden am Schild- und Ringknorpel Kalkeinlagerungen und auch Verknöcherungen statt, die an der Oberfläche beginnend, in die Tiefe weiter schreiten.

Muskeln des Kehlkopfs.
§ 162.

M. crico-threoideus (Fig. 364). Dieser entspringt von der Vorderfläche der Spange des Ringknorpels, und zwar nahe der Medianlinie, bis eine Strecke weit gegen den seitlichen Rand. Von da an breitet der Muskel sich fächerförmig gegen den unteren Rand des Schildknorpels aus, mit seinen medialen Fasern steiler, mit den lateralen schräger emportretend. Während ein Theil am Unterrande des Schildknorpels bis zum untern Horn hin, und auf dieses sich fortsetzt, tritt eine tiefere Lage des Muskels an die Innenfläche des Schildknorpels zur Insertion.

Die zweite oder innere Gruppe von Muskeln wird vom N. laryngeus inferior versorgt. Sie theilt sich wieder in zwei Untergruppen. Die eine wirkt als Erweiterer des Binnenraums des Kehlkopfs soweit er durch die Bewegungen der Stellknorpel veränderlich ist, während die andere Gruppe hiezu in einem antagonistischen Verhältnisse sich findet. Der ersten Abtheilung gehört an der

M. crico-arytaenoideus posterior (Fig. 365). Entspringt als starker platter Muskel von der lateralen Facette der Platte des Ringknorpels, namentlich an der unteren Hälfte derselben und an deren äusserer Grenze, convergirt mit seinen Fasern aufwärts und lateral, um an dem Processus muscularis des Stellknorpels sich festzusetzen. Beiderseitige Muskeln sind immer von einander getrennt, bei manchen Säugthieren stehen sie verschiedengradig in medianer Verbindung,
kreuzen sogar ihre Fasern. Als eine seitliche Abzweigung dieses Muskels besteht der:

a. *Laterale Muskeln* sind:

1) *M. erico-arytaenoïdeus lateralis*. Er entspringt vom oberen Rande und dem angrenzenden Theile der äußeren Fläche der Spange des Ringknorpels und verläuft schräg nach hinten zur seitlichen Oberfläche des Processus muscularis des Stellknorpels, wo er Befestigung nimmt.

Sein Ursprung kann auch auf das Lig. erico-thyreoidenum medium, auch weiter nach innen auf die Schleimhaut ausgedehnt sein. Sehr häufig zweigen sich Bündel von ihm zum Seitenrande der Epiglottis und zur Membrana quadrangularis ab.
2) **M. thyreo-arytaenoidens inferior** (Fig. 366). (Thyreo-arytaenoidens externus) liegt mehr oder minder in directem Anschluss aufwärts vom vorigen. Entspringt als ansehnlicher Muskel vom Schildknorpel und verläuft nach hinten zum Stellknorpel, an dessen vorderer und seitlicher Fläche er, wie auch am Processus vocalis inserirt. Seine mediale Portion ist dreiseitig gestaltet und liegt in der das Stimmband darstellenden Schleimhautfalte. Sie wird als **M. thyreo-arytaenoidens internus**, Stimmbandmuskel, von dem übrigen Muskel, gegen den sie jedoch keine bestimmte Grenze besitzt, unterschieden.

Auch der **M. thyreo-arytaenoidens inf.** greift häufig mit seinem Ursprung sowohl auf das Ligg. thyreo-hyoideum medium, wie auf die Stimmemembran über. Seine äußere Schicht bietet häufig Durchdringungen ihrer Bündel, und dieselben Abzweigungen, wie sie am vorigen Muskel bestehen. Diese können als **M. thyreo-epiglotticus** (Fig. 366*) und **M. thyreo-membranosus** aufgeführt werden.

3) **M. thyreo-arytaenoidens superior** (Fig. 366). Sehr variabel und häufig auch schwach, bildet er einen vom oberen Theile des Winkels des Schildknorpels entspringenden nach hinten und abwärts verlaufenden Muskelzug, der den **M. thyreo-arytaenoidens inferior** fast senkrecht kreuzt. Er inserirt am Processus muscularis des Stellknorpels. Sein Ursprung kann am Schildknorpel sehr zentren sein, oder er rückt vom letzteren sogar auf die Membrana quadrangularis.

b. **Hinterse Muskeln** (dem **M. inter-arytaenoidens** zugehörig) sind:

1) **M. inter-arytaenoidens obliquus**. Bildet eine oberflächliche Schicht von geringer Selbständigkeit der Endigung. Er entspringt an der hinteren Fläche des Processus muscularis und verläuft als schmales Bündel schräg empor auf die andere Seite. Entweder endet er hier oder setzt sich um den Stellknorpel herum in den **M. thyreo-arytaenoidens** fort, oder geht theilweise auch in den **M. ary-epiglotticus** (Fig. 366 **) über. Zuweilen wird die Hauptmasse des letzteren Muskels aus dieser Fortsetzung des Arytaenoidens obliquus vorgestellt (Fig. 365). Beide Muskeln kreuzen sich auf der Hinterfläche der Stellknorpel.

Mit seinen Fortsetzungen in andere Muskelgebiete stellt er den **Thyreo-ary-epiglotticus** Henle’s vor. Der Muskel kommt unter allen Säugethiern nur den anthropoïden Affen zu, setzt sich aber nicht in andere Muskeln fort. Beim Orang ist er nur wenig, mehr beim Gorilla entwickelt.
Vierter Abschnitt.

2. *M. inter-arytaenoideus transversus*. Liegt unter dem vorigen und füllt mit seiner Masse die hintere Concavität der Stellknorpel aus, so dass nur die oberen Enden derselben frei bleiben. Er besitzt quere Fasern, die an beiden Stellknorpeln befestigt sind.

Spezielleres über die Muskeln des Kehlkopfs sehe man bei M. Förster, Beitrag zur Kenntniss der Kehlkopfmuskulatur. (Jena 1875.), welcher Darstellung wir in der Hauptsache gefolgt sind.

Schleimhaut und Binnenraum des Kehlkopfs.

§ 163.

An der Plica ary-epiglottica zeigen sich zwei abgerundete Vorsprünge (Fig. 365. 367). Der vorderste dieser Vorsprünge wird durch ein hier eingelagertes festes Gebilde hervorgerufen, dessen ausgebildeter Zustand die sogenannte *Cartilago corniformis* (*Wrisberg'scher Knorpel*) vorstellt. Ein dünnmes Stäbchen elastischen Knorpels ist dann vom dichten Bindegewebe, vorzüglich gegen das obere Ende reichlich umzogen und in die Schleimhaut eingesenkt. Zuweilen sind diese Modifikationen der Mucosa sehr reduziert, nicht selten fehlen sie. Dem hinteren Vorsprunge liegt die Cartilago Santoriniana zu Grunde. Lateral von der Plica ary-epiglottica beginnt sich die Schleimhaut in eine nach außen und vorn vom Schildknorpel umwandete Bucht (*Sinus piriformis*). Eine medial davon vom Stellknorpel aus gegen das große Zungenbeinhorn sich herstreckende, übrigens sehr variable Falte läßt jene Buchtung tiefer erscheinen, oder grenzt auch wohl einen besonderen Raum (*Recessus laryngens*) von ihr ab. Die Falte selbst birgt den N. laryngens superior, daher *Plica n. laryngaei* benannt.

Sowohl von der Epiglottis als von der Plica ary-epiglottica aus, tritt die Schleimhaut ins Innere des Kehlkopfes.
Den **Binnenraum** des Kehlkopfes scheiden wir in drei Abschnitte, den oberen, mittleren und unteren, welche sowohl durch verschiedene Gestaltung wie durch differente Beschaffenheit der Schleimhaut-Auskleidung ausgezeichnet sind. Der obere mit dem Aditus beginnende Raum ist das **Vestibulum laryngis**.

Durch die Beweglichkeit der Epiglottis wie der Stellknorpel ist er der veränderlichste. Seine vordere Wand bildet die hintere Fläche des Kehldeckels. Am unteren Ende der Epiglottis wird die Schleimhaut durch unter ihr liegendes Bindegewebe zu einem dreiseitigen, mit der Spitze abwärts sehenden Wulst (Epiglottis-Wulst) vorgebuchtet. Die von der Plica ary-epiglottica über die Membrana quadrangularis hinweg sich einsenkende Schleimhautstrecke überkleidet hinten die mediane Fläche der Stellknorpel, während sie vorne jederseits eine gegen die Medianebene vorragende fast horizontale Falte erkennen läßt.

Während die Schleimhaut auf der Kehldeckelfläche durch die oben (S. 517) berücksichtigten Beziehungen zum Epiglottisknorpel glatt erscheint, wird sie am Epiglottiswulste lockerer und stellt sich so auch auf dem größten Theile der Seitenwand des Vestibulum dar, bis dahin wo sie inniger mit der medialen Stellknorpelfläche verbunden ist. Hier laufen die Seitenwände des Vestibulums gegeneinander und gehen in die schmälere hintere Wand über, welche die Interarytaenoidmuskeln von vorne überkleidet. Die untere Grenze des Vestibulums bildet eine vom vorderen Rande des Stellknorpels zur Seite des Epiglottiswulstes ziehende Schleimhautfalte, welche mit abgerundetem Rande nach abwärts sieht. Hier beginnt der **mittlere Raum** des Kehlkopfes.

Jene Falte umfaßt das durch submucöses Gewebe dargestellte Lig. thyreo-arytaenoideum superius, welches zugleich den unteren Rand der Membrana quadrangularis bildet. Sie wird auch als **Taschenband** unterschieden, da sie den Eingang in eine laterale Ausbuchtung des mittleren Kehlkopfraumes von oben her begrenzt. Diese Ausbuchtung ist der **Ventriculus** oder **Sinus Morgagni**. Sein Raum erstreckt sich etwas aufwärts und außen vom Taschenband, sehr verschieden weit empor (Fig. 367). In selteneren Fällen reicht die Schleimhautausstülpung.
Vierter Abschnitt.

Der untere Raum des Kehlkopfs hat seine oberste Grenze an den Stimmbändern. Von da an erstreckt sich die Schleimhaut leicht gelblich gefärbt herab zum Ringknorpel, an dessen inneren Umfang sie befestigt ist. Der Raum erweitert sich somit nach abwärts und nimmt am Ende eine Cylinderform an. Da er sich nach oben gegen die Stimmbänder von beiden Seiten her verschnürt, hat man ihn mit Bezug auf die elastische Beschaffenheit seiner Schleimhaut Conus elastics benannt. Die in die Stimmbänder übergehende Schleimhautstrecke desselben wird auch als Stimm-Membran (Membrana vocalis) bezeichnet.

Der Drüsenausströmung der Schleimhaut besteht aus kleinen acinosen Schleimdrüsen deren Mündungen als feine punktförmige Öffnungen zu erkennen sind. Sie finden sich theils zerstreut, theils in Mengen beisammen. Solche treffen sich in der Gegend der Stellknorpel, an den Taschenbändern und in der Schleimhaut der Morgagnischen Taschen selbst.
In der oben erwähnten, zuweilen vorkommenden größeren Ausdehnung der *Morgagnischen Taschen* besitzt der Kehlkopf des Menschen eine Eigentümlichkeit, welche an die bei manchen Affen bestehenden, freilich viel ausgeprägteren Befunde erinnert. Bei anthropoïden Affen (Orang, Gorilla) erstrecken sich jene Taschen durch die Membrana thyreo-hyoidea nach außen, wo sie sehr ausgedehnte, am Halse liegende Säcke vorstellen, die vom Larynx aus mit Luft füllbar sind. Während beim Menschen eine Erweiterung der Taschen nach oben zu nicht zu den Seltenheiten gehört, kommt sehr selten eine Durchbrechung der Membrana thyreo-hyoidea und damit verbundene Fortsetzung der Taschen nach außen vom Kehlkopf vor. Ein derartiger Fall ist durch W. GRUBE bekannt geworden. (Arch. f. Anatomie und Physiol. 1874. S. 606.)

Von der Lufröhre und ihren Ästen.

Trachea und Bronchi.

§ 164.

An den unteren Rand des Ringknorpels des Kehlkopfes schließt sich vermittels des Ligamentum crico-tracheale die *Lufröhre* (*Trachea*) an, ein vor dem Oesophagus liegendes Rohr, welches mit diesem nur etwas weniges nach links abweichend in die Brusthöhle herab tritt und da in der Höhe des 4.—5. Brustwirbels in ihre beiden nach rechts und links gehenden Äste (*Bronchi*, Fig. 369) sich spaltet. Die Trachea gleicht einem an seiner hinteren Circumferenz planen Cylinder, indem ihre Wandung von knorpeligen, hinten offenen Ringen gestützt wird, Verhältnisse die auch auf die beiden Bronchi übergehen und diese Luftwege offen erhalten. Diese setzen sich in schräger Richtung zu den Lungen fort. Der rechte Bronchus ist kürzer und etwas weiter, er verläuft schräger herab als der längere und etwas engere linke, der zugleich etwas gebogen verläuft und über sich den Bogen der Aorta hinwegtreten läßt. An der Lunge angelangt theilt sich jeder Bronchus anscheinend wieder in zwei Äste, von denen am rechten Bronchus der untere stärkere als bald eine zweite Theilung eingeht. Zu dieser Vertheilung verhält sich die Lungenarterie beiderseits verschieden. Linkerseits tritt dieselbe
über den Bronchus, indes sie rechterseits unterhalb des ersten großen Bronchialastes liegt (Vergl. Fig. 369) und nur einen Zweig über denselben empor-

treten läßt.

Die Knorpelringe der Trachea wie der beiden Bronchi sind äußerlich plane, innen etwas gewölbte Spangen mit abgerundeten Rändern. Ihre Höhe ist nicht völlig gleich. Hin und wieder sind einige unter einander verbunden, was besonders für die obersten sich trifft, oder ein Ring läuft seitlich in eine Gabel aus. Demnach ist auch ihre Zahl verschieden und schwankt von 15—20. An den Bronchen sind die Ringe wenig's schmäler, bieten aber sonst ähnliche Verhältnisse wie jene der Trachea dar. Der erste ist nicht selten mit dem letzten der Trachea in Zusammenhang. Am rechten werden 4—8, am linken 8—12 Ringe unterschieden. Zun-

Die vom Kehlkopf her in die Trachea fortgesetzte Schleimhaut kleidet die Innenfläche des von Knorpeln gestützten, wie des membranösen hintern Ab-

Fig. 369. Trachea mit den beiden Bronchen in ihren Lageverhältnissen zu den großen Gefäßstämmen von hinten. Die beiden Lungen sind dabei auseinander gezogen.
schnittes aus, an letzterem Längsfaltung darbietend. Sie ist sehr reich an elastischen Faserzügen, welche longitudinalene Netze bilden und durchschimmernend sichtbar sind. An der hinteren Wand liegt eine Schichte von Schleimdrüsen (Gl. tracheales), die auch z. Th. zwischen die Muskelfaserschichte sich einlagern, oder diese sogar durchsetzen können. An den von Knorpelringen gestützten Strecken ist die Drüenschichte durch die einzelnen Ringe unterbrochen, und die Drüsen finden sich in die Vertiefungen zwischen den Ringen eingebettet. Ihre Mündungen sind als feine Pünktchen sichtbar. Das Epithel besteht gleich jenem des Kehlkopfs aus wimpertragenden Cylinderzellen.

Der erste Trachealring zeigt zuweilen eine Verbindung mit dem Ringknorpel des Kehlkopfs, und bringt damit die Zusammengehörigkeit des gesamten Skeletes der Luftwege zum Ausdruck. — Über den Neigungswinkel der beiden Bronchii, der beim Neugeborenen geringer ist als beim Erwachsenen, s. Aeby, 1. l. c.

Von den Lungen.

§ 165.

Von den Rändern der Lunge ist der hintere stumpf, er verbindet die costale und mediale Fläche in einer bedeutenden Abrundung und bettet sich in die zwischen der Wirbelsäule und den Rippen befindliche Vertiefung ein. Der vordere

Wie die allgemeine Gestalt jeder Lunge aus der Anpassung des Organes an den Raum, in den es sich einbettet, hervorgeht, so ergeben sich für beide Lungen wieder einige Verschiedenheiten aus den Verhältnissen der beiderseitigen Hälften der Thoraxhöhle. Diese Verschiedenheiten entspringen hauptsächlich aus der beiderseits ungleichen Wölbung des Zwurchfells, seiner vorwiegend rechts sich erhebenden Kuppel und aus der vorwiegend linksseitigen Lagerung des Herzens im vorderen Mediastinalraum. Durch diese beiden Umstände erscheint die rechte Lunge etwas breiter aber auch etwas kürzer, indes die linke Lunge an ihrem unteren Lappen minder breit aber im ganzen etwas höher ist, da ihre Basis tiefer steht als jene der rechten. Dieses findet jedoch darin kaum eine Compensation, dass die Spitze der rechten Lunge um wenigstens weiter in die Höhe tritt als die der linken. Immerhin bleibt die rechte Lunge das voluminösere Organ, welches sich zur linken wie 11 zu 10 verhält.

Jede Lunge besitzt eine glatte von der Serosa überkleidete Oberfläche, von der aus tief in die Lunge eindringende Einschnitte das Organ in einzelne größere Lappen (Lobi) sondern. Ein solcher Einschnitt verläuft von hinten und oben über die Seitenfläche nach vorne und unten und trennt einen oberen und einen unteren Lappen von einander. Der Einschnitt greift mehr oder minder weit bis gegen den Hilus der Lunge ein und verläuft in etwas spiraliger Richtung, zugleich mit seiner Ebene schräg von innen nach außen abfallend. Der obere Lappen hat vorne seine größte Höhe, der untere hinten. Während beide Lungen diese Verhältnisse gleichmäßig besitzen, kommt der rechten noch ein dritter mittlerer Lappen zu, indem ein minder schräger Einschnitt, wenn auch wenig tief, die untere Portion des oberen Hauptlappens abtrennt. Die durch die Haupteinschnitte an beiden Lungen sich darstellende Symmetrie erfährt also durch
die Dreiteilung der rechten Lunge eine Störung. Dieses als Regel geltende Verhalten ist jedoch nicht immer durchgeführt, und die Scheidung in große Lappen bietet mancherlei Abweichungen, von denen nur noch das Vorkommen von drei Lappen an der linken Lunge erwähnt sein soll. Man hat sich jedoch zu hüten, diese durch die tiefen Einschnitte dargestellten großen Lappen, die eine scheinbare Symmetrie kundgeben, für wirklich einander völlig entsprechend anzusehen, da in dem Verhalten dieser Lappen zu den Bronchen ganz andere Verhältnisse sich aussprechen.

Bau der Lungen. Bronchialverzweigung.

§ 166.

Bezüglich der Struktur der Lunge hat der oben kurz dargelegte Entwicklungs- gang (§. 513) einen wichtigen Befund erkennen lassen. jenen nämlich, welcher das Organ nach dem Typus von Drüsen gebaut erscheinen läßt. Die Trachea mit den Bronchen entspricht den Ausführwegen, welche die aus der Lunge hervorkommenden größeren Bronchien aufnehmen, zu welchen wieder die kleineren und kleinsten sich vereinigen. In jeder Lunge ist anfänglich ein einziger Bronchialstamm angelegt. Er erstreckt sich nahe der medialen Seite der Lungenanlage und läßt lateral gerichtete kleinere Bronchien hervorsprossen (vergl. Fig. 371). Diese zeigen so eine reihenweise Anordnung am Stamme und vermehren sich in dem Maße, als der Stamm terminal (d) sich weiter bildet. In diesem Verhalten spricht sich eine gewisse Regelmäßigkeit der Anordnung der Bronchien-Anlagen aus. Die seitlichen Bronchial-Anlagen nehmen ihre Richtung nach vorne und abwärts, dazu kommen neue, welche nach hinten und unten gerichtet sind. Sie bleiben stets kleiner
als die anderen. Von den vorderen Zweigen bilden sich einige stärker aus und gaben damit zur Annahme einer schon an den beiden Luftrohrenästen beginnenden dichotomischen Verzweigung Anlaß.

Unter den Säugethieren bestehen nur wenige, bei denen durch das Vorkommen auch eines linken eparteriellen Bronchus ein symmetrisches Verhalten der Lungen ausgeprägt ist, und diese repräsentire Abtheilungen, in denen sonst keine primitiven Zustände bestehen (Equus, Phoca, Elephas, Bradypus, dann Delphinus und Auchenia, bei welcher letzteren der eparterielle Bronchus trachealen Ursprung besitzt). Dagegen ist bei der Mehrzahl der Säugethiere ein rechter eparterieller Bronchus vorhanden und damit der Typus der auch beim Menschen bestehenden Einrichtung ausgedrückt, von welcher die Quadrumanen und unter diesen die Anthropoidei auch noch in specielleren Verhältnissen der Luftwege nähere Anschlüsse bieten.

§ 167.

Was das Verhältniß der Bronchien zu den Lungenläppchen betrifft, so besitzen die ersteren bis zu einem unter allmäßlicher Verzweigung erlangten Durchmesser von 1 — 1,5 mm einen interlobulären Verlauf. Jene kleinsten Bronchien (Bronchioli) dagegen treten in die schon oben als Lobuli bezeichneten Abtheilungen der Lunge. In diesen verzweigen sie sich allseitig in kleinere Canäle, welche hin und wieder mit Ausbuchungen (Alveolen, Luftzellen, Cellulae aërae) besetzt sind. Wo diese beginnen, werden die Bronchioli zu Alveolargängen (F. E. Schulze), welche meist unter sehr spitzen Winkel neue Verzweigungen eingehen, die wieder langgestreckte aber terminal erweiterteCanälchen bilden. Allmählich häufen sich an letzteren die Alveolen, stehen dicht gedrängt aneinander und vergrößern so den Binnenraum der Alveolargänge, deren erweiterte Endabschnitte am dichtesten mit Alveolen besetzt, oder in solche ausgebuchtet (Fig. 373) sind. Diese Endstrecken tragen verschiedene Namen, Lungenbläschen, Endbläschen n. s. w., Bezeichnungen, die man jedoch nicht dahin deuten darf, daß das terminale Ende der Alveolargänge von letztern schärfer abgesetzt sei. Im Großen und Ganzen waltet vielmehr ein röhriger Bau vor; die Alveolargänge mit ihren Enden verhalten sich ähnlich den Schlüchtern einer tubulösen Drüse mit der nicht unwesentlichen Modification jedoch, daß deren Enden erweitert sind, und dass auf dem ganzen Verlaufe dieser Canäle kleinere Ausbuchungen, eben die Alveolen, bestehen.

Wenn man früher gesehen ist, den Bau der Lunge dem einer gelappten Drüse zu vergleichen, wie denn auch mit einer solchen während der Entwickelung des Organs große Übereinstimmungen sich ergeben, so ist diese Auffassungsweise doch nicht völlig aufrecht zu halten, seitdem die Alveolargänge nachgewiesen sind. Der Bau der
Vierter Abschnitt.

Lunge, als drüsig beurteilt, repräsentiert eine eigenthümliche Form, die von jedem der beiden Haupttypen der Drüsen (S. 27) etwas an sich trägt, und so eine Mischform repräsentirt. — Die Bezeichnung der terminalen Erweiterungen der Alveolargänge ist eine sehr mannigfache, man hat sie auch Infundibula (Rossignol) genannt, womit aber nur die altmäßliche (trichterförmige) Erweiterung, nicht aber der terminale Abschluß bezeichnet wird, der doch eben so zu den Endbläschen gehört. Wir zogen deshalb vor, den älteren, minder unverständlichen Ausdruck »Endbläschen« beizubehalten.

Das Knorpelgerüst der beiden Luftröhrenäste setzt sich auch auf die Bronchialverzweigungen fort, erleidet aber daselbst Modificationen in dem Maße, als mit dem abnehmenden Kaliber der Bronchien deren Wände dünner werden und sich structurell vereinfachen. Die Knorpelplättchen der beiden Bronchien werden nur an deren größten Ästen noch angetroffen, weiterhin bestehen nur noch kürzere, platte, sogar unregelmäßig gestaltete Stücke, welche nach und nach kleiner werdend, auf größere Distanzen vertreten und an den Bronchiolen von 1 mm Durchmesser gänzlich verschwunden sind.

Von den Luftwegen und Lungen.

533

Die Drüsen der Bronchialschleimhaut lassen an den größeren Bronchien ihre Mündungen als feine Punkte erkennen. Sie stellen unregelmäßig gewundene, tiefe und da gebuchte Schläuche dar, welche als eine Übergangsform zwischen tubulösen und acinosen Drüsen gelten können. Das Epithel der Schleimhaut ist ein mehrfach geschichteter, insofern zwischen den zur Oberfläche gelangenden Zellen noch andere, tiefer gelegene sich finden. Zwischen den wimpertragenden Cylinderzellen finden sich auch Becherzellen (vergl. S. 487), in wechselnder Menge von der Lufröhre an bis zu Bronchiolen von 0,5mm. Zuweilen stehen sie so dicht, daß für die Cylinderzellen nur schmale Zwischenräume bleiben.

Blutgefäße eines Alveolenschnitt durch das Alveolenparenchym. a freie Alveolenränder, b kleiner Arterienzweig, c querdurchschnittene Alveolenschläuche. ca 300.
Vierter Abschnitt.

Plättchen, mit ebenfalls unregelmäßigen, häufig zackig verlaufenden Umrissen. Nach außen vom Epithel findet sich Bindegewebe.

Das die Wandungen der feisten Luftwege darstellende Bindegewebe ist an den Alveolen zu einer fast strukturlosen nur an einzelnen Strecken deutlich faserigen Membran umgestaltet, in der verteufelte Bindegewebszellen vorkommen, und auch reichlich elastische Fasern verbreitet sind. Diese bilden auch einen Hauptbestandtheil des interstitiellen Gewebes, welches zwischen den Alveolargängen, Bronchiolen und Endbläschen sowohl wie auch zwischen den Lobulis verbreitet ist (vergl. Fig. 374).

In der dünnen Wandung der Alveolen der Lungenbläschen wie in den Alveolargängen und sogar einem Theile der Bronchioli verbreitet sich das respiratorische Gefäßnetz, welches durch die Enge seiner Maschen sich auszeichnet (vergl. Fig. 375). In gefülltem Zustande ragen die Capillaren an den freien Rändern der Alveolen vor (s. Fig. 375). Bei der Dünneheit des Epithelüberzuges sowohl als auch der Capillarwand tritt nur eine minimale Schichtung zwischen die Luft und den Blutstrom, so daß für den Austausch der Gase die günstigsten anatomischen Bedingungen bestehen.

Pleurahöhle.

§ 168.

Die in den beiden Hälften der Thoraxhöhle eingeschlossenen Lungen verhalten sich ähnlich wie die in der Bauchhöhle lagernden Theile des Darmrohres, insofern sie einen serösen Überzug besitzen, der von ihnen abstretend, auch die Wandungen jener Cavität überkleidet. Diese seröse Membran ist die Pleura, das Brustfell. In allen wesentlichen Punkten bietet die Pleura dieselben Verhältnisse der Structur wie das Peritoneum oder das Bauchfell, wie ja auch die Brusthöhle ursprünglich mit der Pleurahöhle einen gemeinsamen Holhraum (Pleuro-peritonealöhle oder Cölom) darstellt, der sich erst mit der Anlage des Zwerchfells in jene Abschnitte scheidet.

Nach den von ihr überzogenen Theilen trennt man die Pleura wie andere seröse Häute in ein parietales und ein viscerales Blatt, beide gehen an gewissen Stellen in einander über, so daß man sich die Pleurahöhle als einen geschlossenen Sack vorstellen kann, an dem die eine als Pleura visceralis die Lunge überkleidende Hälfte in die andere, als Pleura parietalis die Wandung der Thoraxhöhle überziehende eingestülpt ist. Die Lungenpleura ist innig mit der Lunge selbst in Zusammenhang. Sie tritt von der Lungenwurzel, den dort befindlichen Complex zur Lunge tretender Gefäße, Luftwege etc. überkleidend, zur medialen Lungenfläche und erstreckt sich von da über die gesamte Oberfläche des Organs. An
Pleurahöhle.

535
den die großen Lappen der Lunge sondernden Einschnitten tritt sie gleichfalls ein, als Überzug der gegeneinander gekehrten Flächen jener Lappen. Unterhalb der Lungenwurzel setzt sich die Pleura als eine einfache, keine zur Lunge tretenden THEILE umschließende Falte fort, das **Ligamentum pulmonale**, welches sich hinten zur Pleura costalis, unten zur Pleura diaphragmatica erstreckt. Die letztere Ausdehnung ist jedoch keineswegs immer vorhanden.

Ebenadahin tritt auch die Pleura von der beschriebenen Grenze an der vorderen Brustwand, kleidet die von den Rippen gebildete Wölbung des seitlichen Thoraxraumes aus und setzt sich unten zur Überkleidung des Zwerchfells fort, wohin medial auch die Pl. mediastinalis sich erstreckt. Aus dem vorhin für
Vierter Abschnitt.

das beiderseitige Verhalten der Pleuren an der vorderen Brustwand Angeführten ergibt sich, daß die linke Pleura costalis eine geringere Ausdehnung als die rechte hat. Linkerseits bleibt ein Theil der Brustwand frei von der Pleura, er entspricht meist dem Knorpel der fünften Rippe und einem Theile des vierten und fünften Intercostralraumes, seitlich vom Körper des Sternums. Die Umschlagstelle der Pleura costalis in die Pleura diaphragmatica, also die unterste Grenze der gesammten Pleura findet sich vorne in schräg absteigender Linie bis gegen den sechsten Intercostralraum, von welchem sie, rechts näher dem Sternum, sich beiderseits gleich bogenförmig lateral und nach hinten wendet und dann horizontal bis gegen das Vertebrallende der zwölften Rippe, zuweilen aber auch noch etwas weiter herab verläuft. Der obere Raum der Pleurahöhle setzt sich über die Grenze der oberen Thoraxapertur hinaus fort, ein Verhältniß, welches bei der nach vorne gesenkten Stellung der Ebene jener Apertur vorne und hinten verschieden sich darstellt. Hinten erhebt sich die Pleura im Mittel bis zum Halse der ersten Rippe. Nach vorne zu überschreitet die Pleura die Grenze der ersten Rippe, setzt sich auf die innere Fläche des Insertionsendes des Scalenus anticus fort, und überkleidet dann die Unterfläche der bogenförmig über die Lungenspitze hinweg verlaufenden Arteria subelavia, welche dabei etwas vorspringt und demgemäß an der Lungenspitze einen seichten queren Eindruck erzeugt.

Von der Schilddrüse (Glandula thyreoïdes).

§ 169.

Bei Vergrößerung der beiden Lappen treten diese weiter nach hinten und umfassen so die Luftröhre bis gegen den Oesophagus zu (Vergl. Fig. 378).

Von der Thymus.

§ 170.

Auch dieses Organ rechnen wir dem Darmsysteme zu, wenn auch seine Stellung minder sicher ist, als jene der Schilddrüse. Die Beziehung zum Darmsysteme wird wiederum durch die Entwicklung begründet, welche es wahrscheinlich macht, dass das Epithel einer Kiemenpalte die erste Anlage des Organs hervorgehen läßt (KÖLLIKER).

Die kleinen Läppchen sind wieder ans noch kleinern zusammengesetzt, so dass sich der Bau einer acinösä Drüse zu ergeben scheint. Die genanere Prüfung gibt jedoch andere Resultate. Jeder der kleinsten Acini (von 0,5—0,2 mm Durchmesser) besteht aus Bindegewebe, welches reichlich mit indifferenten Zellen infiltrirt erscheint, so dass letztere die Hauptmasse bilden und das Ganze an das Verhalten der Lymphfollikel erinnert. Zuweilen gewinnt es den Anschein, als ob solche Pollikel die Peripherie der Acini bilden. Im Allgemeinen ist eine corticale Schichte der Acini von einem Binnenräume, wenn auch nicht in scharfer Abgrenzung unterscheidbar. Die lockere Beschaffenheit des inneren Gewebes hat hier Hohlräume annehmen lassen, die mit einem das ganze Organ durchziehenden, wohl nur durch Bindegewebslücken repräsentierten Canale in Zusammenhang stehen sollten. Das die Acini umgebende Bindegewebe dringt zwischen den
follikelartigen Bildungen ein, ohne jedoch die letzttern nach innen zu völlig von einander zu scheiden. Es verbindet, locker gewebt, auch die kleineren Läppchen zu größeren. Von den Blutgefäßen, welche die Thymus durchziehen, gelangen die im Innern des Organs verlaufenden Arterien ins Centrum der Läpp- und vertheilen sich nach der Peripherie zu, indem sie in Capillarnetze übergehen. Aus diesen sammeln sich Venen an der Oberfläche der Acini, besitzen also im Innern der Thymus einen interacinären Verlauf.

Die Vorstellung, dass in der Thymus ein den Lymphorganen zuzurechnendes Gebilde vorliege, wird jedoch durch die Textur des Organs nicht begründet, welches Gewicht man auch immerhin auf die oben hervorgehobene Ähnlichkeit mit den Lymphdrüsen legen mag. Das Verhalten der Lymphbahnen gilt bis jetzt als noch nicht vollständig erkannt, obwohl Lymphgefäße, wenigstens bei Sägethiereischen zwischen den Läppchen nachgewiesen wurden und größere Stämme an der hintern Fläche des Organs. Aber gerade diese spärliche Beziehung zu Lymphgefäßen läßt das Organ nicht den Lymphdrüsen beiordnen, so dass es besser ist, seine physiologische Bedeutung für jetzt noch als problematisch anzusehen.

Man pflegt Schilddrüse und Thymus mit noch einigen anderen in ihren physiologischen Beziehungen rätselhaften Organen als »Blutfäßdrüsen« zusammenzureihen, und will unter solchen drüsigen Organen verstehen, bei denen der mangelnde Ausführgang durch die Blutgefäße ersetzt würde. Abgesehen davon, daß mit dem Ausführgang ein sehr wesentlicher _anatomischer_ Bestandtheil einer Drüse fehlt, den Blutgefäße nicht ersetzen können, so ist jene Auffassung auch deshalb zu beseitigen, weil gar nicht im entferntesten erwiesen ist, in wiefern physiologisch die Blutgefäße den Ausführgang vertreten, resp. inwiefern in jenen Organen etwas secerirt würde, was ins Blut überginge.

Der Begriff einer Blutgefäßerüse ist somit ein gänzlich hältloser, da er weder anatomisch noch physiologisch eine Stütze empfängt.
Fünfter Abschnitt.

Vom Uro-genitalsystem.
Harn- und Geschlechtsorgane.

Allgemeines.

Urniere und Keimdrüse.

§ 171.

Ein großer Theil der auf dem Wege des Stoffwechsels gebildeten, für den Organismus nicht mehr verwendbaren Stoffe, vorzüglich der stickstoffhaltigen Bestandtheile, wird in Form einer Flüssigkeit (Harn) durch besondere Drüsen abgesondert, die man als Nieren bezeichnet. Sie stellen also Excretionsorgane, die Harnorgane vor. Mit deren Ausführwegen verbinden sich schon bei der ersten Differenzierung der Organe die Ausführwege der Geschlechtsorgane. Aus beiden Apparaten setzt sich so ein einheitliches System der Harn- und Geschlechtsorgane oder das Uro-genitalsystem zusammen.

Das als Niere erscheinende Organ besitzt bei allen höheren Wirbeltieren einen Vorläufer, die Urniere (auch Wolff'scher Körper oder Primordialniere ge-
§ 172.

Von den Harnorganen.

A. Von den Harnorganen.

Anlage der Niere.

§ 173.

Auch die spätere Niere nimmt von der Urniere aus ihre Entstehung, indem vom untern Ende des Urnierenenganges erst eine Ausbuchtung, dann ein blind geendeter Canal (Nierengang) sich bildet, dessen Wandung terminal durch Vermehrung des ihn begleitenden Mesodermgewebes eine Verdickung empfängt. Dieses verdickte Ende der Nierenanlage bildet den Ausgangspunkt weiterer Differenzierungen. Von dem blinden Canalende aus sprossen neue Canäle in die Mesoderm-
Fünfter Abschnitt.

Die Entstehung der Niere aus dem Urnierengange läßt zwar zwischen ersterer und der Urniere eine enge Verknüpfung erkennen, allein es gibt sich dennoch für die Niere ein gewisses Maß von Unabhängigkeit zu erkennen, sowohl durch die Art ihrer Genese als durch die Zeit in der sie auftritt. Als Product einer Sprossung des Urnierenganges ist sie von der Urniere verschieden, und ebenso dadurch, daß sie erst nach vollendetem Gestaltung der letzteren erscheint. Von diesen Besonderheiten erscheint jedoch die zeitliche Differenz als die untergeordnete, und auch die andere Verschiedenheit stellt sich bei näherer Erwägung nicht als Hinderniß hervor, die Niere mit der Urniere als ein ursprünglich einheitliches Organ zu betrachten, welches nach und nach in zwei, sogar getrennt ausmündende Organe sich gesondert hat. Für diese Auffassung sprechen auch die Verhältnisse der Nieren bei niederen Wirbeltieren (Amphibien), bei denen der hintere Abschnitt der Urniere später sich ausbildet, und auch voluminöser sich gestaltet, während der vordere verschiedene Umwandlungen erfährt.

gebildet sind. Mit dem Auswachsen der Harnkanälchen bilden sich zugleich neue, und so gewinnt das Organ allmählich eine Volumszunahme, und läßt an den Harnkanälchen selbst allmählich die Differenzierung verschieden sich verhaltender Strecken auftreten, die mit dem feineren Bau der Niere darzulegen sind.

Bau der Niere und ihrer Ausführwege.

§ 174.

Gegenbacht, Anatomie.

545
die obere Grenze des dritten Lendenwirbels herab. Die rechte Niere liegt fast immer etwas tiefer als die linke, indem ihr oberes Ende gegen die untere Fläche des rechten Leberlappens stößt, aber auch teilweise von ihm überlagert sein kann. An dieses obere Ende lagert sich mehr von der medialen Seite her die sogenannte Nebenniere (Glandula suprarenalis) an (Fig. 380), welches Organ die Niere hier auch etwas nach der hinteren Fläche zu bedeckt.

Die Nieren werden durch Bindegewebe an die benachbarten Organe befestigt, mehr aber noch durch die zu ihnen tretenden Blutgefäße fixirt. Das die Nieren, besonders vorn und an den Seiten umgebende Bindegewebe zeichnet sich meist durch Fetteneinlagerung aus, woraus man eine Capsula adiposa entstehen ließ. Der Peritonealüberzug der Vorderfläche, der meist nicht einmal unmittelbar diese Fläche überkleidet, stellt die sogenannte Capsula serosa vor.

Zweilen ist eine der Nieren, und zwar häufig die rechte als die linke, minder fest gebettet, und dann kann eine Änderung der Lage eintreten, die eine wechselnde wird (Wanderniere).

Der Hilus der Niere bietet zweilen eine Ausdehnung nach der hinteren Fläche zu, so daß dann der Sinus dorthin weit sich öffnet. Solche Verhältnisse sind meist auch mit anderen Modifikationen der Gestaltung verknüpft. In seltenen Fällen sind beide Nieren und zwar meist mit ihren unteren Enden unter einander verschmolzen (Hufeisenniere).

Die Oberfläche der Niere des Erwachsenen ist meist glatt, bietet aber nicht selten einzelne Furchen oder auch Verzweigungen von solchen. Dies ist ein Rest des gelappenen Zustandes der Niere (Fig. 381), wie er im Laufe der Entwicklung des Organs sich bildet, und, wie schon oben bemerkt, auch noch beim Neugeborenen erscheint.

Diese besteht der Hauptsache nach aus den bereits oben (S. 544) erwähnten Harnkanälchen, welche sowohl in Anordnung als im Verlaufe in der äußeren Schichte der Nierensubstanz andere Verhältnisse als in den inneren Theilen darbieten und dadurch

Die Spitze jeder Papille trägt die Mündungen von Harnkanälchen und ragt in einen die Papille umfassenden, becherförmigen Theil der Ausführwege, einen Nierenkelch (Fig. 382). Mit diesen beginnen die Ausführwege, die zum Theile in den Sinus der Niere eingebettet und hier von Fett umgeben sind, welches auch die zwischen den Kelchen befindlichen Lücken ausfüllt.

Auch die Rindenschichte ist nicht so gleichartig, wie der oberflächliche Blick erscheinen läßt. Gleichmäßig fein granulirt ist nur der peripherische Theil der Corticalsubstanz. Der stärkere, gegen die Pyramide zu sehende Theil der
Corticalsubstanz wird wieder in einzelne radiär zur Pyramide stehende Abschnitte zerlegt. Feine Streifenbündel treten nämlich aus der Grenzschicht der Pyramide in die Corticalsubstanz in ziemlich regelmäßigen Abständen, die Pyramidenfortsätze (Markstrahlen). Sie gelangen theils bis zur peripherischen Schicht der Rinde, theils in den breiteren Theil der Columnae Bertini. theils verlaufen sie in den schmalen Endstrecken der Columnae von einer Pyramide quer zur anderen, indem die peripherische Rindenschicht nicht durch die Columnae Bertini fortgesetzt ist.

§ 175.

Die oben gegebene Unterscheidung der das dünne Parenchym der Niere zusammensetzenden Harncanälchen (Tubuli uriniferi; in Tubuli recti und Tubuli contorti) entspricht nur den größeren Verhältnissen. Im genauereren Befunde ergeben sich viel complicirtere Zustände. Jedes Harncanälchen beginnt in der Rindensubstanz mit einer Kapsel ('Bowman'sche Kapsel (Fig. 353 I), die einen Gefäßknäuel (Glomerulus) umschließt. Aus der Kapsel geht ein engerer Abschnitt (Hals) hervor, welcher sofort in eine weitere, mehrfach gewundene Strecke (II) übergeht. Diese hilft einen großen Theil der »Tubuli contorti« darzustellen. Aus ihr setzt sich das Canälchen schwächer in die Pyramide fort (III), in der es verschieden weit vordringt, um schleifenförmig umzubiegen (Hendel's Schleifen) und auf seinem rückläufigen Wege wieder etwas stärker zu werden (IV). Diese Strecke nimmt ihren Weg in einen Pyramidenfortsatz, den sie mit bilden hilft. Sie geht aber nochmals in einen der ersten Erweiterung ähnlichen und wie diese gewundenen Abschnitt über (V), der mehr oder minder der corticalen Oberfläche nahe, bogenförmig in ein gerade verlaufendes Canälchen sich einsenkt, welches in einem Pyramidenfortsatzte liegt, und ein Sammelrohr (VI) vorstellt. Während nämlich bis hieher die Canälchen ungeachtet des Wechsels ihrer Stärke auf den verschiedenen Strecken einheitlich waren, tritt nun am Sammelrohr eine allmähliche Vereinigung auf. Jedes nahe unter der Nierenoberfläche (k) beginnende Sammelrohr nimmt auf seinem Wege durch die Rin-
Von den Harnorganen.

549
denschichte, wo es in einem Pyramidenfortsatz verläuft, eine größere Anzahl zu-
weilen schon vorher unter einander verbundener Harnkanälchen auf. In die
Pyramide eingetreten verbinden sich je zwei der Sammelröhrchen unter einander
(VII), und so vereinigen sich die Sammelröhrchen allmählich in der Nierenpapille
zu stärkeren Canälchen (VIII), die zuletzt auf der Papille ausmünden IX. Sol-
er ductus papillares bestehen 10—25. Jeder derselben theilt sich in der Py-
ramide aufsteigend dichotomisch, und läßt also eine Summe von Sammelröhrchen
hervorgehen, welche einem Abschnitt der gesammten Pyramide entsprechen,
und an der Rindenschichte in mehrfache Pyramidenfortsätze übergehen.

Zwischen den Harnkanälchen findet sich Bindegewebe mit den Blutgefäßen
und den Bahnen der Lymph.

Der Wandaung der Harnkanälchen kommt eine äussere, dünnere, anscheinend
homogene Membran (tunica propria) zu, die auch auf die die Glomerulus ent-
 haltende Kapsel sich fortsetzt, und die von einer Epithellage ausgekleidet wird.
Die tunica propria hat sich aus fest untereinander verbundenen plattenförmigen
Zellen zusammengesetzt erkennen lassen. Das Epithel wechselt seine Beschaffen-
heit nach den verschiedenen Strecken und läßt damit auf eine Verschiedenheit des
functionellen Werthes dieser einzelnen Abschnitte der Canälchen schließen. Inner-
halb der Bowman’schen Kapsel wird das Epithel von großen platzen Zellen gebil-
det, die sich ähnlich auch auf den Glomerulus fortsetzen. Das Plattenepithel der
Kapsel geht am Halse in dickere Zellen über, welche die gewundene Strecke (II)
der Harnkanälchen auskleiden. Ungeachtet der größeren Dicke dieser Strecke
ist das Lumen nicht weit. An den Basen der Epithelzellen finden sich Streifun-
gen, welche der basalen Hälfte der Zellen ein trüberes Aussehen verleihen. In
der schleifenförmigen Canalsstrecke besitzt der absteigende Schenkel (III) bis
dahin wo derselbe in eine stärkere Strecke (IV) übergeht, helles Plattenepithel (Fig. 384 b),
welches an der letzt erwähnten Stelle in

dickere und trübere Epithelzellen sich fort-
setzt (c). An dem nun folgenden, wiederum

gewundenen Abschnitte (V) sind die Epithel-
zellen nur wenig vom vorhergehenden ver-
schieden. In den Sammelröhrchen wächst das
Lumen nach Maßgabe der stattgefundenen
Vereinigung, und damit erhalten auch die
Epithelien einige Modificationen, insofern sie
im Vergleich zu ihrer Dicke allmählich etwas
höher werden und so aus sogenanntem cubi-

schen Epithel in Cylinderepithel sich umge-
stalten (Fig. 384 a).

Das interstitielle Gewebe der Niere besteht aus Bindegewebe, welches den Blutge-
Das Verhalten des Gefäßknäuels (glomerulus) zur Kapsel hat verschiedene Aufsassungen erfahren, bis man sich allmählich zu der Annahme, dass der Glomerulus nicht frei in der Kapsel liege, sondern von einem Epithelüberzug überkleidet sei, geneigt hat. Die Entwicklung lehrt, dass hier eine Einstülpung der Kapsel durch den Gefäßknäuel vor sich geht, derart, dass die Kapsel als solche die Blutgefäße umwächst und sie damit in ihr Inneres aufnimmt (cf. S. 544).

§ 176.

550 Fünfter Abschnitt.

Fig. 385.

Schema des Verhaltens der Blutgefäße der Rindensubstanz der Niere. b Ein Abschnitt der gewundenen Canälchen, m Ein Abschnitt eines Pyramidenfortsatzes, ai Arterien der Rinde, vi Venen der Rinde.
Pyramiden selbst fort. Aus diesen Capillarnetzen sammeln sich Venen (vi), welche die Arterie begleiten und in größere Venen einmünden. Solche Venen verlaufen an der Grenze der Pyramiden (s. Fig. 386 an der obersten Pyramide). Sie nehmen aus der Rindensubstanz kommende Venen auf, welche aus dem Capillarnetz zwischen den gewundenen Harnkanälchen sich sammeln, und empfangen auchzahlreiche aber viel schwächere Venen aus den Pyramiden.

Über den Gefäßapparat der Niere s. N. Chrzonoszewsky, Archiv f. patholog. Anatomie, Bd. XXXI.

Ausführwege der Niere.

§ 177.

Die Ausführwege beginnen im Sinus der Niere mit den die Papillen umfassenden kurzen Röhren, den Nierenkelchen (Calycses renis). Diese vereinigen sich in verschiedener Combination zu einem weiteren Abschnitte, dem Nierenbecken (Pelvis renis), welches am Hilus in den Ureter sich fortsetzt. Am Becken ist in der Regel ein auf- und ein absteigender Ast zu unterscheiden, von denen jeder eine Anzahl von Kelchen aufnimmt, resp. in dieselben übergeht, oder das Becken besitzt einen gemeinsamen weiten Raum. Die Theilung des Beckens ist nicht selten bis zum Hilus fortgesetzt (vergl. Fig. 386), woran sich die Bildung eines doppelten Ureters anschließt. Man kann sich so das Nierenbecken als einen membranös umwandelten Raum denken, der nach den Nierenpapillen zu ausgebuchtet ist und in eben so viele kurze Röhrenabschnitte ausläuft, als Malpighische Pyramiden bestehen. Häufig verbinden sich zwei Nierenkelche zur gemeinsamen Mündung ins Becken, oder es finden noch andere
Gruppierungen der Kelche statt. Der Harnleiter (Urter) ist im leeren Zustande ein etwas abgeplatteter Canal, der vom Peritoneum bedeckt wird. Er setzt sich auf dem M. psoas herablaufend gegen den Einzang des kleinen Beckens fort (Fig. 380). kreuzt sich mit den Vasa iliaca und begibt sich an der Wand der kleinen Beckenöhle etwas medial gerichtet zum Blasengrund. Beim Mann kreuzt es sich auf der letzten Strecke mit dem Vas deferens derart, dass letzteres über ihn hinwegtritt. Am Blasengrund durchsetzt jeder Ureter die Muscularis der Blase in schiefer Richtung, dringt in ähnlicher Weise durch die Schleimhaut und mündet mit einer spaltförmigen Öffnung aus.

Die mannigfaltige Gestaltung des Nierenbeckens und seiner Beziehung zu den Kelchen wie zum Ureter ist von der Entwicklung abzuleiten, ebenso die Theilung des Beckens (Fig. 387, A), welche weiter fortgesetzt zu einer Spaltung des Ureters führt, die sich bis zur Mündung in die Blase erstrecken kann. Einige der hauptsächlichsten Formen des Beckens versinnlichen nebenstehende Figur.

Harnblase (Vesica urinaria).

§ 175.

Die spindelförmige Erweiterung des Urachus, aus welcher die Harnblase hervorgeht, paßt sich immer mehr der ihr zukommenden Funktion als Reservoir für den Harn zu dienen an und gestaltet sich allmählich zu einem bald mehr ovalen bald mehr rundlichen Körper, der hinter der Schambeinfuge gelagert ist. Der vordere obere Theil, von welchem das aus einer obliterirten Strecke des Urachus entstandene Scheitelband (Lig. vesico-umbilicale medium) ausgeht, bildet

Die Entleerung der Blase bedingt außer einer Verkleinerung des Organs auch eine Veränderung seiner Gestalt, in welcher Hinsicht drei verschiedene Zustände zu unterscheiden sind. In einem derselben erscheint die kontrahierte Blase kugelförmig, und dieser scheint am häufigsten vorzukommen. In einem anderen, der auf nicht vollständiger Contraction der Blasenwand zu beruhen scheint, ist die leere Blase von hinten nach vorne zu abgeplattet, die hintere Wand liegt der vorderen an, was bei Kindern und jugendlichen Individuen zu bestehen scheint. Endlich besteht drittens ein Einsinken der Scheitelregion der Blase gegen den Grund zu.

In der Wandung begegnen wir wieder einer inneren Schleimhaut und äußeren Muskelschicht, welche beide mit zunehmender Füllung an Dicke abnehmen. Dazu kommt noch ein die Blase vom Scheitel an auf ihrer hinteren und seitlichen Fläche bis gegen den Grund hin bedeckender Peritonealüberzug.
Die Schleimhaut ist durch lockeres submucöses Gewebe mit der Muscularis verbunden, und bildet an der contrahirten Blase bedeutend einragende, unregelmäßige Falten, die mit zunehmender Füllung sich glätten. Am vorderen untern Theile setzen sich die Falten gegen die hier befindliche in den Canalis uro-genitalis leitende Öffnung, den Blasenmund fort. Dieser erscheint als eine gebogene Spalte mit vorderer Convexität.

Hinter derselben findet sich eine dreieckige, auch bei contrahirter Blase glatte, etwas gewulstete Stelle, das Trigonum Lieutaudii (Fig. 389). An den beiden hintern Winkeln dieses Dreiecks liegen die schlitzförmigen Uretermündungen; der vordere Winkel senkt sich durch den Blasenmund in den Anfang des Canalis uro-genitalis ein. Die Gestalt dieser Fläche ist sehr wechselnd, indem die Ränder des Dreiecks bald mehr bald weniger eingebuchtet sind. Auch die verschiedene Entfernung der Uretermündungen von einander beeinflußt die Form. Am constantesten ist die von einer Uretermündung zur anderen ziehende Wulstung.

Die Muskelwand besteht aus groben, sich durchflechtenden Bündeln glatter Muskulzellen. Sie bilden mehrere, aber nicht überall vollständig sich deckende Lagen, so dass zwischen den Bündeln der oberflächlichen die tieferen sichtbar sind. Am Scheitel sind sie teilweise auf den davon ausgehenden Strang (Lig. ves. umb. med.) verfolgbar und ziehen in vorwiegend longitudinaler Richtung — auch als M. detrusor urinae bezeichnet — sowohl an der vorderen Wand als auch besonders an der hintern Fläche des Blasenkörpers zu dessen Grunde herab. Die in die Muskelschichte eingetreteten Ureteren werden eine Strecke weit von jenen Muskelbündeln umfaßt, indem diese sich vor und hinter ihnen durchkreuzen. Gegen den Blasenmund zu ordnen sich die tieferen Lagen zu einer jedoch nicht immer deutlichen eireförmigen Schichte, dem Sphincter vesicae.

Die Verbindung der Ureteren mit der Blasenwand geschieht nicht blos dadurch, dass die Schleimhaut der ersteren in die Blasenschleimhaut sich fortsetzt, sondern auch unter Beteiligung der Muskulatur der Ureteren. Die Längsfaser schichten der letzteren bilden nämlich die Grundlage des Trigonum. Indem sie sich von einem Ureter zum andern fortsetzen und auch gegen den Blasenmund sich abzweigen, bedingen sie den wulstförmigen Vorsprung.

Der Peritonealüberzug — Serosa der Blase (S. Fig. 388) — erstreckt sich von der vorderen Bauchwand auf den Scheitel und die hintere, resp. obere Fläche, erreicht aber nicht den Grund, sondern schlägt sich über demselben beim Manne zum Rectum, die Excavatio recto-vesicalis auskleidend, beim Weibe zum Uterus empor, wobei der Raum zwischen beiden als Excavatio vesico-uterina sich darstellt (Vergl. Fig. 409). Der Blasengrund entbehrt also eines Peritonealüberzugs, ebenso wie die vordere Fläche der Blase, welche durch Bindegewebe der hinteren Schamfugenfläche angefügt ist. Auch bei der sich füllenden und dadurch aufwärts wölbenden Blase bleibt deren vordere Wand ausserhalb des Cavum peritonei.
Von den Harnorganen.

555

Beim Neugeborenen und auch später noch liegt die Blase höher als beim Erwachsenen, so dass sie auch im leeren Zustande der hinteren Fläche der Bauchwand anliegt. Beim Weibe herrscht zumeist der quere Durchmesser vor, was als Anpassung der Blasenform an die im kleinen Becken gegebene, durch den hinter der Blase befindlichen Uterus sagittal verengte Räumlichkeit zu gelten hat.

Die Bildung des Trigonum Lieutaudi entspricht der Strecke, welche die vom Urnierengange sich sondernden Nierengänge, resp. die aus diesen hervorgehenden Ureteren zurücklegen. Durch den vorderen Winkel des Dreiecks wird noch auf jene primitive Zusammengehörigkeit verwiesen, wonach auch die oben erwähnte Fortsetzung der Gewebe der Ureteren-Wand in dieses Gebilde ein Zeugnis abgibt. Im Scheitelbande erhält sich zuweilen ein Rest vom Lumen des Urachus, entweder in Communication mit der Blase, oder davon getrennt.

Während die männliche Harnblase fast unmittelbar in den Canalis uro-genitalis übergeht (Fig. 388), setzt sich die weibliche noch in einen kurzen 2—3 cm langen Canal fort, den man als Harnröhre, (Urethra) bezeichnet. Mit diesem geschicht die als eine Längsplatte sich darstellende (Fig. 120) Ausmündung in den weiblichen Sinus uro-genitalis (Vestibulum vaginae). Dieser Theil ist ohne Aequivalent beim Manne, da der hier als Urethra bezeichnete Canal der Urogenitalcanal selbst ist. In die weibliche Harnröhre setzt sich die Blasenwand fort. Diese ist hier durch reife, vorwiegend venöse Blutgefäßnetze ausgezeichnet, welche der Schleimhaut eine cavernöse Structur verleihen, aber mit den Venennetzen der benachbarten Theile in unmittelbarem Zusammenhange stehen.
Muskulatur geht von der Blase her auf die Harnröhre über und läßt äußere Ring- und innere Längsschichten sowohl unter sich wie von der Schleimhaut wenig scharf gesondert erkennen. Auf der aus glatten Muskelzellen bestehenden Ringeschichte lagert noch eine Schichte quergestreifter Muskulatur, von denen die Ringfasern einen äußern Schliessmuskel bilden. Weiter nach außen folgende schräge oder quere Züge stehen mit der Muskulatur des Dammes in Zusammenhang (S. 606).

Die hintere Wand der Harnröhre ist fast in ihrer ganzen Länge mit der vorderen Scheidenwand in inniger Verbindung. Eine Längsschichte quergestreifter Muskelfasern, welche die Ringmuskelschichte überlagert, setzt sich hier bis zum Blasengrund fort. Die Schleimhaut birgt achinöse Schleimdrüsen, und ist in verstrechbare Längsfalten gelegt. Zu diesen kommen noch feinere, auch in die Quere geordnete Fältchen. Aus der Schleimhaut erstrecken sich die Venennetze auch in die Längsschichte der glatten Muskulatur, welche als der Schleimhaut angehörig zu betrachten ist. Durch die Einbettung dieser Netze in die Muskelschichte, wodurch zwischen den venösen Hämmenn ein contractiles Balkenwerk zur Entfaltung gelangt, tritt die ganze Einrichtung dem den Urogenitalcanal des Mannes umgebenden Schwelkkörper sehr nahe.

Die einzelnen Abschnitte sind in beiden Geschlechtern verschiedenartig differenziert, aber sie gehen aus einer gemeinsamen Anlage hervor und lassen in dieser eine Zeit lang eine Indifferenz des Geschlechtes bestehen. Die Blase bildet den Boden, auf welchem der indifferenten Geschlechtsapparat sich anlegt. An der vorderen medialen Fläche der Blase (Fig. 290) entsteht eine Wuche-
Von den Geschlechtsorganen.

557

männlichen als beim weiblichen Apparate besonderen nicht in Function stehenden Organen, die nur von dem indifferenten Zustande her ableitbar sind.

Die Thatsache der Indifferenz der Anlage der Geschlechtsorgane könnte zu der Vorüberlegung eines Zustandes führen, in welchem beiderlei Geschlechter in einem Individuum vereinigt waren (Hermaphroditismus). Diese Annahme ist irrig, insofern sie sich auf das Verhalten der Ausführwege stützt, denn es ist durch die vergleichende Anatomie nachweisbar, dass ein Theil der in den höheren Abtheilungen der Wirbelthiere beim männlichen Geschlechte außer Function gesetzten Organe, auch bei diesem Geschlechte in Function steht, und daher seine Erhaltung in der Anlage des männlichen Apparates auch der höheren Wirbelthiere erklärbar erscheinen lässt. Was aber die Keimdrüsen betrifft, so muss für jetz wenigstens die Wahrscheinlichkeit zugegeben werden, dass bei niederen Wirbelthieren ein hermaphroditischer Zustand bestand, wie er in der That auch bei manchen Fischen vorkommt, und im Bereiche der wirbellosen Thiere sogar eine weite Verbreitung besitzt.

I. Von den männlichen Geschlechtsorganen.

Differenzierung derselben.

§ 180.

Von den Geschlechtsorganen.

559

unterhalb derselben vorhandenen Urnierencanälchen keine Verwendung, indem sie nicht mit dem Hoden in Verbindung traten, und davon leitet sich die Rückbildung ab, der sie größtenteils erliegen. Nur einige Rudimente erhalten sich, zum Theil in Zusammenhang mit dem aus dem Urnierengange hervorgegangenen Vas deferens, zum Theil ohne diese Verbindung.

Der männliche Geschlechtsapparat besteht also aus der männlichen Keimdrüse: dem Hoden und seiner Verbindung mit der Urniere, und wird in Hoden, Nebenhoden und den aus diesem hervorkommenden Samenleiter unterschieden.

H o d e n.

§ 151.

Die bisher geschilderten Theile bilden das Gerüst, in welches der Drüsenapparat eingebettet ist. Dieser besteht aus den Samencanälchen (Tubuli seminiferi), welche die von den Septulis gebildeten Fächer einnehmen. In jedem

Der Hoden repräsentirt nach dem Gesehilderten eine netzförmige tubulöse Drüse. Die Samencanälen, welche durch leichte Maceration auf lange Strecken entwirrbar sind, werden durch sehr lockeres die Blutgefäße begleitendes Bindegewebe in den Läppchen zusammengehalten. Sie besitzen einen Durchmesser von 0,15 — 0,2 mm. Jenes Gewebe steht auch mit der Septulis in Zusammenhang, und formt unterhalb der Albuginea eine dünne Schicht. Dieses interstitielle Gewebe des Hodens ist durch eigenthümliche Zellen ausgeszeichnet, welche in Strängen angeordnet sind oder in Nestern beisammen liegen. — Im Corpus Higmmori verschmelzen die Wandungen der in es eintretenden *Ductuli recti* mit dem Balkenwerke, so dass das Rete vasculosum ein von Epithel ausgekleidetes Höhlraumsystem vorstellt, dessen Wandungen ein Blutgefässnetz durchsetzt.

GEGENBAUR, Anatomie.
Sechster Abschnitt

Über die Nerven des Hodens siehe Letzthich, Archiv f. pathol. Anat., Bd. XLII.

Nebenhoden und rudimentäre Gebilde an demselben.

§ 182.

In der Zusammensetzung des Nebenhodens bildet der Kopf einen Complex von Läppchen, die aus gewundenen Canälichen bestehen und durch lockeres Bindegewebe von einander geschieden sind. Zu jedem dieser conisch gestalteten Läppchen (Coni vasculosi) tritt ein Vas efferens testis (Fig. 395.). Erst wenig, dann stärker gewunden, geht es allmählich in bedeutende Windungen über und setzt sich dann in einen aus allen Läppchen sich sammelnden gemeinsamen Ausführgang (Vas epididymidis) fort. Dieser bildet ebenfalls alsbald beginnende Windungen.
Er ist der Anfang des Vas deferens, aus dem bedeutend in die Länge ausge- wachsenen Anfange des Urnierenganges entstanden, gleichwie die Coni vasculosi aus der Längsentwicklung einer Anzahl von Urniereanälen hervorgingen. Die Zahl der Coni vasculosi schwankt bedeutend, 10 bis 15 werden am häufigsten getroffen.

Die Canäle der Coni vasculosi des Nebenhodens besitzen ziemlich starke Wandungen, indem eine Bindegewebsschichte noch eine Ringfaserschichte von glatten Muskelzellen umschließt. Auch in longitudinaler Anordnung sollen diese Elemente vorkommen. Sehr lange Cylinderzellen, welche Wimpern tragen, bilden die epitheliale Auskleidung. Mit Recht hat man auf die Ähnlichkeit der, Büschel langer Cilien tragenden Zellen mit den im Thätigkeit befindlichen Spermatoblasten der Sameneinälen aufmerksam gemacht (W. KRANZ). Der die Coni vasculosi sammelnde Ausführung (Vas epidiidymidis) bietet anfänglich gleichen Bau wie jene. Mit der Zunahme seiner Stärke gewinnt die Wund- dung an Dicke durch Vermehrung der Muskulatur, und so setzen sich die Verhältnisse ins Vas deferens fort, gegen dessen Beginn der Cilienbesatz des Epithels verloren geht.

Außer dem oben als Vasa aberrans bezeichneten, außer Function gesetzten Gebilde finden sich in der Nachbarschaft des Nebenhodens noch einige andere rudimentäre Organe, welche mit der Bildungsgeschichte des Geschlechtsapparates in engeren Connex stehen. Es sind:

Samenleiter und Samenbläschen.

§ 183.

Der Samenleiter (Vas deferens) tritt nachdem der Hoden seine definitive Stelle im Hodensack eingenommen hinter dem Hoden und neben dem Nebenhoden noch mit einem vielfach gewundenen Abschnitte empor und gewinnt dann eine Stärke, die er auf der größten Strecke seines ferner Verlaufes beibehält. Da es weniger das Lumen als die Wandung ist, welche eine Zunahme erfährt, so wird diesem Canal damit eine gewisse Derbheit zu Theil. Mit der Entfernung vom Hoden zieht er in den Samenstrang eingeschlossen empor, durchsetzt mit diesem den Leistencanal und nimmt am innern Leistenringe seinen Weg für sich in die kleine Beckenhöhle. Er kreuzt ferner den Ureter, über den hinweg er in die Tiefe zum Blasengrunde tritt, wobei er dem anderseitigen Samenleiter sich nähert und neben demselben sich in den hinteren oberen Theil der Vorsteherdrüse einsenkt, um im Canalis urogenitalis mit seiner Öffnung zu münden.

Die Verlaufsstrecke des Vas deferens in der Nähe der Blase (am Blasengrunde) ist mancherlei Differenzirungen eingegangen. An dem dem Blasengrunde bereits anliegenden Abschnitte ist eine bedeutende Dickezunahme bemerkbar, an der auch das Lumen participirt. Dabei zeigen sich unregelmäßige, zuweilen bedeutendere, wie blinde Anhänge erscheinende Ausbuchtungen. An dieser als Ampulle des Samenleiters bezeichneten Strecke ist das Lumen spindelförmig erweitert und setzt sich auch in die Ausbuchtungen fort, die wie die Innenfläche der Ampulle selbst, unregelmässig netzförmige Vorsprünge der sie auskleidenden
Von den Geschlechtsorganen. 565

Schleimhaut darbieten. In Fig. 396 ist linkerseits das Innere der Ampulle des Samenleiters offen gelegt. In Fig 397 sind diese Ausbuchtungen an einem injizierten Vas deferens \(b \) dargestellt.

Während die Ausbuchtungen der Ampulle zwar keineswegs selten, aber doch nicht in der Regel zu bedeutenden Anhängen des Samenleiters sich gestalten, so kommt dem untersten, bereits wieder stark verjüngten Ende der Ampulle, da wo die in die Prostata eintretende kurze Endstrecke des Samenleiters beginnt, ein umfänglicheres Anhangsgebilde zu, welches als Samenbläschen bezeichnet ist, und aus einer Ausbuchtung des Vas deferens hervorging.

Das Samenbläschen, Vesicula seminalis benannte Organ sitzt lateral vom Vas deferens und wird von einem ziemlich weiten, mit kurzen Ästen versehenen, unregelmäßig gebucheteten Schlauch gebildet, dessen gleichfalls häufig mit Buchtungen versehenes Ende meist hakenförmig umgebogen und mit den Verästelungen und Buchtungen zusammen zu einer länglichen, etwas abgeplatteten, 4—6 cm langen Masse vereinigt ist. Jedes der beiden Samenbläschen liegt von einer gemeinsamen Bindegewebshülle umschlossen dem Blasengrunde an, mit schräger Stellung seiner Längsaxe, so dass beide Organe nahezu rechtwinklig zu einander stehen. Die Spitze des Winkels fällt etwa auf die Ausmündestelle der Samenleiter. Wie in der Ampulle des Samenleiters, so ist auch in den Samenbläschen die außkleidende Schleimhaut mit Drüsen reich ausgestattet, so dass dieselben nicht
blos Behälter für sich ansammelndes Sperma, sondern vielmehr Organe vorstellen, welche dem Sperma ihr Secretionsproduct beimischen. In Fig. 397 ist ein Samenbläschen mit seinen auseinander gelegten Krümmungen und Verzweigungen (d) dargestellt. Der letzte ca. 1 cm lange Abschnitt des Samenleiters, Ductus ejaculatorius, Ausspritzungscanal (d), nimmt an die Küren der Wand wie an Stärke des Lumens bedeutend ab, so dass er schließlich einen feinen 0,5 mm weiten Canal bildet. Die beiden Ductus ejaculatorii nähern sich einander bedeutend und öffnen sich direct oder indirect in den Sinus uro-genitalis, wo ihrer wieder Erwähnung geschieht.

An dem Samenbläschen Waltet zwar im Wesentlichen die gleiche Structur der Wandung wie an der Ampulle des Vas deferens, doch bestehen mancherlei Modifizirungen. Die Anordnung der Muskelschichte ist besonders an der Wand der Ausbuchtungen unregelmässiger und zugleich in dem Masse schwächer, als das Lumen sich weiter zeigt. — Oberflächlich werden die Samenbläschen mit den Ampullen der Vasa deferentia durch eine Bindegewebsschichte in situ erhalten. Dieser theilen sich glatte Muskelzellen beigemischt, die in der ganzen Gegend verbreitet vorkommen. Die Drüsen der Schleimhaut sind jenen der Ampulle des Vas deferens ähnlich. Ihr Secret ist eine zähe, eiweisshaltige Flüssigkeit, welche die Cavity der Samenbläschen füllt, und wohl in ihrer Zumischung zum Sperma ihre Bedeutung findet.

Descensus testiculorum.

§ 184.

Fünfter Abschnitt.

Gewebsmasse. Der Proceß des Descensus wird vielmehr durch Wachstumsvorgänge bedingt, jedenfalls durch solche geleitet. Indem der Hoden sich allmählich vergrößert, und der gesamte Körper des Embryo an Volum zunimmt, so wird bei der geringen Länge, welche das Leibband im frühesten Zustande besitzt, ein Herausreten des Hodens erfolgen müssen, wenn die vom Leibband durchlaufene Strecke nicht in gleichen Massen wächst. Denkt man sich die beiden Endpunkte des Leibbandes in gleicher Distanz bleibend und mit dem oberen den Hoden in Zusammenhang, und nimmt man diese Strecke als eine feste an, so kann der Vorgang ebenso gut als ein Hinaufwachsen des übrigen Körpers über den Hoden aufgefaßt werden, so befremdend diese Auseinandersetzung im ersten Momente auch scheinen mag.

Nicht selten ist der Descensus bei der Geburt unvollständig vollzogen, ein Hoden oder beide sind noch unterwegs, und erst später kommt es zum völligen Herabsteigen. Es trifft sich aber auch, dass ein Hoden das Endziel gar nicht erreicht und zeitlebens auf einer der Etappen verbleibt, die er normal zu durchlaufen hat. Das Verbleiben des Hodens in der Bauchhöhle bildet den Kryptorchismus.

Seiler, Observationes de testiculorum ex abdomine in scrotum descendu. Lips. 1817.

Hüllen des Hodens und Samenstrang.

§ 185.

Mit dem Descensus erwirbt der Hoden nicht bloß die ihm durch das Scrotum gebotene Hülle, sondern es werden ihm noch mehrfache andere ihn umschließende Gebilde zum Theil, deren Verhalten nur durch den oben geschilderten Vorgang zum richtigen Verständniss gelangt. Wir knüpfen daher die Darstellung dieser Hüllen an den Descensus an und heben dabei hervor, dass mit dem durch die Bauchwand sich Bahn brechenden Processus vaginalis und dem ihm nachfolgenden Hoden sämtliche die Bauchwand zusammensetzende Schichten an der Bildung jener Hüllen beteiligt sind, indem sie den Descensus vollziehenden Theilen folgen.

Zunächst erlangt der Hoden durch seine Einbettung in den Processus vaginalis eine Umhüllung von Seite der jenen Fortsatz bildenden Serosa. Diese bildet als Tunica vaginalis propria testis einen den Hoden umgebenden Sack, dessen Wand sich in den Überzug des Nebenhodens und von da in die Albügine des Hodens selbst fortsetzt (Fig. 393). Wie bei allen serösen Häuten unterscheidet man auch hier einen parietalen und einen viszeralen Theil, die in einander übergehen. Der parietale Theil ist eben die den Proc. vagin. darstellende
Serosa, welche sich in den Überzug des Nebenhodens und Hodens selbst umschlägt. Dieser Überzug repräsentiert den visceralen Theil, den man sich aber nicht mit der unmittelbaren Hülle des Hodens verwachsen, sondern vielmehr als diese selbst vorzustellen hat, denn es gibt keine besondere Serosa, die sich mit der gleich bei der Anlage des Hodens erscheinenden Albuginea erst in Verbindung setzte. Wenn wir also die letztere, wie auch jene des Nebenhodens als visceralen Theil der Tunica vaginalis propria ansehen und diese als Serosa gelten lassen, so geschieht das nicht ohne die Einschränkung, dass der dem Hoden zufallende Abschnitt in die Albuginea modifiziert ist. Der parietale Theil liegt dem visceralen auf, und setzt sich aufwärts noch in eine meist kurze Höhle fort, von deren Ende der zum Ligamentum, vaginale umgewandelte Abschnitt des Processus vaginalis entspringt. In Fig. 393 ist der den Hoden umgebende seröse Höhlraum dargestellt, und die Umschlagstelle des parietalen Blattes in das viscrale zu sehen. In der Structur des parietalen Theiles besteht Übereinstimmung mit dem Peritoneum, wie schon aus der Genese erklärlich ist.

Bauchwand her ableitbar, die *Cooper'sche Fascie*, welche am äußeren Leistenringe in die oberflächliche Bauchfascie fortgesetzt ist.

Von den Hüllen des Hodens ist die *Cooper'sche Fascie* am wenigsten selbständig darstellbar. Ihr unter normalen Verhältnissen lockeres Bindegewebe schließt sich ebenso an die Innenfläche des Hodensacks wie an die Cremaster und die Tunica vaginalis communis an.

Im *Semenstrang* werden die verschiedenen Theile gleichfalls durch lockeres Bindegewebe zusammengehalten. Dasselbe ist vor Längszügen glatter Muskelfasern durchsetzt, die besonders in der Umgebung des Vas deferens reichlich vorkommen, (*Cremaster internus*, Henle). Den voluminösesten Bestandtheil des Semenstranges bilden die Venengeflechte. Sie sind am weitesten nach vorne gelagert.

Rechnen wir noch das später abzuhandelnde Scrotum mit seiner Muskelschicht zu den Hüllen des Hodens, so lassen sich letztere in ihren Beziehungen zu den die Bauchwand zusammensetzenden Theilen, in folgender Übersicht darstellen:

<table>
<thead>
<tr>
<th>Bauchwand</th>
<th>Hüllen des Hodens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integument</td>
<td>Serotum mit Tunica dartos</td>
</tr>
<tr>
<td>Oberflächliche Bauchfascie</td>
<td>Cooper'sche Fascie</td>
</tr>
<tr>
<td>Muskelschichte</td>
<td>M. cremaster</td>
</tr>
<tr>
<td>Fascia transversa abdominis</td>
<td>Tunica vaginalis communis</td>
</tr>
<tr>
<td>Peritoneum</td>
<td>Tunica vag. propria.</td>
</tr>
</tbody>
</table>

II. Von den weiblichen Geschlechtsorganen.

Differenzierung derselben.

§ 186.

Bei der Umgestaltung der indifferenten Anlage in den weiblichen Apparat geht aus der Keimdrüsen-Anlage der Eierstock hervor, die Keimstätte des weiblichen Zeugungsstoffs, der Eier. Die Urniere bildet sich aber nicht in Ausführung der weiblichen Keimdrüse um, sondern diese entstehen ohne direkten Zusammenhang mit dem Eierstocke aus dem Müller'schen Gange. Dieser beim männlichen Geschlechte keine Bedeutung erlangende Canal spielt...
im weiblichen Apparate eine wichtige Rolle, indem er die Ausführwege für die Produkte des Eierstocks entstehen läßt, welche in verschiedene Abschnitte differenzirt, der Function der Fortpflanzung auf mannigfache Weise dienen. Die beiden ursprünglich getrennt verlaufenden Müller'schen Gänge gewinnen auf der Strecke, auf der sie im Genitalstrang (S. 557) mit einander vereinigt sind, eine engere Verbindung; ihre Lumina verschmelzen an einer Stelle unter einander, und so entsteht in dem Verlaufe der beiden Canäle ein unpaariger Abschnitt. Die Verschmelzung setzt sich allmählich weiter fort, und läßt den unpaaren Abschnitt bis zur Mündung in den Sinus uro-genitalis sich erstrecken. Dieser bildet den Sinus genitalis (Fig. 400, 1, g), den wir als Rudiment auch beim Manne unterscheiden. Der paarig bleibende Theil des Müller'schen Ganges an seinem Beginne mit einer der Bauchhöhle zugekehrten Öffnung, einem Ostium abdominale ausgestattet, bildet den Eileiter. Er empfängt mit seinem Ostium abdominale das aus dem Eierstock sich lösende Ei und führt es dem Sinus genitalis zu. Der letztere beginnt im fünften Monate sich in zwei Abschnitte zu sondern. einen oberen und einen unteren. Der obere bildet weniger sein Lumen, mehr seine Wand aus, und gestaltet sich zum Fruchthälfte; Uterus, in welchen von beiden Seiten her die Eileiter einmünden. In ihm nimmt das Ei seine Entwickelung zum Embryo, der bis zum Geburtsacte da zu verweilen hat. Der untere Abschnitt wird zu einem längeren Canale, der Scheide, welche den Uterus mit dem Sinus uro-genitalis in Zusammenhang setzt und bei der Begattung fungirt.

Die Urniere geht mit jenen Umbildungen des Müller'schen Ganges nicht vollständig zu Grunde. Ein dem Ovarium be nachbarter Theil der Urniere bleibt mit einer Anzahl von Canälen, die auf rudimentäres Organ erhalten und stellt den sogennanten Nebeneierstock (Paroarium) vor.

Die Entstehung des Eierstocks aus der indifferenten Keimdrüse wird auf verschiedene Weise angegeben. Wenn auch, wie wir weiter unten sehen werden, das Wesentlichste der typischen Differenzierung des Ovariums vom Keimepithel her erfolgt, so scheint doch die Urniere nicht ganz unbeteiligt zu sein, insoweit von dieser her, ähnlich wie beim Hoden, Schläuche einzuschlagen sollen.

Die Eigenthümlichkeit der Müller'schen Gänge, in der Art ihrer Verschmelzung die nicht, wie man erwarten möchte, terminal zuerst erfolgt, sondern entfernt vom Ende, verweist auf ein Verhalten des weiblichen Geschlechtsapparates, wie es unter den Beuteltieren besteht. Die hier bleibend ausgebildete Einrichtung besteht darin, daß...
Fünfter Abschnitt.

zwei getrennte Uteri in einen gemeinsamen Scheidenraum münden, von dem aus widerzweiterzweigegetrennte Canäle (Scheidenkanäle) zum Sinus pro-genitalis sich fortsetzen. (Siehe meinen Grundriß der vergl. Anat., 2. Aufl. S. 642). Aus diesem Verhalten möchte auch hervorgehen, daß die erste Verschmelzungsstelle der Müller'schen Gänge nicht den Uterus, sondern den obersten Theil der Scheide betrifft, so dass also die Concrescenz nicht bloß abwärts zur Herstellung einer einheitlichen Scheide, sondern auch aufwärts zur Herstellung eines einheitlichen Uterus vor sich zu gehen hätte. Auch abnorme Befunde des menschlichen Uterus sprechen für diese Annahme.

Der Uterus geht also nicht einfach aus den Müller'schen Gängen hervor, sondern aus dem oberen Abschnitte des ganzen Genitalstranges, in welchem das Lumen der Müller'schen Gänge das Lumen uteri bildet und erhalten bleibt, während die Urnieregänge allmählich rudimentär werden.

Descensus ovariorum. Lagerungsverhältnisse der weiblichen Genitalorgane in der Beckenhöhle.

§ 187.

erstreckt, wird die Duplicatur Lig. uteri latum benannt. Wie in der Medianlinie der Uterus durch diese von beiden Seiten her sich auf ihm vereinigende Bauchfellduplicatur überkleidet wird, so setzt sich jeder der letzteren lateral auf den Eileiter fort, umschließt denselben und beginnt sich jenseits des abdominalen Ostiums zur Beckenwand. Dem Uterus zunächst verläuft auch das Lig. uteri teres eine Strecke weit vom breiten Uterusbande umschlossen, beginnt sich aber dann vor- und aufwärts zum inneren Leistenringe, auf welchem Wege es gleichfalls vom Peritoneum überkleidet wird.

Für den ganzen Vorgang müssen gleichfalls Wachstumssprozesse als die wirksamen Momente gelten. Diese liegen hier insofern klarer als beim männlichen Geschlechte, als dem Leitbande eine minder bedeutende Rolle zukommt, zumal dasselbe nicht einmal unmittelbar an das Ovarium sich inserirt, und das tieferen Herabtreten des letzteren in die Beckenhöhle in gar keiner Weise mit dem Leitband in irgend einem Causalzusammenhang erkannt werden kann.

Eierstock (Ovarium).

§ 188.

Die weibliche Keimdrüse besitzt im ausgebildeten Zustande eine einigermaßen der männlichen ähnliche ovale Form, jedoch mit etwas bedeutenderer Abplattung. Sie liegt quer der hinteren Fläche des Lig. latum angefügt und zwar mit dem als Hilus zu unterscheidenden Theile, an welchem sie die Blutgefäße etc. empfängt. Dieser Hilus entbehrt demgemäß des Peritonealüberzuges, welcher die frei in die Bauchhöhle sehenden übrigen Strecken der Oberfläche überkleidet. Nahe dem Hilus mit ziemlich scharfem Rande abgesetzt ist der Peritonealüberzug zu einer besonderen, der Albuginea des Hodens entsprechenden Faserhaut modifiziert, auf welcher cylindrisches Epithel, das Keimepithel, sich forterhält.
In Fig. 401 ist die Grenze des Keimepithels deutlich sichtbar. Vom medianen, meist etwas verjüngten Ende des Eierstocks verläuft das Lig. ovari zu dem Uterus, in dessen Wand es an der Verbindungstelle des Eileiters übergeht.

Ovariums lösen sich die Schläuche in Zellenhaufen auf [Fig. 402 d]. Diese formen ovale oder rundliche Gruppen (e), welche zahlreich die Rindenschicht durchsetzen und bald auch die Bindegewebslemente des Stroma um sich herum in bestimmter Anordnung erscheinen lassen. Die einzelnen Zellgruppen (f) lassen eine größere centrale Zelle und eine Anzahl diese umgebender kleinerer unterscheiden. Es sind die Eifollikel, die Anlagen der Graafschen Follikel. Diese durchsetzen in großer Anzahl die Rindenschicht des Eierstocks und bilden deren charakteristische Einrichtungen. So empfängt also der Eierstock noch während des Fötallebens die Organisation zu seinen erst viel später in Thätigkeit tretenden Leistungen. In der Zwischenzeit erfahren die Anlagen der Eifollikel noch bedeutende Veränderungen, die auch auf das Verhalten des gesamten Eierstocks nicht ohne Einfluß sind.

An der Eizelle selbst machen sich Sonderungen bemerkbar. Die anfänglich nur aus Protoplasma mit einem Kerne bestehende, also indifferentere Zelle zeigt mit ihrem Wachsthum die Bildung von Körnchen, welche reicher und reicher das Protoplasma durchsetzen und allmählich den Hauptbestandtheil des Körpers der Eizelle, den Dotter (Vitellus), vorstellen. Der gleichfalls wachsende Kern wird zum Keimbläschen (Vesicula germinativa) und den im Kerne enthaltenen
Nucleolus pflegt man als Keimfleck (Maecula germinalis) zu bezeichnen. Diese Benennungen entsprechen nur dem modifizierten Zustande, welcher die Bedeutung dieser Theile nicht altert; diese ist für die Eizelle keine andere, als bei andern Zellen des Körpers. Vergl. Fig. 48. S. 58.

Mit dem Inhalte des Follikels hat sich auch die Theca selbstständiger entfaltet, obwohl sie nie den continuirlichen Übergang in das Bindegewebe des Stroma vollständig verliert. Eine innere aus jüngern Bindegewebsformationen bestehende Schichte führt ein reiches Blutgefässnetz und grenzt unmittelbar an die Membrana granulosa, während die äussere Schichte ins Stroma ovarié übergeht.

Der Eierstock ändert von der ersten Anlage an bis zum ausgebildeten Zustande seine Gestaltung. Er ist beim Neugeborenen ziemlich in der Länge gestreckt und besitzt häufig Einkerbungen (Fig. 103). Über die den Hulus darstellende Verbindungstelle mit dem breiten Mutterbande wölbt sich beiderseits die Oberfläche, so dass der Querdurchschnitt eine hutpilzartige Figur darbietet.

Die in die Anlage des Eierstockes von der Urniere ausgehenden Canäle sind in ihrem Werthe für die späteren Einrichtungen noch nicht sichtbar. Nach KöLLIKER sollen sie sich an der Bildung der Eifollikel insofern betheiligen, als sie das Epithel derselben liefern, während die Eizellen selbst dem Keimpethel entstammen.

Die durch die Zellschläuche und Follikel ausgezeichnete Bindegewebsschichte des Eierstocks zeigt bis zur Geburt hin und auch noch etwas später die Vorgänge der Einwucherung des Keimepithels. Die Derivate dieses Processes sind dann so in der Rinde vertheilt, dass die Schläuche und größeren Haufen von Zellen näh der Oberfläche, die bereits gesonderten Follikel in einer tiefen Zone sich finden. An den Vegetationsvorgängen der Rindenschichte beteiligt sich selbstverständlich auch das Bindegewebe des Stroma. Es besitzt hier zahlreiche junge Formelemente, die sowohl bei der Abschneidung der Stränge und Zellenhaufen vom Keimepithel, wie auch bei der Sonderung des einzelnen Eifollikels in Thätigkeit gelten dürfen. Der gesammte Vorgang der Eibildung führt also schliesslich zu einer besonderen Ausbildung der Rindenschichte, die sich dadurch schärfer vom Hüllesstroma absetzt.

§ 189.

Die oben geschilderten Vorgänge haben dem Eierstock eine überaus große Menge von Keimmaterial zugeführt, welches in den Follikeln geborgen durch die Rindenschichte verbreitet ist. Die jüngeren Follikel finden sich mehr oberflächlich, in der Ausbildung weiter fortgeschrittene nehmen tiefe Lage ein. Gegen die Zeit der geschlechtlichen Reife tritt an einzelnen der größeren Follikel die schon beschriebene bedeutendere Ausbildung auf, wodurch der Follikel nach

Der Act des Berstens der Follikel wiederholt sich vom Beginne der Geschlechtsreife des Weibes bis zur Involutionssperiode, und ist im Allgemeinen an noch andere in den Geschlechtsorganen auftretende Erscheinungen geknüpft, die in monatlicher Wiederkehr bei der Menstruation sich kundgeben.

Durch diesen Act erfährt aber auch die Structur des Ovariums Modifikationen. Der gebarstene Follikel collabirt etwas, sein Binnenraum füllt sich, wenn auch nicht immer, durch das Zerreifen der Gefäße mit bald geringerer, bald größerer Menge gerinnenden Blutes und die innere Schichte der Theca bildet eine gelockerte, in Falten gelegte, ziemlich dicke, eine gelbliche Färbung annehmende Membran, welche bei ihrem Vorherrschen dem gesammten Gebilde den Namen Corpus luteum verschafft hat, zumal sie noch einige Zeit in Zunahme begriffen ist (Fig. 404). Sowohl diese Gewebsschichte als das von ihr umschlossene Blutcoagulum (d) geht nun eine Rückbildung ein, langsamer, wenn auf das Bersten des Follikels Gravidität erfolgt war, rascher im anderen Falle, in welchem zugleich dem Corpus luteum keine so scharfe Ausprägung zu Theil wird. In den sich rückbildenden Follikeln entfärbt sich der durch das Blutcoagulum dargestellte Kern, die ihn umgebende gelbe Gewebsschichte verliert ihre scharfen Grenzen und unter zunehmender Verkleinerung wird der Follikel immer weniger vom benachbarten Ovarialstroma unterscheidbar. Die gebarstenen und in gelbe Körper übergegangenen Follikel prägen auch der Oberfläche ihre Spuren ein. Jeder gebarstene Follikel hinterläßt in der Albuginea eine noch längere Zeit wahrnehmbare Narbe, so dass der Eierstock dadurch nach und nach eine unebene, rissige Oberfläche empfängt. Erst in der Involutionssperiode schwinden diese Functionsspuren des Ovars, dessen Oberfläche wieder sich glättet, und damit dem Verhalten während des Kindesalters ähnlich wird.

Für das Bersten der Follikel ist das Verhalten der Theca zur Albuginea des Ovars gewiß von Belang. Wenn man sich vorstellt, daß der unter dem Drucke des Liquor stehende Follikel bei seinem allmäßlichen Wachstum die Albuginea vorwölbt, und hier unmittelbar mit ihr in Zusammenhang steht, so ergibt sich daraus auch die Wahrscheinlichkeit einer Druckwirkung auf die Gefäße, woraus eine Einwirkung auf die Ernährung
Von den Geschlechtsorganen.

579

des Gewebes an der vorgetriebenen Stelle hervorgeht. Wir sehen also nicht bloß die auch an den anderen Stellen auftretende Gewebslockerung der inneren Theeaschichte als ein das Bersten einleitendes Moment an, sondern möchten in der durch den Druck des Follikels auf die Albuginea ausgeübten Ernährungsstörung den richtigen Ausgangspunkt jenes Processes sehen.

Die an der Bildung des Corpus luteum am meisten beteiligte innerste Schichte der Theea folliculi zeigt schon vor dem Bersten des Follikels eine reiche Wucherung junger Bindegewebszellen, welche nachher noch weiter sich vermehren und bei der Rückbildung des Corpus luteum zur Gewebsneubildung das Substrat abgeben. Ein anderer Theil dieser Formelemente wandelt sich in fetthaltende Zellen um. Der von dieser Schichte umschlossene Kern des Corpus luteum erfährt am frühesten Veränderungen. Bei spärlichem Blutergusse bildet er eine gelatinöse sehr bald schrumpfende Masse. Im Falle reicheren Ergusses empfängt das den Kern des Corpus luteum vorstellungende Bluteoagulum eine verschiedene Färbung, es erscheint roth, später bräunlich, ja sogar schwarz (Corpus nigrum). Auch Reste der Membrana granulosa können an der Bildung des Kernes beteiligt sein. Ein Corpus luteum, dessen Ei zur Entwickelung gelangte, bleibt meist während der ersten Monate der Schwangerschaft an Volum unverändert. In der Mitte der Schwangerschaftsdauer beginnt die regressive Metamorphose sich deutlicher bemerkbar zu machen, wie aus nebenstehender Fig. 405 zu ersehen ist, wird aber im Verlaufe von Monaten nach abgelaufener Schwangerschaft völlig beendet.

Bei den nicht von einer Schwangerschaft gefolgeten Follikelrupturen hat das Corpus luteum bereits im Verlaufe einiger Monate seine völlige Rückbildung erreicht.

Eileiter und Uterus.

§ 190.

Die Eileiter, Oviducte (Tubae Fallopii) bilden sich aus dem paarig bleibenden Theil des aus den Müller’schen Gängen entstandenen gesammtten Ausführapparates. Jeder erscheint als ein mit muskulösen Wandungen verschene, von Schleimhaut ausgekleidetes Rohr, welches in den oben Rand der das Lig. uteri latum darstellenden Peritonealduplikatur eingebettet ist. Jeder Eileiter (Fig. 406) beginnt mit einer trichterförmigen Öffnung (Ostium abdominale), und besitzt eine Strecke weit, auf der er eine oder auch mehrfache Krümmungen bildet, ein weites Lumen (Ampulle), dann verengt er sich (Isthmus) und tritt in geradem Verlaufe, unter Zunahme der Dicke seiner Wand, zum Uterus. Das Lumen des Canals durchsetzt oben und seitlich die Uteruswand, und mündet mit feiner Öffnung (Ostium uterinum) in das Cavum uteri. Das Ostium abdominale ist an seinem Rande in verschiedenem Maasse ausgezackt und auf unregelmäßig gestalteten Fortsätzen (Fimbriae) bildet die den Eileiter auskleidende Schleimhaut faltige Erhebungen (vergl. Fig. 406). Eine der Fimbrien ist meist bedeutender entwickelt und erstreckt sich dem breiten Mutterbande angeheftet mit ihrem äußersten Ende zum Eierstock (Fimbria ovarii). Sie bildet eine Rinne, deren Ränder wieder mit zottenförmigen Fältchen besetzt sind. Daraus ergibt sich zugleich die

Unter dem Peritonealüberzuge des Oviducet findet sich die Muskel selche der Wandung, welche am Isthmus stärker, schwächer an der Ampulle ist. Eine äußere Längsfaserschicht ist an letzterer nur schwach und noch dazu mit Unterbrechungen entwickelt. Die darauf folgende Ringfaserschichte kommt beiden Abschnitten gleichartig zu.

Die Schleimhaut besitzt gleichfalls eine Schichte longitudinal angeordneter glatter Muskulizellen. Ihr Epithel, das bis auf den Rand der Fimbrien sich erstreckt, besteht aus zylinderischen Zellen mit Wimperhaaren, deren Action nach dem Ostium uterinum gerichtet ist. Sie dienen demgemäß zur Fortbewegung des in die Tuben aufgenommenen Eies.

In der Nähe der Fimbrien oder von einer derselben entspringend, findet sich nicht selten ein gestieltes Bläschen, Morgagni's Hydatide. Eine Verwachung der abdominalen Östien des Oviducet wird als nicht ganz seltener Vorkommen angegeben. Das accessorische Ostium ist dem normalen ähnlich gestaltet, und meist nahe derselben angebracht. Es kann aber auch auf der Mitte der Tubenlänge vorkommen. Diese Fälle beziehen sich auf sehr weit entfernt liegende Zustände, wenn sie nicht aus einer Theilung der ersten Anlage des Ostiums sich ableiten, und dann reine Abnormitäten sind. Im ersten Falle würde an die Einrichtungen zu denken sein, in welchen der primitive Unerregang mit einer größeren Anzahl abdominaler Östien beginnt (Cyclostomen).

Für die Überleitung des Eies im Oviducet ist ebensowohl der Wimperbesatz der Fimbrien wie auch die Muskulatur des Oviducet von Bedeutung, obwohl keinem von beiden eine ausschließliche Rolle zugesprochen werden kann, ebensoweit wie dem vasculösen Turgor des Eileiters, wodurch das Ostium abdominale dem Ovar sich nähern soll.

§ 191.

Der Uterus (Gebärmutter) bildet den ersten Abschnitt des unpaaren Genitalcanals. Die schärfere Abgrenzung von den Eileitern, deren Fortsetzung er genetisch vorstellt, verdankt er der mächtigen Muskulatur seiner Wandung, und darin ist wieder der Ausdruck der functionellen Beziehungen zu sehen,
welche diesem Theile der Ausführwege zukommen. Nicht sowohl die Aufnahme des sich entwickelnden Eies, vielmehr die Austreibung der ausgebildeten Frucht bei dem Gebärmutterarzt bildet die jene Beschaffenheit der Wand und damit auch die Gestaltung des ganzen Organs erklärende Instanz. Der Uterus besteht aus einem oben gegen die beiden Eileiter hin verbreiterten Körper (Fig. 407), der abwärts sich verjüngt und in einen schlankeren Theil, den Hals (Cervix) fortgesetzt ist. Mit letzterem fügt er sich der Scheide an, indem sein Gewebe in das der letzteren übergeht. Der Körper ist nach oben schwach gewölbt, und springt mit dieser als Grund (Fundus) bezeichneten Partie wenig über die seitliche Verbindungsstelle mit den Eileitern vor. Vorne gestaltet die Lage der Harnblase nur eine ganz geringe Wölbung der Fläche, während eine solche nach hinten zu durch das in seiner Lage und Füllung veränderliche Rectum gestattet erscheint. Die Gestalt des Uterus ist also aus seinen Lagebeziehungen ableitbar. Gegen den Hals zu verschwindet die Formdifferenz beider Flächen. Das Ende des Halses springt in die Scheide etwas vor, und bildet damit die Pars s. Portio vaginalis uteri. Dieser Theil trägt die Mündung (Muttermund), welche etwas nach hinten gerichtet und von zwei, seitlich in einander übergehenden lippenförmigen Vorsprüngen begrenzt wird. Gemäß der Richtung des Muttermundes ragt die vordere Lippe weiter als die hintere herab. Sie ist aber weniger scharf gegen die Scheide zu abgegrenzt und bildet in letzteren einen niederen Vorsprung (vergl. Fig. 409). Der Binnenraum des Uterus ist ansehnlich lateralwärts verbreitert und von dreieckiger Gestalt, indem er sich oben nach den Mündungen der Eileiter hin auszieht. Die vordere und die hintere Wand der Cavität berühren sich. Abwärts setzt sich das Cavum uteri als Canalis cervicalis in die Cervix fort. Auch diese Höhlung ist mehr nach der Quere entfaltet, besonders in der Mitte ihrer Länge, so dass der Canal durch eine engere Stelle — auch als innere Muttermund unterschieden — mit dem Cavum uteri communicirt. Diese Stelle entspricht einer bei jugendlichen Formen des Uterus deutlichen äußeren Einschmierung, durch welche Körper und Cervix von einander abgegrenzt sind (Fig. 405). Die glatte Schleimhaut-Auskleidung des Cavum uteri setzt sich in den Cervicalcanal fort, bildet aber daselbst an der vorderen wie an der hinteren Wand je eine Doppelschicht schräg gegen die Medianlinie absteigender Falten (Plicae

Von den Geschlechtsorganen.
pal matae, die nicht selten nur durch unregelmäßige Längsfalten vertreten sind. Die Erhebungen der einen Fläche entsprechen Vertiefungen der anderen, so dass beide in einander eingreifen.

Das interstitielle Gewebe der Schleimhaut bietet zahlreiche Bindegewebszellen. Eine Schichte longitudinal angeordneter glatter Muskelfasern gehört der mit der Muskelnwand des Uterus eng verbundenen Submucosa an; sie entsendet auch Bündel in die Drüsenschicht.

Im Cervicaltheil sind die Drüsen theils durch kurze Schläuche, theils durch Buchtung der Furchen zwischen den Plicae palmatae vorgestellt und erscheinen dann den acinösen ähnlich.

Die Peritonealbekleidung des Uterus kommt vorne von der Blase her und überzieht den Uteruskörper, über dessen Grund hinweg sie sich zur hinteren Fläche begibt und hier auch noch die Cervix überziehend auf einen kleinen Abschnitt des oberen Endes der Scheide (Scheidengrund) tritt, bevor sie sich zum Rectum emporschlägt. Vom Seitenrande des Uterus aus setzt sich dieser seröse Überzug in die schon oben (S. 573) erwähnte Duplicatur des *Lig. uteri latum* fort, die bis zur seitlichen Wand der kleinen Beckenhöhle sich erstreckt. An der Übergangsstelle des Ligamentum latum auf den Uterus kommt dem letzteren keine scharfe Abgrenzung zu. Die oberflächliche Gewebsschichte des Uterus
setzt sich hier vielmehr noch lateral zwischen beiden Peritoneallamellen fort und bildet zwischen diesen verlaufende Züge von Bündeln glatter Muskelfasern.

Vom Fundus uteri aus geht der Peritonealüberzug seitlich auf den Oviductus über, der so im oberen Rande des Lig. latum liegt. An der Hinterfläche dieser Peritonealduplikatur bildet das Lig. ovarii einen zum Uterus verlaufenden Vor sprung, und an der Vorderfläche tritt das Lig. teres vom Vereinigungswinkel des Oviductes mit dem Uteruskörper ab und beginnt sich, von einer Falte des Lig. latum umschlossen, lateralwärts zum inneren Leistenringe. Es durchläuft den Leistencanal und endet in den Labia majora. Diese beiden Stränge zeigen continue Verbindung mit der Wand des Uterus.

Nach der im vierten oder fünften Monate des Fötallebens erfolgenden Differenzierung des Genitalcanalis in Uterus und Scheide stellt letztere die bei weitem längere Strecke vor. Der Uterus-Körper setzt sich seitlich nach den Eileitern zu in zwei Abschnitte fort, Hörner des Uterus, welche erst allmählich in den Körper mit einbezogen werden. So tritt also zuerst ein Uterus bicornis auf, wie er in vielen Abtheilungen der Säuge thiere bleibend existiert. Die schwache Entwicklung der Muskelwand des Uterus läßt den Körper sehr abgeplattet erscheinen, wie er denn beim Neugeborenen noch so sich darstellt. Dabei bildet die Cervix den bedeutendsten Abschnitt, von welchem die Plicae palmatae bis in den Uteruskörper sich erstrecken, und gegen die Eileiter-Öffnungen hin ausstrahlen. Erst gegen das sechste Lebensjahr ziehen sich die Falten aus dem Körper in die Cervix zurück, und dabei erfolgt eine Zunahme der Muskulatur des Körpers, der sich allmählich zum ansehnlichsten Theile des Organs gestaltet, und in diesem Processe selbst nach bereits eingetretener Geschlechtsreife noch Fortschritte macht. So tritt die Cervix in das untergeordnete Verhältniß über. Ihr Lumen erweitert sich jedoch etwas in der Mitte, und die Lippen der Vaginalportion, welche stark gewölbt vorsprangen, glatten sich ab. Vom embryonalen Typus des Uterus, wie er durch die Art seiner Entwicklung bedingt wird, erhält sich also noch manches Charakteristische bis zum Eintritte der vollen Funktion des Organs. In Fig. 408 bietet ein jungfräulicher Uterus diese Eigenthümlichkeiten, mit denen man die oben beschriebenen Verhältnisse vergleichen mag. Mit der Schwangerschaft erfährt der Uterus

![Fig. 408.](attachment:image)

Jungfräulicher Uterus im frontalen Durchschnitt.
Veränderungen, die weiter unten berücksichtigt werden. Unter dem Einfluss jener Function treten jedoch auch manche, dem Uterus dann auch außerhalb der Schwangerschaft bleibende Umgestaltungen auf.

Die an den Zustand des Uterus bicornis erinnernde dreiseitige Gestalt des Körpers wie seiner Cavität, wird durch Minderung der beiderseitigen oberen Vorsprünge modifizirt, so dass der Körper mehr in die Bringform übergeht. Das Os uteri erscheint von gewulsteten Lippen umgeben, welche häufig Einkerbungen darbieten, und empfängt dadurch eine mehr unregelmäßige Gestalt. Mit der Involutionsperiode geht die Vaginalportion eine Rückbildung ein.

Die Lage des Uterus in der kleinen Beckenhöhle bildet einen noch nicht zum völligen Abschlusses gelangten Gegenstand, indem hierüber nicht nur von einander sehr abweichende Angaben bezüglich des Befundes an der Leiche bestehen, sondern auch die am lebenden Individuum vorgenommenen Ermittelungen jener Verhältnisse zu verschiedenen Ergebnissen geführt haben. Auch ist es noch keineswegs sicher, in wiefern abnorme Verhältnisse in den Umgebungen des Uterus in einzelnen der Beobachtung unterzogenen Fällen die bezüglichen Befunde beeinflussten. Bei der Beurtheilung dieser Angaben hat man wohl das größte Gewicht auf jene zu legen, welche den normalen anatomicischen Bedingungen am vollständigsten Rechnung tragen, wobei man nicht in Abrede zu stellen hat, dass die Norm individuelle Abweichungen von derselben keineswegs ausschließt. Wie auch die sogenannten Bänder des Uterus für die allgemeine Lage des Organs von Bedeutung sind, so hat doch als am meisten maßgebend für die Lage des Uterus die Blase zu gelten. Ihr ist der Uterus auf eine bedeutende Strecke (mit seiner vorderen Cervixwand) angeschlossen und wird so je nach dem Füllungszustande dieses Organs in verschiedenen Verhalten sich finden. Diese Lage zur Blase wie die Art des Zusammenhanges mit der Scheide sichert dem Uterus unter normalen Verhältnissen eine schräge Stellung, derart, dass er mit seinem Körper vorwärts geneigt ist (Anteversio) und schon bei mäßig gefüllter Blase (Fig. 409) derselben anlagert. Bei sich entleerender Blase muss diese Anteversio zunehmen, und der Uterus wird je nach der Art, in der die Zusammenziehung der Blase erfolgt (S. 553), wieder wechselnde Lageverhältnisse darbieten. Ob dabei auch eine Anteflexio des Uterus (Biegung des Uteruskörpers an der Grenze gegen die Cervix) einen normalen Befund darstellt, kann wohl für jetzt noch nicht entschieden werden, wenn auch die Untersuchung im Leben dafür sprechen soll. Nachst der Blase kommt auch dem Rectum eine freilich viel geringere Bedeutung für die Stellung des Uterus zu, da bei leerem Rectum Uterus mit Scheide weiter nach hinten zu liegen kommen und dem Uterus eine bedeutendere Anteversio einzugehen gestattet ist. Endlich ist auch dem Verhalten der Dünndarmschlingen einiger Antheil an der Lage des Uterus insofern zuzuwiesen, als sie bei der sich kontrahirenden Blase den dadurch entstehenden Raum einzunehmen im Falle sind.

Das wechselnde Spiel dieser verschiedenen Factoren lässt also dem Uterus
in keiner unter allen Umständen gleichen Lage erscheinen, diese muss sich ändern je nach den Bedingungen, die in der Umgebung bestehen.

Scheide.

§ 192.

Die Scheide (Vagina) bildet einen von vorne nach hinten abgeplatteten, etwas gebogen verlaufenden Canal, dessen oberes Ende die Vaginalportion des Uterus umfaßt und hier in die Wandung des Uterus übergeht. Da der letztere etwas schräg zur Scheide gestellt ist und die vordere Lippe des Uterusmundes tiefer, die hintere höher steht, so erstreckt sich die hintere Wand der Scheide höher als die vordere, die bis an die Lippe reicht, während die hintere Scheidenwand über die hintere Lippe hinaufgreift (vergl. Fig. 409). Der dadurch begrenzte Raum ist das Scheidendevulve (Fornix s. Fundus vaginae). Das untere, in den Sinus uro-genitalis übergehende Ende der Scheide findet hier im jungfräulichen Zustande eine Abgrenzung durch eine Schleimhautfalte, die Scheidenklappe (Hymen) (vergl. Fig. 420). Sie wird beim Coitus zerstört, und dann geben ihre durch Einreißen entstandenen Theile, unregelmäßige warzenförmige Gruppen, Ca-rrunculae, jene Grenzmarke ab. — Der Verlauf der Scheide ist mehr oder minder gekrümmt mit nach vorne gerichteter Concavität, da die vordere Wand der Scheide die kürzere ist. Sie folgt in diesem Verlaufe jedoch keineswegs genau der Axe des kleinen Beckens, da ihre Lage mit der des Uterus Veränderungen unterworfen ist, die von benachbarten Organen abhängen.

Die Wand der Scheide wird durch eine starke bindegewebige, nach unten an Stärke noch zunehmende Membran gebildet, welche von Zügen glatter Muskel-

Drüsen fehlen der Scheidenschleimhaut. dagegen sind Papillen sehr entwickelt. Das Epithel ist ein mehrschichtiges Plattenepithel, welches auch die Vaginalportion des Uterus überzieht und hier gegen den Uterusmund allmählich in das Uterusepithel übergeht.

Die das Hymen bildende Schleimhaut falte springt in der Regel von der hinteren Wand hervor und begrenzt bei geschlossenem Sinus nero-genitalis eine Längs- spalte, über der die vordere Faltensäule beginnt. Beim Neugeborenen bildet das Hymen eine röhrenförmige Vorragung, die auch zuweilen später noch besteht.

Die Gestaltung dieser Falte ist sehr mannigfach. Die gewöhnliche Halbmondform kann in die Ringform übergehen, und diese wieder zu einem vollständigen Verschluß der Scheide (Atresia vaginæ) hineinleiten. Auch mehrfache Durchbrechungen des Hymen, (Hymen cribiforme), und Auszackungen seines freien Randes kommen vor (Hymen fimbriatum).

Veränderungen des Uterus bei der Schwangerschaft und Bildung der Placenta.

§ 193.

Während aber die Muskulatur der Uteruswand, wie groß auch ihre Bedeutung während des Geburtsactes ist, zum sich entwickelnden Embryo keine directe Beziehungen eingeht, so treten solche schon mit dem Beginne der Schwangerschaft an der Schleimhaut des Uterus auf und an diesem Theile der Uteruswand ergeben sich für die ganze Dauer des Fötallebens wichtige Umgestaltungen, aus denen neue Gebilde hervorgehen.

Unter Zunahme ihrer Dicke, Wucherung ihrer Drüsen und Vermehrung ihrer Gefäße, die ihr von der Muskelwand her zukommen, beginnt sie an der Umhüllung des vom Chorion umschlossenen Embryo (vergl. S. 89) sich zu bethiligen und liefert jene Gebilde, die man mütterliche Fruchthüllen nennt. Da diese bei der Geburt mit dem Kinde ausgestoßen werden, bilden sie Membranae deciduae.
Die erste Vorstellung von den Beziehungen der Uterusschleinhaut zur Frucht gründete sich auf die Annahme, dass das Ei beim Eintritte in den Uterus einen Theil der gewucherten, das Ostium uterinum des Eileiters verschließenden Uterusschleinhaut vor sich einstülpe, die Decidua reflexa bilde, welche an der Uteruswand in die diese überkleidende Decidua vera sich fortsetze. Diese Vorstellung hatte zur Folge, dass man an dem Orte der Einstülpe eine nachträglich entstehende Ergänzung der Schleinhaut als Decidua serotina annahm, Bezeichnungen, die auch bei geänderter Auffassungsweise blieben.

Die der Uteruswand anliegende Decidua vera (Fig. 410) greift sich an der inneren Öffnung des Cervicalcanals von der Schleinhautauskleidung des letzteren ab, und bildet an dieser Grenze eine bedeutende Wulstung. Ihre Dicke nimmt bis zum dritten Monate zu, die vergrößerten Drüsen zeigen mannigfache Buchtungen, das interstitielle Bindegewebe Wucherungen der Bindegewebszellen, von denen viele eine runde Form besitzen. Die Vergrößerung der Drüsennäpfchen läßt die Innenschicht der Decidua vera siebförmig durchbrochen erscheinen. Vom dritten Monate erfolgt mit der bedeutenden Volumzunahme der gesamten Frucht ein allmähliches Dünnerwerden der Decidua vera, die mit der gleichfalls verdünnnten Decidua reflexa verklebt. Diese stellt eine Wucherung der Schleinhaut vor, welche in den Uterus gelangte Ei allmählich umwächst. Sie zeigt ähnliche Bestandtheile wie die Decidua vera, bis auf die Drüsen, die ihr fehlen, wie ihr auch ein Epithelialüberzug abgeht. Mit dem sechsten Monate tritt die Außenschicht der Reflexa mit der Innerfläche der Vera zusammen (Fig. 411), beide verkleben untereinander und stellen schließlich eine dünne Schichte vor. Der von der Reflexa gebildete innere Theil dieser Schichte ist von blätterigem Gefüge, indess der von der Vera gebildete mehr spongios erscheint.

Von den Geschlechtsorganen.

repräsentiert, welche von der sonst glatten Chorionfläche zur Decidua reflexa verlaufen. Das Chorion frondosum besteht dagegen an der Serotinalfläche fort, und was durch Rückbildung der Zottenbäumchen an Chorion laeve an Oberflächenvergrößerung verloren ging, wird durch mächtige Entfaltung an der anderen Stelle reichlich ersetzt.

Die Verbindung mit der Serotina geschieht dadurch, dass nicht bloß die Zottenbäumchen des Chorion zahlreiche Zweige in erstere einsenken, sondern dass auch das Gewebe der Schleimhaut zwischen die Bäumchen und deren Verzweigung einwächst. Das Gewebe der Serotina setzt sich in zusammenhängenden Strecken zwischen den Gruppen der Bäumchen bis zu deren Basis an der Chorionmembran fort und bildet hier eine die Basis der Bäumchen umfassende Ausbreitung. Dabei empfängt dieser ganze, aus inniger Verbindung fütterter und mütterlicher Gebilde hervorgehende Complex eine bedeutendere Dicke, und wird zur Placenta, an der ein mütterlicher (Pl. uterina) und kindlicher Theil (Pl. foetalis) unterschieden wird.

von Venenstrecken entstandenen *Sinus terminalis* übergeht. In die cavernösen Hohlräume ragen die Chorionzotten der Cotyledonen ohne jeden andern Überzug als den ihres Epithels, den sie bereits vorher besaßen. Die fötale Blut führenden Chorionzotten werden also unmittelbar vom mütterlichen Blute umspült, und es besteht somit eine der günstigsten Einrichtungen für den Austausch der Stoffe.

Das der Placenta zugeführte Blut des Fötus, welches vorwiegend venöses ist, wird im Placentarkreislaufe durch die Wechselbeziehungen zum mütterlichen Blut in arterielles umgewandelt, es nimmt nicht nur plastisches Material aus dem Blute der Mutter auf, sondern vollzieht auch den Gasausstausch mit denselben. Beides unter der Herrschaft der Diffusionsgesetze, für welche die verschiedene Qualität des der Placenta foetalis und der Placenta uterina zugeführten Blutes, sowie eine zwischen beiden Blutarten befindliche Gewebsschichte der Chorionzotten die Bedingungen abgibt.

So wird die Placenta zu einem Organe ausgebildet, welches der Ernährung wie der Respiration des Embryo vorsteht.

Eine äußerste Lage der Placenta trennt sich bei der Ablösung der letztenen während der Geburt nur teilweise von der Uteruswand, eine Schichte davon, mit der tiefen Schichte der Decidua vera übereinstimmend, bleibt sitzen. Sie enthält Reste der blinden Enden der Drüenschläuche.

C. Vom Sinus uro-genitalis und den äusseren Geschlechtsorganen.

Anlage und Differenzirung derselben.

§ 191.

Durch die Aufnahme der Ausführwege der Geschlechtsorgane ward das untere Ende des Stieles der Allantois zum *Canalis oder Sinus urogenitalis* umgebildet (§ 543). Dieser steht, wie schon vorher die Allantois (§ 43), mit dem Ende des Darmrohrs in Verbindung, und so geht eine für Darm und Urogenitalorgan gemeinsame Endstrecke, die Cloake, hervor. Durch diese münden,
Von den Geschlechtsorganen.

591
den
der
Eine
"hervortreten
mu
ist
sich
j
initalhöckers,
Reptilien
und Vögeln, ja selbst noch bei manchen Säugerthieren (Monotremen) ob-
walten sehen. Die Cloakenmündung wird von einer wulst-
förmigen Erhebung umgeben. Ihr wenig tiefliegender
Grund trägt die beiden genannten Öffnungen. Vor der
vorderen dieser Öffnungen, welche in den Sinus uro-
genitalis führt, beginnt in der vorderen Cloakenwand in der
6ten Woche ein Höcker sich zu bilden, auf dessen Unter-
seite alsdann die Mündung des Sinus uro-genitalis rinnen-
förmig (Fig. 412 //) sich fortsetzt. Der wulstförmige
Rand der Cloakenmündung (Genitalwulst (//)) sondert sich
mehr nach beiden Seiten, und läßt allmählich die vordere
Erhebung, den Genitalhöcker (e), hervortreten, in dem
Maße, als derselbe sich inzwischen vergrößert hat. Da-
dbei ist der Boden der Cloake näher zur Oberfläche gelangt, ein Vorgang, der leicht
dadurch verständlich wird, dass die seitliche Cloakenwand nicht in dem Maße
wächst, als die übrigen Theile sich vergrößern. Nachdem mit dem Auswachsen
des Genitalhöckers die auf seiner unteren Fläche sich er-
streckende Mündung des Sinus uro-genitalis sich zu einer
äußerlich sichtbaren Spalte ausgebildet hat, ist sie von
zwei seitlichen Falten umgeben, die wir Genitalfalten
nennen wollen. Auch die Öffnung des Darmrohrs tritt als
After an die Oberfläche (Fig. 413 a) und gelangt zwischen
die beiden Hälften des Genitalwulstes. Durch Zunahme
des Raumes zwischen beiden Mündestellen rückt die After-
öffnung anscheinend weiter nach hinten und es kommt
zur Ausbildung einer Dammregion (Mittelfleisch oder
Perinæum). Eine feine Erhebung erstreckt sich vom
After über den Damm bis gegen die hintere Grenze der
Genitalfalten: Raphe perinaei, sie bezeichnet den Weg, der vom After bei seiner
Sonderung aus der Cloake zurückgelegt ward.

Endlich gelangt die Afteröffnung nahezu aus dem Bereiche des Genitalwul-
stes; der Genitalhöcker gewinnt eine bedeutende Prominenz und von seinem freien
Ende verlaufen die beiden die Urogenitalspalte umfassenden Genitalfalten herab,
die zwischen den beiderseitigen Hälften des Genitalwulstes hervortreten.

Bis hierher verhalten sich beiderlei Geschlechter in wesentlicher Überein-
stimmung. Es besteht somit auch für die äußeren Theile dieselbe Indifferenz der
Anlage, wie wir sie für die inneren Genitalorgane dargestellt haben. An den
letzt beschriebenen Befund knüpfen sich jedoch die Sonderungsvorgänge an,
welche auch in dem äußeren Genitalapparat eine sexuelle Verschiedenheit her-
beiführen, die der Verschiedenartigkeit der Leistungen dieses Apparates ange-
passt ist.
Beim weiblichen Geschlechte gehen minder bedeutende Umgestaltungen vor sich. Der nach beiden Seiten vollständig gesonderte Genitalwulst lässt die beiden großen Schamlippen (Labia majora) hervorgehen, zwischen denen oben der Genitalhöcker vorspringt. Der Sinus uro-genitalis bleibt von geringer Tiefe, er bildet den Scheidenvorhof, das Vestibulum, in dessen Grunde die Öffnung der Scheide liegt; darüber findet sich als Längsspalte das Orificium urethrae. Die beiden ihm seitlich begrenzenden Genitalfalten, welche zum Genitalhöcker emportreten, werden zu den kleinen Schamlippen (Nymphen), der Genitalhöcker selbst zur Clitoris, welche noch längere Zeit eine bedeutende Vorragung bildet. — Viel bedeutender sind die beim männlichen Geschlechte auftretenden Veränderungen. Das Längenwachstum des Genitalhöckers wird von einem gleichen Prozesse an der Wandung des Sinus uro-genitalis begleitet, indem die beiden, letzteren seitlich abgrenzenden Genitalfalten von hinten nach vorne zu verwachsen und dadurch die Mündung des von ihnen umschlossenen Sinus urogenitalis immer weiter nach vorne verlegen, und den Sinus zu einem Canalis uro-genitalis sich gestalten lassen. Der Genitalhöcker wird dadurch sammt dem an seiner unteren resp. hinteren Fläche sich schließenden Canalis uro-genitalis zum Penis (Fig. 415). Die Mündung des Canals rückt immer weiter an der unteren Fläche der Penisansatze nach vorne zu, bis sie die Spitze des Penis erreicht. Es schließt sich also der Urogenitalcanal immer mehr von hinten her, während seine Wände nach vorne hin auswachsen. Bleibt dieser Vorgang unvollendet, so gehen daraus Deformitäten hervor, die man als Hypospadie bezeichnet. Die Urogenitalöffnung liegt dann auf einer der Wegstrecken, die sie normal zu durchlaufen hat. Schon vor dem Beginne dieses Vorganges sind die beiden Hälften des Genitalwulstes, zwischen deren hinterer Grenze der After nach hinten trat, einander näher gerückt und von hinten nach vorne zu mit einander verschmolzen, so dass der am hinteren und lateralen Rande der Urogenitalöffnung aufgetretene Process des Verwachsens nur eine Fortsetzung jenes ersten Vorganges ist. Aus der Verbindung der beiden Hälften des Genitalwulstes geht der Hodensack (Scrotum) hervor. Der Weg der Verbindung wird durch eine leichte Erhöhung, Naht (Raphe scroti), bezeichnet, die sich hinten in die Raphe perinaei fortsetzt, sowie die vorne mit dem Vorrücken der Urogenitalöffnung in die Raphe penis übergeht. Diese Nahtstelle entspricht also dem unter fortschreitendem Wachsthum des Körpers stattfindenden Verschlusses der Urogenitalspalte.

Diese äußerlich wahrnehmbaren Umwandlungen sind von inneren Differenzierungen begleitet, und diese sind vornehmlich zweierlei Art. Erstlich entstehen von der Schleimhaut des Sinus uro-genitalis aus Drüsenbildungen, zweitens bilden...
Von Sinus uro-genitalis und den äußeren Geschlechtsorganen. 593

I. Männlicher Urogenitalcanal und seine Adnexa.

§ 195.

Der männliche Sinus oder Canalis uro-genitalis wird mit seiner bedeutenden Ausdehnung in die Länge in einzelne Abschnitte theilbar, in dem die Wandung des Canals verschiedenartige Sonderungen eingehlt. Theils sind es Drüsen der Schleimhaut, deren mächtigere, über die Schleimhaut hinaus gehende Entfaltung zu jener Sonderung beiträgt, theils ist es die die ganze Länge des Canals begleitende glatte Muskulatur, theils endlich des Gefässapparat der Wand, der auf Strecken in ein Schwellgewebe umgebildet ist. Durch diese Bildungen werden einzelne Strecken ausgezeichnet und dadurch von einander unterscheidbar.

Der männliche Urogenitalcanal wird auch als Harnröhre (Urethra) bezeichnet, eine Bezeichnung, welche einer vulgären Auffassung der Verhältnisse entspricht. Wie aus der Entwickelung hervorging, ist er ein von der weiblichen Harnröhre (S. 553) total verschiedenen Gebilde, so dass es zweckmäßig ist, ihn nicht mit einem nur zu falschen Auffassungen führenden Namen zu belegen.

Die erste, fast unmittelbar auf die Harnblase folgende Strecke, in welche die Geschlechtsgänge einmünden, wird von einem mächtigen Drüsenapparat umgeben, der ein äußerlich scheinbar compactes Organ, die Prostata, vorstellt. Auf diese Pars prostatica des Urogenitalcanals folgt ein in seinen Wandungen minder ausgezeichneter Abschnitt, den man Pars membranacea, auch Isthmus nennt.

Endlich besitzt der letzte und längste Abschnitt des Canais in seiner Wandung ein Schwellorgan, das Corpus cavernosum urethrae, und wird danach Pars cavernosa benannt. Diese tritt aber mit den im männlichen Genitalhöcker ausgebildeten Schwellkörpern in Verbindung, und stellt mit diesen zusammen den Penis vor, auf dessen distalem Ende die Mündung des Urogenitalcanals sich vorfindet.

1) Die Pars prostatica ist der in seinen Wandungen zur Prostata umgebildete Abschnitt, welcher hinter dem unteren Theile der Schamfuge liegt.

Gegenbaur. Anatomie.
Der Urogenitalcanal erscheint hier von einem hinten mächtigen, vorne meist nur schwach entwickelten Körper ringförmig umgeben, der Prostata (Vorsteherdrüse). Deren hinterer Abschnitt ist nach beiden Seiten anscheinlich ausgebildet, und hat diese beiden Teile, die hinten und oben oft durch einen Einschnitt von einander getrennt sind, und damit die Gestalt eines Kartenherzens besitzen, als Lappen bezeichnen lassen. In diesen Einschnitt setzen sich die Vasa deferentia mit den Samenbläschen fort und gehen hier in die Ductus ejaculatorii über (vergl. Fig. 396). Das Innere des Organs wird von einer Anzahl feiner, reich verzweigter Drüsenschläuche durchsetzt, die mit mehr oder minder deutlichen Endlippchen versehen sind.

Das reiche interstitielle Gewebe wird theils aus Bindegewebe, zum größeren Theile jedoch aus Bündeln glatter Muskelzellen gebildet, welche an der Oberfläche des Organs eine zusammenhängende Schichte bilden, nach der man die Prostata in einen inneren drüsigen und äußeren muskulösen Abschnitt gesondert hat. Von der muskulösen Rindenschichte aus senken sich Züge in die Tiefe und bilden, sich durchscheinend, noch ein Gerüste im drüsigen Theile des Organs. Gegen den Anfang der von der Prostata ausgehenden, nach hinten etwas ausgebuchteten Canalstrecke setzt sich von der Blase her der vordere Winkel des Trigonum Lieutaudis fort (Fig. 417) und läuft in eine an der hinteren Wand des Canals vorspringende Erhebung ans, welche als längere aber schmale Falte durch die Pars prostatica verfolgbar ist. Die das Lumen verengende Erhebung, der Samenhügel (Colliculus seminalis, Caput gallinaginis, Schnepfenkopf), trägt in der Regel beiderseits die feinen, punktförmigen Mündungen der Ductus ejaculatorii, wenn nicht einer derselben oder auch beide, in eine von der Mitte des Samenhügels gegen die Prostata sich einsenkende kleine Tasche ausmünden. Diese Tasche, Vesicula prostatica (Sinus pocularis) ist der terminale Rest des aus den verschmolzenen Müller'schen Gängen (S. 357) entstandenen Sinus genitalis, den man auch als Uterus masculinus gedeutet hat, obwohl er keinesfalls dem Uterus, sondern nur dem Endabschnitte des weiblichen Sinus genitalis,
Vom Sinus uro-genitalis und den äußeren Geschlechtsorganen.

aus welchem die Scheide hervorgeht, homolog ist. Zur Seite des Samenhügels ist die Schleimhaut von den Mündungen der Prostatadrüsen durchsetzt, die man als feine Punkte wahrnimmt.

Der Übergang der Muskulatur sowohl in den Sphincter vesicae (Sph. ves. intern.), als auch auf der Pars membranacea sieht die Vorstellung, dass in der Prostata eine partielle Umbildung der Wand des Urogenitalcanals vorliegt. Die Abgrenzung der Muskulatur bietet nur hinten gegen das Rectum eine ebene Fläche. Vorne mischen sich den glatten Muskulaturbündeln quergestreifte transversale Züge bei, welche zerstreut auf die Blase sich fortsetzen.

Der in den ausgebuchteten Abschnitt des Canals einragende Samenhügel führt ein reiches und dichtmaschiges Gefäßnetz, welches bei völliger Füllung den Samenhügel anschwellen macht, und damit die Communication mit der Blase verschließt.

Von Venen durchsetztes Bindegewebe (Ligg. pubo-prostatica) trennt die Prostata von dem unteren Theil der Hinterfläche der Schamfuge, und setzt sich in eine zusammenhängende Schichte fort, durch welche der folgende Abschnitt des Urogenitalcanals hindurch tritt.
2) **Pars membranaeae.** Dieser kurze, gleichfalls nur 2—2,5 cm lange Abschnitt des Urogenitalcanals erscheint insofern unter einfachen Verhältnissen, als seine Wandung keine besonderen Umbildungen aufweist. Aus der Pars prostatica hervorgegangen, setzt sich der Canal unter dem Schambogen nach außen fort, und passirt dabei eine zwischen den beiden Schenkeln des Schambogens ausgebreitete Bindegewebschicht (Lig. triangulare, Diaphragma urogenitale), worauf er in den folgenden Abschnitt übergeht. Außerhalb des Schleimhaut des Canals findet sich wieder eine Schichte glatter Muskelzellen in vorwiegend eirenlärer Anordnung. Darüber lagern noch quergestreifte Faserbündel, die jedoch der Muskulatur des Beckenausganges angehören.

Diese Strecke besitzt bei vielen Säugenthiere eine viel bedeutendere Länge. Auch im Fötalzustande und noch beim Neugeborenen ist sie relativ länger als später, und bedingt dadurch eine höhere Lage der Pars prostatica und der Harnblase.

3) **Pars cavernosa.** In der Wandung dieses längsten Abschnittes (15 bis 20 cm) ist es zur Ausbildung eines der schon oben erwähnten Schwellorgane gekommen, welches diesen Abschnitt in die Zusammensetzung des Penis eingehren lässt. Dieses **Corpus cavernosum** (C. spongiosum, C. c. urethrae) ist paarig angelegt, und behält davon auch später noch Spuren. Es springt hinten mit einem starken Abschnitt vor, und übergangt da noch die Endstrecke der Pars membranaeae von unten (Fig. 418). Es hat also den Anschein, als ob der Urogenitalcanal das Corpus cavernosum von oben her schräg durchbohre. Die bulbusartige Anschwellung verjüngt sich nach vorne zu, und setzt sich dann ziemlich gleichmäßig, der unteren Furche zwischen den beiden Corpora cavernosa des Penis angelagert, bis gegen das Ende des Penis fort. Der Schwellkörper ist aber nicht gleichmäßig um den Urogenitalcanal entwickelt, vielmehr durchsetzt ihn das Lumen des letzteren excentrisch, näher der oberen, resp. dorsalen Seite. Am Ende des Penis bietet dieser Apparat eine bedeutende Vergrößerung, indem er die Eichel (Glans penis) bildet, auf der das Orificium externum des Urogenitalcanals als eine Längsspalte sich findet. (Das nähere Verhalten der Eichel siehe weiter unten beim Penis.)

Die Schleimhaut des gesamten Urogenitalcanals bildet feine, verstrebbare Längsfalten, die in der Pars membranacea beginnen. Das Lumen erscheint von da an durch die Pars cavernosa als eine Querspalte, die in der Eichel in eine senkrechte Spalte sich umwandelt. Elastisches Gewebe verleiht der Wand eine ziemliche Dehnbarkeit, gemäß welcher der Canal sich erweitern kann. In der Pars prostatica ist die Beschaffenheit der Wand ein Hinderniss für die Erweiterung. Diese ist aber schon an der Pars membranacea gestattet und an der Pars cavernosa besitzt der hintere Abschnitt die Erweiterungsfähigkeit in hohem Grade. Nach vorne zu nimmt sie allmählich ab, steigt sich aber innerhalb der Eichel wieder bedeutend. Hier besitzt der Canal eine seichte Ausbuchung seiner hinteren resp. unteren Wand (Fossa navicularis) (vergl. Fig. 415 B).

Fünfter Abschnitt.

Die Couper'schen Drüsen sind durch relativ große Acini mit weitem Lumen ausgezeichnet. Auch bei den Ausführgängen der Acini besteht weites Lumen mit unregelmäßigen Buchtungen.

Penis und Scrotum.

§ 196.

Die im Genitalhöcker entstandenen beiden Schwellkörper setzen mit der sich ihnen anschließenden Pars cavernosa des Urogenitalkanals den Körper des Penis oder der männlichen Rute zusammen. Die dem Becken zunächst befindlichen Theile repräsentiren die Wurzel, von der der Schaft sich fortsetzt, welcher mit der Eichel (Glans penis) seinen Abschluss findet. Letztere bietet einen nach hinten und seitlich entfalteten Vorsprung (Corona glandis, Fig. 418 A, B), der durch eine Furche (Sulcus coronarius) vom Schaft sich absetzt. Vom Schambeinaste wie vom Scrotum her setzt sich das Integument mit lockerem aber fettlosem subcutanen Bindegewebe auf den Schaft des Penis fort und bildet vorne gegen die Eichel zu eine dieselbe deckende Duplicatur, die Vorhaut. Praeputium. Unterhalb der Mündung des Urogenitalkanals geht das Praeputium mit einer dünnen Falte unmittelbar auf die Glans über, und stellt damit das Frenulum praeputii dar.

Die dem Penis eigenen Schwellkörper — Corpora cavernosa penis — stellen zwei proximal getrennte, aber bald sich mit einander verbindende, annähernd cylindrische Organe vor, die an beiden Enden verjüngt auslaufen. Am proximalen Abschnitte besteht eine spindelförmige Verdickung (Bulbus) und mit diesem Theile ist der Schwellkörper dem Schambeinaste befestigt (vergl. Fig. 418). Darauf legen sich beide Körper vor der Schamfuge aneinander und treten mit ebenen Flächen derart mit einander in Verbindung, dass von der Trennung nur eine obere schwache und eine untere breitere Rinne bemerkbar bleibt. In letztere bettet sich der Urogenitalkanal. Die beiden distalen Enden der Schwellkörper ragen von einander getrennt in die Eichel, die sie seitlich und oben überdeckt (vergl. Fig. 418 B).

In ihrem Baue differiren diese Organe nicht unbedeutend vom Schwellkörper des Urogenitalkanals, vor Allem durch die mächtigere Ausbildung ihrer bindegewebigen derben Hülle: Tunica albuginea. Diese bildet an der ver-
Vom Sinus uro-genitalis und den äußeren Geschlechtsorganen.

schmolzenen Strecke beider Schwellkörper eine mediane, jedoch nicht überall vollständige Scheidewand, so dass, besonders in distaler Richtung, zwischen beiden Hälften Communicationen bestehen. Von der fibrösen Hülle aus erstrecken sich Balken und Blätter ins Innere und bilden, sich vielartig theilend und unter einander verbindend, das interstitielle Gerüstwerk des Organs, dessen bluterfüllte Lücken noch unregelmäßiger, aber auch umfänglicher als jene im Schwellkörper des Urogenitalcanals sind.

Bei manchen Säugethiere (Nagern, Carnivoren, auch vielen Quadrumanen u. a.) finden sich im Bereiche der Schwellkörperhüllen und zwar innerhalb der Eichel Ossificationen vor, welche oft von bedeutender Ausdehnung, den sogenannten Penisknöchen (Os priapi) bilden. Beim Menschen sind in vereinzelten Fällen Ossificationen der Corpora cav. penis beobachtet worden, die in ihrem Zusammenhange einem Penisknöchen entsprechen könnten. Lenhossek, Arch. f. pathol. Anatomie Bd. IX. Ob, wie Mayer (Fröries Notizen Bd. XLI, S. 38) angibt, zuweilen ein "Knorpel" in der Eichel zu finden sei, erscheint zweifelhaft.

Die Befestigung der Schwellkörper des Penis aus Becken geschieht durch sehr straffes Gewebe, welches vom Periost aus in die Tunica albuginea übergeht. In der Medianlinie tritt von der Schamfuge her ein auch aus der Linie alba Faserzüge aufnehmendes Bindegewebesbündel zum Rücken des Penis (Lig. suspensorium). Um die Tunica albuginea formirt das lockere Bindegewebe mit reichen elastischen Fasern die Faszie penis. — Das Integument zeichnet sich durch Fettmangel aus. An der Vorhautöffnung schlägt es sich in eine zartere, das innere Blatt des Praeputiums bildende Lamelle um, welche im Sulcus coronarius der Eichel auf diese übergeht. Obwohl sehnig-theilend ähnlich erscheinend, besitzt jene Lamelle doch im Allgemeinen den Bau der äußeren Haut, ebenso wie der innig mit dem cavernösen Körper verbundene Überzug der Eichel. Kleine Talgdrüsen kommen spärlich auf der Eichel und an der inneren Lamelle der Vorhaut vor, größere
münden im Sulcus coronarius und neben dem Frenulum (Tyson'sche Drüsen). Sie liefern Biechstoffe, die das größtenteils aus abgestoßenen Epithelien gebildete Smegma praepuill imprimiiren.

Bezüglich des Raues der Schwellkörper siehe vorzüglich LANGER. Sitzungsberichte der Wiener Acad. Bd. 46.

Der Hodensack (Scrotum) ist der oben S. 592 gegebenen Darstellung gemäß ursprünglich ohne Beziehung zu seinem späteren Inhalte, ein Gebilde der äußeren Haut, das gleichfalls paarig angelegt wird. Dieses deutet noch die median verlaufende Raphe an, von der aus eine bindegewebige Scheidewand (Septum scroti) sich bis zur Wurzel des Penis erstreckt. Dadurch wird der Hodensack in zwei Färcher geschieden, welche die Hoden und auch noch eine Strecke des Samenstranges beherbergen. Das dünne, bei Erwachsenen schwach bräunlich pigmentirte Integument ist in seinem subcutanen Abschnitte mit einem continuirlichen Belege glatter Muskelzellen versehen, die mit Bindegewebe eine nicht unansehnliche Schichte, die Tunica dartos, Fleischhaut des Hodensacks, bilden. Am Septum scroti setzt sich diese Schichte auch auf dieses fort. Durch die Action dieser Muskelschichte bildet die Haut des Scrotums Runzeln und Falten.

H. Weiblicher Urogenitalsinus und seine Adnexe.

§ 197.

Bei dem weiblichen Geschlechte bleibt der Sinus uro-genitalis ein seichterer Raum, der jedoch eine beträchtlichere Weite empfängt und durch beides von dem längeren und engeren Canale des Mannes sich nicht un wesentlich unterscheidet, so sehr, dass man lange Zeit die auf die Entwicklung gegründete Homologie übersah. Zu der Zeit, da die ursprüngliche Gleichartigkeit des äußeren Apparates in beiden Geschlechtern noch nicht erkannt war, hat man ihm den Namen Scheidenvorhof, Vestibulum vaginae, beigelegt (Fig. 420). Die seitlichen Wände dieses Vorhofs bilden zwei aus den Genitalfalten entstandene Hautlappen, die Labia minora oder Nymphae. Den Grund nimmt der Eingang zur Scheide (Introitus vaginae), ein, den das Hymen bis zu seiner Zerstörung (S. 585) bis auf eine kleine Öffnung verschließt. Darüber liegt die schlitzförmige

Wie der gesammte äußere Geschlechtsapparat des Weibes nur eine, und zwar wenig bedeutende Modifikation der beiden Geschlechttern gemeinsamen Anlage vorstellt, so finden sich demselben auch die gleichen Schwellorgane zugetheilt, welche in den durch die geänderten functionellen Verhältnisse bedingten Anpassungen sich darstellen. Dem Corpus cavernosum des Urogenitalcanals (Corpus cav. urethrae) des Mannes entspricht ein stets getrennt bleibendes Schwellkörperpaar, welches zur Seite der Basis der kleinen Schamlippen, also seitlich vom Sinus uro-genitalis liegt, und die Bulbi vestibuli (Vorhofszwiebeln) bildet. Im Baue stimmen diese im gefüllten Zustande lateral gewölbten, vorwärts sich verschmälernden Schwellkörper mit dem homologen Organe des Mannes überein. Sie gehen vorwärts in Venengeflechte über, welche zum Theile im Fremulum clitoridis gelagert, zur Unterseite der Clitoris verlaufen, und mit feinen Gefäßnetzen der Glans clitoridis zusammenhängen. Die Schwellung dieser Organe verengt den Scheidenvorhof. Zwei andere Schwellkörper liegen der Clitoris zu Grunde. Diese *Corpora cavernosa clitoridis* wiederholen im kleinen Maßstabe das Verhalten der Corp. cav. penis, und bestätigen zugleich, dass nicht die Clitoris für sich allein dem Penis des Mannes entspricht, sondern dass diesem vielmehr die ganze Umwandlung des weiblichen Sinus uro-genitalis, kleine Schamlippen und Vorhofszwiebeln mit inbegriffen, entsprechen muss. Beide Corpora cavernosa clitoridis
entspringen wie jene des Penis vom Schamhein und verlaufen bis unter die Schamfuge, wo sie in einen äußerlich einheitlichen Schaft zusammenfließen. Dieser ist in starkem Winkel nach unten und hinten gekrümmt und mit seinem

Fig. 121.

[Diagram of female reproductive organs. A view from the front and back, B viewed slightly obliquely.]

die *Gla* *us* *clitoridis* vorstellenden Ende gegen das Vestibulum gerichtet. Die Scheidung des Schaftes durch ein medianes Septum deutet auch die Zusammensetzung aus zwei getrennten Theilen an, die hinten ihre Selbständigkeit behielten. Das Septum bietet viele Durchbrechungen und lässt die Binnenräume beider Hälften auf größeren Strecken communiciren.

Die kleinen Schamlippen sind in Gestaltung wie an Volum zahlreichen Verschiedenheiten unterworfen. Sie erscheinen mehr oder minder ausgedehnt, und können im ersten Falle aus der von den Labia majora umschlossenen *Schamspalte* vorragen. Bei manchen afrikanischen Völkern erreichen sie eine so bedeutende Ausdehnung, daß an ihnen die Beschneidung ausgeführt wird. Das *Präputium clitoridis* ist meist gleichfalls an jener hypertrophischen Verlängerung beteiligt. Die gesamte Deformität pflegt man als "Hottentottenschrürze" zu bezeichnen, obwohl sie nur bei einem Stamme als Regel, bei anderen, aber auch bei manchen nordafrikanischen Stämmen nur vereinzelt vorkommt.

Die die kleinen Schamlippen darstellenden Hautfalten besitzen zwischen ihren beiden Blättern fettloses Eindegewebe mit reichen elastischen Netzen. Sehr entwickelt sind die

Über die Schwellorgane siehe das oben citirte Werk Kobelt's.

III. Muskulatur des Urogenitalcanals und des Afters.

§ 198.

A. Muskeln des Afters.

§ 199.

Im wesentlichen verhält sich der Sphincter ani in beiden Geschlechtern gleich, aber beim Weibe ist die Verbindung mit dem M. bulbo-cavernosus noch deutlicher ausgeprägt erhalten und hier als Regel, da Muskelnbündel vom Sphincter zum Bulbo-cavernosus derselben Seite ziehen. Zuweilen sind sie zerstreut im Fett der Fossa ischior-talis anzutreffen.

2. M. levator ani. Der Heber des Afters entspringt an der Innenseite des Schambeins zur Seite der Schamfuge und von da an lateral und nach hinten von der den M. obturator internus deckenden Fascie (Beckenfascie, F. hypogastrica), die sich hier zu einem sehnen Streifen verdichtet hat. Mit diesem verläuft die Ursprungsstelle bis zur Spina ischiadica. Die Muskelbündel
ziehen abwärts, von beiden Seiten her trichterförmig gegen den Anus. Die vorderen senken sich größtenteils in den Sphincter ani ein, während die hinteren über dem oberen Rande des Sphincter, an dem sie enge sich anschließen, in einander übergehen.

Von den vorderen Bündeln des Levator ani beginnt sich ein Theil zur Pro-

Somit sind am Levator zwei Portionen zu unterscheiden, von denen die eine, ober-

flächerliche, einen Theil des vorderen Ursprungs begreift und im Verlaufe nach hinten

an den oberen Rand des Sphincter ani (ext.) sich anschließt und hinter das Rectum ge-

langt. Die hintere, den größten Theil des gesamten Levators umfassende Portion ist

es dann, die zwischen die Bündel des Sphincter sich auflöst (s. Roux l. c.).

Die hintersten Ursprünge des Levator inseriren sich an die Seite des Steißbeines

und schließen sich enge an den M. coccygeus an. Daher gewinnt es den Anschein, als

ob der Levator ani jenem Muskel zugehöre. Bis jetzt läßt sich das nicht sicher begrün-

den, dagegen dürfte seine ursprüngliche Unabhängigkeit vom Sphincter aus der Art

der Innervation hervorgehen. Er empfängt seinen Nerven von innen her, während der-

selbe, wenn der Muskel nur ein selbständig gewordener Theil des primitiven Sphincter

wäre, von außen an den Muskel herantreten müßte, wie das für alle aus jenem Sphincter

hervorgegangenen Muskeln der Fall ist.

Die Wirkung des Muskels ist aus dem Faserverlaufe verständlich. Er hebt den

After nach vorne zu.

B. Muskein des Urogenitalcanals.

§ 200.

Aus der Verschiedenheit der Ausbildung des Sinus urogenitalis in beiden Geschlechtern erklärt sich eine Differenz im Verhalten der Muskulatur, obwohl sich das Gemeinsame keineswegs verleugnet. Eine Schicht quergestreifter Muskulatur umgibt die Wandung jenes Canals. Sie zeigt noch mehrfache Ver-

bindungen mit der Muskulatur des Afters und verweist damit auf den ursprüng-

lichen Zustand. Ein Theil dieser Muskulatur hat sich an die Schwellkörper

des Penis oder der Clitoris abgezweigt, ein anderer bleibt in engerem Anschluss

an den Sinus urogenitalis beim Weibe, und dem diesem entsprechenden längeren

Urogenitalcanale des Mannes.

1) M. urethralis. Beim Manne ist dieser Muskel in bedeutender Aus-

bildung und gehört der Pars membranacea des Urogenitalcanals an. Er stellt

eine diesen Abschnitt ringförmig umgebende Muskelschicht vor, von der ein

Theil der Fasern von einer hinteren Raphe ausgeht. Ein nicht geringer Theil

des Muskels hat jedoch Verbindungen mit dem benachbarten Schambefeld in der

Nähe des Schambogens gefunden, und stellt in sehr wechselvoller Anordnung
schräg oder quer verlaufende, in mehrere Schichten trennbare Züge dar, die man als besonderen Muskel: Transverso-urethralis, zum Theil auch als Transversus perinaei profundus aufzuführen pflegt. Vorne schließt sich der Muskel an den M. bulbo-cavernosus und M. transv. per. sup. an, hinten findet er an der Prostata, in deren Umgebung er sich auflöst, sein Ende. Mit Ausnahme der cirren- lären Züge besitzt diese Muskulatur nur eine geringe Selbständigkeit.

Beim Weibe ist der M. urethralis nur durch eine, die Harnröhre umgebende, zu einem Sphincter ausgebildete Schichte vertreten, die vorne an quere, die Harnröhre nicht umgreifende, sondern in den M. bulbo-cavernosus fortgesetzte Züge sich anschließt. Jener Sphincter ist vom Sinus uro-genitalis aus auf die nur in diesen einmündenden Urethra übergegangen anzusehen, wie der Zusam menhang mit dem Bulbo-cavernosus erweist.

Durch die relativ größere Länge der Pars membranacea des Urogenitalcanals in früheren Stadien kommt auch dem M. urethralis eine relativ größere Ausbildung zu, wenn er auch schon während der Fetalperiode sich in die als Transversus perinaei profundus bezeichneten Partien abgezweigt hat.

2) M. bulbo-cavernosus. Er bildet beim Weibe eine zum Theil unmittelbare Fortsetzung des Sphincter ani. Bündel des letzteren erstrecken sich auf die laterale Fläche der Bulbi vestibuli und bilden mit anderen, selbständig entspringenden, zum kleinen Theile auch von der andern Seite kommenden, also sich kreuzenden Bündeln einen platten Muskelbauch. Dieser löst sich allmählich in mehrere dunne Züge und Schichten auf, von denen die tiefste mit dem Bulbus sich verbindet. Eine zweite tritt zur Unterfläche der Clitoris, und eine dritte verliert sich an der Seite des Schaf stes der letzteren in der diesen überziehenden Fascie.

Beim Manne bildet er eine, den Bulbus des Urogenitalcanals bedeckende, aus schräg lateral aufsteigenden Bündeln bestehende Schichte, die durch eine mediane Naht in zwei Hälften gesondert wird und darin die Andeutung der beim Weibe vollständigeren Duplicität trägt. Abgesehen von den ihm vom Sphincter ani her zukommenden Bündeln nimmt jeder der beiden Muskeln von jener mehr oder minder weit auf das Perineum sich erstreckenden Raphe seinen Ursprung. Er
Vom Sinus uro-genitalis und den äußeren Geschlechtsorganen. 607

erscheint als eine platte, meist wieder in einzelne Lagen aufgelöste Schichte, welche den Bulbus umfaßt und auf ihm eine Strecke weit nach vorne sich ausdehnt. Die vordersten Bündel gehen in eine dünne Sehne über, mit der sie den Schaft des Penis umgreifen (*) und auf der Rückseite des letztern in dessen Fascie fortgesetzt sind. Die hintere, den größten Theil des Muskels darstellende Portion hält sich am Corpus cavi. des Urogenitalcanals, umgibt dessen Bulbus und tritt auf der oberen Fläche desselben in ein, auch den anderseitigen Muskel aufnehmendes Sehnenblatt über.

Beim Weibe wirkt der Muskel als Constrictor vestibuli, auch als »Scheiden-schnüre< wird er bezeichnet. Beim Manne wirkt die um die Corp. cavi. penis verlaufende vordere Portion comprimirend auf die Vena dorsalis penis, während die hintere den Bulbus presst und seinen Blutinhalt vorwärts drängt. Dadurch sind beide Portionen bei der Erection des Penis wirksam.

3. *M. ischio-cavernosus*. Eine platte, den Bulbus des Corpus cav. penis überlagernde Muskelschichte, welche vom Sitzbein entspringt und theils direct an jenen Schwelkörper sich befestigt, theils in eine fibröse Lamelle sich for-setzt, die allmählich mit der Albuginea des Schwelkkörpers verschmilzt. Zu-
Fünfter Abschnitt.

weilen treten auch Bündel an den Bulbo-cavernosus über, oder der Muskel em-
pfängt Bündel aus dem Sphincter ani, und so stellt sich auch hier die Zusammen-
gehörigkeit dieser Muskeln dar.

Beim Weibe besteht der Muskel nur in etwas kleinerem Maßstabe in den
gleichen Beziehungen zum Corpus cavernosum clitoridis. Er bewirkt die Schwel-
lung der Clitoris, wie er beim Manne in ähnlicher Weise in Bezug auf den Penis
fungirt.

C. Quere Muskeln des Dammes (Mm. transversi perinaei).

Unter diesen Namen begreift man die außerordentlich variable Muskulatur,
welche größtenteils von der lateralen Beckenwand entspringt und in mehr oder
minder transversalem Verlauf medianwärts zieht. Sie lagert vorzugsweise zwi-
schen After und dem Urogenitalcanal und steht mit der Muskulatur beider in Zu-
sammenhang. Manche Portionen derselben erscheinen so rein intermediär, dass
sie ebenso gut dem einen oder dem anderen der oben beschriebenen Muskeln als
accessorische Ursprünge oder als abgezweigte Insertionen zugerechnet werden
cönnen. Beim Weibe sind diese Muskeln viel schwächer als beim Manne. Die
tieferen Partien stellen den bereits oben aufgeführten M. urethralis vor, die ober-
flächlichen Bildungen den

M. transversus perinaei (superficialis, transverso-analis.

Er entspringt von der medialen Fläche des Sitzbeines, hinter oder unter dem
Ursprunge des Isechio-cavernosus, aus dem auch Bündel in ihn übergehen können,
und verläuft medianwärts, um entweder in die Fasermasse zwischen Sphincter ani
und Bulbo-cavernosus oder auch mit einzelnen Bündeln in einen dieser Muskeln
überzugehen.

Auch der Ursprung des Muskels bietet sehr mannigfache Befunde. Er kann weiter
vorwärts rücken, oder auch dorthin ausgedehnt, oder in eine größere Zahl von Ursprungs-
bündeln aufgelöst sein. Die vordersten Portionen schließen sich dann nach hinten umbie-
gend an den Bulbo-cavernosus an. — Über den Transversus perinaei profundus siehe oben
beim M. urethralis. — Über die Muskulatur am Ausgange des Beckens beim Manne siehe
HOLL., Arch. f. Anat. u. Physiol. 1881. S. 225. Daselbst ist auch die außerordent-
liche Divergenz der Meinungen bezüglich des M. urethralis und Trans. per. profundus
dargelegt.

Fascien des Beckenausganges.

§ 201.

Die Anordnung der Muskulatur am Afterende des Darmrohrs und am Uro-
genitalcanal bedingt einen theilweise durch andere Muskeln M. coccygeus) ver-
vollständigten Verschluß des Beckenausganges, der somit nur für jene beiden Can-
äle Durchlaß bietet. Der Complex dieser Muskulatur stellt das sogenannte
Diaphragma pelvis vor, und bildet die Unterlage für die Verbreitung von Fascien.
Solchen begegnen wir auch hier in flächenhaft entfalteten Bindegewebschichten,
welche die Muskeln überziehen, sie von einander sondern und in Lücken zwi-
Vom Sinus uro-genitalis und den äußeren Geschlechtsorganen.

Sechster Abschnitt.

Vom Gefäßsystem.

(Organe des Kreislaufs.)

Allgemeines.

§ 202.

Das Herz leitet diese Bewegung, indem es das ihm von dem Venensystem zugeführte Blut in die Arterien treibt und sie von da wieder in die Capillaren gelangen lässt. In diesen Einrichtungen ist also ein centraler Apparat, das
Herz, zu unterscheiden, und ein peripherischer, die Gefäße, die in ihrem Zusammenhange mit dem Herzen das Gefäßsystem vorstellen, von welchem Venensystem, Arteriensystem und das zwischen den Enden beider eingeschaltete Capillarsystem Unterabtheilungen bilden.

Aus dem Verhalten der großen mit dem Herzen verbundenen Gefäßstämme entsteht für das Herz eine doppelte Function. Es hat einerseits von den Venen her Blut aufzunehmen, andererseits dieses Blut wieder in die Arterienbahnen auszutreiben. Daraus entspringt eine Theilung des Herzens in zwei Abschnitte (vergl. Fig. 123), einen venösen und arteriellen. Der erstere mit den Venen zusammenhängende Abschnitt übergibt das ihm zukommende Blut dem zweiten, welcher dagegen das Blut in die peripherische Bahn zu treiben hat. Dieser Abschnitt bildet die Kammer (Ventriculus), zu welcher der erste Abschnitt sich als Vor kam mer (Vorhof, Atrium) verhält. Die Leistungen dieser Vorkammer sind andere als jene der Kammer. Letzterer fällt die größere Aufgabe zu, insofern sie das Blut in der peripherischen Bahn (durch das Arteriensystem) zu vertheilen hat. Daraus geht eine verschiedene Mächtigkeit der contractilen Wandungen der beiden Herzabschnitte hervor. Die Kammer erhält stärkere Wandungen als die Vorkammer, welche das Blut nur in die unmittelbar angrenzende Kammer zu bewegen hat. So steht die Sonderung von Kammer und Vorkammer mit den Leistungen beider in engstem Zusammenhange.

zwei, und zwar seitliche Abschnitte getheilt, einen rechten und einen linken, woran sowohl Kammer als auch Vorkammer theilnimmt. Die rechte Hälfte führt venöses Blut, die linke arterielles (vergl. Fig. 424). In die rechte Vorkammer münden die Körpervenen. Sie übergibt das Blut dieser Venen der rechten Kammer, aus welcher es durch die Lungenarterien den Lungen zukommt. Aus den Lungen wird es durch die Lungenvenen der linken Vorkammer zugeführt. Diese übergibt das arteriell gewordene Blut der linken Kammer, aus welcher die Arterie hervorgeht, die es im gesammten Körper zur Vertheilung bringt. Die es aus dieser Vertheilung zurückführenden Körpervenen begeben sich zur linken Vorkammer und schliessen die Kreisbahn.

Diese ist somit in zwei Abschnitte getrennt, auf welchen zusammen der gesammte Kreislauf vollzogen wird. Die längere Bahn durch den Körper repräsentirt den großen oder Körperkreislauf, die kürzere Bahn durch die Lungen den kleinen oder Lungeneislauf. Beide treffen im Herzen zusammen, ohne jedoch daselbst im ausgebildeten Zustande ihre Strömung zu verengen. Das Herz nimmt also sowohl Lungen- als Körperarterien und wird dadurch zum Centralorgan für beide Abschnitte des gesammten Kreislaufes.

Blut und Lymphhe.

§ 203.

<table>
<thead>
<tr>
<th>Blutbestandtheile</th>
<th>Plasma sanguinis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma sanguinis</td>
<td>Serum</td>
</tr>
<tr>
<td>Wasser</td>
<td>Eiweiß</td>
</tr>
</tbody>
</table>

Die gesamte Blutmenge des Körpers wird beim Neugeborenen auf 1/19 des Körpergewichtes (Köllicker), beim Erwachsenen auf 1/13 (Eischnorf) angegeben.

Die Lymphpe ist ein fast farbloser, dem Plasma sanguinis ähnliches Fluidum, welches wieder Formbestandtheile enthält. Letztere sind die Lymphzellen, Lymphkörperchen (vergl. Fig. 3), die bereits oben als farblose Blutkörperchen bezeichnet wurden. Es sind rundliche, aus Protoplasma und einem Kerne bestehende Zellen, die auch sonst in vielen anderen Organen anzutreffen sind (vergl. S. 436), und alle Eigenschaften indifferenter Zellen (S. 16) besitzen. Das Lymphplasma ist im Allgemeinen dem Blutplasma ähnlich zusammengesetzt, und bietet demgemäß auch ähnliche Erscheinungen der Gerinnung.

Da die Formelemente der Lymphpe, deren Bildung auf der Lymphbahn vor sich geht, beständig dem Blute zugeführt werden, ist es in hohem Grade wahrscheinlich, daß sie dort Verwandlungen erleiden und wohl in Blutkörperchen übergehen. Dann werden die Lymphzellen einen Ersatz für zu Grunde gehende Blutkörperchen abgeben. Wo diese Umbildung der Lymphzellen erfolgt, ist noch unbekannt; das Gleiche gilt von dem Untergange der rothen Elemente, worüber nur auf vereinzelte Angaben gestützte Vermutungen bestehen.

Vom Herzen.

Ausbildung desselben aus einer einfachen Form.

§ 204.

linke Vorkammer zurück. Aus dieser wird es in die linke Kammer getrieben, die es durch die aus ihr entspringende große Körperarterie (Aorta) wieder im Körper sich vertheilen läßt. Die rechte Herzhälfte, Vorkammer und Kammer, führt so- nach venöses Blut, die linke arterielles. Die Vorkammern sind die das Blut empfangenden, die Kammlern die es aus dem Herzen entsendenden Räume.

ander durch eine weite Öffnung, das *Foramen ovale*. Die Beziehung dieser Einrichtung zur fotalen Circulation, sowie mehrfache damit in Zusammenhang stehende speziellere Befunde werden weiter unten auseinander gesetzt.

Äußere Gestalt des Herzens.

§ 205.

Kranzfurche. Von den Vorhöfen her erstrecken sich die beiden Herzohren (Auriculae) convergierend gegen die Ursprünge der großen Arterien. Das rechte Herzohr erscheint stumpf, kegelförmig, das linke ist länger und schlanker, mit einer knieförmigen Biegung versehen, an seinem Vorderrande mit zahlreichen, tieferen oder seichtenren Crenelirungen ausgestattet, von welchen am rechten Herzohr nur selten Andeutungen bestehen.

Allgemeiner Bau des Herzens.

§ 206.

Die Herzwand wird zum größten Theile durch eine Muskulatur gebildet, die an den einzelnen Abschnitten eine verschieden mächtige Schichte vorstellt, und sich auch sonst verschieden verhältn. Diese Muskelwand (Myocardium) besitzt äußerlich einen Überzug von einer dem Pericardium zugehörigen serösen Lamelle, und trägt innerlich eine dünne, die Hohlräume auskleidende Gewebschichte, das Endocardium.

Damit bleibt nur die Communication mit der Arterie offen, das **Ostium arteriosum**, durch welches die unter dem Drucke der systolischen Kammerwand stehende Blutwelle anstritt. Die nun wieder eintretende Diastole der Kammer würde aber dem in die Arterienbahn getriebenen Blute den Rücktritt in die Kammer gestatten, wenn nicht an dem genannten Ostium ein dies hindernder Klappenapparat sich vorfinde. Er gehört anatomisch zwar nicht dem Herzen, sondern dem Anfange der Arterie an, die an dieser Stelle eine durch drei Ausbuchtungen (**Sinus Valsalvae**) gebildete Erweiterung besitzt. Jede dieser Ausbuchtungen entspricht einer halbmondförmigen Klappe, welche mit ihrem unteren convexen Rande der Arterienwand entspringt und gegen diese in den Sinus ausgebuchtete Wand eine Tasche bildet. Am freien Rande der Klappe befindet sich in der Mitte ein Knötchen, **Nodus Arantii**. Diese Semilunarklappen schließen das Ostium arteriosum während der Kammerdiastole, indem die in der Arterie befindliche Blutsäule sich gegen die Kammer zurückstaut, so dass das Blut die von den Klappen gebildeten Taschen füllt. Die freien Ränder der Klappe bilden dann, gegen einander gelegt, eine dreistrahlig, in Fig. 426 sind die Semilunarklappen in der Schlußstellung angegeben. Die nächste Kammersystole öffnet das Ostium arteriosum, indem die aus der Kammer in die Arterie bewegte Blutwelle die Klappen auseinander drängt und sie in ihrer Sinus Valsalvae sich legen läßt. Diese Einrichtungen ergeben sich an jeder der beiden Herzhälfte in wesentlicher Übereinstimmung.

Der Apparat der Atrioventricularklappen steht mit der Kammerwand nicht blos in anatomischem, sondern auch in genetischem Zusammenhänge, und läßt bei seiner Entstehung auch noch mehrere andere wichtige Befunde der Kammerwand zum Verständniß gelangen. Wir haben hierbei auf ein frühes Stadium der Bildung des Herzens zurückzugehen, in welchem die Kammerwand noch nicht aus einer *compacten* Muskelschicht besteht. Sie wird vielmehr durch ein reiches muskulöses Balkenwerk dargestellt, welches nach der Außenfläche der Kammer völlig abgeschlossen, nach dem Binnenraum der Kammer (Fig. 427 A. v.) sich auflöst, so dass dieser Binnenraum mit den Maschenräumen des Netzes com-
Von Herzen.

Die einzelnen Binnenräume.

§ 207.

Zu den im Allgemeinen beschriebenen Einrichtungen des Herzens treten noch mancherlei besondere, welche die Räume der beiden Herzhälfte von einander auszeichnen.

Ein Theil der geschilderten Einrichtungen hat während des Fötalallebens eine besondere Bedeutung. Zu deren Verständniß hat man sich vorzustellen, dass obere und untere Hohlvene beim Fötus verschiedene Blutarten führen, und dass die Lungen noch nicht in Function stehen. Die obere Hohlvene führt zu dieser Zeit venöses Blut, die untere arterielles, weil ihre Hauptzufuhr durch das Blut der Nabelvene (siehe Venensystem) welches im Placentarkreislaufe arteriell geworden, gebildet wird. Während das Blut der oberen Hohlvene in den, dem Ostium atrioventriculare entsprechenden Raum der Vorkammer gelangt, und von da der rechten Kammer übergeben wird, nimmt das Blut der untern Hohlvene seinen Weg in die linke Vorkammer, indem an der Stelle der Fossa ovalis eine Öffnung, das Foramen ovale besteht. Die vorerwähnte Eustachische Klappe bildet dann eine anscheinliche Membran, gewissermaßen die Fortsetzung der Wand der unteren Hohlvene zum Rande des Foramen ovale und scheidet zugleich den Blutstrom der unteren Hohlvene von jenem der oberen. Letzterer gelangt demgemäß in den dem Ostium atrioventriculare entsprechenden Raum des Vorhofs. Ebensogutragt von dem hinteren Umfange des dem linken Vorhofe zugekehrten Theils des Limbus Vieussenii eine membranöse Klappe in den linken Vorhof, die Valvula foraminis ovalis (Fig. 428). Diese wächst vom hinteren und untern Umfange des Fo-
ramen ovale an der dem linken Vorhofe zugekehrten Seite halbmondförmig vor.
und ist in denselben Vorhof hinein ausgebreitet, so dass sie, selbst nach Er-
reichung des vorderen oberen Randes des einrunden Loches doch noch die Zuleitung
des unteren Hohlvenenblutes in die linke Vorkammer gestattet. Nach der Geburt
wird der linke Vorhof vom Lungenvenenblute gefüllt, und die Valvula foraminis
ovalis legt sich gegen das Foramen ovale, deckt dasselbe von der linken Vorkammer
her und verwächst allmählich mit dem Septum atriorum, so dass die Communication
beider Vorhöfe endlich nur durch eine schmale, das Septum schräg durchsetzende
Spalte vorgestellt wird. Auch diese schwindet in der Regel, und die Valvula fora-
minis ovalis bildet dann den Boden der Fovea ovalis, wie er oben beschrieben ward.

Nicht vollständig erfolgter Verschluß des Foramen ovale ist zuweilen beim Er-
wachsenen zu beobachten. Hat die Klappe aber den vorderen Rand des Limbus Viens-
senii erreicht und ist im linken Vorhofe über den Limbus gelangt, so daß die Commu-
nication beider Vorhöfe eine schräge Spalte bildet, so wird diese Spalte bei dem vom
Blute beider Vorhöfe auf das Septum atriorum wirkenden Drucke während der Vorhofs-
systole geschlossen sein, also keine Mischung beider Blutarten vermitteln. Anders ver-
halten sich jene selterenen Fälle, in denen die Klappe auf einem früheren Stadium
der Ausbildung stehen blieb, den Vorderrand des Limbus nicht erreichte, und damit
eine verschieden große Strecke des Foramen ovale offen läßt. Dann ist eine Mischung
des Blutes beider Vorhöfe und ein daraus entstehender pathologischer Zustand die Folge.

2) Die linke Vorkammer (Fig. 425 B) besitzt eine rundliche Gestalt
mit vorherrschendem Querdurchmesser. An ihrer medialen Wand — dem Sep-
tum atriorum — wird sie von der rechten Vorkammer begrenzt. Hinten münden
dereiseits zwei Lungenvenen ein, von denen die beiden rechten zuweilen zu einem
kurzen, gemeinsamen Stamme verbunden sind. Links und vorne geht die Vor-
kammer in das linke Herzohr über. Die Innenfläche ist glatt bis gegen das Herz-
ohr hin, wo zarte Muskelbalken vorspringen und an der Wandung des Herzohrs
selbst ein Netzwerk bilden.

3) Die rechte Kammer legt sich mantelförmig um die linke, so daß sie nicht
nur die rechte Seite derselben, sondern auch mit ihrem Conus arteriosus theilweise
die Vorderfläche bedeckt. Das Septum ventriculorum bildet demnach eine gegen
den rechten Kammerraum gerichtete Wölbung. Das Lumen der Kammer erscheint
auf dem Querschnitt halbmondförmig (Fig. 432 b). Die am Ostium venosum ents-
springende Atrioventricularklappe ist in der Regel, aber nicht constant in drei
Zipfel getheilt, daher Valvula tricuspidalis (Fig. 430). Man unterscheidet die
Zipfel in einen vorderen (a), lateralen oder hinteren (p) und medialen (m). Der
vordere ist meist der unansehnlichste, und bildet zuweilen mit dem hinteren ein
nicht zu sonderndes Ganzes. Ein großer von der seitlichen Kammerwand empor-
tretender Papillarmuskel (Fig. 429) sendet Chordae tendineae zu dem vorderen
und lateralen Klapzipfel. Einige minder constante Papillarmuskeln versorgen
den hinteren Abschnitt des lateralen Zipfels sowie den medialen Zipfel. Manche
dieser Chordae tendineae entspringen auch direct von der Kammerwand oder von
den Muskelbalken, welche gegen den Kammergrund zu ein grobes Netzwerk bil-
den (vergl. Fig. 429).
Der aus dem Kammerraume sich fortsetzende Conus arteriosus ist von letzterem durch den vorderen Klappzipfel getrennt. Er verjüngt sich nach links und aufwärts bis zu dem schräg nach links schenden Ostium arteriosum, und lagert dabei über und vor dem Conus arteriosus der linken Kammer und dem Ursprung der Aorta (Fig. 430). Die hier beginnende Lungenarterie läßt in ihrem, durch die drei Sinus Valsalvae gebildeten Bulbus die drei Taschenklappen als eine vordere, eine rechte und eine linke hintere unterscheiden.

An den Taschenklappen ist zu beiden Seiten des Nodus eine dünne Stelle wahrnehmbar, die sich tief in die Klappe erstreckt. Damit tritt die von der Basis her beginnende, allmählich verschmälert zum Nodus auslaufende stärkere Partie schärfer hervor. — Zuweilen finden sich an den dünnen Seitentheilen nahe am Rande spaltförmige Durchbrechungen.

Die Anordnung der Taschenklappen in beiden arteriösen Ostien wird aus der Entwicklung verständlich. Indem der ursprünglich einheitliche Bulbus arteriosus (Fig. 431 A) sich in zwei scheidet, verteilen sich die knotenförmigen Anlagen von vier Klappen derart, daß eine vordere und die vorderen Hälften der beiden seitlichen auf den vorderen Arterienstamm (Pulmonalis, Fig. 431 B, p), eine hintere und die hinteren Hälften der beiden seitlichen auf den hinteren Arterienstamm (Aorta B a) tritt. — Seiten ist die Zahl der Klappen auf vier vermehrt an der Pulmonalis.

Bau der Herzwand.

§ 208.

In der Wandung des Herzens bildet die aus quergestreiften Elementen bestehende Muskulatur myocardium den bedeutendsten und auch in Bezug auf die Funktion des Herzens wichtigsten Theil. Er stellt zugleich die Grundlage für die einzelnen Herzabschnitte vor, und steht mit den ihm überkleidenden Schichten des Endo- und des Pericardiums in innigster Verbindung.

Diese Muskelwand besitzt an den einzelnen Abschnitten des verschiedenen Grade der Leistung gemäß verschiedene Mächtigkeit. An den Vorhöfen, die ihr Blut den unmittelbar angelagerten Kamern übergeben, ist die Muskelschichte nur dünn; bedeutend mächtiger ist sie an den Kamern, aber hier waltet wieder eine Verschiedenheit, indem die rechte Kammer, die ihr Blut durch die Lungenarterie den wenig entfernten Lungen zusetzt, viel weniger starke Wandungen besitzt als die linke, deren Blut durch die Aorta im ganzen Körper vortreibt. Dieses Verhältniß versinnlicht die nebenstehende Fig. 432, in welcher a das Lumen der linken, b jenes der rechten Kammer vorstellt.

Diese Abhängigkeit der Stärke der Muskelwand von der Function gibt sich ebenso deutlich am fotalen Herzen kund, bei welchem die rechte Kammerwand stärker als jene der linken ist, so daß gerade das umgekehrte Verhältniß als nach der Geburt obwaltet. Dies hängt damit zusammen, daß die rechte Kammer das obere Hohlvenenblut durch die A. pulmonalis und den Ductus Botalli (siehe darüber weiter unten) in die Aorta descendirand und von da in die Nabelarterien zu treiben hat, sonach einem viel weiter ausgedehnten Arteriengebiete vorsteht, als die linke Kammer, die ihr Blut der Aorta und den von deren Bogen entspringenden Arterien des Kopfes und der oberen Extremitäten zuleitet.

Gegenbaur, Anatomie.
Bezüglich der Muskulatur ist eine vollständige Trennung jener der Vorhöfe von der der Kammern hervorzuholen, woraus sich die Selbständigkeit der Action beider Abschnitte erklärt. Die Atrioventricularostien sind von bindegewebigen Ringen umzogen. Diese Faserringe (Anulii fibrosi) trennen die Muskulatur, bilden aber auch zugleich Befestigungsstellen für die Züge derselben. Jedem der vier Theile kommt so eine ihm eigene Muskellage zu, sowie eine mit dem anderen gleichartigen gemeinsame, welche eine oberflächliche Lage besitzt.

An den Kammern ist eine oberflächliche Muskelschichte rechterseits mit mehr schrägem, links mit mehr steilem Faserverlauf beider Hälften gemeinsam (Fig. 433 A). Gegen die Herzspitze treten die Bündel wirtelförmig zusammen (Vortex cordis), um allmählich sich in die Tiefe zu senken (Fig. 433 B) und in die inneren Faserrüge sich fortzusetzen. Wie Durchschnittlehren, herrscht an diesen innersten Schichten ein longitudinaler Faserverlauf vor, indem an den mittleren ein mehr transversaler Verlauf zu beobachten ist. Die inneren, den größten Theil der Dicke der Kammerwände vorstehenden Muskelschichten gehen aus einem Netzwerke von Muskelbalken hervor, welche die primitive Kammerwand (Fig. 427) vorstellen. Durch zunehmendes Wachsthum der Balken schwimmen die oberflächlichen Interstitien, und es bildet sich allmählich eine compacte Schichte aus, an deren Innenfläche sich noch ein Rest der früheren Zustände in den Trabeculae carneae erhalten hat. Von den Faserringen der venösen Ostien ausgehende, schleifenförmige Züge, welche in Achtertouren angelegt, die Kammerwände umziehen, kehren theils direct
zu den Faserringen zurück, theils gehen sie in die Papillarmuskeln über, und stehen dann indirect durch die Chordae tendineae und die Klappen mit den Faserringen in Zusammenhang.

Im Septum der Kammern findet sich eine der Muskelschichte entbehrende Stelle (Pars membranacea septi), welche wesentlich durch das hier von beiden Seiten zusammentreffende Endocard geschlossen wird. Rechterseits liegt diese Stelle am vorderen Ende der Ursprungsstelle des medialen Klappipfels, zuweilen noch etwas über die Klappe gegen den rechten Vorhof ausgedehnt. Linkerseits trifft die Stelle auf den Conus arteriosus, und liegt unter der Basis der rechten vorderen und der hinteren Semilunarklappe der Aorta.

Das Endocardium (innere Herzhaut) ist eine an verschiedenen Stellen verschieden dicke, die Binnenräume des Herzens auskleidende Gewebschichte. Das zwischen den Bündeln und Zügen der Muskelelemente der Herzwand befindliche fibrilläre Bindegewebe tritt in eine continuirliche Schichte zusammen, in der elastische Fasern reiche Netze bilden. Stärkere Fasern formiren

Im Endocard der Ventrikel finden sich hin und wieder beim Menschen, regelmäßig bei manchen Säugthieren (Wiederkäuern u. a.), grane verzweigte Fäden (Purkyne'sche Fäden), die aus eigentümlich modifizirten Muskelfasern bestehen. In diesen letzteren umschließt eine anschnürende Menge von Protoplasma einen großen Kern und lässt an der Oberfläche eine dem contractilen Mantel der normalen Zellen des Myocards entsprechende dünne Lage quergestreifter contractiler Substanz wahrnehmen, die zuweilen in feine Faserzüge gesondert sich darstellt.

Der Pericardialüberzug des Herzens bildet einen Abschnitt des gesammten Herzbeutels, von dem der folgende Paragraph handelt.

Pericardium (Herzbeutel) und Lage des Herzens.

§ 209.

Das gesammte Pericardium stellt einen serösen Sack vor, der das Herz samt einem Theile der in es tretenden oder aus ihm kommenden großen Gefäßstämmen einhüllt. Ähnlich wie bei anderen serösen Säcken unterscheidet man auch an ihm einen parietalen und einen visceralen Theil. Der viscerale Abschnitt des Herzbeutels überkleidet den ganzen Kammertheil des Herzens und setzt sich von da sowohl auf die Arterienstämme wie auf die Vorhöfe fort. Aorta und Pulmonalarterie werden durch ihn bis auf circa 3 cm vom Ursprung gemeinsam überzogen, und durch die in den Sinus transversus (s. S. 617) tretende Pericardialauskleidung von den Vorhöfen gesondert. Von den Vorhöfen aus setzt sich das Pericard noch eine kurze Strecke auf die großen Venenstämme fort, von denen die Vena cava superior mit ihrer vorderen und lateralen Wand am bedeutendsten in die Pericardialhöhle sieht. Unter den die Kranzfurche wie die Längsfurchen des Herzens überkleidenden Pericardialstrecken findet meist eine Fettablagerung statt, welche vorwiegend den oberflächlichen Blutgefäßerweigungen folgend, auch über die Oberfläche der Kamern verbreitet ist.

Von den Arterienstämmen aus wie von den in die Vorhöfe einmündenden Venen schlägt sich der viscerale Abschnitt des Pericardiums in den parietalen um, der das vom visceralen Theile überkleidete Herz bentelförmig umschließt. Wir unterscheiden an ihm zwei Blätter, ein inneres seröses, eben die Fortsetzung des visceralen Abschnittes des Pericardiums, und ein äußeres,
fibröses, nämlich eine lockere Bindegewebschicht, welche an der Umschlagstelle des serösen Blattes sich peripherisch auf die großen Gefäßstämme fortsetzt.

Die Umschlagstelle der beiden Abschnitte des Pericards erstreckt sich an der unteren Hohlvene von der seitlichen Wand zur hinteren Wand, und von der oberen Hohlvene über den linken Vorhof hinweg zu den beiderseitigen Lungenvenen.

Die nach vorne gewendete Lage des rechten Vorhofs weist dem linken seine Stellung nach hinten zu an, wo er zwischen den beiderseitigen Lungen sich bettet und aus dem Hilus beider die bezüglichen Lungenvenen aufnimmt (vergl. Fig. 369).

Vom Blutgefässysteme.

Allgemeines Verhalten der Blutgefäße und Structur ihrer Wände.

§ 210.

Die Blutgefäße verhalten sich ihrer bereits oben dargestellten Funktion gemäß, sowohl bezüglich der Structur ihrer Wandung als auch in ihrer Anordnung und ihren Verlaufsverhältnissen verschieden.

Arterien Regel. Die Verzweigung erfolgt endlich auch in um so kürzeren Zwischenräumen, je kleiner die Arterie ist.

Wenn die Hauptbahn durch irgend welche Hindernisse unwegsam wird, treten die Anastomosen in ihrer größten Bedeutung hervor, als Einrichtungen, welche die gleichmäßige Vertheilung des Blutstroms herstellen. Die Ausbildung von Anastomosen untergeordneter Arterien, welche als Zweige eines Stammes einen Theil der arteriellen Blutbahn zur Seite des Arterienstammes verlaufen lassen, bedingt den Collateralkreislauf. Auf diesem Wege kann das gesammte Blut vom Hauptstamme zu seinem Vertheilungsbezirke gelangen, wenn der Arterienstamm an einer Strecke unwegsam ward. Die als Nebenbahnen benützten Arterien gestalten sich in dem Maaße, als sie die Hauptbahn functionell vertreten, zu stärkeren Gefäßen um. Die Bildung dieses Collateralkreislaufes gewinnt eine große Bedeutung auch bei gewissen operativen Eingriffen (Unterbindung etc.), durch welche die Continuität einer Hauptbahn unterbrochen wird. Denken wir uns in A eine solche Stelle an der Arterie a, so werden die unterhalb dieser Stelle abgehenden Äste b c ihr Blut nicht mehr
direct aus dem Hauptstamme empfangen, dagegen wird durch die Anastomosen der Seitenzweige, sowohl der von der noch wegsamen Strecke von a ausgehenden, als jener, welche von den Ästen b und c entspringen, Blut in letztere übergeleitet. Die Ausbildung dieser Anastomosen läßt dann den gesamten von a in b, c sich verheilenden Blutstrom durch die erweiterten Seitenbahnen zu seinem Vertheilungsbezirke gelangen (B). Die zwischen den Abgangsstellen der collateralen Arterien befindlichen Arterienstrecken treten dann außer Function. Ihr Lumen verengt sich allmählich, die Wand erleidet gewebliche Veränderungen und endlich tritt Obliteration der Arterie ein, die in einen ligamentösen Strang sich umwandelt.

Was in dieser Weise bei gewissen operativen Eingriffen oder auch anderen Störungen der Arterienbahnen entsteht, kommt auch auf minder abnormem Wege, wenn auch durch noch unbekannte Ursachen zu Stanze und erscheint uns dann in den Varietäten der Ursprungs- und Verlaufsverhältnisse, wobei die Abweichung durch mächtigere Ausbildung der normal bestehenden Anastomosen entstanden gedacht werden kann, und in der That auch häufig genug in verschiedenen, jene Auffassung bestätigenden Stadien der Ausbildung getroffen wird.

§ 211.

In der Arterienwand werden drei Schichten, Tunica intima, media und externa (adventitia) unterschieden, die sich von den kleinsten bis zu den größten bedeutend compliciren, und auch sonst für verschiedene Arterien wechselnde Verhältnisse bieten. Wir gehen bei deren Betrachtung von den einfachsten Zuständen aus, wie sie sich an der äußersten Peripherie des Arteriensystems darstellen. An den Übergangarterien zu den Capillaren wird die Tunica intima nur durch die, die Capillarwand zusammensetzenden platten Zellen vorgestellt. Sie bilden als langgestreckte, dünne, mit ihren Rändern eng verbundene Plättchen eine epitheliale Auskleidung. Nach außen von dieser treten glatte Muskelfasern auf, ringförmig angeordnet, erst vereinzelt, dann dichter und endlich continuirlich. Sie repräsentiren die Tunica media. Eine diese überkleidende Bindegewebslage, die schon den Übergangscapillaren zukommt, stellt die äußerste Schichte, Tunica adventitia vor. Mit zunehmender Dicke der Arterienwand gesellen sich zur Intima elastische Schichten, und die Media weist eine Vermehrung der kontractilen Schichten auf. Durch das Überwiegen der Media wird die Wand kleinerer und mittlerer Arterien vorwaltend contractil, um in den größeren und größten vorzugsweise elastisch zu erscheinen, nachdem das contractile Gewebe durch elastisches ersetzt ist.

Die Tunica intima empfängt zu der epithelialen, im ganzen Arterien- systeme im Wesentlichen sich ähnlich verhaltenden, aus spindelförmigen Elementen bestehenden Zellenschichte, in der mit der Zunahme des Kalibers die Elemente
zahlreicher werden, noch eine structurlose Membran, die sich an etwas größeren Arterien als elastische, gefensterte Haut darstellt. An den Arterien mittleren Kalibers wird sie durch eine Bindegewebschichte mit reichem elastischem Fasernetz verteilen. An den größeren Arterien endlich besteht die Intima aus mehrfachen Schichten gründentlich elastischen Gewebes, theils Fasernetzen, theils gefensterten Lamellen mit spärlichem interstitiellen Bindegewebe.

In der Tunica media vermehren sich mit der Zunahme des Kalibers der Arterie die Muskelfasern, bilden allmählich mehrfache Lagen, die durch dünne Bindegewebsslagen mit elastischen Netzen von einander getrennt sind. Bis zu den mittelgroßen Arterien herrschen noch die muskulösen Schichten vor, obwohl die elastischen Zwischenschichten sich bereits in Zunahme zeigen. Aber von da ab gewinnen die elastischen Schichten die Oberhand, und in den größeren und größten Stämmen ist die Media vorwiegend durch elastische Schichten vorgestellt, welche die muskulösen durchsetzen, sie dem Volum nach zurücktreten lassen und endlich auflösen, so daß nur noch vereinzelte Muskelzellen bestehen. Am Beginne der Aorta und der Pulmonalarterie fehlen die Muskelfasern gänzlich. — Die Media hat den bedeutendsten Antheil an der Dicke der Arterienwand. Die elastischen Schichten sind theils durch Fasernetze, theils durch gefensterte Platten oder Übergangsformen zwischen beiden vorgestellt, der Verlauf der elastischen Fasern und Faserzüge ist dabei vorwiegend ein ringförmiger.

Verschiedenheiten im Baue der Arterienwand bestehen vorzüglich in Bezug auf das Überwiegen des contractilen oder des elastischen Gewebes in der Media. So herrscht die Muskulatur der Media in der Coeliaca, der Femoralis und der Radialis vor, während sie in Carotis, Axillaris und Iliaca communis gegen das elastische Gewebe zurücktritt. Dagegen spielt das elastische Gewebe in den Wänden der nach der Geburt sich verschließenden Strecken der arteriellen Gefäßbahn (Ductus Botalli und Arteriae umbilicales) eine untergeordnete Rolle, auch die Muskulatur ist minder stark entfaltet, so daß das Bindegewebe als vorherrschend bezeichnet werden kann. — Bezüglich mancher Details der Textur der Arterienwand wird auf die histologischen Lehrbücher verwiesen.

§ 212.

Die Capillargefäße (Haargefäße) gehen ebensowohl allmählich aus den letzten Endstrecken der Arterien hervor, wie sie andererseits in die Venen übergehen. Sie
bildet so einen intermediären Abschnitt, dessen dünnwandige feinste Röhren die Wechselwirkung zwischen der ernährrenden Flüssigkeit und den Geweben vermitteln. Die Arterien verhalten sich hierzu vorzugsweise als zuführende, die Venen als abführende Bahnen. Die an diese anderen Theile des Blutgefässystems sich anschließenden Strecken des Capillarsystems sind durch etwas bedeutendere Weite auszeichnet (Übergangscapillaren); die übrigen besitzen ziemlich gleichmäßiges Kaliber. Sie stellen die engsten Blutbahnen vor, und bilden überall Netze, deren Maschen von verschiedener Weite sind. Im Allgemeinen ist die Anordnung der Capillaren nach den einzelnen Organen verschieden. In den aus faserigen Gewebsformen zusammengesetzten besitzt das Capillarnetz in die Länge gezogene Maschen so in den Muskeln, Nerven etc., rundliche in den meisten Drüsen. Sehr weit sind die Capillarmaschen in bindegewebigen Theilen, engen in Drüsen, am engsten in der Lunge. Wo blutgefäßführende Theile gegen die Oberfläche treten, bietet das Capillarnetz nahe unter der letztere deckenden Epithelschichte eine größere Dichtigkeit dar.

Da die Capillarwand elastisch ist, ist das Lumen der Capillaren an derselben Strecke keineswegs immer gleich. Es kann sich verengern und erweitern. Am engsten sind die Capillaren des Gehirns und der Netzhaut des Auges (0,005 — 0,006 mm), weiter erscheinen sie in den Muskeln, dann in den meisten Drüsenorganen (0,01 — 0,014 mm), am weitesten im Knochengeflechte (0,0226 mm). Die Capillarwand scheint nicht unter allen Umständen durch ihre Wandungen von den von ihr durchzogenen Geweben abgeschlossen zu sein, vielmehr sind zwischen den Zellen der Capillarwand kleine Öffnungen (Stomata) wahrgenommen, durch welche unter gewissen Umständen ein Austritt auch der Formbestandtheile des Blutes beobachtet ward.

§ 213.

Die Venen oder Blutadern nehmen das Blut aus den Capillar-Bahnen auf und leiten es in centripetaler Richtung. Die Wandung dieser Gefäße ist bedeutend dünn als jene der Arterien, auch minder elastisch, daher collabirt das Lumen einer durchschnittenen Vene, wo ihre Wand nicht an die Nachbarschaft festgeheftet ist. Das Lumen erscheint häufig auf einer kurzen Strecke einer Vene
Vom Blutgefässystem. 635

ungleich, bietet Verengerungen und Erweiterungen dar; letztere entsprechen dünneren Stellen der Wandung. Im ganzen ist das Lumen der Venen bedeutend weiter als das der entsprechenden Arterien, und die Kapazität aller Körpervenen ist beträchtlicher als die aller Körperarterien.

Zur Regelung des Blutstroms bestehen im Verlaufe der Venen noch besondere Einrichtungen, Duplicaturen der Innenhaut, Klappen. Einfache, halbmondförmige Falten, welche an den Einmündestellen ins Lumen vorspringen, werden als Winkel- oder Astklappen bezeichnet (Fig. 437 v'). Wo mehrere Venen rechtwinkelig sich vereinen, verhindern diese Falten das senkrechte Zusammentreffen der Blutströme. Andere Klappen sind taschenförmig gestaltet, nach Art der Semilunarklappen der großen Arterienstämme. In der Regel stehen zwei dieser Taschenklappen einander gegenüber (Fig. 437 v, v). Den Taschenklappen entsprechen Aus-

In der Tunica externa (Adventitia) herrscht Bindegewebe in longitudinalen oder schrägen Faserzügen mit elastischen Netzen, und gewinnt mit der Zunahme des Gefäßkalibers allmählich den bei weitest bedeutendsten Antheil an der Zusammensetzung der Wandung. Die elastischen Fasernetze erlangen niemals die Beschaffenheit elastischer Membranen, allein longitudinale Muskelfaserzüge, zum Theil netzförmig angeordnet, erheben die Adventitia auch bezüglich ihrer Textur auf eine höhere Stufe. Die Venen der Baucheingeweide zeigen diese Verhältnisse in verschiedenem Maaße ausgebildet; bald erscheint nahezu die gesamte Adventitia von jenen Muskelnbändern durchsetzt (Pfortader, Niervenen), bald nehmen sie nur einen innern Abschnitt ein (Lebervene, Milzvene, Mesenterica magna etc.). Auch an den großen Venenstämmen der Gliedmaßen ist ähnliches der Fall. An den in die Vorhöfe des Herzens mündenden Venen birgt die Adventitia die vom Herzen aus auf jene Gefäße sich fortsetzenden Ringschichten der quer gestreiften Muskelfasern.

In den Klappen sind elastische Fasernetze an der Basis am bedeutendsten entwickelt, sie liegen an der distalen Fläche. Wo die Inuita Muskelfasern besitzt, sind feine Züge derselben auch in den Klappen erkannt worden.

§ 214.

Sowohl Arterien als Venen lassen außer der oben beschriebenen gewöhnlichen Verzweigung noch eine Vertheilungsform erkennen, die man als Wundernetz (Rete mirabile) bezeichnet hat. Ein Gefäß verzweigt sich rasch in eine meist große Anzahl kleinerer, die in der Regel anastomosiren und, wo sie sich in Membranen verbreiten, gleichfalls flächenförmig ausgebreitet sind. Aus den Gefäßen des Wundernetzes gehen schließlich entweder Capillaren hervor (Unipolares

Die Blutgefäße nehmen überall im Bindegewebe ihre Verbreitung, so daß, wo immer Blutgefäße sich finden, sie von jenem Gewebe begleitet sind. Es bildet somit auch Hüllen um die Gefäße, die Gefäßscheiden, welche an Arterien und Venen in die Adventitia übergehen. Durch seinen Faserlaut ist das Gewebe der Gefäßscheiden häufig von benachbartem Bindegewebe verschieden. Wo Venen und Arterien gemeinsamen Weges gehen, bildet die Scheide deren engere Vereinigung.

Außer den bei der Darstellung der Gefäßwand aufgeführten Geweben kommen ihr auch noch Nerven zu, und an der Wandung größerer Gefäße verzweigen sich auch noch besondere Blutgefäße: Vasa vasorum. Diese entspringen niemals direct aus dem Stamme, an dem sie sich vertheilen, sondern gehen nur aus den Zweigen desselben hervor. Sie durchsetzen die Gefäßscheide, lösen sich in der Tunica externa und in der Tunica media der Gefäßwand in feinste Ramificationen auf, aus denen Capillaren hervorgehen, die aber nur bis zur Grenze der Intima vordringen.

Vom Arteriensysteme.

Anlage der großen Arterienstämme.

§ 215.

Die Anordnung des Arteriensystemes zeigt in frühen Stadien der Entwickelung innige Beziehungen zu anderen Wirbelthierorganismen. Aus dem Kammerabschnitte des bereits einheitlichen, noch schlauchförmigen Herzens entspringen zwei Arterien, welche bogenförmig die Anlage der Kopfdrämmöhle umziehen, um dorsal sich zu begegnen und dann unterhalb der Anlage des primitiven Axenskeletts (Chorda dorsalis) einander parallel zum hinteren Körperende zu verlaufen. Diese Arterien sind die primitiven Aorten, welche sich später auf der Strecke ihres parallelen Verlaufs zu einem unpaaren Stämme, der unpaaren Aorta verbinden. Das Verbreitungsgebiet der von den primitiven Aorten ausgehenden Arterien liegt theils in der Anlage des embryonalen Körpers, theis-
streckt es sich über dieselbe hinaus. Seitliche Äste (Arteriae omphalo-entericae) gehen in den Fruchthohl über und lösen sich da in ein oberflächliches arterielles Gefäßnetz auf, welches bereits oben (S. 74) seine Beschreibung fand. Die Enden der pimitiven Arten setzen sich in ein Gefäßnetz fort, welches der Becken darmöhle angehört. Indem aus diesem Abschnitt später die Allantois entsteht, gewinnen die Enden dieser Aorten und später Äste der unaaren Aorta Beziehungen zu diesem Organe und senden an dieselbe Arterien ab, denen wir später in den Arteriae umbilicales wieder begegnen.

Größere Veränderungen treffen sich am vorderen Abschnitte der Anlage des Arteriensystems. Sie sind an die Differenzirung des Kopfes geknüpft. Die zwei, erst in die primitiven Aorten, dann in die unaare Aorta sich fortsetzenden Arterienbogen bleiben nicht die einzigen, vielmehr bilden sich hinter ihnen noch mehrere andere aus. Deren Zahl ist für die Säugethiere auf fünf angegeben worden, die jedoch niemals gleichzeitig vollständig existiren. Während hintere entstehen, erliegen vordere einer Rückbildung. Diese Bogen umziehen die Kopf darmöhle; das nebenstehende Schema stellt sie vor. Sie kommen ventral aus einem eine bulbnsartigen Erweiterung besitzenden (Bulbus arteriosus), aus der Herzkammer entspringenden Arterienstämme (a), der sich nach beiden Seiten vertheilt. Dorsal treten die Bogen (1, 2, 3, 4, 5) jederseits in einen Längsstamm zusammen, der mit dem andern sich vereinigt und die unaare Aorta (a') herstellt. Somit existiren hier außer der Aorta zwei Paare von Längsstämmen, zwei ventrale, die aus dem Bulbus arteriosus kommen und sich in die Bogen vertheilen, und zwei dorsale, die aus den Bogen sich sammeln und in die unaare Aorta übergehen. Außer diesen Beziehungen kommen jenen Längsstämmen noch andere zu, indem sie sich nämlich nach vorne zu fortsetzen. Die ventralen nehmen ihren Verlauf zum Gesichte, die dorsalen (c) zu inneren Theilen des Kopfes, vorzüglich zum Gehirn und den Augen. Beide Paare repräsentiren somit Koparterien, Carotiden, von welchen die ventralen als äußere, die dorsalen als innere Carotiden unterschieden werden.

Dieser gesammte Apparat entspricht in seinen wesentlichen Verhältnissen den bei niederen Wirbeltieren bestehenden Einrichtungen. Die Arterienbogen nehmen ihren Weg an den durch die Kiemen spitzen wenigstens zeitweise von einander getrennten Kiemenbogen, sowie sie auch in jenen niedern Formen dort ihre Lage haben. Während aber da die Kiemenbogen in respiratorische Organe sich umwandeln, Kiemen tragen, demzufolge auch die bezüglichen Arterienbogen in ein respiratorisches Gefäßnetz aufgelöst sind (Fische, zum Theil auch Amphibien), begegnet man bei den höheren Wirbeltieren nicht mehr diesen Einrichtungen, und wie die Kiemenbogen nur vorübergehende Bildungen vorstellen, so ist auch der ihnen zugehörrige Abschnitt des Gefäßsystems nicht bloß vereinfacht, sondern erhält sich auch nur relativ sehr kurze Zeit in jener Gestaltung.
rechten Kammer entspringenden Gefäßstämme in Verbindung. Zwei von ihm ausgehende Äste vertheilen sich zu den Lungen. Dieser somit aus der rechten Kammer hervorgehende, aus einem Theile des primitiven Arterienbulbus und aus dem dritten linken Arterienbogen gebildete Stamm wird zum Stamme der Lungenarterie. Seine Lungenäste sind aber während der ganzen Fötalperiode nur von geringem Umfange, da die Lungen noch nicht in Function stehen; die bei weitem größte Menge des von der rechten Kammer entsendeten Blutes gelangt also durch die Fortsetzung (b) des Lungenarterienstammes in den absteigenden Theil der Aorta. Die aus dem dritten linken Bogen gebildete Verbindung des Lungenarterienstammes mit der Aorta stellt der Ductus arteriosus Botalli (Fig. 440) vor.

Mit diesen Umwandlungen ist eine Scheidung des arteriellen Kreislaufs angebahnt. Das aus dem Herzen kommende Blut wird nicht mehr gleichmäßig in die Arterienbogen vertheilt, sondern bereits vom Herzen aus nimmt es verschiedene Wege. Das Blut der linken Kammer wird der Aorta zugetheilt, und tritt durch die am Bogen derselben entspringenden großen Gefäßstämme zum Kopf und den oberen Gliedmaßen und theilweise auch durch die Aorta descendens zum übrigen Körper. Aber das auf letzterer Strecke geleitete Blut stammt nicht ausschließlich aus der linken Kammer, denn in den Anfang der Aorta descendens mündet noch der dritte linke Arterienbogen ein, der zu einer Fortsetzung des Lungenarterienstammes geworden ist, und das Blut der rechten Kammer von den Lungen ab- und in die Aorta einleitet. Der von da aus sich im Körper herabstreckende Abschnitt der Aorta führt also Blut aus beiden Herzkammern. Dieses Blut ist aus arteriellem und venösem Gemisch, denn die linke Kammer führt vorwiegend arterielles Blut, das durch die untere Hohlvene resp. die Nabelvene zur rechten, und durch das Foramen ovale in die linke Vorkammer geleitet wird. Durch die rechte Kammer dagegen wird das venöse Blut der oberen Hohlvene in den Lungenarterienstamm, und durch diesen in die absteigende Aorta geleitet. Die Aorta bietet somit zwei, verschiedenes Blut führende Strecken; die erste, die Carotiden und Subclavi en entsendende Strecke führt arterielles Blut, gegen die Verbindungsstelle mit dem Ductus Botalli ist diese Strecke durch eine engere Stelle abgesetzt, so dass die zweite, von da an beginnende und wieder weitere Strecke wie eine Fortsetzung des Botallischen Ganges erscheint. Ausser dieser Strecke empfängt also der größte Theil des Rumpfes, sowie die unteren Extremitäten gemisches, oder in Anbetracht der größern Menge des durch den Stamm der Arteria pulmonalis geleiteten, vorwiegend venösen Blut. Indem wir so an den in der letzten Fötalperiode bestehenden Kreislauf anknüpfen, muss zur Ergänzung noch erwähnt werden, dass das
Blut im absteigenden Aortenstamme nur zum kleineren Theile für den Körperkreislauf bestimmt ist. Von den Endästen der Aorta zweigen sich, wie oben angegeben, die Nabelarterien ab, oder erscheinen vielmehr in Anbetracht ihrer Stärke als direkte Fortsetzungen der Aorta. Sie führen jenes vorwiegend venöse Blut durch den Nabelstrang in die Placenta, von wo es durch Diffusion mit dem Blute der Mutter arteriell geworden, durch die Nabelvene zum Körper des Fötus zurückkehrt.

So vollzieht sich die während des Fötallebens nur angelegte Scheidung des Kreislaufes in zwei Abschnitte, in den großen oder Körperkreislauf und den kleinen oder Lungenkreislauf. Jedem derselben wird eine Strecke der ursprünglich einheitlichen arteriellen Gefäßbahn zugeheitelt, und so stellen sich denn Lungenarterien und Körperarterien der gesonderten Betrachtung dar.

Anordnung des Arteriensystems.

I. Arterien des Lungenkreislaufs.

§ 216.

Die Arteria pulmonalis (vergl. Fig. 425) bildet einen aus dem Conus arteriosus der rechten Kammer entspringenden Stamm, der, den Ursprung der Aorta von vorn her deckend, sich um die Aorta nach links wendet und unterhalb des Aortenbogens, etwa in der Höhe des fünften Brustwirbels oder etwas tiefer sich in zwei Äste spaltet. Diese nehmen in schrägem und dann querem Verlauf ihren Weg zu beiden Lungen. Der rechte, etwas längere Ast der Lungenarterie tritt hinter der aufsteigenden Aorta und auch hinter dem Ende der oberen Hohlvene und vor dem rechten Bronchus zum Hilus der rechten Lunge; der linke Ast geht unterhalb des Aortenbogens, vor der absteigenden Aorta und über dem linken Bronchus zum Hilus der linken Lunge (Fig. 369). Am Hilus der Lungen verzweigt sich jeder Ast der Lungenarterie mit den Verästelungen der Bronchien und geht im Innern der Lunge unter fortgesetzter Ramification in das Capillarnetz der Lungenbläschen über.

Der Stamm der Lungenarterie liegt innerhalb des Herzbentels, dessen visceralles Blatt bis an die Theilungsstelle reicht und auch noch eine kurze Strecke des linken Astes an der unteren Fläche überragt. Von der oben Wand der Theilungsstelle, oder auch auf dem linken Aste entspringt das Ligamentum Botalli. Seine Insertionsstelle an der Lungenarterienwand erscheint oft als eine leichte Einziehung der Innennfläche. Die Wandung der Lungenarterie und ihrer Zweige ist bedeutend dünnern als jene von Körperarterien entsprechenden Kalibers.

II. Arterien des Körperkreislaufs.

Aorta.

§ 217.

Den Stamm aller Körperarterien bildet die *Aorta.* Nach ihrem Ursprunge am Ostium arteriosum der linken Kammer steigt die »große Körperarterie« hinter der Lungenarterie, etwas nach rechts empor und wendet sich im Bogen nach links und hinten zur Seite der Brustwirbelsäule, die sie in der Höhe der Grenze des dritten und vierten Wirbelkörpers, oder auch erst am vierten Wirbelkörper erreicht, um von da allmählich gegen die Vorderfläche der Wirbelkörper gelangend, durch die Brusthöhle zum Hiatus aorticus des Zwischenfells zu verlaufen. Durch letzteres gelangt sie in die Bauchhöhle, verliert durch Abgabe zahlreicher Äste bedeutend an Umfang, und erreicht unter Entsendung der beiden Arteriae iliaceae communes scheinbar ihr Ende an der Verbindung des vierten und fünften Lendenwirbelkörpers. In der That aber setzt sie sich von hier noch als viel schwächeres Gefäß über den fünften Lendenwirbelkörper in die Arteria sacralis media zur Vorderfläche des Kreuzbeins fort (Fig. 441). Bei Thieren mit entwickeltem Schwanze ist diese Arterie als Art. caudalis die direkte Fortsetzung der Aorta. Nach Maßgabe einer Reduction des Schwanzes wird die Art. caudalis anschließend, und so gelangt sie auf jenen Zustand, wie er in der Sacralis media erscheint. Die Abgabe der beiden letzten mächtigen Äste tritt dann als eine Entziehung auf. Nach dem Verlaufe werden an der Aorta mehrere Abschnitte unterschieden. Sie scheidet sich einmal in die Aorta adscendens, den Aareas und die Aorta descendens, welch letztere also den bei weiten größten Theil umfaßt, und wieder in eine Pars thoracica und Pars abdominalis gesondert wird.

Die *Aorta adscendens* begreift die noch in der Pericardialhöhle liegende Strecke, jenseits welcher wir den Anfang des Bogens annahmen. Sie beginnt mit einer bulbusartigen Erweiterung (*Bulbus aortae*), welche wesentlich durch die drei Sinus Valsalvae gebildet wird (s. S. 619). In der Lage wendet sich das Ende der Aorta adscendens etwas nach vorne, und geht mit einer der Höhe des Knorpels der zweiten Rippe entsprechenden leichten Erweiterung, die meist erst im höheren Alter sich ausbildet (*Sinus quartus*), in den Bogen über. Wie die Lungenarterie von vorn und links den Anfang der Aorta adscendens deckt, so legt sich von rechts her das rechte Herzohr an sie an.

Der *Bogen der Aorta* liegt hinter dem Manubrium sterni, ist erst vor, dann links von dem Ende der Trachea gelagert, und erhält auf seiner linken Fläche einen Überzug der Pleura mediastinalis. Über ihm und etwas vor ihm verläuft die Vena anonyma sinistra. Unterhalb des Bogens, an seiner Concavität, theilt sich die Lungenarterie und steht mit der Endstrecke des Bogens durch den Botallischen Strang in Verbindung.

Nach Abgabe der starken, von der Convexität des Bogens entspringenden Arterienäste ist das Kaliber der Aorta etwas vermindert, bleibt aber am abstei-

Als Aorta abdominalis behält der Stamm seine Lage vor der Wirbelsäule, aber doch noch etwas linkerseits bei, eingebettet zwischen den beiden Muskelpfeilern der vertebalen Portion des Zwerchelles, so dass die Passage durch das letztere sich noch weiter fortgesetzt darstellt. Zur Rechten liegt der Aorta die untere Hohlvene an; vorne wird sie vom Pancreas und dem unteren Schenkel des Duodenums bedeckt, und weiterhin von der Wurzel des Geräusches. Letztere Stelle ist beim Aneinandertreten der Darmschlingen und erschlaffter Bauchwand der Compression zugängig. Die Abgabe zahlreicher und starker Äste vermindert rasch das Kaliber der Bauchaorta bis zu ihrem Ende.

Die Verzweigungen der Aorta betrachten wir nach den einzelnen Abschnitten, aus denen sie entspringen.
Äste der Aorta adscendens.

Kranzarterien des Herzens.

§ 218.

2) Die Art. coronaria sinistra theilt sich bald in einen Ramus circumflexus, der in der linken Kranzfurche, bedeckt vom linken Herzen, seinen Weg nimmt, und einen R. descendens, der in die vordere Längsfurche tritt. Er verzweigt sich vorwiegend an die linke Kammerwand, gibt aber auch kleine Zweige zur rechten. Der R. circumflexus gibt dem linken Vorhof schwache,
und der linken Kammer starke Zweige, und steht in alternirendem Verhalten mit der Ausbildung des Endes der rechten Kranzarterie, so dass er unter Beschränkung der letzteren auch in die hintere Längsfurche sich fortsetzen kann.

Äste vom Arcus aortae.

§ 219.

Die Arteria anonyma besitzt eine Länge von 2 — 3 cm. und verläuft schräg auf und lateralwärts. Sie liegt hinter dem Sternum, dessen oberen Rand sie überragt, und von dem sie durch die linke Vena anonyma, auch wohl durch Thymusreste und die Ursprünge der vom Sternum zum Zungenbein tretenden Muskeln abgedrängt wird. Hinten liegt der Arteria anonyma die Luftrohre an, an deren rechte Seite sie tritt. Die beiden aus dem Stamm hervorgehenden Arterien nehmen bald eine divergente Richtung, indem sich die Subclavia d. lateral, die Carotis communis d. aufwärts wendet. Letztere schlägt mit der nahe am Trunci entspringenden Carotis communis sinistra eine etwas divergente Bahn ein, so dass die beiderseitigen Carotidenstämme die Luftrohre zwischen sich fassen.

Die Arterienursprünge am Aortenbogen bieten reiche Variationen dar. Diese können in zwei Gruppen geschieden werden. 1) Eine begriffen Variationen der normal aus der Aorta kommenden Stämme. Der Trunci ist aufgelöst, und Subclaviens und Carotiden entspringen selbständig, oder es bestehen zwei Arteriae anonymae, oder es geht von der Art. anonyma noch die Carotis sin. ab. Auch kann die rechte Subclavia vom Anfange der Aorta descendens entspringen, was für die linke Subclavia mit einer Ab-

Arteria carotis communis.

§ 220.

Beide Carotidenstämme sind durch den bereits oben erwähnten Ursprung verschieden, woraus sich sowohl für den Verlauf wie für deren Länge eine Verschiedenheit ableitet. Die linke ist um so viel kürzer als die Länge der Art. anonyma beträgt, sie liegt anfangs tiefer als die rechte und erst allmählich stellt sich am Halse eine strenge Symmetrie der Lage dieser Arterie her. Am Beginne divergierend fassen beide Carotiden die Lufttröhre zwischen sich, und treten dann hinter derselben zur Seite des Oesophagus, aber von diesem durch die Schilddrüse abgedrängt, mit einander parallel empor, um zur Seite des Pharynx, etwa in der Nähe des oberen Schildknorpelrandes, sich in ihre beiden Endäste, die innere und äußere Carotis, zu spalten. Da auf ihrem Wege in der Regel keine Äste abgegeben werden, behält der Stamm gleiches Kaliber. An der Theilungsstelle bietet er regelmäßig eine Erweiterung dar.

Vom Arteriensysteme.

Arteria carotis externa.

§ 221.

Auch Carotis facialis benannt, weil sie sich vorwiegend am Antlitz verzieht. Sie bildet an der Theilungsstelle der Carotis communis den nach vorne und auch etwas median gelagerten Ast, der hinter dem Unterkiefer, bedeckt von der Carotis emporsteigt und median vom Unterkiefergelenke sich in seine Endäste theilt, nachdem sein Kaliber schon vorher durch reiche Verästelung abgenommen hatte.

Anfänglich wird sie nur von der Fascie und vom Platysma, seltener noch vom Sterno cleido - mastoidens bedeckt, dann zieht die Vena facialis ant. schräg von vorne und abwärts über sie weg, dann in entgegengesetzter Richtung der hintere Bauch des Biventer maxillae, und der Stylo-hyoidens. Die reiche Verzweigungen der Arterie kann nach der Richtung der Äste gruppiert werden, in solche die nach vorne, in solche die medial, und solche die nach hinten ziehen, wozu dann noch zwei Endäste kommen.

a. Nach vorne gehen:

1) Art. thyreoidea superior (Fig. 141). Der unterste, meist dicht an der Ursprungsstelle der Carotis externa entspringende Ast verläuft nahe unter dem großen Zungenbeinhorne, dann abwärts gekrümmt zum Rande der Schlundrüse, wo er theils an den beiden Seitenbeilen, theils median zum Isthmus der Thyreoidea sich verzweigt. Zuweilen ist die Arterie von bedeutendem Kaliber. Außer den Drüsenästen und kleineren Zweigen zu benachbarten Muskeln gibt sie noch folgende Arterien ab:

1) Ramus hyoïdeus, verläuft medianwärts zum Zungenbein, auf dessen Basis er sich an benachbarte Theile (Muskelinsertionen etc.) verzweigt, und mit dem anderseitigen zu anastomosiren pflegt. Wird auch von der A. lingualis abgegeben oder fehlt.

1) Ram. hyoideus, über welchen die Art. thyreoidea sup. nachzusehen ist.
3) Art. sublingualis, geht von der Lingualis ab, ehe dieselbe sich in die Muskulatur der Zunge begibt und verläuft über dem M. mylo-hyoideus und unter der Gl. sublingualis, an die sie sich wie in das Zahnfleisch des Unterkiefers verzweigt.

3) Art. maxillaris externa. Die äussere Kieferarterie (Fig. 444) entspringt oberhalb der Lingualis, noch vom hinteren Biventer-Bauche und vom Stylohyoideus bedeckt, verläuft an der medialen Seite des Unterkieferwinkels gegen die Unterkieferdrüse, in die sie theilweise sich einbette und sie mit Asten versorgt, geht dann abwärts, um am Unterkieferrande dicht vor der Masseterinserction unter dem Platysma zum Antlitze empor zu treten. In geschlängeltem Verlaufe gelangt sie auf die Wange und unter dem M. zygomaticus hinweg zur Seite der Nase bis zum inneren Augenwinkel, wo sie mit einem Endaste der Ophthal-mica anastomosirend als A. angularis endet. Dieses ganze Gebiet versorgt sie mit Zweigen. Diese sind:

1) Art. palatina adscendens (Pharyngo-palatina), ist ein Zweig der Pharyngea adscendens, oder ein directer Ast der Carotis int. (Fig. 444), entspringt nahe am Ursprunge der Maxill. int., läuft zwischen Styloglossus und Stylopharyngeus an der Seite des Pharynx, medial vom Pterygoideus internus. Sie theilt sich meist in einen vorderen R. tonsillaris, der auch den weichen Gaumen versorgt, und einen hinteren, der zum Pharynx in der Gegend der Tuba Eustachi sich verzweigt. Auch der Pterygoideus internus empfängt einen Zweig.

Zuweilen ist die Arterie nur auf den Ramus tonsillaris beschränkt, oder es bestehen mehrere sie ersetzende kleinere Arterien, die differenten Ursprungs sind. Auch die Art. maxillaris interna kann dabei betheiligt sein.

2) Art. submentalis entspringt während des Verlaufes der Art. max. ext. an der Unterkieferdrüse, gelangt unterhalb des Ursprunge des Mylohyoideus, zwischen diesem und dem vorderen Bauche des Biventer maxillae gegen das Kinn, an jene Muskeln und an das Platysma, auch an die Haut sich verzweigend, und mit feinen Zweigen auch zum Antlitze emportretend.
3) Art. labialis inferior (Coronaria labit inferioris), verläuft meist unter dem Triangularis labii inferioris geschlängelt zur Unterlippe, wobei sie bald mehr oberflächlich, bald nur in der Tiefe sich verzweigt, und mit der andersseitigen anastomosirt. Auch mit der Submentalise geht sie Anastomosen ein.
5) Art. angularis (Nasalis lateralis), die Fortsetzung des Stammes der Maxill. ext., welcher an der Seite des Nasenflügels emportritt, und am Nasenflügel,

Fig. 444.

Das Gebiet der Maxillaris externa erleidet sehr häufig Beschränkungen, indem von Seite der benachbarten Arteriengebiete durch Ausbildung der Anasto-

b. In medialer Richtung gehen ab:

4) **Art. pharyngea adscendens** (*pharyngo-basilaris*), der kleinste direkte Ast der *Carotis* externa. Entspringt meist der Art. *lingualis* gegenüber und begibt sich zwischen *Carotis* interna und externa hinten und seitlich an der Pharynxwand empor. Sie gibt Rami pharyngei ab zur Pharynxwand und zum Ende der Tuba *Enstachii*, häufig auch die *A. palatina adscendens* (s. oben).

An der Schädelbasis verzweigt sie sich in mehrere feine, in die Schädelhöhle eindringende Arterien zur Dura mater (*Art. meningea posterior*) durch das Foramen jugulare, das Foramen lacerum oder den Canalis *hypoglossi*.

c. Nach hinten verlaufen:

5) **Art. occipitalis** (Figg. 444, 450). Die Hinterhauptsarterie entspringt meist etwas über der *Pharyngea* adscendens, verläuft unter dem hinteren *Biventer*-Bauche nach hinten und aufwärts, am Querfortsatz des Atlas vorüber, um den *Rectus capitis* lateralis herum zum Hinterhaupte, auf welchem Wege sie vom Longissimus *capitis*, *Splenius* cap. und der Insertion des *Sterno-cleido-mastoideus* bedeckt wird. Sie liegt dabei an der Insertion des *Sperminalis* *capitis* und dringt seitlich vom Schädelursprunge des *Trapezius*, oder auch diesen bei größerer Breite desselben durchsetzend, hervor, um am Hinterhaupte sich bis gegen den Scheitel zu verzweigen und mit den Endästen der *Temporalis* und *Frontalis* Anastomosen einzugehen, die unter der Kopfhaut ein arterielles Gefäßnetz darstellen.

Auf ihrem Verlaufe zum Hinterhaupte kreuzt sie die *Carotis interna* und die *Vena jugularis interna*, sowie den *N. hypoglossus*, wobei sie von der Ohrospeicheldrüse bedeckt wird. Den *M. stylohyoideus* trennt sie auf diesem Wege von der *Carotis* externa.

Von den Muskelaisten ist ein Zweig zum *Sterno-cleido-mastoideus* zu nennen, der gleich am Anfange der Arterie abgeht, jedoch auch direct aus der *Carotis externa* entspringen kann. Diese

Art. sterno-cleido-mastoidea senkt sich über dem Stamm des *N. hypoglossus* abwärts in den Muskel ein. Eine

Art. mastoidea dringt in das gleichnamige Loch.

Rami cervicales versorgen die Nackenmuskeln.

6) **Art. auricularis posterior** (Fig. 444). Diese Arterie bildet meist den am höchsten entspringenden Ast der *Carotis* externa. Sie ist median vom Stamm gelagert, dann tritt sie zwischen Zitzenfortsatz und *Parotis* hinter dem äußeren Gehörgange empor und verzweigt sich an die hintere Fläche der
Ohrmuschel, dann darüber hinaus am Schädel. Ehe sie zum Ohre tritt, gibt sie Äste an die Parotis und benachbarte Muskeln. Ihre Äste sind:

4) Ramus temporalis. In sehr verschiedenen Grade entfaltet; wenn bedeutend, erscheint er alsdirecte Fortsetzung des Stammes, über das Platum temporale hinaus verzweigt, mit Temporalis superficialis und Occipitalis ana stomosirend. Er kann hier den hinteren Ast der A. temporalis superf. ersetzen.

7) Art. temporalis (Temporalis superficialis) (Fig. 444). Erscheint als die Fortsetzung der Carotis externa, verläuft von der Parotis bedeckt etwas schräg lateral und aufwärts, und kommt, zwischen Wurzel des Jochfortsatzes des Schläfenbeins und dem äußeren Gehörgange emportretend, in eine oberflächlichere Lagerung. Auf der Fascia temporalis geht sie bald näher, bald entfernter vom Jochbogen ihre Endtheilungen ein, die ein weites Gebiet an der Seite des Cranium versehen. Äußer Ästen an die Parotis gibt sie ab:

3) A. zygo-maticeo-orbitalis, geht meist dicht über dem Jochbogen vom Stamme oder einem der Endäste der Art. temporalis schräg aufwärts zum oberen Rande der Orbita, wo sie sich aufwärts sowie abwärts zu den Augenlidern verzweigt. Sie ist bedeutend, wenn der vordere Endast der Temporalis schwach ist und verläuft dann häufig auch etwas höher.

4) A. temporalis media. Diese kommt nur bei hoher Endtheilung der Arterie aus dem Stamme, sonst aus einem der stärkeren Endäste, durchbohr
sogleich die Fascia temporalis und dringt in den Schläfenmuskel ein, in welchem sie sich verzweigt.

Die Endäste sind:

Die Theilung der Arteria temporalis in ihre beiden Endäste findet in sehr verschiedener Höhe statt, d. h. der Stamm der Art. temporalis ist von sehr verschiedener Länge, wovon mancherlei Eigenthümlichkeiten in der Art der Vertheilung der Äste abhängen. Ist der gemeinsame Stamm nur kurz, wie er denn zuweilen schon dicht über dem Jochbogen sich spaltet, so verläuft der **Ramus frontalis** in der Bahn der Art. zygomatico-orbitalis, und letztere fehlt ganz; rückt die Theilungsstelle höher, so tritt schon eine kleine **Art. zygomatico-orbitalis** auf, die um so bedeutender wird, je höher der Verlauf des **Ramus frontalis** sich darstellt. In Fig. 44.1 ist diese Theilung der Temporalis in einem Falle dargestellt, in welchem sie höher als gewöhnlich sich findet.

![Fig. 445.](image-url)

Verrweigung der Arteria maxillaris interna. Der Jochbogen mit der seitlichen Orbitalwand und der Ast des Unterkiefers sind entfernt.

Von der ersten Strecke entspringen:

1) Art. auricularis profunda. Eine kleine Arterie, zum Kiefergelenk und äußeren Gehörgang und von letzterem aus auch an Trommelfell sich verbreitend.
2) A. tympanica. Ebenfalls sehr klein. Verläuft durch die Glaser'sche Spalte in die Panenköhle, wo sie mit der Stylo-mastoideanastomosiirt.
3) A. meningea media ist der stärkste Ast dieser Gruppe, tritt medial zum Foramen spinosum empor, und teilt sich im Inneren der Schädelhöhle in zwei, in die Sulei arteriosi eingebettete Äste, die sich weit in der Dura mater verweigen und die Meningea media als die Hauptarterie der Auskleidung der Schädelhöhle erscheinen lassen. Auch in die Diploë der Schädelknochen werden feine Zweige abgegeben, und Rami perforantes gelangen sogar zur Oberfläche des Cranium. Auch zu manchen Höhlungen der Schädelknochen z. B. den Cellulæ mastoideae gehen Zweige ab.

a) Art. meningea parva. Entspringt von der Art. meningea media vor deren Eintritt ins Cavum cranii, sie gibt Zweige an die Mn. pterygoidei, die auch direkt von der Maxillaris interna abgegeben werden, ferner Zweige zur Muskulatur des Gaumens, und kommt als eine feine Arterie durch das Foramen ovale in die Schädelhöhle, wo sie sich in der Nachbarschaft, vorzüglich im Ganglion Gasseri, vertheilt.
c) Ramus posterior. Unkreist von vorn her die Basis der Felsenbeinpyramide und nimmt über dem Suleus transversus seinen Weg zur Hinterhauptsgegend, während dessen er aufwärts und lateralwärts verlaufende Zweige abgibt.

4) Art. alveolaris inferior. Begibt sich zwischen dem Gelenkast des Unterkiefers und dem M. pterygoideus internus senkrecht herab zum inneren Kie-

Von der zweiten Strecke der Art. maxillaris interna gehen ab:

7) Rami pterygoidei für die M. pterygoidei sind unbedeutend.

Von der dritten Strecke entspringen:

Aus dem Ende der Maxillaris interna gehen hervor:

11) Art. palatina descendentis (A. pterygo-palatina), senkt sich von der Fossa pterygo-palatina in den gleichnamigen Canal, auf welchem Wege sie sich in mehrere Zweige spaltet, davon die kleineren (Arteriae palatinae minores) durch die feineren Mündungen jenes Canals zum weichen Gaumen, den Tonsillen, auch zum Pharynx sich verzweigen. Eine Art. palatina major tritt an der größeren Mündung (For. palat. majus) des Canals heraus, und verläuft geschlängelt dicht am knöchernen Gaumen, meist in eine Rinne desselben eingebettet, nach vorne und verzweigt sich an dessen Schleimhaut sowie an das benachbarte Zahn fleisch.

12) Art. sphenopalatina (A. nasalis posterior). Durch das Foramen sphenopalatinum (vgl. S. 209) tritt sie zur Nasenhöhle, gibt einen Zweig durch den Canalisculus pharyngeus (S. 168) zur oberen Wand des Pharynx (Art. pharyngea
suprema) und zu den Keilbeinköpfen einen andern an die Seitenwand der Nasenhöhle \((A. \text{ lateralis narium posterior})\) und einen dritten an die Nasenscheidewand \((A. \text{ septi narium posterior})\), wo eine Vertheilung nach unten und vorne, und zugleich eine Anastomosenbildung mit benachbarten Arteriengebieten stattfindet.

13) \text{Art. vidiana.} Dieser kleinste Endast der Maxillaris interna erscheint oft als ein Ast der Palatina descendens, verläuft durch den Vidian'schen Canal zum Pharynxgrunde und zur Tuba Eustachii.

Arteria carotis interna.

§ 222.

Wegen ihrer vorwiegend am Gehirn stattfindenden Endverzweigungen wird sie auch \text{Carotis cerebralis} benannt. Sie liegt am Halse, erst etwas lateral und nach hinten von der Carotis externa, zur Seite des Pharynx vor den tiefen Halsmuskeln. M. styloglossus und stylopharyngaeus ziehen lateral schräg über sie hinweg und trennen sie von der Carotis externa, gegen die sie schließlich eine mehr mediale Lage gewinnt. Vor dem Eintritte in den Canalis caroticus bildet sie eine Krümmung, die bald lateral, bald medial gerichtet ist. Zuweilen ist diese recht bedeutend und legt sich der Schädelbasis an. Auf dem Wege durch die Basis cranii ergeben sich für die Arterie mehrfache regelmäßige Krümmungen, welche durch die von den Knochen vorgeschriebene Bahn bedingt sind. Eine erste Krümmung am Eintritte ist aufwärts und lateral gerichtet, ihr folgt eine vor- und medianwärts gerichtete Strecke und darauf eine zweite Krümmung am Ausgänge des Canalis caroticus. Die \text{Lingula sphenoidalis}, \text{[s. S. 165]} lehnt sich lateral an den zur Seite des Keilbeinköpfer aufsteigenden Schenkel dieses medial und abwärts convexen Bogens. Dieser geht in einen dritten, in den \text{Sinus cavernosus} eingeschlossenen Bogen über, der aufwärts und zugleich etwas medial convex erscheint. Dessen vorderer Schenkel wendet sich um den \text{Processus clinoides medius} zu einem vierten und zwar nach unten und vorne convexen Bogen, von dem aus das Ende zwischen \text{Processus clinoides medius} und \text{anterior} empor tritt und die Dura mater durchbricht, worauf sie die \text{Art. ophthalmica} abschickt und sich dann in die Hirnäste teilt.

Da die Carotis interna bis dahin keine auseinander Zweige abgibt, behält sie ihr gleichmäßiges Kaliber bei. Den Canalis caroticus füllt sie fast vollkommen aus. Kleine Ästchen gehen auf dem Wege durch den carotischen Canal zu den Nerven des \text{Sinus cavernosus}, eben solche auch zur \text{Hypophysis cerebri}.

Die Endäste der Carotis interna sind die \text{Art. ophthalmica} und ein Theil der Hirnarterien.

Arteria ophthalmica.

Sie versorgt sowohl das Auge und seine Hilfsorgane wie auch die Gegend der Stirn und der äußeren und inneren Nase. Von der Convexität des vierten Bogens der Carotis interna, nach deren Durchtritt durch die Dura mater ent-
springend, begibt sie sich durch das Foramen opticum zur Augenhöhle. Sie liegt dabei erst an der unteren, dann an der äußeren Seite des Sehnerven, wendet sich aber über den letzteren hinweg und verläuft vielfach geschlängelt gegen die mediale Orbitalwand, unterhalb des M. rectus oculi superior und des M. obliquus superior bis zum inneren Augenwinkel. Selten findet sie sich auf diesem Wege unterhalb des Sehnerven, oder sie tritt gleich an Anfang an der medialen Seite des Sehnerven in die Orbita ein. Unterhalb der Trochlea läßt sie ihre Endäste hervorgehen, während schon von ihrem Eintritte in die Orbita zahlreiche, durch geschlängelten Verlauf ausgezeichnete Äste von ihr entspringen. Nahe am Eintritte in die Orbita entspringt:

3) Artt. ciliares posticae sind kleine Arterien, welche theils direkt aus der Ophthalmica, theils aus Ästen derselben entspringen und in der Umgebung des Opticus stark geschlängelt zum hintern Umfange des Augapfels verlaufen, dessen Faserhaut sie durchsetzen.

Artt. ciliares anteicae kommen aus verschiedenen Ästen der Ophthalmica und treten mit den Endzweigen der geraden Augenmuskeln zum vorderen Umfange des Bulbus, wobei sie gleichfalls die Sclerotica durchbohren.

4) Rami musculares. Dies sind mehrere zu den Muskeln des Bulbus und dem Levator palpebrae superioris sich verweisende, direkt aus der Ophthalmica entspringende Stämchen, zu denen auch noch andere, von verschiedenen Ästen der Ophthalmica abgehende Arterien kommen können.

5) Art. supraorbitalis verläuft an dem medialen Rande des Levator palpebrae superioris, über den sie sich zum Dache der Orbita wendet, beides mit Zweigen versehend. Vorne tritt sie durch das Foramen supraorbitale oder die gleichnamige Incisur aufwärts und verweigt sich im M. frontalis wie im Perist Fig. 444. Bei bedeutender Ausbildung concurrirt sie mit der A. frontalis, und gelangt auch in der Stirnhaut zur Verbreitung.

Aus dem *Ende der Ophthalma* kommen hervor:

7) **Art. palpebrales mediales** zu einem Stämmchen vereinigt oder getrennt, vertheilen sich zu beiden Augenlidern, in denen sie auf dem Tarsus, bedeckt vom M. orbicularis nicht weit vom Lidrande entfernt, lateralwärts ziehen, und mit den **Art. palp. laterales** Anastomosen bilden (*Arcus tarseus sup. et inf.*). Noch am inneren Augenwinkel empfängt auch die **Conjunctiva** feinere Zweige, sowie der Abführendweg der Tränenflüssigkeit.

8) **Art. frontalis**. Begibt sich in oberflächlicherem Verlaufe zur Stirne, wo sie sich an die Haut, auch an Muskeln verzweigt; zuweilen besteht noch ein tiefer verlaufender Ast. Sie anastomosirt mit der anderseitigen sowie mit der **Supraorbitalis**, mit der sie in compensatorischem Verhalten steht, ebenso mit den Stirnästen der A. temporalis superficialis (Fig. 44d).

9) **Art. dorsalis nasi**. Tritt über dem Ligamentum palpebrales mediale nach außen, zuweilen mit der A. frontalis gemeinsam, gibt Zweige zur Haut der Glabella und anschliesslichere zur Seite und zum Rücken der Nase. Sie anastomosirt mit der A. angularis aus der Maxillaris externa, die sie auch ersetzen kann.

Gehirnäste der Carotis interna.

Die zum Gehirn tretenden Endäste der Carotis interna verlaufen zur Pia mater, an deren Oberfläche sie sich verzweigen und diese Membran zur *Gefäßhaut* des Gehirns sich gestalten lassen. Von diesen Verzweigungen innerhalb der Pia entspringen die zur Substanz des Gehirns eindringenden Arterien.

Die einzelnen Äste sind:

1) **Art. corporis callosi** ([Art. cerebr. ant.].) Tritt hinter dem Ursprunge des Tractus olfactorius medial und vorwärts, kreuzt den Sehnerven, indem sie unter ihm hinwegtritt, und gelangt nahe der Medianlinie vor dem Chiasma der Sehnerven zur medianen Längsplatte des Großhirns. Hier begibt sie sich vor- und aufwärts zum Balkenknäuel und verläuft über dasselbe zur oberen Fläche des Balkens bis nach hinten zum Splenium corporis callosi. Kleine Zweige treten schon am Anfange gegen die Streifenhülle ab, fernere Äste gehen zur Unterfläche des Stirnlappens, dann zur medialen Fläche desselben und von da weiter nach hinten, auch zur oberen Fläche der Hemisphären.

Vor dem Chiasma, bei ihrem Eintritte zwischen die Stirnlappen beider Hemisphären, sind die beiderseitigen Arterien durch einen kurzen Querstamm ([Art. comm. anter.]) unter einander verbunden.

2) **Art. fossae Sylvii** ([Art. cerebr. media]). Dieser stärkste Endast verläuft nach der lateralen Fläche des Großhirns. Er tritt gleich vom Ursprunge an lateralwärts in die Sylvische Grube, in der er reich ramifiirt nach hinten verläuft. Nahe am Ursprunge schickt er feine Zweige ins Gehirn zu den Streifenkörpern (durch die Substantia perforata anter.); dann zahlreiche Äste zum Frontallappen, zur Insel und zum Schläfenlappen des Gehirns.

3) **Art. chorioidea** erscheint wie ein Zweig der vorigen, der sich fast rechtwinkelig vom Ende der Carotis längs des Tractus nervi optici lateralwärts und nach hinten begibt und unter dem Gyrus uncinatus verschwindet. Hier tritt
die Arterie am Ende des sogenannten Unterhorns in die Adergefäße desselben ein, in welche sie schließlich sich auflöst.

4) **Art. communicans posterior.** Nächst dem Stammende der Carotis hervorkommend und etwas stärker als die vorige, nimmt sie ihren Weg gerade nach hinten, convergirt etwas mit der anderseitigen, tritt über die Hirnstiele und verbindet sich mit der Art. profunda cerebri.

Sie gibt keine Zweige ab und bedingt durch ihre Anastomose den seitlichen Abschluß eines Kranzes von Arterienstämmchen an der Hirnbasis, des Circulus arteriosus Willisii, den nach hinten Äste der A. vertebralis schließen, während der vordere Abschluß durch die Arteria commun. ant. dargestellt wird. — Sehr häufig findet sich eine ungleiche Ausbildung beider Arteriae communicantes posteriores. Selten fehlt eine ganz.

Bezüglich der übrigen Hirnarterien siche bei der Art. vertebralis S. 663.

Arteria subclavia.

§ 223.

Die **Art. subclavia** hat ihr Verzweigungsgebiet in der oberen Extremität, gibt außerdem noch Äste für einen Theil des Halses und der Brust sowie
Vom Arteriensysteme. 661

für das Gehirn ab. Rechterseits mit der Carotis communis dextra zu dem Truncus anonymus vereinigt, linkerseits selbständigen Ursprungs aus dem Arcus aortae, begibt sie sich im Bogen lateralwärts und tritt zwischen Scalenus auticus und medius hindurch unter das Schlüsselbein. Unter diesem hervorgetreten gelangt sie in die Aehselhöhle und wird deshalb als Art. axillaris bezeichnet. Von der Grenze der Aehselhöhle setzt sie sich als Art. brachialis an die mediale Seite des Oberarms fort und theilt sich in der Tiefe der Ellbogenbeuge in ihre beiden Endäste, welche als Art. radialis und ulnaris den Vorderarm versorgen und an der Hand ihre terminale Verzweigung finden. Wir haben also für diese Arterie verschiedene Strecken zu unterscheiden, an denen sie verschiedene Namen trägt, und dazu kommen die Endäste an Vorderarm und Hand.

Die Grenzbestimmung für die Bezeichnung der Arterie als »Subelavia« wird verschieden gefaßt. Manche, wie Hyrtl, setzen das Ende der Subelavia da, wo sie die Scalenl verläßt, so dass der unter der Claviacula liegende Theil bereits zur Axillaris gehört. Eine Begründung der oben vertretenen Auffassung erscheint selbstverständlich.

Äste der Arteria subelavia.

§ 224.

Diese werden zur leichtern Übersicht nach der Richtung ihres Verlaufes in mehrere Gruppen getheilt. Wir unterscheiden aufsteigende, seitwärts ziehende und absteigende Äste, die fast sämtlich von dem innerhalb der Brusthöhle befindlichen Abschnitte der Subelavia entspringen.

a. Aufsteigende Äste.

1) Art. thyroidea inferior ist in der Regel nächst der Vertebralis der stärkste Ast der Subelavia, von der er nahe an der Durchtrittsstelle durch
Sechster Abschnitt.

die Scaleni entspringt. Die Arterie steigt erst gerade empor, gibt dann einen aufwärts tretenden Ast ab (s. unten) und beginnt sich im Bogen, erst vor der Vertebralis, dann hinter der Carotis communis medianwärts, um hinter die Schilddrüse zu treten, an die sie sich verzweigt.

Das Gebiet der Thyreoidea inferior kann in seltenen Fällen durch eine direct aus dem Aortenbogen entspringende Art. thyreoidea ima theilweise versorgt werden.

Der Stamm der Art. thyreoidea sendet ab die:

Seltener entspringt sie direct aus der Subclavia. Sie gibt ab die:

Der Ursprung der Cervicalis ascendens und Cerv. superficialis aus der Thyreoidea gab Anlass den Stamm der letzteren als Truncus thyreocervicalis zu bezeichnen. Das Überge-
Vom Arteriensysteme.

richt, welches dem daraus zur Schilddrüse verlaufenden Aste in der Regel zukommt, rechtfertigt jedoch die eingehaltene Darstellung.

2) Arteria vertebralis. Der bedeutendste Ast der Subclavia entspringt vom hinteren und oberen Umfange des Stammes und steigt nach hinten empor, auf dem Querfortsatz des siebenten Halswirbels zwischen M. longus colli und dem oberen Theil des M. scalenus anticus zum Foramen transversarium des sechsten Halswirbels, zuweilen auch eines höheren. Die Arterie durchsetzt dann die folgenden Querfortsätze, stets vor den Stämmen der Cervicalnerven gelagert, und wendet sich, durch das Foramen transversarium des zweiten Halswirbels tretend, lateral, um im Bogen das weiter seitlich gelegene Foramen transversarium des Atlas zu gewinnen. Durch dieses beginnt sie sich empor und bildet wieder einen nach vorne convexen Bogen, worauf sie um die die Gelenkfläche tragende Seitenmasse des Atlas herum verläuft (Fig. 418). Dann durchsetzt sie die Membrana atlanto-occipitalis posterior und gelangt vorwärts und aufwärts gewendet durch das Foramen magnum in die Schädelhöhle. Sie liegt hier zuerst der Seite, dann der Vorderfläche des verlängerten Markes an und verbindet sich dann hinter der Brücke zu einem medianen Stamme, der Arteria basilaris, welche zum Gehirne sich verzweigt.

Auf ihrem Wege durch den Canalis transversarius sendet die Arterie meist unansehnliche Äste zu den benachbarten Muskeln, ferner Rami spinales durch die Foramina intervertebralia in den Rückgratcanal, wo sie sich theils an dessen Wandungen, theils, die Nervenwurzeln begleitend, zum Rückenmerke verzweigen.

Der Eintritt der Arterie in den Canalis transversarius findet höchst selten schon im siebenten Halswirbel statt. Das regelmäßige Verhalten erklärt sich aus der Lage der Arterie zu der Halswirbelsäule.

Von der Arteria vertebralis gehen nach deren Eintritt in den Rückgratcanal folgende Äste ab:

Arteria spinalis posterior, entspringt unmittelbar nach dem Eintritte der A. vertebralis und verläuft als eine feine Arterie zur hinteren Seitenfurchen des Rückenmarks, und in derselben medial von den hinteren Wurzeln der Spinalnerven herab, wobei sie mit der anderen, aber auch mit den Spinalästen aus verschiedenen Gebieten anastomosirt. Ist nicht selten ein Ast der hinteren unteren Kleinhirnarterie.

Arteria spinalis anterior, ist in der Regel stärker als die vorige und entspringt von der Vertebraalis nahe an der Vereinigung zur Basilaris, verbindet sich bald mit der andersseitigen zu einem in der vorderen Längsfurche erst der Medulla oblongata, dann des Rückenmarks verlaufenden Stammes.
Dieses erhält sich jedoch nur streckenweise, indem es von Stelle zu Stelle sich in zwei Äste spaltet, welche dann sich wieder zu einem medianen Stämmchen vereinigen, so dass an der vorderen Fläche des Rückenmarks eine Reihe von Gefäßinseln entsteht. Anastomosen mit den verschiedenen Spinalästen anderer Gebiete bewirken die Fortsetzung der aus der Vertebralis stammenden Arterie, die außerdem frühzeitig erschöpft wäre.

Art. cerebelli inferior posterior. Entspringt weiter vorne, aus dem Ende der Vertebralis, zuweilen auch aus dem Anfange der Basilaris. Wendet sich um die Medulla oblongata und verläuft dann geschlängelt zwischen dieser und dem Cerebellum, an dessen Hemisphären sich sie vom Unterwurm her verzweigt.

Art. cerebelli inferior anterior. Entspricht weiter vorne, aus dem Ende der Vertebralis, zuweilen auch aus dem Anfange der Basilaris. Wendet sich um die Medulla oblongata und verläuft dann geschlängelt zwischen dieser und dem Cerebellum, an dessen Hemisphären sich sie vom Unterwurm her verzweigt.

Aus der **Basilaris** entspringen außer zahlreichen kleinen für die Varolssbrücke bestimmten Zweigen, bevor sie sich in die A. prof. theilt, noch folgende:

Art. auditiva interna. Verläuft, lateral den N. abducens kreuzend, zum Nervus acusticus, mit dem sie zum Pons acust. gelangt und im Ohrlabyrinth sich verzweigt (s. Gehörgang). Sie ist zuweilen ein Zweig der

Art. cerebelli inferior anterior. Ein meist kleiner zu den Brückenarmen verlaufender Zweig, wird zuweilen durch mehrere vertreten.

Art. cerebelli superior. Geht vor der Endtheilung der Basilaris ab, verläuft am vorderen Brückenrande quer nach außen um den Pedunculus cerebri herum, und gewinnt dabei die Oberfläche des Kleinhirns, auf dem
sie sich unter vielfacher Schläfung meist mit zwei größeren Ästen verzweigt. Sie sendet auch vor dem Kleinhirn liegenden Theilen vorderes Mark- segel, Vierhügel), ja selbst der Epiphysis und der Tela chorioidea Zweige.

Art. profunda cerebr i (cerebr i posterior). Wird jederseits durch die Endtheilung der Basilari gebildet. Verläuft vor der Brücke, parallel des Art. cerebelli anterior, lateralwärts, wobei sie den Austritt des N. oculomotorius umgreift und mit der Art. communicans posterior sich verbindet, schlägt sich dann um die Großhirnstiele herum nach oben und gelangt an die Unterfläche des Schläfen-, wie des Occipitallappens des Großhirns, an welche sie sich verzweigt.

Nahe an ihrem Ursprunge sendet sie feine Zweige zwischen den Hirnstielen zum dritten Ventrikel (Substantia perforata posterior). Von ihnen nach oben um die Hirnstiele getretenen Abschnitte gehen Arterien zu den Vierhügeln und der Tela chorioidea ab.

b. Lateral verlaufende Äste sind außer der nur ausnahmsweise direct aus der Subclavia entspringenden A. cervicalis superficialis folgende:

4) A. transversa colli (Fig. 417 u. 450). Diese Arterie entspringt bald noch von der inneren Strecke der Subclavia, bald nach deren Durchtritt durch die Scaleni oder selbst auf diesem Wege, zuweilen mit der folgenden aus einem gemeinsamen Stämmchen. Sie verläuft quer nach außen meist in der Fossa supra-clavicularis, wobei sie von der V. jugularis externa gekreuzt und von der Omohyoides-Fascie und vom Platysma bedeckt wird. Sie tritt dann unter den Trapezius, bei höherem Verlaufe über dem Levar scapulæ (Fig. 450), bei tieferem unter demselben und theilt sich da nach Abgabe von Ästen zum M. supraspinatus in einen auf- und einen absteigenden Ast zu den oberflächlichen Rückenmuskeln.

Beim Ursprunge der Transversa colli in der Scalennusspalte tritt die Arterie meist zwischen dem 6. — 7. Cervicalnerven hindurch. Sie kann auch den Scalenus medius

5) A. transversa scapulae. Entspringt häufiger vor dem Durchtritte der Subclavia durch die Scaleni, verläuft dann hinter der Clavicula, tiefer
als die vorhergehende, lateralwärts um jene Muskeln. Zweige gibt sie zum M. subclavins ab, entsendet dann einen Ramus acromialis zum Arterienetz auf dem Acromion und beginnt sich über dem Ligamentum transversum scapulae in die Fossa supraspinata, wo sie dem gleichnamigen Muskel Zweige zutheilt. Hinter dem Collum scapulae tritt sie in die Fossa infraspinata und geht daselbst nach neuer Abgabe von Muskelausten mit der Art. circumflexa scapulae (aus der Subscapularis) eine Anastomose ein.

Der Ursprung der Arterie beherrscht wiederum vielfältig den Verlauf und ist deshalb von Wichtigkeit (s. Art. transv. coll.). Sehr selten tritt die Arterie mit dem N. suprascapularis durch die Incisura scapulae, meist schickt sie nur einen Ast dahin, der dann zum Stamme sich ausbilden kann.

c. Nach abwärts sendet die Arteria subelavia folgende Äste zur Brustwand:

Die Rami dorsales geben Rami spinales durch das erste oder das erste und zweite Foramen intervertebrale zum Rückgratcanal und endigen in den tieferen Rückenmuskeln.

7) Art. mammaria interna (Fig. 447). Der vorderen Brustwand zugetheilt entspringt die Arterie von der unteren Circumferenz der aufsteigenden Subelavia. Sie begibt sich abwärts und etwas medial hinter der Vena subelavia und vor der Spitze der Pleurahöhle zur hinteren Fläche des 1. Rippenknorpels, und von da über die folgenden parallel durch das Seitenrande des Sternum bis zum Knorpel der 6. und 7. Rippe, wo sie sich in ihre Endäste theilt. Auf diesem Verlauf wird sie innen vom M. transversus thoracis bedeckt und liegt dem Sternum bald näher bald ferner (5—15 mm). Sie entsendet:

2) Art. pericardio-phrenica. Zweigt sich von einer der vorigen ab, oder entspringt direct aus der Mammaria interna. Sie verläuft als ein langes aber schwaches Gefäß zwischen Herzbeutel und Pleura mit dem N. phrenicus herab, und sendet dabei wiederum an die Thymus, dann auch noch zuweilen an die Bronchien Äste und verzweigt sich schließlich am Herzbeutel und am Zwerchfell.

A. intercostales anterior \^s. Treten zu den oberen Intercostalräumen, meist in jeden derselben zu zwei, wobei eine am unteren Rande einer je oberen, die andere am oberen Rande einer je unteren Rippe verläuft. Die beiden je für den fünften oder sechsten Intercostalraum bestimmten Arterien sind meist gemeinsamen Ursprungs. Die an den oberen sich verheitelnden kommen häufig je für eine Rippe aus einem gemeinsamen Stammchen. In der Regel sind die am unteren Rippenrande die stärkeren, gegen welche die dem oberen Rande folgenden bedeutend zurücktreten. Ihr Ende erreicht gewöhnlich das Ende der betreffenden Intercostalis posterior und bildet mit dieser eine Anastomose.

Die Endäste der A. mammaaria int. sind:

Häufiger als Variationen des Ursprungs der Art. mammaaria int. (aus der Thyreoidea inferior oder mit der Transversa scapulæ) ist die Abgabe eines starken Astes auf die seitliche Innenfläche der Brustwand. Dieser Ramus costalis lateralis geht vom oberen Theile der Mammaria ab, bevor sie hinter den ersten Rippenknorpel tritt und verläuft über vier bis sechs Rippen herab, nach vorne wie nach hinten Zweigen entsendend, welche mit den anderen Intercostalerarterien anastomosiren.

Der Verlauf der Arteria mammaaria interna zum M. rectus abdominis, denn so kann das Verhalten der Mammaria aufgefasst werden, ist mit der S. 362 (Anm.) angedeuteten Auffassung des Rectus in Einklang zu bringen, welcher zufolge der Rectus mit seiner Lage-Veränderung die ihm ursprünglich zukommende Arterienverzweigung sich folgen ließ.

Arteria axillaris und ihre Verzweigung.

§ 225.

Diese Fortsetzung der Subclavia erstreckt sich vom unteren Rande der 1. Rippe und der Clavicula bis zum unteren Rande der Endscheibe des M. pectoralis major, durchsetzt somit die Achselhöhle. Sie nähert sich mit ihrem distalen Ende dem Humerus, während ihr proximales sich allmählich vom Thorax entfernt. Sie wird auf diesem Verlaufe allmählich vom Plexus brachialis, der erst über und hinter ihr liegt, umschlossen; median und etwas vor ihr liegt die Vena axillaris. Zu dieser tritt vor der Clavicula die Vena cephalica. Abwärts gegen die Öffnung der Achselhöhle wird die Arteria axillaris samt den sie begleitenden Nervenstämmen von Bindegewebe und Lymphdrüsen und endlich von der Fascie bedeckt. Sie versorgt vornehmlich die seitliche Brustwand und die Schulter mit Ästen. Diese sind:

1) Arteriae thoracicae. Diese sind wesentlich für die Muskulatur der Brustwand bestimmt und vertheilen sich zu M.pect. minor, major und serratus ant. major. Sie werden bald durch zahlreichere aus der Axillaris entspringende
Äste vertreten, bald bestehen Vereinigungen derselben zu wenigen Stämmen. Am regelmäßigsten kommen folgende vor:

2) **Art. subscapulares** (Fig. 451). Meist mehrere kleinere zum gleichnamigen Muskel und eine größere zuweilen sehr starke, die auch mit einer oder mehreren der Arteriae thoracicae oder mit allen gemeinsamen Ursprungs sein
kann. Abgesehen von diesen Combinationen gibt die eine stärkere und in der Regel selbständige A. subscapularis eine

Art. circumflexa scapulae ab, welche zwischen M. teres minor und dem lateralen Rande der Scapula zur Fossa infraspinata tritt, und hier an Muskeln sich vertheilend mit der A. transversa scapulae anastomosirt. Das Ende der Subscapularis verläuft als Art. thoracico-dorsalis zwischen M. serratus ant. major und M. latissimus dorsi herab und verzweigt sich an letzterem Muskel und dem Teres major, auch noch an dem Serratus, wenn die A. thoracica longa unzureichend ist.

3) Artt. circumflexae humeri. Entspringen nahe am Ende der Axillaris, verlaufen um das Collium chirurgicum dieses Knochens und werden als vordere und hintere unterschieden.

Arteria brachialis und ihre Verzweigung.

§ 226.

Mit dem Austritte aus der Achselhöhle setzt sich die Art. axillaris am Oberarm als Brachialarterie fort. Sie liegt dabei an der medialen Seite des M. coraco-brachialis, dann des M. biceps, hat zuerst den Anconeus longus, dann den Anconeus internus hinter sich und gewinnt allmählich, immer dem Biceps folgend, die vordere Fläche des Vorderarms, indem sie auf den M. brachialis internus tritt (vergl. Fig. 271, S. 379). Beiderseits wird sie auf diesem Wege von einer Vene begleitet, sowie auch der N. medianus ihr folgt, der erst etwas medial und vor ihr verläuft, in der Mitte des Oberarms sich allmählich lateralwärts lagert, und gegen das Ende zu an die mediale Seite der Arterie tritt.

Die Äste der Art. brachialis am Oberarm theilen sich in solche, welche der Bensseite und solche, welche der Streckseite zukommen. Erstere gehen mehrfach
Vom Arteriensysteme.

671

1) Art. profunda brachii. Entspringt am Beginne der Oberarmarterie, zuweilen sogar noch höher oben, und in diesem Falle meist gemeinsam mit einem der bedeutenderen Äste der Axillaris. Ihr Stamm wendet sich zwischen Anconaeus longus und internus nach hinten und aussen um die hintere Fläche des Humerus längs der oberen Ursprungsgrenze des Anconaeus internus herum, begleitet vom N. radialis, und verzweigt sich dabei an die Mm. anconaei. Außerdem gibt sie ab eine Art. nutritia humeri zu dem am Ende des oberen Drittels des Humerus, meist unterhalb der Spina tuberculi minoris gelegenen Ernährungsschle, sodann einen unter dem M. coracobrachialis zur Insertion des Deltamuskels verlaufenden Zweig (R. deltoideus), der auch direct aus der Arteria brachialis entspringen kann.

Andere Zweige sind:

a. Art. collateralalis media (s. posterior), geht in der Mitte des Oberarms zwischen Anconaeus internus und externus, dann im gemeinsamen Banche herab zum Olecranon und das Rete articulare cubiti.

b. Art. collateralalis radialis, ist das Ende der Art. profunda, verläuft an der lateralen Seite des Oberarms zwischen Anconaeus externus und Brachialis internus, dann zwischen Anc. int. und dem Ursprunge des Brachioradialis und des Extensor carpi rad. longus herab zum Epicondylus lateralis humeri.

3) Art. collateralalis ulnaris inferior (Fig. 453). Am unteren Ende der Art. brachialis, in geringer Entfernung von der Ellbogenbenge tritt dieses Stämmchen medialwärts über den Brachialis internus und theilt sich in Zweige, die diesen Muskel, sowie den Pronator teres versorgen, während ein anderer das mediale Zwischenmuskelband durchbohrt und sich in der Nähe des Gelenkes zwischen Olecrananon und Epicondylus medialis verästelt. Einer dieser Zweige verläuft quer oberhalb der Fossa olecrani lateralwärts und Anastomosirt mit dem dort befindlichen Endaste der Profunda brachii.

Der Ursprung der ulnaren collateralen Arterien aus dem Stamme der Brachialis erklärt sich aus der ulnaren (medialen) Lage der letzteren. Die Abgabe radialer Äste ist durch die zwischenliegenden Beuger verboten.
Arteria radialis und ulnaris.

§ 227.

Die Art. radialis (Fig. 453) ist der schwächere Endast der Art. brachialis, setzt aber deren Richtung am Vorderarme fort, längs dessen Radialseite sie ihren Weg nimmt. Sie liegt dabei zwischen Pronator teres und Brachioradialis, ferner zwischen letzterem und dem Flexor carpi radialis. In dem Maße, als diese Muskeln ihre Bäuche verlieren und in die Endschne übergehen, gewinnt die von ihnen begleitete Art. radialis eine oberflächlichere Lagerung, so dass sie vom unteren Drittel des Oberarmes an nur von der Fascia bedeckt wird. Am Handwurzelgelenke geht sie vom Vorderarm zum Handrücken und entzieht sich damit der Druckwirkung der Muskeln des Daumenballens. Sie verläuft zwischen Radius und Scaphoid unterhalb der Sehne des Abductor pollicis longus und Extensor pollicis brevis hindurch dorsalwärts (vergl. Fig. 452). Hier begibt sie sich nach dem ersten Interstitium interosseum und senkt sich zwischen den beiden Köpfen des M. interossens dorsalis I in die Hohlhand, wo sie sich an Daumen und Radialseite des Zeigefingers sowie in der Tiefe der Hohlhand verzweigt.

Die Äste der Art. radialis sind längs des Vorderarmes zahlreich aber meist klein. Sie gelangen größtentheils zu den benachbarten Muskeln. Hiezu kommen noch folgende wichtiger:

2) Ramus volaris superficialis (Fig. 453), geht vom Ende der Arterie am Vorderarme zum Daumenballen, verzweigt sich an dessen Muskeln und Haut und anastomosirt in der Regel mit einem oberflächlichen Verlauf behaltenden Zweige mit dem Ende der A. ulnaris, den oberflächlichen Arterienbogen der Hohlhand bildend (Arcus volaris superficialis).
Vom dorsal verlaufenden Abschnitten der A. radialis entspringen:

3) Rami carpeï dorsales, welche das Rete carpi dorsale herstellen helfen, von dem aus Arterien auch auf die Mittelhand und zwar nach den Interstitien interossea verlaufen. Sehr häufig ist die erste, zuweilen auch die zweite Art. interossea (metacarpea) dorsalis bedeutsend und sendet dann, am Ende des betreffenden Interstitiums sich theilend, Zweige zur Seite der Volarfläche der betreffenden Finger (A. digitales volares) ab. Diese Art. interossea (metacarpea) anastomosirt, wo sie besteht, mit der bezüglichen Art. digit. comm. volaris, deren Gebiet von ihr versorgt wird. Außer diesen stärkeren Arterien gelangen in der Regel noch feinere Äste auf den Interstitien nach vorne, und theilen sich hier nach Ulnar- und Radialseite des Fingerrückens, ohne aber die Bedeutung der volaren Fingerarterien zu gewinnen.

Das in die Hohlhand gelangende Ende des Art. radialis (Fig. 154) gibt bald während, bald nach dem Durchtritte durch den Ursprung des Interosseus dorsalis I. außer kleinen Zweigen zu den benachbarten Muskeln noch folgende Äste ab:

Art. princeps pollicis (et indicis), welche zwischen den Muskeln des Daumenballens oder in der Tiefe auf dem Metacarpale pollicis verlaufend, sich in zwei, der Radial- und Ulnarseite zugehörihe Arterien spaltet.

Art. volaris indicis radialis (Fig. 454). Gelangt an die Radialseite der Zeigefingers und entspringt zuweilen auch von der vorigen.

Die Art. ulnaris (Fig. 154), stärker als die Art. radialis, verläuft unter dem M. pronator teres schräg gegen die Ulnarseite des Vorderarmes, wobei sie zwischen Flexor digitorum sublimis und Fl. dig. profundus gelagert ist. Im distalen Drittel des Vorderarmes kommt sie in mehr oberflächliche Lagerung, von Flexor sublimis und Flexor carpi ulnaris bis zum Carpus begleitet und von der Fascie bedeckt. Hier tritt sie neben dem Pisiforme, dasselbe gegen die Hohlhand umkreisend, über das Lig. carpi volare transversum vom M. palmaris brevis bedeckt, unter die Palmar-Aponeurose und verläuft im Bogen nach der Radialseite der Hand, wobei sie ihre Endäste zu den drei unlnaren Fingern, auch noch zum Zeigefinger, entsendet. Sie bildet Anastomosen mit der A. radialis.

Die Verzweigung der A. ulnaris am Vorderarme versorgt den größten Theil der Muskulatur der Beugefläche und die ganze Streckfläche. Letztere durch Äste, welche die Membrana interossea durchbohren.

Die wichtigsten Äste der A. ulnaris sind:

Gegenbaur, Anatomie, 43
2) Art. interossea communis. Entspringt nächst der vorigen, als stärkster Ast der Ulnaris, spaltet sich meist sogleich in einen äußeren und inneren Zweig.

a. Art. interossea externa, tritt durch den oberen Ausschnitt der Membr. interossea zur Streckseite des Vorderarms (A. perforans superior) und verzieht sich zwischen dem Ex. digit. communis und der tiefen Muskelschichte bis gegen den Carpus herab. Gleich nach ihrem Durchtritte zwischen den Knochen des Vorderarmes sendet sie eine Art. interossea recurrens unter dem Anconaeus quartus zum Gelenke empor. (Sie ist in Fig. 453 sichtbar).

b. Art. interossea interna, verläuft zwischen dem Flexor profundus und Flex. pollicis longus, an diese sich verzweigend auf der Membrana interossea zum M. pronator quadratus, gibt auch diesem Zweige, und durchbohrt die Membr. interossea, um theils an die tiefe Schichte der Streckler, theils zum Rete carpi dorsale sich zu verzweigen (A. perforans inferior).

Zuweilen entspringen beide Interosseae selbständig aus der Ulnaris.

3) Art. mediana kommt zwar keineswegs regelmäßig aber doch so häufig vor, dass sie hier aufzuführen ist. Sie geht entweder von der Interossea communis oder von der Interna oder der Ulnaris ab und begleitet als ein feines Gefäßstämmchen im weiteren Verlaufe den N. medianus. Bei nicht sehr selten stärkerer Ausbildung dagegen gewinnt sie am distalen Drittel des Vorderarms eine oberflächlichere Lage und tritt dann über dem Ligamentum carpi transv. zur Hohlhand, oder sie verläuft bei tieferer Lage unter diesem, in beiden Fällen mit dem oberflächlichen Arterienbogen der Hohlhand sich verbindend. Zuweilen setzt sie sich in eine der Fingerarterien fort.

Sie ist, wo sie fehlt, durch einen den M. flexor digitorum sublimis versorgenden Muskelaast vertreten, aus dessen weiterer Ausbildung sie entstanden zu sein scheint.

4) Ramus dorsalis. Entspringt in der Nähe des Handgelenks und begibt sich um das distale Ende der Ulna von der Sehne des Flex. c. ulnaris be-
deckt zum Rücken des Carpus, wo er mittels Verzweigung in Rami carpea dorsales in das Arteriennetz sich auflöst. Zuweilen ist die Arterie stärker, und setzt sich dann zu einer Art. metacarpea dorsalis in's vierte Interstitium interosseum fort.

5) **Ramus volaris profundus** (Fig. 454), ein meist schwacher Ast, der von der Ulnaris abgeht, wo dieselbe das Pisiforme passirt. Er gibt dem Ballen des Kleinfingers Zweige und setzt sich unter dem Ursprunge des Opponens dig. V. in die Tiefe der Hohlhand fort, wo er mit einem Endaste der Art. radialis anastomosirt. Er schließt somit den **Arcus volaris profundus**.

In der Hohlhand verläuft das Ende des Stammes der Art. ulnaris unter der Aponeurosis palmaris über den Beugesehnen und verbindet sich in der Regel mit einem Zweige des Volarastes der Art. radialis zu einem **Arcus volaris sublimis**.

Von dieser Endstrecke der Ulnaris gehen ab:

6) **Artt. digitales volares** (Fig. 454), und zwar eine für die Ulnarseite des Kleinfingers, die auch gemeinsam mit dem Ramus volaris profundus entspringen kann, dann meist drei **Artt. digitales volares communes**, welche unter der Palmaraponeurose distal verlaufen und an den Basen der Grundphalangen oft mit den Artt. metacarpae dorsales in Anastomose zu finden sind, dann je in zwei Äste sich spalten, welche an den einander entgegengesetzten Seiten je zweier Finger entlang bis zur Spitze der Finger verlaufen. Die je einem Finger angehörigen bilden an der Endphalanx eine Anastomose, von der die Fingerbeere versorgt wird.

So erhält jeder Finger zwei volare Arterien, je eine für die Ulnar- und Radialseite. Die Ulnaris theilt solche Äste den drei ulnaren Fingern zu und der Ulnarseite des Zeigefingers, während Daumen und Radialseite des Zeigefingers auf die Arteria radialis angewiesen sind. Die Anastomosen zwischen beiden
Arterienstämmen in den Gefäßbogen bedingen eine Gleichmäßig der Blutzufuhr in diesem durch seine funktionellen Beziehungen sehr leicht circulatorischen Störungen ausgesetzten Endabschnitt der Gliedmaße.

§ 228.

Die großen Arterienstämm des Vorderarmes bieten nicht selten in ihrem Verhalten zur Arteria brachialis sowie durch ihren Verlauf bemerkenswerthe Varietäten, welche besonders bei oberflächlicher Lagerung des einen oder des anderen auch praktische Bedeutung erlangen. Diese Befunde hat man in zwei Gruppen zu unterscheiden versucht. Die eine soll die Fälle sogenannter hoher Theilung der Brachialarterie, die andere die Fälle hohen Ursprungs der Radialis oder Ulnaris umfassen.

Die sogenannte hohe Theilung der Art. brachialis kommt in verschiedenen Höhen vor. Beide Producte der Theilung verlaufen mit einander, erscheinen am Vorderarm in den normalen Bahnen und in normaler Verzweigung. Diese Fälle bilden aber keine besondere Abtheilung, vielmehr leiten sie sich aus derselben Quelle ab, wie die folgenden, von denen sie nicht wesentlich verschieden sind.

Die Art. ulnaris tritt auf ähnliche Weise von der Art. brachialis oder axil- laris ab, nimmt aber gewöhnlich ihren Weg zu der normalen Endstrecke über die Bäuche der Flexoren des Vorderarms.

Auch für den Stamm der Arterie ergibt sich eine auf dem gleichem Grunde wie jene hohen Ursprüinge der Vorderarmarterie beruhende Veränderung des Verlaufes, resp. der Lage zum Plexus brachialis. Indem ein Zweig der Axil- laris sich mit einem Zweig der Brachialis collateral verbindet, stellt sich eine neue Gefäßbahn her, die allmählich zur Hauptbahn wird und dann die so un- gebildete Strecke der Axillaris in einer abnormen Lagerung zum Plexus brachialis erscheinen läßt. Je nach der Örtlichkeit des Abganges der die Anastomose ein- gehenden Arterienzweige bietet auch die Umlagerung des Arterienstammes in der Beziehung zu den Nervenstümmen mancherlei Modalitäten. Wie für die Vorderarmarterien sind auch für die den Hauptstamm betreffenden Befunde die einzelnen Bildungsstadien in definitiver Ausbildung anzutreffen und geben Be- lege ab für die Genese des extremen Zustandes, der ohne die Kenntnis jener minder ausgeprägten Anastomosenbildungen eben so dunkel bliebe, als der hohe Ursprung der Arterien des Vorderarmes (G. Ruge).

Bezi diesen Ursprungsanomalitäten hat man zu beachten, dass es eigentlich nicht das Radialis oder Ulnaris genannte Gefäß ist, welches die Abnormität bildet, sondern dass es vielmehr dem Ursprunge nach ganz neue Arterienbahnen sind, die sich mit der normal gebliebenen distalen Strecke der betreffenden Arterie in Verbindung setzten und die proximale Strecke außer Funktion treten, und damit sich rückbilden oder verschwinden ließen.
Auch die Arteria interossea, oder die Mediana können ähnliche Transpositionen des Ursprungs, und dadurch theilweise abnorme Verlaufsverhältnisse darbieten. Am Vorderarme ergeben sich noch zahlreiche andere aber viel seltener vorkommende Variationen, die aus Anastomosen ableitbar sind. — Ein Vas aberrans der Brachialis senkt sich zuweilen wieder in denselben Arterienstamm ein. Bei bedeutenderem Kaliber des Gefäßes gibt diese Bildung den Anschein einer streckenweise doppelten Art. brachialis.

Äste der Aorta descendens.

A. Äste der Aorta thoracica.

§ 229.

Die von dieser Strecke entspringenden Arterien sind sämtlich von geringerem Umfange und vertheilen sich zu Eingeweiden der Brusthöhle und an die Wandung der letzteren. Danach unterscheiden wir Rami viscerales und Rami parietales.

Rami viscerales sind:

Jede der Bronchialarterien hat einen den Bronchialverzweigungen folgenden, meist etwas gewundenen Verlauf, wobei auf größeren Strecken nur kleine Zweige abgehen. Diese begeben sich theils in das interstitielle Gewebe, theils zur Bronchialwand, theils verzweigen sie sich seitlich zu benachbarten Lungenbläschen, wo ihre Capillarnetze mit denen der Lungenarterie in Zusammenhang stehen. Auch an die Pleura werden Zweige abgegeben.

Rami parietales sind:

4) Artt. intercostales posteriores. Durch sie prägt sich die am Skelet wie an Muskeln ausgesprochene Metamericie auch am Gefäßsysteme aus.
Sie entspringen am hinteren Umfange der Aorta thoracica in etwas wachsen- den Abständen, und nehmen nach unten an Stärke zu. Sie begeben sich zu den Intercostalräumen von der dritten bis zur zwölften Rippe (nachdem die beiden ersten Intercostalräume meist schon von der Intercostalis suprema versorgt sind) und verzweigen sich deshalb; die oberen anastomosieren mit den um vieles schwächeren Intercostales anteriores (aus der Mammaria int.), die beiden unteren verästeln sich distal in die Bauchwand.

Während der Stamm der Intercostalarterie sich dem unteren Rande je einer der oberen, den Intercostalraum begrenzenden Rippen anlegt und hier vorwärts verläuft, geht ein Zweig längs des oberen Randes der je unteren Rippe nach vorne, so dass jedem Spatium intercostale zwei seiner Länge nach verlaufende, meist sehr ungleich starke Arterien zukommen.

B. Äste der Aorta abdominalis.

§ 230.

a. Rami parietales sind:

b. **Rami viscerales** können wieder in paarige und unpaarige gesondert werden. Die ersteren gehen zu seiltlich von der Wirbelsäule liegenden oder doch dort entstandenen Organen, vorwiegend zu den Drüsen des Urogenitalsystems. Es sind:

Art. suprarenales (mediae), kleine, dicht an der Austrittsstelle der Bauchaorta entspringende Arterien, welche vor den Muskelpfeilern des Zwerchfells zu den Nebennieren verlaufen. Häufig sind es Zweige eines Astes der Aorta. Sie kommen aber auch mehrfach vor.

Art. renalis (Fig. 455). Jederseits eine oder mehrere starke Arterien, welche von der Seite der Bauchaorta in der Höhe des ersten Lendenwirbels rechtwinkelig entspringen. Der Verlauf geht über den Muskelpfeiler des Zwerchfells zum Hilus der Niere, vor welchem eine mehrfache Theilung der Arterie statt hat. Nicht selten ist der Ursprung dieser Zweige schon an der Aorta, wodurch ein niederer Zustand ausgedrückt wird.

Außer den zur Niere tretenden Ästen entsendet die Renalis meist einen Zweig zur Nebenniere (**A. suprarenalis**), auch solche, die zum Fett in der Umgebung der Nieren, zu benachbarten Lymphdrüsen und zum Ureter verlaufen. — Der Ursprung der beiderseitigen Nierenarterien liegt nicht selten in verschiedener Höhe.

Art. spermatica interna. Entspringt in der Regel unterhalb der Nierenarterie von dem vorderen Umfange der Aorta, die beiderseitigen meist in

Beide Spermaticae sind am Ursprunge zuweilen zu einem kurzen Stämmchen vereinigt. Sie werden zuweilen auch als Äste der Renalis getroffen. Seltener kommen jederseits mehrere Arte. spermaticae vor.

Die unpaaren Eingeweideäste der Bauchaorta sind für den Darmkanal und seine Adnexe bestimmt. Wenn auch diese Organe in der Bauchhöhle sich in lateral er Lagerung ausdehnen, so wird doch durch ihre Versorgung von unpaaren medial von der Aorta abgehenden Ästen an den primitiven Zustand erinnert, in welchem der Tractus intestinalis in geradem Verlaufe vor der Aorta gelagert, die Leibeshöhle durchsetzte. Diese Arterien sind sämmtlich durch reiche Anastomosen ausgezeichnet, durch welche nicht nur die großen Arteriengebiete des Darmrohrs unter einander zusammenhängen, sondern auch innerhalb dieser Gebiete vielfache Verbindungen entstehen. Jene Äste sind:

a. Art. coronaria ventriculi sinistra. Der schwächste Ast der Coelia ca, wendet sich links und aufwärts gegen die Cardia des Magens und von da längs der kleinen Curvatur nach rechts zum Pylorusabschnitt des Magens, wo die Arterie mit der rechten A. coronaria aus der A. hepatica anastomosirt. Sie gibt ab:

1) Rami oesophagei zum Ende der Speiseröhre, anastomosiren mit den gleichnamigen Ästen der Aorta thoracica.
2) Rami cardiaci. Bilden an der Cardia zuweilen einen Kranz, endlich
3) Rami gastrici, die auf beiden Flächen des Magens sich vertheilen, mit den anderen Magenarterien anastomosiren und mit diesen in ein reiches Arteriennetz eingehen.
Sechster Abschnitt

b. Art. hepatica. Sie ist bedeutend stärker als die vorige, verläuft nach der rechten Seite gegen die Leber, tritt im Lig. hepatoduodenale vor die Pfortader, links vom Ductus choledochus, und spaltet sich hier in zwei Äste: R. hepaticus und R. gastro-duodenalis.

Fig. 456.

Art. coeliaca mit ihren Ästen. — Die Leber ist emporgeschlagen, so dass ihre Unterfläche sichtbar ist.

Die in die Leber tretenden beiden Rami hepatici nehmen ihre Verzweigung nach der Pfortader, umgeben von dem Bindegewebe, welches die Glisson'sche Kapsel (S. 501) vorstellt. Das Vertheilungsgebiet dieser Arterien lässt die feineren Verzweigungen in verschiedene Abtheilungen bringen. Man unterscheidet:

b. Rami lobulares sind die, die Pfortader auf ihren feineren Verzweigungen begleitenden Arterien, welche zwischen den Leberläppchen verlaufen und im Umkreise der letzteren in Capillaren übergeben. Diese vereinigen sich mit dem venösen Capillarnetz der Läppchen, so dass also das Blut dieser Rami lobulares mit dem Pfortaderblute sich mischt.
Vom Arteriensysteme.

683

Bevor der Ramus hepaticus die Leber erreicht, gibt er noch ab die

Art. coronaria ventriculi dextra. In der Regel viel schwächer als die linksseitige, verläuft die Arterie zum Pylorus und von da längs der kleinen Curvatur des Magens der linksseitigen entgegen, mit welcher sie anastomosirt und sich ähnlich verzweigt. Zuweilen geht sie vom Hauptstamme der A. hepatica ab.

2. Ramus gastro-duodenalis. Gelangt vom Stamme der A. hepatica aus abwärts hinter den Pylorus, wo er sich in zwei Endäste theilt:

Sie gibt ab:

1) Rami pancreatici, entspringen in größerer Anzahl auf dem Verlaufe der A. lienalis.

2) Rami lienales bilden die Mehrzahl der Endäste, welche in die Milz eintreten. Von einem derselben oder auch wohl von einigen gehen Rami gastrici (Artieriae gastricae breves) zum Magengrunde ab, wo sie mit den anderen Magenarterien anastomosiren.

Äste dieser Arterie sind:

Fig. 457.

Indem jede einzelne Arterie sich nach zwei Seiten theilt und diese Äste sich mit den entsprechenden benachbarten Arterien verbinden, entstehen Arterienbogen, von deren Scheitel wiederum Arterien mit ähnlichem Verhalten entspringen. Dieser Art finden sich meist gegen drei Reihen von Bogen, deren äußerste am zahlreichsten aber auch vom geringsten Umfange sind (vergl. Fig. 458) und von ihren Scheiteln Arterienzweige direct zum Darmrohr entsenden. An der Mesenterialinsertion theilen sich diese in zwei, das Darmrohr umfassende Zweige, welche dann an der Darmwand feinere Ramificationen eingehen.

c. Artt. colicae. 3—4 Arterien, welche von der concaven Seite des Bogens der Art. mesenterica sup. abgehen, ramifiziren sich erst in einiger Entfernung vom Stamme und bilden weite Arcaden, von denen die zum Cöcum, Colon ascendens und transversum tretenden Zweige entspringen. Sie anastomosiren sowohl untereinander wie mit den Arterien der benachbarten Darmstrecken.

1) Art. ileo-colica. Sie ist entweder das Ende der Mesenterica superior, welches gegen die Endstrecke des Ileums und von da zum Anfang des Colon ascendens verläuft, oder die Mesenterica sup. endigt früher am Ileum, und dann geht eine besondere Art. ileo-colica von

2) Art. colica dextra (Fig. 457). Höher als die vorige von der Art. mesenterica superior entspringend, verläuft sie nach rechts zum Colon ascendens, theilt sich in einen auf- und einen absteigenden Ast, von welchen der erstere meist mit der Colica media, zuweilen auch mit einer zweiten Colica dextra anastomosirt, während der absteigende mit der Ileo-colica oder einer Arterie des Ileums sich verbindet. Versorgt Colon ascendens, auch das Coecum und einen Theil des Ileums, wenn eine besondere Ileo-colica fehlt.

Zuweilen kommt noch eine zweite Colica dextra vor, welche zu einem höher gelegenen Abschnitte des Colon ascendens gelangt.

3) Art. colica media (Fig. 457), entspringt von den Dickdarmarterien am höchsten, nicht weit von der A. pancreatico-duodenalis inferior. Sie verläuft zum Colon transversum, und spaltet sich auf diesem Wege in zwei Äste. Der rechte Ast geht eine Anastomose mit der Colica dextra ein, der linke verbindet sich mit dem aufsteigenden Aste der Art. colica sinistra, die aus der folgenden Arterie entspringt. — Auch die Colica media kann doppelt vorkommen, dann ist aber die Colica dextra immer einfach.

3) Art. mesenterica inferior [Mesarica inferior] (Fig. 159). Diese kleinste der von der Aorta abgegebenen Arterien des Darmanals entspringt am unteren Drittel der Bauchaorta, etwa zwischen 2. und 3. Lendenwirbel, und begibt sich nach links und abwärts ins Mesocolon. Sie spaltet sich bald in zwei Äste, welche Colon descendens, Flexur sigmoideus und Rectum versorgen.

a. Art. colica sinistra. Im Verlaufe nach links theilt sie sich in einen auf- und absteigenden Ast. Der Ram. ascendens verläuft zur linken Colonflexur empor und tritt mit dem Ram. sinister der Art. colica media in Verbindung, der Ramus descendens, welcher zur Flexur sigmoideus gelangt, verbindet sich mit Ästen der folgenden. Das Verhalten beider ist jenem der anderen Arteriae colicae ähnlich.

b. Art. haemorrhoidalis superior (s. interna) verläuft ziemlich senkrecht herab und gibt wieder zwei Äste ab, von denen der eine zur Flexur sigmoideus tritt und mit der vorigen Arterie anastomosirt, indess der andere im Mesorectum vor dem Kreuzbeine herab verläuft und sich ans Rectum verzweigt.
Hier geht er mit anderen, zum Ende des Rectums sich verzweigenden Arterien Anastomosen ein und setzt dadurch verschiedene Arteriegebiete in Verbindung.

C. Endäste der Aorta.

§ 231.

Durch Abgabe der beiden für Becken und untere Extremität bestimmten großen Arteriae iliacae communes wird der Aortenstamm so sehr reduziert, dass seine Fortsetzung auf das Kreuzbein nur wie ein unscheinlicher Endzweig (Fig. 455) sich darstellt. Dieser wird demzufolge als

Diese Äste sind rückgebildet wie die Sacralis media selbst, der Reduction ihres Gebietes gemäß, welches sogar noch von benachbarten Arterien versorgt wird. A. lumbalis ima, verläuft vor dem fünften Lendenwirbel, meist sehr unsanäthlich, aber doch bis zum letzten Foramen intervertebrale ausgebildet und sogar auch in die Rückenmuskulatur verzweigt. Sie fehlt nicht selten.

Rami sacrales, treten den Sacralwirbeln entsprechend, von der Sacralis media zur Seite des Kreuzbeins, anastomosiren mit den Sacrales laterales, und setzen zuweilen deren Verzweigung zu den Foramina sacralia anteriores.

Die Sacralis media geht manchmal von einer Iliaca ab. Ihr Ende ist in der hinteren Umgebung des Afters verzweigt, und steht hier in Verbindung mit einem dem letzten Caudalwirbel angelagerten, einige Millimeter großen Knötchen, das man als drüsiges Organ gedeutet und Steißdrüse (Glandula coccygea, genannt hat.

In dieses zuweilen gelappt erscheinende Organ treten einige Zweige der A. sacrales media, die sich unter einander verflechten und hin und wieder schlauchförmig erweiterte Stellen (Divertikel) darbieten. Diese Gefässe und die daraus hervorgehenden Capillaren, die ähnliche Verhältnisse besitzen, bilden mit den Venen und interstitiellem Bindegewebe die Hauptmasse des Organes. In aufgelockerten Stellen der Adventitia der Arterien kommen Infiltrationen von lymphzellenartigen Elementen vor.

Art. iliaca communis.

§ 232.

dagegen verläuft oberhalb der gleichnamigen Vene, der eine tiefere Lage zu-
kommt. Von der Theilungsstelle an nehmen die beiden Arterienäste ihre Lage zu
der gleichnamigen Vene derart, dass die Art. iliaca externa lateral von der Vene
zu liegen kommt, während die Iliaca interna vor der bezüglichen Vene ins kleine
Becken hinausteigt. Die Art. iliaca ext. dextra kreuzt daher die Vena iliaca
communis dextra, während die Art. iliaca interna sinistra die V. il. communis
oder die Vena il. externa sinistra kreuzt. [Vergl. Fig. 473.]

Art. iliaca interna (hypogastrica).

Diese Arterie hat ihr Verbreitungsgebiet an der Wand des Beckens und an
den in der kleinen Beckenhöhle befindlichen Organen. Sie ist schwächer als die
Iliaca externa, tritt medial vom M. psoas an der Ileo-sacralverbindung in's kleine
Becken herab, wo sie sich bald in ihre Endäste auflöst. In der letzten Fetal-
periode erscheint sie als eine Fortsetzung des Stammes der Iliaca communis, der in
die Nabelarterie übergeht (vergl. oben S. 642). Ihre Äste entspringen in verschiede-
dener Combination und lassen sich in solche theilen, welche die Wandungen der
Beckenöhle versorgen, innerhalb oder außerhalb derselben sich verzweigen, und
in solche, deren Verzweigungsgebiet an den Organen der Beckenhöhle liegt.

Diese Äste sind häufig zu zwei größeren Stämmen verbunden.

a. Zu den Wandungen des Beckens verlaufen :

1) *Art. ileo-lumbalis* (Fig. 460). Ist meist der erste Ast der Art. hypo-
 gastrica, der sich hinter dem M. psoas aufwärts begibt, gegen die Seite des letz-
ten Lendenwirbels.

 Er verzweigt sich hier in einen Ramus lumbalis [*R. ascendens*], der
 zum letzten Foramen intervertebrale einen Ramus spinalis entsendet und
 fernerhin hinter dem Psoas sich vertheilt; ferner in einen Ramus iliaca
 transversalis, der quer hinter dem Psoas in lateraler Richtung verläuft, und
 im M. iliacus internus theils oberflächlich, theils in der Tiefe sein Ende
 findet. Er anastomosirt mit der *Art. circumflexa ilei interna* (aus der Art.
 iliaca externa).

 Die Art. ileo-lumbalis wird zuweilen durch mehrere aus der Hypogastrica
 entspringende Zweige vertreten. Ihr lumbales Gebiet kann auch durch eine
 Arteria lumbalis versorgt werden.

2) *Art. sacralis-lateralis* (Fig. 460). Ein gleichfalls vom Stämme
 der Hypogastrica entspringendes kleine Stämmchen, welches an der Seite des
 Kreuzbeins verläuft und sich nach den *Foramina sacralia anteriora*, auch zum
 M. pyriformis verzweigt. Häufiger bestehen mehrere (2 — 3) disserente Arterien,
 welche theils aus dem Stämme, theils aus verschiedenen Ästen der Hypogastrica
 kommen. Die unteren anastomosieren mit der Art. haemorrhoidalis inferior.

3) *Art. glutaeae superior* (Fig. 360). Ist meist der stärkste Ast der Hypo-
 gastrica, der mit der Sacralis und der Obturatoria häufig von einem gemeinsamen
 Stämmchen abgeht. Die Arterie wendet sich zum oberen Rande des Foramen
 ischiadicum majus, um hier über dem M. pyriformis die kleine Beckenhöhle zu ver-
 lassen. Ausgetreten gelangt die Arterie unter den M. glutaeus maximus, gibt die-
 sem wie dem M. pyriformis einige Zweige, von denen die zum M. glut. maximus
Vom Arteriensysteme.

689
die bei weitem stärksten sind, und verläuft unter dem M. glutaeus medius, zwischen diesem und dem Ursprunge des M. glut. minimus sich vertheilend nach vorne.

Auf ihrem Verlaufe innerhalb des kleinen Beckens durchsetzt sie die erste Ansa sacralis. Auf der Außenfläche des Darmbeins gibt sie diesem eine Ermährungsarterie ab.

Fig. 460.

1) Art. glutae a inferior (A. ischiadica) (Fig. 460). Verläuft tiefer in die kleine Beckenhöhle herab zum unteren Rande des M. pyriformis, unter dem sie durch das Foramen ischiadicum majus ihren Austritt nimmt. Sie liegt dann medial vom N. ischiadiicus, vom Glutaeus maximus bedeckt, und vertheilt sich sowohl an diesen als an die kleinen Rollmuskeln des Oberschenkels, den M. coccygeus und an die Hinterfläche des Kreuzbeins, auch zu den Beugern und zum Adductor magnus.

Gegenbaur, Anatomie.

5) **Art. obturatoria** (Fig. 459 A). Entspringt vom Stamme der Hypogastrica, oder mit der Art. glutaea superior gemeinsam und begibt sich nach der Seitenwand der kleinen Beckenhöhle und hier schräg nach vorn über dem Ursprung des M. obturator int. zum Canalis obturatorius, den sie durchsetzt. Sie entsendet:

a. **Ramus iliaci** zum M. iliacus internus. Diese anastomosiren mit der Fleo-Iamabalis oder der Circumflexa ileum, fehlen häufig.

b. **Ramus publicus**, geht vor dem Eintritte der Arterie in den Canal vorwärts zur hinteren Fläche des Schambeins, wo er mit einem von der A. epigastrica inferior kommenden Zweige anastomosirt, hinter der Symphyse sich verteilend.

d. **Ramus posterior**, tritt nach hinten zwischen dem Rand der Pfanne des Hüftgelenks und dem Tuber ischii, versich den M. quadratus femoris und die Mm. gemelli mit Zweigen und anastomosirt mit der Art. glutaea inferior und der Art. circumflexa fem. externa. Er sendet eine

Arteria acetabuli durch den Pfannenaußchnitt zur Fossa acetabuli, wo sie sich durch das Lig. teres zum Kopfe des Femur verzweigt.

Die durch den Ramus publicus der Obturatoria mit der Epigastrica bestehende Anastomose kann eine bedeutende Ausbildung erlangen, so dass der eigent-
liche Stamm der Obturatoria zu einem unbedeutenden Ästen herabsinkt, und die Obturatoria aus der Epigastrica entspringt (Fig. 460 B). In diesem sehr häufigen Falle umgibt die Obturatoria medial den Anulus cruralis internus und tritt über das Schambein zur inneren Mündung des Can. obturatorius herab. Auch ein directer Ursprung der A. obturatoria aus der A. iliaca externa kommt vor.

b. Zu den Organen des kleinen Beckens begeben sich:

6) Art. umbilicalis. Der beim Fötus bis zur Geburt fungirende Stamm der Nabelarterie bleibt nach der Geburt nur so weit wegsam, als er an Organe der Beckenhöhle Zweige absendet. Das übrige oblitiert und bildet einen zur Seite der Harnblase emportretenden Strang, der mit dem anderseitigen convergirend, an der Hinterfläche der vorderen Bauchwand als Ligamentum vesico-umbilicale laterale zum Nabel tritt.

An der Innenseite der vorderen Bauchwand bilden die beiderseitigen Ligg. vesico-umbilica lateralia vom Bauchfell übergießte Vorsprünge, die gegen den Nabel zu verschwinden. Zwischen ihnen zieht median das Lig. vesico-umbilicale medium empor und trennt zwei durch jene Vorsprünge der Ligg. lateralia seitlich abgegrenzte Vertiefungen. Laterale von den Ligg. lateralia besteht wieder je eine Vertiefung, die mediale Leistengrube (Porca inguinalis medialis), deren oben (S. 370) Erwähnung geschah.

Die persistirende, in jenen Strang sich fortsetzende Strecke der Arterie ist meist ganz kurz und nach Maßgabe der Äste auch an Kaliber reducirt. Aus ihr gehen Äste zur Harnblase, einer davon auch zum Vas deferens.

A. deferentialis, verläuft zum Vas deferens und spaltet sich da in einen auf- und abstiegenen Zweig, von denen der letztere zur Ampulle des Vas deferens tritt.

Mit der Schwangerschaft erfährt die Arteria uterina eine der Volumzunahme des Uterus entsprechende Zunahme ihres Kalibers, sowohl am Stamm wie an den Ästen, die mit ihren Verzweigungen einen stark geschlängelten Verlauf nehmen, und eine bedeutende Blutzufluhr vermitteln.

Mit den Artt. vesicales und der Art. haemorrhoidalis superior wie inferior bestehen Anastomosen; und beim Manne gibt sie bis zur Prostata, auch zu den Samenblasen, beim Weibe zur Scheide Zweige ab, die durch solche aus den Artt. vesicales ersetzt sein können. Sie kann auch aus einer Sacialis lateralis entspringen.

9) Art. pudenda communis (Fig. 160 B). Im Ursprunge zeigt sie große Verschiedenheiten, indem sie entweder vom Stamm der Hypogastrica oder von einem der größeren Äste entspringt. Sie verläuft mit der A. glutaea inferior durch das Foramen ischiadicum majus, unterhalb des Pyriformis zum Becken heraus, um den Sitzbeinstachel, begibt sich durchs Foramen ischiadicum minus wieder an die seitliche Wand der kleinen Beckenhöhle und gelangt an die mediale Fläche des Sitzbeins, die Fossa ischio-rectalis lateral umziehend, dabei auch zuweilen dem M. obturator internus einen Zweig abgabend, wobei sie meist vom Processus falciformis (S. 261) des Lig. tuberose-sacrum bedeckt ist. Von da verläuft sie bis gegen den Schambogen, wo sie als Art. penis (Art. clitoridis beim Weibe) endet. Sie vertheilt sich an den After, den Damm und die äußeren Genitalien. Ihre Zweige sind:

d. Art. penis beim Manne, A. clitoridis beim Weibe. Sie ist beim Manne stärker und spaltet sich in beiden Geschlechtern in zwei Äste:

1) Art. profunda penis s. clitoridis, tritt an der medialen Seite des Corp. cav. penis s. clit. in dieses ein und verläuft in der Axe dieses Organs nach vorne, sendet aber auch nach hinten einen Zweig ab.

2) Art. dorsalis penis s. clitoridis. Steigt zwischen den Faserzügen des Lig. suspensorium penis s. clit. empor und läuft, mit der anderseitigen die unpaare Vena dorsalis zwischen sich fassend, nach vorn. Sie gibt Zweige an die Haut ab und geht Anastomosen mit der Profunda ein, gibt dann vorzüglich an die Eichel Zweige, auch an die Vorhaut. Auf diesem Verlaufe wird sie nur von der Penisfasie und der Haut bedeckt.
Arteria iliaca externa (femoralis).

§ 233.

Bis zu dem Austritte durch die Lacuna vasorum gehen vom Stamme der Iliaca externa nur zwei bedeutendere Äste ab, und zwar dicht hinter dem Leistenbande.

Am Rectus wird sie von Fascia transversa und Bauchfell bedeckt. In der Plica epigastrica verlaufend, scheidet sie die beiden Foveae inguinales und gewinnt dadurch Beziehungen zu Leistenhernien, indem sie bei äußeren Leistenhernien medial, bei inneren lateral von diesen liegt.

Außer den Ästen in die Bauchwand gibt sie ab:

a. Ramus pubicus. Entspringt an der Umbiegestelle der horizontalen Aufangsstrecke in den aufwärts gerichteten Verlauf, tritt hinter dem Gimbernat'schen Bande medial zur inneren Fläche der Schambeinp.-Symphyse und gibt hinter jenem Bande einen Zweig zum Ramus pubicus der A. obturatoria ab. Die Ausbildung dieser Anastomose lässt letztere Arterie von der Epigastrica entspringen (S. 690) vergl. Fig. 360 &. Der Ramus pubicus geht selten direct aus der Art. iliaca externa hervor.

Der Ursprung der Arterie liegt meist etwas tiefer als jener der Epigastrica. Selten besteht für beide ein gemeinsames Stämmchen, oder es kommen (seltener) zwei getrennt entspringende Circumflexae vor, wozu die häufigen Fälle einer frühen Theilung des Stammes in zwei lange, mit einander verlaufende Äste Übergangsformen abgeben.

Arteria femoralis (cruralis).

§ 234.

In der Fortsetzung der Art. iliaeae ext. verläuft der Stamm dieser Arterie zur Untergliedmaße, an welche seine Äste sich verzweigen. Die Arterie tritt aus der Lacuna vasorum in die Fossa iléo-pectinea zur Vorderseite des Oberschenkels, behält hier die Schenkelvene an ihrer medialen Seite, und wird weiter herab vom Sartorius bedeckt, während sie zwischen den Adductoren und dem Vastus medialis gelagert ist. Der die Arterie aufnehmende Raum ist der Hunter’sche Canal (vergl. S. 413), dessen distales Ende mit der Lücke in der Endsehne des Adductor magnus zusammenfällt, wobei die aponeurotische Decke jenes Canals dem medialen Zipfel der Endsehne sich anschließt. Durch jene Lücke im Adductor magnus verläuft die Arterie zur Hinterseite des Oberschenkels, und zwar in die Knickkehle, die sie als Art. poplitea durchsetzt. So gelangt sie zum Unterschenkel, an dem sie in die Art. tibialis antica und postica sich teildend ihr Ende erreicht. Diese End-Äste verzweigen sich an Unterschenkel und Fuß.

Beim Eintritte in die Fossa iléo-pectinea wird die Art. femoralis vom oberflächlichen Blatte der Fascia lata bedeckt, deren die Fossa ovalis begrenzender Ausschnitt (vergl. oben S. 413), zum Durchlasse der Vena
saphena, medial von der Arterie (der Vena femoralis entsprechend) sich findet. Lateral von der Arterie verläuft der N. cruralis, der mit dem ileo-psosas die Lacuna muscularum durchsetzt und in der Fossa ileo-pectinea der Endstrecke des genannten Muskels be- nachbart bleibt.

Die Lage der Art. femoralis an der lateralen Seite der Vene bildet scheinbar eine Ausnahme von der Regel des geschützteren Verlaufs der Arterienbahn, scheinbar deshalb, weil die Arterie, obwohl weiter nach außen liegend, doch von der derben Fascia lata gedeckt wird, während die Lage der Vena der Fossa ovalis zugewendet ist.

Beim Eintritte in den Hunter'schen Canal tritt die Vene hinter die Arterie.

1) Art. epigastrica superficialis (subcutanea abdominis). Verläuft über das Leistenband zur vorderen Bauchwand empor, nachdem sie häufig einigen Glandulae inguinallis Zweige abgegeben, und vertheilt sich in der oberflächlichen Bauchfaszie und der Haut der Unterbauchgegend bis zum Nabel.

2) Art. circumflexa ilei externa (superficialis). Tritt längs des Leistenbandes lateral zur Spina iliaca anterior superior empor und endet hier in Haut und Faszie, zuweilen auch in den benachbarten Muskelnursprüngen. Sie erscheint nicht selten als ein Ast der vorigen Arterie.

Eine der Artt. pud. ext. nimmt ihren Weg vor der Vena femoralis, eine andere hinter derselben, auf dem M. pectinens und durchbricht dann das diesen Muskel bedeckende Fascienblatt. Auch Lymphdrüsen erhalten Zweige von ihnen.

Die zweite Gruppe von Ästen der A. femoralis besteht einseitheils aus auseinanderliegenden Arterien, welche so häufig zu einem gemeinsamen Stämme vereinigt sind, dass wir sie als Äste desselben betrachten dürfen. Es ist die A. profunda femoris,
mit den Arteriae circumflexae. Sie bilden die hauptsächlichsten Arterien des Oberschenkels, so dass der Stamm der Femoralis wesentlich zur Fortsetzung in die Poplitea und damit für den Unterschenkel bestimmt erscheint.

1) A. circumflexa fem. externa (lateralis) ist stärker als die andere, entspringt auch meist etwas tiefer als jene. Sie verläuft über das Ende des Ileo-psoas vom Rectus femoris bedeckt, lateralwärts und sendet einen

Ramus ascendens zum Ileo-psoas und um den Hals des Femur herum, wo er sich unter den benachbarten äußeren Hüftmuskeln (Tensor fasciae lat., Glut. medius und minimus) verhieilt. In der Nähe des Hüftgelenks, dessen Kapsel von ihm versorgt wird, anastomosirt er mit der Circumflexa fem. interna. Der stärkere

Ramus descendens tritt nach Abgabe von Zweigen in den Vastus externus und läuft an diesem wie am medialem sich verzweigend weit am Oberschenkel herab und anastomosirt in der Höhe des Kniegelenkes mit Ästen der Poplitea.

b. Artt. perforantes sind Äste der Art. profunda femoris, welche meist nahe an der Linea aspera die Insertionsstelle der Adductoren durchbohren, um zur

1) A. perforans prima, meist der stärkste Ast, tritt zwischen der Insertion des Pectineus und des Adductor brevis, diesen wie den Adductor magnus durchbohrend nach hinten, gibt dann aufwärts einen Ast zu der Insertion des Glutaecus maximus (Anastomose mit der Art. glutea inf. und den Circumflexae) endlich einen starken Ast zu den Beugemuskeln (Fig. 461), und einen Zweig zum oberen Ernährungloche des Femur (S. 268).

2) A. perforans secunda. Gelangt in der Regel an der Insertion des Adductor brevis oder zwischen dieser und jener des A. longus, und dann häufig mit der folgenden gemeinsam zum Durchsetzen des Adductor magnus und vertheilt sich wieder in den Beugern.

7) Art. articularis genu suprema [Anastomotica magna] (Fig. 562 und 563). Ihr Ursprung findet sich am Ende der Femoralis, dicht vor oder unter deren Durchtritt durch die Endsehne des Adductor magnus. Von da verläuft diese Arterie zum Knieselenk herab und verzweigt sich an dessen vorderer und medialer Seite ins Rete articularare genu. In der Regel sind es zwei Arterien, welche diesen Verlauf nehmen, entweder getrennten oder gemeinsamen Ursprungs. Im letzteren Falle repräsentirt die eine einen tiefen Ast, der durch den Vastus medialis herab zur Patella tritt. Der andere, oberflächliche Ast verläuft längs der Adductorsehne zum medialen Condylus des Femur, bald vor bald hinter jener Sehne, zuweilen ist er wieder in zwei Äste gespalten.

Arteria poplitea.

§ 235.

Nach dem Durchtritt durch den Adductor magnus wiru die Arterie des Oberschenkels als A. poplitea bezeichnet (Fig. 464). Sie wird zuerst vom Bunde des M. semimembranosus bedeckt, tritt dann zwischen diesem Muskel und dem M. biceps femoris über das Planum popliteum herab, verläuft in der Tiefe der Kniekehle über die hintere Wand der Kapsel und kommt so zwischen beiden Köpfen des M. gastrocnemius in den unteren Raum der Kniesehle auf den M. poplitens. An dessen unterem Rande erreicht sie ihr Ende, indem sie nach Ab-

1) Art. articularis genu sup. lateralis (ext.), geht vom proximalen Abschnitte der Popliten ab, und begibt sich unter dem Biceps femoris über dem Condylus lateralis nach vorne, theils am Condylus theils zum Rete patellae verbunden. Sie anastomosirt vorzüglich mit dem Ramus profundus der A. articularis suprema.

3) Art. articularis genu media (azygos). Ist nicht selten mit einer der beiden vorigen, oder auch mit allen beiden gemeinsamen Ursprungs; sie begibt sich vorwärts zur Kapsel des Kniegelenkes, die sie zwischen beiden Condylen durchsetzt. Ihre Endverzweigung findet an den Kreuzbändern und dem die Kniegelenköhle von hinten her einbuchtenden Gewebe statt.

5) Art. articularis genu inf. medialis (int.). Meist etwas tieferen Ursprungs als die äußere, begibt sich die Arterie unter dem medialen Kopfe des Gastrocnemius um den Rand des medialen Condylus tibiae und bedeckt vom medialen Seitenbande und den Endselneh der Sartorius, gracilis und Semitendinosus nach vorne zum Rete patellae.

Die von der Poplitea abgehenden Muskeläste gehen theils am oberen, theils am unteren Abschnitte der Arterie ab. Erstere sind unanschnebeln und gehen theils zum Vastus externus, theils zu den Bungern. Ansehnlich dagegen sind die:

III. Arterien des Unterschenkels und des Fußes.

Arteriae tibiales.

§ 236.

Von den beiden aus der Endtheilung der Art. poplitea entstehenden Arterien erscheint die A. tibialis postica als die Fortsetzung des Stammes, während die Tibialis antica mehr als ein Ast sich darstellt.

Die Art. tibialis antica (Fig. 462) ist für die Vorderseite des Unterschenkels und die Rückenfläche des Fußes bestimmt. Sie begibt sich am unteren Rande des Poplitens nach vorne durch den Ausschnitt der Membrana interossea
auf die Vorderfläche der letzteren, wo sie samt den Venen noch von sehnenen Zügen jener Membran (*Canalis fibrosus*) umgeben ist. Sie liegt anfänglich zwischen Tibialis anticus und Extensor digitorum communis longus, dann zwischen erstem und Extensor hallucis longus. In dieser Lage tritt sie allmählich auf die Vorderfläche des distalen Endes der Tibia, wo sie zwischen den Sehnen des Tibialis anticus und des Extensor hallucis gelagert über dem Sprunggelenk zum Fußrücken als *Art. dorsalis pedis* sich fortsetzt. Auf ihrem Wege gibt sie ab:

2) *Rami musculares* begeben sich in größerer Zahl zu den Muskeln, zwischen denen die Arterie verläuft.

3) *Rami malleolares anteriores* entspringen nahe am Ende der Arterie und verlaufen zu den Knöcheln, wo sie in das Rete malleolare fibergehen.

 a) *Art. malleol. ant. lateralis (externa)* läuft unter den Sehnen des Ext. hallucis und dig. communis zum äußeren Knöchel, anastomosiert mit einem Endzweige der *Art. peronea* am distalen Ende der Membrana interossea und steht bezüglich der Ausbildung mit diesem in einem alternirenden Verhältnisse.

 b) *Art. malleol. ant. medialis (internae)* entspringt meist etwas tiefer als die vorige und beginnt sich unter der Sehne des Tibialis ant. zum inneren Knöchel.

Art. dorsalis pedis. Am Sprunggelenk aus der *Art. tibialis ant.* fortgesetzt, verläuft sie unter den medialen Schenkeln des Kreuzbandes zwischen der

Vom Arteriensysteme. 699

Die Äste der A. dorsalis pedis bieten sehr zahlreiche Variationen. Je nach der Stelle ihres Abgangs und Verlaufs teilen sie sich in Artt. tarsaeae und eine metatarsale, welche zusammen in ein Rete dorsale pedis eingehen.

2) A. tarsaeae medialis (interna). Eine größere, bin und wieder durch mehrere kleinere vertretene Arterie, welche in der Gegend des Naviculare oder des Cuneiforme I zum medialen Fußrunde tritt und das dorsale Arterienetz nach dieser Seite ergänzt. Beim Vorhandensein mehrerer geht die hinterste über dem Kopfe des Sprungbeins ab.

Aus dem Ende der Art. dorsalis pedis geht hervor:

5) Ramus plantaris profundus (r. anastomoticus). Diese Arterie dringt zwischen den beiden Köpfen des M. inteross. dorsalis I zur Fußsohle und verbindet sich daselbst mit dem Ram. profundus der Art. plantaris, wobei sie vom schrägen Kopf des Adductor hallucis bedeckt wird.

Art. tibialis postica (Fig. 464). Stärker als die vordere erscheint sie als die Fortsetzung der Poplitea. Sie verläuft vom M. soleus überlagert auf den tieferen hinteren Muskeln des Unterschenkels und daselbst von der gemeinsamen Fascie dieser Muskeln umschlossen in etwas medialer Richtung herab, und gelangt zwischen Achillessehne und Tibia in mehr oberflächliche Lagerung. Hinter dem Sprunggelenke wird sie vom Lig. laciniatum, der Fortsetzung jener Fascie, bedeckt und gelangt zwischen dem Malleolus medialis und dem Tuber calcanei, meist in der Nähe des Sustentaculum tali zum Fuße, wo sie sich als A. plantaris zur Sohlfäche fortsetzt.

Auf ihrem Verlaufe zwischen den Wadenmuskeln und den tiefen hinteren Muskeln des Unterschenkels liegt die Arteria tibialis postica zuerst dem M. tibialis posticus an, wird dann am mittleren Drittel des Unterschenkels in eine zwischen diesem Muskel und dem Flexor dig. communis longus befindliche Rinne aufgenommen, aus der sie am Beginne der Kreuzung der Endsehnen jener Muskeln tritt. Sie hat
dann zwischen der Endschne des Flexor dig. comm. longus und des Flexor hallucis longus ihre Lage. — Bei hoher Endtheilung der Poplitea kommt die Tibialis postica wie auch die Antica mit ihrer Anfangsstrecke noch in die Knöchelhöhle zu liegen.

Äste sind:

1. Art. peronea (Fig. 464). Der stärkste Ast der Tibialis postica geht in sehr spitzen Winkel vom Stamme ab, meist in geringer Entfernung vom Ursprunge desselben, und verläuft gegen die Fibula längs des fibularen Ursprungs des M. tib. posticus, erst vom Solen bedeckt, dann von der schmälen Ursprungsverbindung des Tibialis posticus und des M. flexor halluc. longus umschlossen, so dass die Arterie unter letztem Muskel zu liegen scheint. Schließlich tritt sie eine kurze Strecke auf die Membrana interossea und teilt sich in einen Ramus anterior und posterior.

b) Ramus anterior (A. peronea perforans) (Fig. 463). Tritt über dem distalen Tibio-Fibulargelenke durch das Zwischenknochenband nach vorne und geht mit der A. malleolaris ant. lateralis Anastomosen ein, auch mit der Tarsus lateralis (s. oben).

c) Ramus posterior (A. peronea descendens) (Fig. 464) setzt sich hinter dem Malleolus lateralis nach abwärts fort, gibt Äste zum Knöchel (Art. malleolaris post. lateralis) und endet mit Verzweigungen an der lateralen Fläche des Fersenbeines (Rami calcanei).

3) Rami musculares entspringen in größerer Anzahl auf dem Verlaufe des Stammes der Art. tibialis postica und gehen zum Solen, Tibialis post. und Flexor digit. comm. longus.

4) Art. malleolaris post. medialis eine meist schwache zum Arteriennetz des medialen Knöchels verlaufende Arterie.

5) Ramus calcaneus (Fig. 464). Eine zuweilen auch von der A. plantaris entspringende kleine Arterie verbreitet sich an der medialen Fläche des Fersenbeines und geht mit den aus dem Ram. posterior der Peronea entspringenden Fersenbeinästen Anastomosen ein. Diese derselben ist zuweilen sehr anscheinend, und verbindet sich mit dem vorerwähnten R. communicans der Peronea über dem Fersenbein vor der Achillessehne.

Art. plantaris (externa) (Fig. 465) stellt in der Regel die Fortsetzung der Tibialis postica zur Fußsohle vor. Sie verläuft zuerst unter dem Adductor hallucis, dann vom Flexor digitorum brevis bedeckt, zwischen diesem und dem plantaren Köpfen des Flexor dig. longus gegen den lateralen Rand der Fußsohle, wendet sich dann im Bogen (Arcus plantaris) unter dem Flexor longus und dem schrägen Köpfen des Adductor hallucis auf dem Metatarsus medial zum ersten Interstitium metatarsale, wo sie mit dem Ramus plantaris der Art. dorsalis pedis anastomosirt. Sie entsendet zuerst an den medialen Fußrand einen starken Zweig (l. plantaris interna), dann gibt sie auf ihrem Verlaufe zwischen den plantaren

Von den Ästen der Plantar-Arterie ist der erste bedeutendere:

1 | Ramus plantaris medialis (A. plantaris interna) (Fig. 465). Diese Arterie verläuft unterhalb des Sustentaculum tali meist vom Ursprunge des Abductor hallucis bedeckt vorwärts und verzweigt sich vorwiegend am medialen Fußrande, in der Muskulatur und der Haut. Sie teilt sich in zwei Zweige:

Von der bogenförmigen Endstrecke der Arteria plantaris und deren Verbindung mit dem plantaren Ende der A. dorsalis pedis gehen hervor:

Zwischen der Arterienvertheilung an der Hand und jener am Fuße besteht also die Verschiedenheit, dass die Arterien der Zehen von einem tief verlaufenden Stamme, die der Finger von einem oberflächlichen abgehen. Dieses Verhalten wird aus den differenten functionellen Beziehungen beider Gliedmaßen verständ-

Vom Venensysteme.

Anlage der großen Venenstämme.

§ 237.

Nabelvene erscheint, in den die Venae omphalo-mesentericae sich einsenken. So-
mit besteht ein Venenstamm, durch welchen das Blut vom Darme (resp. vom
Dottersack) sowie von der Allantois dem Herzen zugeführt wird. Eine Verein-
fachung dieses Apparates kommt dadurch zu Stande, dass nur eine Umbilical-
vene sich erhält und auch nur eine der Venae omphalo-mesentericae, und zwar
von der Strecke an, wo sie eine Darmvene aufnimmt, bestehen bleibt. Die Nabel-
vene ist dann zum Hauptstamme dieses Abschnitts des Venensystems geworden.

Aber auch am embryonalen Körper selbst haben Venen sich ausgebildet. Am
Kopfe sammelt sich das venöse Blut jederseits in einen hinter den Kiemenpalten
herablaufenden Stamm, die primitive Vena jugularis [Fig. 466 A]. Mit dem
Herabbrücken des Herzens werden diese Venen länger. Sie treten mit dem Ende des
Stammes der Umbilicalvenen zusammen, nachdem sie vorher je eine von hinten kom-
nende Vene aufgenommen haben. Dieses ist die Vena cardinalis \(A \). Die für
letztere und die Jugularvene gemeinsame Strecke stellt jederseits ein kurzes Quer-
stämmchen vor, den Ductus Cuvieri, \(DC \). Das Wurzelgebiet der Cardinalvenen
liegt vorwiegend an der Umrne und der Körperwand. Es wird durch die Ent-
wickelung eines unpaaren Stammes beeinträchtigt, der auch von den Urnieren Blut
aufnimmt und sich wiederum mit dem Ende des Umbilicalvenen-Stammes \(U \) ver-
einigt. Diese Vene stellt die Vena cava inferior vor \(c \). So wird das Ende der
Nabelvene zu einem Sammelplatze aller bis jetzt gebildeten Venen. Es nimmt die
Cuvier'schen Gänge auf, die Nabel- und Darmvenen, und endlich die untere Hohlvene.
Seine Wand geht später in die des rechten Vorhofs des Herzens über, so dass jene
Venentenn dann in diesen ausmünden. Wir haben also an dieser Anlage des Körper-
Venensystems einen paarigen und einen unpaaren Abschnitt zu unterscheiden. Den ersteren stellen die Jugular- und Cardinalvenen samt den sie jederseits ver-

Im Bereiche des paarigen Körpervenensystems treten allmählich neue Veränderungen hervor. Beide Jugularvenen sammeln das Blut aus dem Kopfe, sie nehmen auch Hirnvenen auf, indem sie in der Schläfengegend mit inneren Venen communizieren. Der Stamm dieser Jugularvene verläuft über den Kiemenspalten zum Cuvier'schen Gang herab, und ist nach Maßgabe der Ausbildung des Kopfes mächtig. Er entspricht durch seinen mehr oberflächlichen Verlauf einer V. jug. externa (Fig. 466 A, Be). Diese bleibt bei den meisten Säugethieren der bedeutendere Stamm. Eine tiefer verlaufende Vene beginnt am Foramen jugulare, nimmt später das Gehirnvenenblut auf und beeinträchtigt so als Vena jugularis interna die zuerst aufgetretene, mit der sie sich weiter abwärts verbindet. Sie wird bei den Primaten zum Hauptstamme für das aus dem Gehirn rückkehrende Blut. Das Ende des gemeinschaftlichen Jugularvenenstammes nimmt eine Vene von den vorderen Gliedmaßen auf, die V. subclavia (B, C, s). In die Jugularvenen treten noch Venen vom Halse, welche vorne sogar die beiderseitigen Gebiete unter einander in Verbindung setzen. Da aber mit der Volumszunahme des Gebietes aller dieser Venen auch deren Stämme sich bedeutender ausbilden, so erhalten sie das Übergewicht über die mit ihnen sich vereinigenden Cardinalvenen, und werden von der Vereinigung der V. jug. communis mit der Subclavia an, bis zur Mündung in den rechten Vorhof als obere Hohlvenen bezeichnet (C). In eine solche Vene ist also der Duct. Cuvieri und noch ein Stück der primitiven Jugularis eingegangen. Die linke obere Hohlvene verläuft um die hintere Wand der linken Vorkammer in der Kranzfüchse des Herzens zum rechten Vorhof und nimmt auf diesem Wege noch die Herzvenen auf. Noch in der achten Woche besteht sie beim Menschen. Die rechte senkt sich gerade zum rechten Vorhof herab. Zwei obere Hohlvenen bilden sich bei den Reptilien aus und bestehen bei Vögeln und vielen Säugethieren. Bei manchen der letzteren ist aber die linke die schwächere. Das wiederholt sich auch beim Menschen und schreitet noch weiter. Zwischen beiden Hohlvenen hat indessen eine Anastomose sich ausgebildet, indem aus dem Venenplexus ein querer Stamm mächtiger sich entwickelte, welcher die linke obere Hohlvene mit der rechtten in direkte Verbindung setzt (Fig. 466 B, C). Dadurch wird das Blut der linken mehr und mehr der rechten zugeführt, und die Rückbildung der zum Herzen verlaufenden Strecke der linken ist ebenso die Folge jener Einrichtung wie die Ausbildung
Vom Venensysteme.

707

des Verbindungsgefäßes und die bedeutende Zunahme des Kalibers der rechten. Von der linken oberen Hohlvene bleibt dann nur die im Sulcus coronarius des Herzens verlaufende Endstrecke bestehen, soweit Herzvenen in sie einmünden, für die sie einen »Sinus coronarius« vorstellt.

Auch die Cardinalvenen erfahren Veränderungen. Sie geben Gebiet um Gebiet an die Cava inferior ab, und zeigen damit relative Reductionen. Ihr unteres Ende hatte sich bis ins Becken fortgesetzt und repräsentirt daselbst eine Vena hypogastrica. Ebenso waren die Venen der Untergliedmaßen mit ihnen in Zusammenhang. Sie führen somit aus einem aussern Gebiete das Blut zurück. Der hintere Theil des Längsstammes dieser Venen schwindet jedoch, und die in ihm einmündenden metameren Venen [spätere Lumbal- und untere Intercostalvenen] geben zu einem inzwischen ausgebildeten neuen Längsstämmchen über, welches weiter medial von der Cardinalvene liegt und in den oberen, bestehendenbleibenden Theil dieser Vene sich fortsetzt. Das sind die Vv. vertebrales posteriores. Das distale Ende dieser Venen anastomosirt dann noch mit den Venen der Untergliedmaßen, die sich inzwischen jederseits als eine Vena iliaca communis mit dem Anfange der Vena cava in Verbindung setzten. Die Venen des Beckens und der unteren Gliedmaßen sind dadurch dem Gebiete der Cardinalvenen und damit dem paarigen Venensysteme entzogen und einem unpaaren Venenstamme zugeheilt worden. Wie sich für letzteren durch die Gebietserweiterung der Vena cava inferior eine Zunahme des Calibers ergibt, so erfolgt für die Cardinalvene, resp. die deren untere Strecke darstellende V. vertebrales posterior eine Rückbildung, welche noch weiter greift, wenn die Lumbalvenen gleichfalls mit der unteren Hohlvene sich in Verbindung gesetzt haben [Fig. 466 C]. Dann wird die Cardinalvene wesentlich auf die Thoracalregion beschränkt und die Vv. vertebrales stellen nur ein schwaches Längsstämmchen vor, welches jederseits die Vv. lumbales unter sich verbindet, aber auch noch mit den Cardinalvenen in Zusammenhang steht. Die beiderseitigen Cardinalvenen sind durch diese Vorgänge zu relativ unbedeutenden Venenstämmen herabgesunken, welche das Venenblut von der hinteren Thoraxwand sammeln. Die linke Cardinalvene ist aber durch die schon in der 7. — 8. Woche vollzogene Verbindung der linken oberen Hohlvene mit der rechten gleichfalls beeinflusst und quere Anastomosen zwischen beiden Cardinalvenen haben an Ausbildung gewonnen [Fig. 466 C].

Durch diese Anastomosen wird das im linken Längsstamme sich sammelnde Blut in den rechten übergeführt, der die V. azygos (az) vorstellt. Die linke Cardinalvene, welche ihre Verbindung mit der gleichseitigen Hohlvene vermindert oder ganz aufgehoben hat, communizirt dann quer über die Wirbelkörper hinweg mit der Azygos und bildet die V. hemiazygos (hz). So wird also der Venenapparat der linken oberen Körperhälfte mit dem der rechten in Verbindung gesetzt und gewinnt in diesem neue Bahnen, welche sämtlich in einer einzigen oberen Hohlvene [der rechten] vereinigt sind. Diese setzt sich jederseits aus einem, die Jugulares und Subclavien vereinenden Stamme zusammen, der Vena anonyma (V. brachiocephalica), von welchen die linksseitige größtentheils von dem die linke
Cava superior mit der primitiven rechten verbindenden queren Gefäße dargestellt wird (Fig. 466 C, a's).

delt sich bis zur Abgabe von Ästen in die Leber in einen soliden Strang um (Ligamentum hepato-umbilicale (S. 189), der sich an die linke Vena hep. advehens inserirt. Diese Venae hep. advehentes treten nunmehr als Pfortaderäste auf. Indem die in die rechte V. hep. adveh. sich einsenkende Vena mesenterica zum Hauptstamme der in die Leber führenden Venen wird, bildet sie sich mit ihrer Endstrecke in die Pfortader (Vena portae) um, und die Venae hep. advehentes sind dann Äste der letzteren. Die fernere Fortsetzung der Nabelvene in den Ductus Arantii geht gleichfalls der völligen Obliteration entgegen (S. 499).

Die Venae hepaticae advehentes bleiben die ausführenden Lebervenen, welche man fortan als Venae hepaticae von den Pfortaderästen unterscheidet.

Aufordnung des Venensystemes.

I. Venen des Lungenkreislaufs.

Venae pulmonales.

§ 238.

Diese Venen sammeln sich aus den Capillaren der Lungen und treten an der Lungenwurzel als größere Gefäße hervor. Eine Anzahl der letzteren vereinigt sich dann je zu einem Stämmmchen, deren jeder Lunge zwei zukommen. Während die Lungenarterie ihre Bahn mit jener der Bronchien verbunden zeigt, verhalten sich die Venen einigermaassen unabhängig davon, und zwar um so mehr, je weiter peripherisch sie sich finden. Sie sammeln sich geflechtartig zwischen den Lobulis, während die Arterien in denselben sich vertheilen.

Sie finden sich unterhalb der Lungenarterien und verlaufen horizontal zum linken Vorhof. In der Regel sind die beiden Lungenvenen bis zur Einmündung in den Vorhof getrennt; doch können sie sich je zu einem kurzen gemeinsamen Stämme vereinigen. Beide Lungenvenen jeder Seite liegen übereinander (Fig. 467), so dass eine obere und eine untere unterschieden werden kann. Die obere befindet sich etwas weiter nach vorne zu und zwischen ihr und der unteren (oder auch deren Zweigen) tritt ein Ast des bezüglichen Bronchus hindurch zum Hilus der Lunge. Auf das Ende der Lungenvenen treten schleifenförmige Züge der Muskulatur der Vorkammer über, wodurch sie allmählich in die Wand des Vorhofs fortgesetzt sind. Sie liegen dabei innerhalb der Pericardialhöhle.

II. Venen des Körperkreislaufs.

§ 239.

Das Körpervenenblut kehrt nach der Umwandlung, welche die früheren Zustände des Venensystems erfahren (S. 705), schließlich durch zwei Hauptstämmme zum rechten Vorhofe des Herzens zurück. Das sind die beiden Hohlvenen, denen sich noch eine dritte Vene zugesellt, welche das Blut der Herzwand in den Vorhof führt.

A. Venen der Herzwand.

Die Venen des Herzens sammeln sich an der Oberfläche in größere, in die Kranzfurche eingebettete, und hier zum Theile die Arterien begleitende Stämmchen, welche an der hinteren Fläche des Herzens sich in einen Sinus coronarius vereinigen und in den rechten Vorhof münden. Taschenklappen fehlen diesen Venen, dagegen finden sich an manchen Einmündestellen kleinerer Venen in...

1) *Vena magna cordis* (*Coronaria magna*) (Fig. 468). Verläuft in der vorderen Längsfurche, wo sie von beiden Kammern her Venen empfängt, wendet sich dann unter dem linken Herzohre in die Kranzfurche, in welcher sie zwischen linker Kammer und Vorkammer sich nach hinten begibt. Außer kleineren Venen tritt in der Regel eine größere von der Seite der linken Kammer zu ihr. Das Ende des Stammes setzt sich direct in den Sinus fort, von welchem sein Lumen meist durch eine leichte Falte (*Valvula Vieusseni*) sich abgrenzt.

2) *V. posterior ventric. sinistri.* Beginnt nahe der Herzspitze an der hinteren und seitlichen Wand der linken Kammer und tritt parallel mit der folgenden zum Sinus, in dessen Ende sie mündet. Sel tener vereinigt sie sich vor dem Sinus mit der Coronaria magna.

3) *V. media cordis.* Verläuft in der hinteren Längsfurche und nimmt von der linken Kammer einige größere Venen, kleinere von der rechten auf.

4) *V. parva cordis* (*Coronaria parva*). Entsteht in der rechten Kranzfurche, in der sie zum Sinus verläuft, und nimmt vorzüglich hinten von Kammer und auch von Vorkammer Venen auf.

Mehrere kleine Venen, welche theils vom rechten Vorhofe, theils von der Vorhofsscheidewand, theils vom vorderen Theile der rechten Kammerwand kommen, münden direct in die rechte Vorkammer an verschiedenen Stellen ein. Ihre Ausmündungsstellen sind die *Foramina Thebesii*.

In der Nähe der Herzspitze anastomosiren die Venen der Kammerwände. — Eine kleine, von der hinteren Fläche der linken Vorkammer zum Anfang des Sinus herabziehende Vene ist ein Rest der primitiven linken oberen Hohlvene, die hier zu ihrem in den Sinus übergegangenen Ende verlief.

Über die Herzvenen sowie die obere Hohlvene s. W. GRUBER, Méth. de l’Acad. imp. de St. Pétersbourg. VII. Série. T. VII. No. 2.
B. Gebiet der oberen Hohlvene.

§ 210.

3) V. cervicalis profunda ist gleichfalls an der Verbindung mit den Venengeflechten der Wirbelsäule betheiligt und kann als ein ansehnlicher Venen-
Vom Venensystem.

stamm bis zum Schädel emporsteigen, mit dem dortigen Venengeflechte Anastomosen bildend.

1) V. mammaria interna und

5) V. intercostalis suprema sind meist nur proximal einfach, distal verdoppelte Venen, welche aus den Gebieten der gleichnamigen Arterien kommen.

Vena jugularis interna.

Venen der Schädelhöhle.

Diese Sinusse entsprechen in ihrer Lage vorwiegend den oberflächlichen Grenzen der größeren Abteilungen des Gehirnes. Sie füllen damit Lückenräume aus, welche an jenen Stellen in dem Cavum cranii bestehen und in welche die Dura mater sich fortsetzt. Die Vereinigung einer größeren Zahl findet sich an der Protub. occip. int. (Confluens sinuum). Es sind folgende aufzuführen:

2) der Sinus occipitalis. Beginnt aus Venengeflechten am hinteren Umfang des Foramen occipitale, und erstreckt sich längs der Crista occipit. interna zur Protuberanz, wo er mit dem Sinus transversus zusammenfließt.
3) Sin. sagittalis superior (longitudinalis sup.) folgt der Befestigungsstelle der Falc cerebri (Fig. 305) vom Foramen cocceum an bis zur Protub. occipit. int., wo er sich mit dem Anfange des Sinus transversus verbindet, häufig auch ganz in den rechten S. transversus sich fortsetzt. Er nimmt auf seiner ganzen Länge Venen von der Oberfläche der Großhirn-Hemisphären auf.

4) Sin. sagittalis inferior (longitudinalis inferior) ist im freien Rande der Falc cerebri eingeschlossen, nahe an deren vorderem Ende er beginnt. Auf seinem Verlaufe steht er nicht selten durch Sinusäste, welche in der Falc cerebri emporsteigen, mit dem Sin. sagitt. sup. in Zusammenhang. Am Anfange der Ver einigung der Falc cerebri mit dem Tentorium cerebelli senkt er sich in den

5) Sin. rectus (S. tentoriī) ein, welcher im Tentorium längs der genannten Strecke verläuft und nahezu senkrecht in den Confluens sinnuum tritt (Fig. 305).

6) Sin. petrosus inferior führt längs der Petroso-Basilarverbindung zum Foramen jugulare, in dessen vorderen Abschnitt er eintritt, um in der Regel außerhalb der Schädelöhle sich mit der V. jugularis zu verbinden. Vorne und oben steht er mit dem Sinus cavernosus in Zusammenhang.

7) Sin. petrosus superior beginnt ebenfalls am S. cavernosus und beginnt sich an der Spitze der Felsenbeinpyramide auf die Kante der letzten nach hinten zur absteigenden Strecke des S. transversus. Er liegt somit in der Befestigungsstelle des Tentorium cerebelli an der oberen Kante des Felsenbeines.

Die Venen der Augenhöhle sammeln sich theils aus dem Bulbus (siehe beim Auge), theils kommen sie aus den Adnexen des Bulbus und bilden einige größere Stämmchen, welche meist den Arterien entsprechen und eine V. ophthalmica
superior zusammensetzen. Diese tritt die Arterie verlassend durch die Fissura orbitalis superior zum Sinus cavernosus.

Eine V. ophthalmica inferior sammelt sich am Boden der Orbita, anastomosirt mit anderen Orbitalvenen und verbindet sich entweder mit der V. ophthalm. sup. oder tritt, was häufiger der Fall ist, durch die Fissura orbitalis inferior zu den Venengeflechten der Flügelanschwellen.

Kleine Venen aus dem inneren Gehörorgane treten theils aus dem Meati acusti internus, theils aus dem Aquaeductus vestibuli hervor (V. auditivae internae) und gehen zu den benachbarten Blutleitern.

Die Hauptquelle des Blutzuflusses für die Venensinusse bilden die Hirnvenen. Sie treten in der Pia mater zu größeren Gefässen zusammen und verlassen das Subarachnoidealgewebe, um sich in die Sinusse einzusenken. Sie unterscheiden sich in oberflächliche und tiefe. Die oberflächlichen sind:

1) Vv. cerebrales superiores. Auf der oberen Fläche der Hemisphären des Großhirns sammeln sich Venen in größerer Anzahl und verlaufen, großenteils in die Sulci eingebettet, medianwärts, die hinteren zugleich schräg nach vorne gerichtet, zum Sinus sagittalis superior, in den sie sich ergießen.

3) Vv. cerebelli superiores entleeren sich in den Sinus rectus.

4) Vv. cerebelli inferiores kommen theils von der Unterfläche des kleinen Gehirns, theils von der Varolibrücke und dem verlängerten Marke und verbinden sich mit den Blutleitern des Bodens der hinteren Schädelgrube.

Die Venen der Plexusse der Seitenventrikel bilden die Anfänge der inneren Gehirvenen. Sie nehmen die V. terminalis auf, welche an der Grenze von Schläfeln und Streifenkörper unter der Stria cornea, verläuft. Vor der Endigung im Sinus rectus verbindet sich dem gemeinsamen Venenstamm noch eine V. basilaris, die an der Hirnbasis wurzelnd um die Hirnstiele sich herumschlägt.

Auf ihrem Verlaufe nimmt die V. jugularis interna Venen aus dem Gebiete der Arteria carotis externa auf, und zwar außer manchen kleineren von benachbarten Theilen, die

V. facialis communis (Fig. 470). Ein kurzer, am Unterkieferwinkel sich bildender Stamm, welcher auch nähew oder entfernter mit der V. jugularis externa communicirt, so dass das Gebiet der letzteren sich auf Kosten der V. jug. interna vergrößert. In der Figur 470 ist eine solche Verbindung dargestellt. Die V. facialis communis bildet sich aus zwei Hauptwurzeln:

1. V. facialis anterior (Fig. 470) verläuft mit der Art. maxillaris externa. Sie beginnt als V. angularis am inneren Augenwinkel, nimmt die Vene frontales und palpebralae superiores auf, anastomosirt mit der Vena ophthalmica superior und setzt ihren Weg nach der Wangengegend fort, Vene nasales externae, palpe-
Sechster Abschnitt.

... rales inferiores, auch labiales superiores sammelnd. Nach Aufnahme einer unter dem M. masseter und dem Jochbogen aus dem Gebiete der Art. maxillaris int. hervortretenden Vene begibt sie sich hinter dem Mundwinkel zur Unterkieferregion, nimmt die Venae labiales inferiores auf, schließlich noch Venae submentales, und vereinigt sich mit der V. facialis posterior.

Fig. 470.

Die tiefliegende V. jug. int. ist heller dargestellt.

2) V. facialis posterior. Diese wurzelt im Gebiete der Art. maxillaris interna, nimmt oft Venae temporales superficiales auf, mittels deren sie mit dem oberflächlichen Venennetze des Schädeldaches in Zusammenhang steht (Fig. 470). Ferner treten zu ihr: Venae temporales profundae, auriculares anteriores, dann Venen aus dem Plexus pterygoideus, aus der Parotis und der tiefen Wangenregion. Eine unter dem Ohre verlaufende Communication mit den Venae auriculares posteriores setzt auch dieses Gebiet mit der V. facialis anterior in Zusammenhang und beschränkt die V. jug. externa. Die übrigen in den Stamm der Jug. interna mündenden Venen sind meist kleinerer Art, die oberen münden nicht selten schon in die V. facialis communis, oder in die V. facialis posterior ein, wie z. B. Venae...
Vom Venensysteme.

linguales. Direct der Jug. interna werden in der Regel Venae thyreoidea superiores zugeführt, die auch die Venen des Kehlkopfes und benachbarter Muskeln aufnehmen.

Bei dem Übergange der Schläfenvenen in die V. facialis posterior wird diese zu einem bedeutenden Stamm umgebildet, der in dem Maaße an Umfang zuminimt, als noch die Venae auriculares in ihn münden. Umgekehrt miindet sich die V. facialis posterior durch Abgabes des Temporal- und Auricularvenengebietes an die Vena jugularis externa.

Vena jugularis externa.

Die Vena jug. externa steht in der Regel noch mit anderen oberflächlichen Venen des Halses in Zusammenhang, welche noch größere Variationen darbieten, und nur bald da bald dort zu Stämmchen entfaltete Strecken des oberflächlichen Veneunetzes sind. Hierher gehört:

a) Die Vena mediana colli. Beginnt mit Aufnahme submentaler Venen, durch welche sie mit den Venae faciales in Zusammenhang steht, steigt dann subcutan herab, wobei sie sich entweder theilt und mit den beiderseitigen Jugularivenen verbindet, oder in eine Jugularis ext. oder int. einsenkt. Sie ist sehr häufig durch mehrere absteigende Venae subcutaneae colli vertreten, welche jederseits in einen queren Veneunstamm sich einsenken, der auch mit dem anderseitigen median zusammenhängt (Fig. 470). Sie alternirt in ihrer Ausbildung mit einer

b) V. jugularis anterior, die ähnlichen Ursprungs ist und gegen den Vorderrand des M. sterno-pleido-mastoideus herabläuft, um einer der beiden Jugularivenen sich zu vereinigen.

Vena subclavia.

§ 241.

Sammelt die Venen der oberen Extremität und der Schulter, entspricht desshalb nicht ganz der Arteria subclavia, deren Äste auch noch den Hals etc. versorgen. Den Stamm der V. subclavia bildet die Fortsetzung der V. axillaris, welche die gleichnamige Arterie begleitet. Er tritt unter dem M. subclavius empor auf die erste Rippe, auf welcher die Lage der Vene häufig einen schwachen Eindruck bildet (s. Fig. 117) und begibt sich vor dem Scaenus anticus und durch diesen Muskel von der Arterie geschieden, medianwärts zur Vereinigung mit der V. jugularis interna. Auf diesem Wege steht die Wand der Vene sowohl mit der Fascie des M. scalenus, als mit der oberflächlichen Halsfascie in Verbindung. Die in sie einmündenden Venen sind höchst unbeständiger Art.

Das gesammte Gebiet der V. subclavia ist durch den Besitz von Klappen ausgezeichnet und scheint sich in ein oberflächliches und ein tiefes. Die tiefen Venen verlaufen in Begleitung der bezüglichen Arterien, meist zu je zweien, die auch noch am Oberarm als Venae brachiales bestehen, aber in eine einfache zusammenfließen. Die beiden tiefen Vr. brachiales sind als eine mediale und eine laterale unterscheidbar. Zuweilen kommt noch eine dritte vor.

Vena cephalica antebrachii (Fig. 471). Ein an der Radialseite des Handrückens aus dem Plexus kommendes Stämmehen ist die Vena cephalica pollicis. Sie setzt sich in die V. cephalica antebrachii, eine der Radialseite des Vorderarms folgende Vene fort, welche mit anderen Venen des Vorderarms anastomosirend, vor der Ellbogenbeuge aufwärts verlaufende Venen abzweigt, mit ihrem Stämme jedoch sich schräg über die Ellbogenbeuge als Vena mediana cubiti zum Scaenus bicipitalis medialis begibt, wo sie eine zweite, vom Handrücken kommende größere Vene aufnimmt. Diese ist die Vena basilica. Sie beginnt am ulnaren Theile des Handrückens mit einem Vena salvatella benannten Venenstämmchen und setzt sich an der Ulnarseite des Vorderarms mit benachbarten Venengeflechten, vorzüglich des Rückens des Vorderarms in Zusammenhang zur medialen Bicepsf urehe an den Oberarm fort. Zwischen den beiden größeren Venenstämmen des Vorderarms verlaufen noch kleinere Längsstämmehen, welche sich bald in die V. basilica, bald in den aus der V. cephalica antebrachii zu ersterer fortgesetzten schrägen
Venenstamm einsenken (Fig. 471). Eines dieser Längsstämmchen ist zuweilen stärker, tritt selbständiger aus dem Geflechte des Vorderarms heraus und wird als Vena mediana antebrachii bezeichnet. Alle diese der Vena basilica zustrebenden Venen nehmen an mehreren Stellen auch Venen aus der Tiefe auf. Sehr häufig tritt ein größeres Venenstämmchen aus der Tiefe in die schräge Fortsetzung der Vena cephalica antebrachii. So gestaltet sich die Vena basilica zur Hauptvene der oberen Extremität, und ihre Fortsetzung in eine Vena brachialis ist immer stärker als die andere Brachialvene, so dass die Vena axillaris als eine Fortsetzung des Stammes der Basilica angesehen werden darf. Der Durchtritt der Vena basilica durch die Fascie des Oberarms erfolgt meist unterhalb der Mitte der Länge des Oberarms. Sie nimmt dann eine mediale Lage zur Vena brachialis ein.

Da es sich bei diesen Venen wie bei vielen anderen weniger um auf lange Strecken isolirt verlaufende Venen handelt, als viel mehr um Venengeflechte, in denen an einzelnen Strecken stärker entwickelte Venen sich als Stämme auffassen lassen, so ergeben sich in diesen Befunden sehr wechselnde Verhältnisse, die am meisten die zwischen Vena basilica und Cephalica antebrachii befindlichen Venen betreffen. In der Regel treten hier mehrere Längsstämmchen auf; ist es nur eines, so ist das die oben als Vena mediana bezeichnete. Diese kann sich auch theilen und einen Zweig zur V. cephalica antebrachii oder in die Fortsetzung derselben, die V. mediana cubiti senden, welche Äste dann als Vena mediana cephalica und V. mediana basilica dargestellt worden sind. Aber auch in diesem Falle erhält die Vena basilica den größeren Zweig. Die Bedeutung der Vena basilica als Hauptvene ist in neuerer Zeit von K. BARDELEBEN hervorgehoben worden, der sie V. capitalis nannte.

V. cephalica humeri (Fig. 471). Diese Vene beginnt mit einer oder zwei meist schwächeren von der V. cephalica antebrachii abgezweigten Venen in der Nähe der Ellbogenbeuge, tritt im Sulcus bicipitalis lateralis am Oberarme empor und steht auf diesem Wege nur mit wenig bedeutenden Venen in Zusammenhang. Zwischen M. deltoideus und M. pectoralis major senkt sie sich allmählich unter die Fascie, nimmt zwischen beiden Muskeln nach und nach eine tiefer gelegene Bahn und tritt dann unterhalb des Schlüsselbeins in die V. axillaris, die hier unmittelbar in die Subclavia übergeht.
Sechster Abschnitt.

In seltenen Fällentheilt sich die Cephalica humeri in einen unterhalb der Clavicula zur Axillaris verlaufenden und einen über die Clavicula hinweg zur Subclavia tretenden Zweig, den dann eine oberflächliche Lage zukommt. — Die Vena cephalica humeri wird als eine Fortsetzung der Cephalica antebraclii angesehen, als welche sie auch in einzelnen Fällen sich darstellt. Durch K. Bardeleben ist jedoch nachgewiesen, dass sie als V. cephalica ascendens eine erst sekundär sich ausbildende Vene ist, die im totalen Zustande entweder nur schwach entwickelt besteht, oder sogar durch eine erst an der Schulter sich sammelnde V. cephalica descendens vorgestellt wird. Aber auch später bleibt die untergeordnete Bedeutung der Cephalica humeri dadurch ausgedrückt, dass ihre Verbindungen mit den Venen des Unterarms schwächer sind als die Fortsetzung der Vena cephalica antebraclii zur V. basilica.

Vena azygos.

§ 242.

Dieser auf der rechten Seite der Brustwirbelsäule aufsteigende Venenstamm beginnt sich etwa am 3ten Brustwirbel über den rechten Bronchus zur oberen Hohlvene (Fig. 467). Er nimmt auf seinem Verlaufe quere Anastomosen mit einem linkerseits verlaufenden Venenstämmchen auf. V. hemiazygos (Fig. 469), welche das gleiche Wurzelgebiet besitzt. Beim Bestehen mehrerer solcher Anastomosen ist die Hemiazygos in einen oberen und unteren Abschnitt getheilt, deren jeder mit einem Querstamme sich der Azygos verbindet. Der obere Abschnitt der Hemiazygos ist zuweilen in eine V. intercostalis suprema fortgesetzt und anastomosirt mit der V. anonyma sinistra, worin das Fortbestehen eines primitiven Verhältnisses zu erkennen ist (vergl. S. 707). Während in dem Verlaufe beiderseitiger Längsstämme meist eine gewisse Symmetrie besteht, bieten die Communicationen assymmetrische Befunde. Das Wurzelgebiet der V. azygos wie der Hemiazygos ist die hintere Thoraxwand, von welcher Vv. intercostales posteriores in die Längsstämmchen eintreten. In jede Intercostalvene mündet noch eine von der Wirbelsäule kommende Vene ein. Von benachbarten Ein- geweiden treten besonders Venae oesophageae und bronchiales posteriores diesem Gebiete zu; die rechte V. bronchialis in die Azygos, die linke in die Hemiazygos. Mit den Lumbalvenen steht sowohl Azygos als Hemiazygos in Verbindung, indem eine V. lumbalis ascendens (Fig. 169) aus lumbalen Geflechten in den Anfang jener fortgesetzt ist und dadurch Communicationen mit dem Gebiete der unteren Hohlvene bewerkstelligt.

Von den Varietäten der V. azygos und hemiazygos seien nur zwei Zustände erwähnt. In dem einen geht die Hemiazygos ganz in die V. anonyma sin. über, welcher Zustand sich unmittelbar an das primitive Verhalten anschliesst. In dem anderen Falle ist sie in eine grössere Anzahl von Querstämmchen aufgelöst, welche zur Azygos hintüber verlaufen. Nur das obere und untere Ende der Hemiazygos bleibt dann gewöhn-

Da die Intercostalvenen durch hintere Wurzeln mit dem thoracalen Abschnitt der Venengeflechte der Wirbelsäule in Zusammenhang stehen, ist hier der Ort derselben zu gedenken. Die Plexus venosi spinales bestehen längs der ganzen Wirbelsäule und communiciren am Kopfe theils mit äußeren Geflechten, theils mit inneren (Pl. occipitalis und basilaris). Sie zerfallen demnach von da an in äußere, die Wirbel umspinnende, und innere, welche den Rückgratcanal außerhalb des Dura mater-Sackes füllen helfen. Bei derlei Plexusse sind wieder nach den beiden Seiten unterscheidbar. (Fig. 472).

Die inneren sind um vieles dichter. Sie liegen zwischen den beiden Blättern, in welche die Dura mater des Rückenmarks sich theilt, und entsprechen in dieser Lage den venösen Sinusen der Dura mater der Schädellöhle. Besonders mächtig aber engmaschig sind die inneren Venengeflechte lateral entfaltet, wo sie die Austrittsstellen der Spinalnerven umgeben. Die beiderseitigen communiciren sowohl vorne als hinten unter einander mittels Querstämmen, welche gleichfalls geflechttartig aufgelöst sein können (am Halse). In die Communicationen der vorderen führen Venen aus den Wirbelkörpern (Vr. basivertebrales [Brescheti], so dass also die inneren Geflechte mit den äußeren auch durch die Wirbelkörpervenen communiciren. (Vergl. Fig. 472). Endlich nehmen die inneren Geflechte noch Venen aus der Dura mater des Rückenmarks, sowie aus dem letzteren selbst auf.

Am Rückenmarke bestehen in die Pia mater eingebettete oberflächliche Venennetze in der ganzen Ausdehnung und nehmen überall Venen aus dem Inneren auf, welche mit centralen Venen communiciren. Die oberflächlichen Venennetze münden in

Vom Venensysteme.

C. Gebiet der unteren Hohlvene.

§ 243.

a. Parietale.

1) Vv. phrenicae inferior es kommen vom Zwurchfell, wo sie mit ihren feineren Verzweigungen die gleichnamigen Arterien begleiten. Erst ihre stärkeren Stämmchen nehmen einen von den Arterien differenten Verlauf.

2) Vv. lumbales. Entsprechen den Arterien und wurzeln in den lumbalen Venengeflechten der Wirbelsäule. Die Ausbildung eines Längsstämmchens in diesen Geflechten lässt eine V. lumbalis ascendens hervorgehen, welche
rechts in die Azygos und links in die Hemiazygos sich fortsetzt (Fig. 169). Durch eine Ileo-lumbal-Vene kann sie auch der V. hypogastrica zugeteilt sein, oder eine Anastomose zwischen beiden Gebieten vermitteln.

b. Viscerale Wurzeln sind:

3) Vv. hepaticae. Verlassen die Leber dicht an dem hinteren Rande oder auch noch an der Hinterfläche und senken sich zu mehreren starken Gefäßen vereinigt in die hier vorbeiziehende Hohlvene ein. Sie führen das Blut des Magens, der Milz, des Dünn- und Dickdarms zurück, welches durch die Pfortader in der Leber zur Vertheilung gelangte. Ausnahmsweise erhalten sich Klappen, die beim Fötus bestehen.

5) V. suprarenalis auf, welche rechterseits meist direct in die Hohlvene tritt. Diese Vene sammelt sich am Hilus der Nebenniere.

6) V. spermatica interna. Mehrere Venen sind in der Regel zu einem Plexus (Pl. pampiniformis, Quastengeflecht) vereinigt, der von der Keimdrüse kommend die gleichnamige Arterie begleitet und schließlich in ein dünnnes Venenstämmchen übergeht. Rechterseits mündet es meist direct in die Hohlvene, linkerseits in die V. renalis, oder es lässt das Geflecht zwei Venen, eine zum Stamme der Cava inferior, die andere zur Renalis hervorgehen.

Der Plexus spermaticus des Weibes setzt sich durch das Lig. uteri latum zum Ovar und zum Uterus fort, mit den Geflechten der Vena uterina sich vereinigend.

Auf dem Verlaufe an der Hinterwand der Bauchhöhle nimmt die V. spermatica oder das sie darstellende Geflecht noch kleine Venen aus der Umgebung der Nieren und vom Ureter auf.

Vena portae (Pfortader).

§ 244.

Das Darmvenenblut wird nicht direct der unteren Hohlvene und von da dem Herzen zugeführt, sondern gelangt zuvor in die Leber. Hier auf zahllosen kleineren Bahnen vertheilt, sammelt es sich wieder in den Anfängen der Lebervenen. Der Gefäßstamm, welcher die am Darme wurzelnden Venen aufnimmt und sich in der Pforte der Leber wieder verzweigt, ist die Pfortader, V. portae.
Bei der Leber ist bezüglich des Verhaltens derselben innerhalb dieses Organs das Nähere angegeben.

Der Pfortaderstamm beginnt hinter dem Kopfe der Bauchspeicheldrüse links von der unteren Hohlvene. begibt sich dann hinter dem oberen Schenkel der Duodenalschlinge empor zum Lig. hepato-duodenale. in welchem er zur Pforte der Leber verläuft. Er liegt hinter Leberarterie und Ductus hepaticus erstere rechts, letztere links von ihm. Die Länge dieses Stammes beträgt 5—10 Cm. Die in den Pfortaderstamm fortgesetzte V. mesenterica wird als magna von einer zweiten kleineren unterschieden. Sie bildet die Hauptwurzel jenes Stammes, die sich mit einer zweiten, wenig schwächeren Wurzel, der V. lienalis vereinigt.

Eine dritte Wurzel ist die V. mesenterica parva, welche entweder in die V. lienalis, nahe an ihrer Vereinigung zum Pfortaderstamm, mündet, oder in jenen Vereinigungswinkel selbst eintritt.

Die V. mesenterica magna entspricht in ihrem Verlaufe wie in ihrem Gebiete der Arteria mesenterica superior, deren Verzweigungen die Venen sich anschließen. Die V. mesenterica parva entspricht genau der Art. mesenterica inferior, die V. lienalis endlich wiederum der gleichnamigen Arterie.

Direct in den Stamm der Pfortader mündet meist eine V. coronary ventriculi, sowie eine V. cystica ein. — An den Wurzeln der Pfortader finden mehrfache Verbindungen mit anderen Venengebieten statt, so namentlich in der kleinen Beckenhöhle, wo die V. haemorrhoidalis superior am unteren Theile des Rectums mit Anfangen der V. hypogastrica anastomosirt.

Das Wurzelgebiet der Pfortader wird hin und wieder beschränkt, indem einzelne Darmvenen der unteren Hohlvene zustreben. (Reitzus, Tiedemanns und Treviranus' Zeitschr. f. Physiologie. Bd. V. S. 105.)

den linken Pfortaderast inseriert sich das Lig. hepato-umbilicale, und der Insertionsstelle gegenüber setzt sich der Bindegewebsstrom des Ductus Arantii fort. In beide, ursprünglich als Strecken der Nabelvene erscheinende Gebilde kann sich das Lumen der Pfortader fortsetzen, durch den Ductus Arantii zur unteren Hohlvene. Wenn das Ligum. hepato-umbilical von der Pfortader aus noch eine Strecke wegsam ist, so erstrecken sich auch von da aus Pfortaderzweige in die Leber, was aus der Genese der Pfortader verständlich wird. Nicht selten setzt sich der linke Pfortaderast mit einer, Zweige in die Leber absendenden Ausbuchtung in eine größere Strecke des ursprünglichen Stammes der Nabelvene fort.

Venae iliaca und ihr Gebiet.

§ 215.

Pl. vesicalis. Beim Manne umgibt das gegen den Blasengrund zu entwickelte Geflechte auch die Schambläschen und setzt sich nach der Prostata zu in den

Beim Weibe setzt sich der *Plexus vesicalis* in die Umgebung der sogenannten Harnröhre fort, und entspricht hier einem Plexus pudendalis, indem die *V. dorsalis* sowie *V. prof. chloridis* hier einmünden. Er steht im Zusammenhang mit einem *Plexus vaginalis et uterinus*. Der letztere ist vorzüglich an den Seiten des Uterus ausgebildet, wo er mit dem *Plex. spermaticus internus* zusammenhängt.

b. V. saphena magna sammelt sich am medialen Fußrande und zieht vor dem Malleolus medialis in die Höhe, längs der medialen Seite des Unterschenkels. Mit oberflächlichen Netzen zusammenhängend, aber auch mit tiefen Venen communicirend, begibt sie sich ums Kniegelenk herum zum Oberschenkel. Von diesem nimmt sie oberflächliche Venen der Vorderfläche wie der medialen und Hinterfläche auf; tritt unterhalb des Leistenbandes durch den Ausschnitt der
Faszie zur Femoralvene (vergl. S. 413). Zuweilen verläuft mit der V. saphena magna noch ein kleinerer meist hinter ihr gelagerter Längsstamm, der aber nur Venen vom Oberschenkel sammelt, oder die Vene ist in einen Plexus aufgelöst.

In diesen Theil der Femoralvene münden noch zahlreiche kleinere Venen (Vc. pudendae etc., epigastricae superficiales etc.) ein, welche von verschiedenen Seiten hierher convergiren. Sie entsprechen den oberflächlichen Ästen, welche die Arteria femoralis in dieser Gegend abgibt, und können auch in die V. saphena magna gelangen.

Vom Lymphgefässysteme.

Allgemeine Übersicht.

§ 246.

Das auf dem capillaren Abschirme der Blutgefäße ausgetretene, die Gewebe durchströmende Plasma sanguinis gelangt als eine durch den Stoffwechsel veränderte Flüssigkeit allmählich in bestimmte Bahnen, auf denen sie wieder dem Blutstrom zugeführt wird. Diese Flüssigkeit ist die Lymph.

Vom Lymphgefässysteme.

729
somit netzförmige Räume repräsentiren. Nur der Zustand der Füllung, sei diese
natürlich oder auf künstlichem Wege, durch Injection erzeugt, macht sie wahr-
nehmbar. So durchsetzen sie das Bindegewebsgerüst der Organe. Erst all-
mählich gehen aus ihnen Wege hervor, mit selbständigen Wandungen: Gefäße,
die in keine bedeutenden Stämme sich vereinigen, und den Gebiete der oberen
Hohlvene zustreben.

Eine weitere Eigenthümlichkeit bildet die Verbindung der Lymphbahnen mit
Organen, in denen Lymphzellen erzeugt werden. Strecken des auch sonst die
Lymphbahnen darstellenden Bindegewebes sind hier in Stätten reicher Zellpro-
duction umgewandelt (vergl. S. 33.). Der Lymphstrom besprüht diese Stellen und
führt von da das Material mit sich fort, welches die Formelemente der Lymph
vorstellt. Dadurch werden die Bahnen nicht bloß complicirt, sondern sie gewin-
nen auch eine neue, höchst wichtige Bedeutung, die in ihnen nicht bloße Ab-
führwege sehen lässt.

Wir unterscheiden sonach am Lymphgefässysteme erstlich die Lymph-
bahnen, und zweitens die damit verbundenen, Zellen produzierenden Organe
Lymphfollikel, die in verschiedenen Combinationen angeordnet sind und schließ-
lieh die sogenannten Lymphdrüsen bilden.

Lymphbahnen.

§ 217.

Das Verhalten der äußersten Wurzeln der Lymphbahn ist bisher noch nicht
allseitig sicher erkannt, allein die wesentlichsten Verhältnisse haben wohl eine
Feststellung gefunden. Die im Bindegewebe verbreiteten Lymphspalten be-
sitzen vielfach eine Begrenzung von plattenförmigen Bindegewebszellen, die in
mannigfach andere Formen übergehen in dem Masse, als die Bahn sich in
bloße Gewebsschichten auflöst. An sie schließen sich die genauer gekannten
Lympthcapillaren, deren Lumen von jenen Zellen in regelmäßigerer Weise
umschlossen wird. Sie stellen engere oder weitere Netze vor, ähnlich den Blut-
capillaren, und repräsentiren die Anfänge der Lymphgefässe. Zuweilen finden
sich stellenweise Erweiterungen, sinnsartige Gebilde. Auch blindgendiigte Fort-
sätze kommen an ihnen vor. Aus den Lymphcapillaren gehen feine Lymph-
gefäßstämme hervor, die wieder eine netzförmige Anordnung bieten, oder auch Geflechte herstellen. Platte, unregelmäßig gestaltete und häufig mit
gezackten Rändern in einander greifende Zellen, die aus den Lymphcapillaren
sich fortsetzten, bilden die innere Schichte, zu der noch eine äußere von Binde-
gewebe hinzutritt. Das Kaliber dieser feinen Lymphgefäße ist sehr wechselnd,
selbst auf kurzen Strecken ungleich. Ringförmige Einschnürungen finden sich
bei gefüllten Gefässen in der Regel in dichter Folge. Die aus den Netzen der
feinen Lymphgefäße hervorgehenden größeren Stämmehen stimmen bezüglich
der Textur ihrer Wand einigermaßen mit kleinen Venen überein.

Schon den feineren Lymphgefäßstämmchen kommen Taschen-Klappen zu, die als Weiterbildungen von Falten und inneren Vorsprüngen erscheinen, welche an jenen Gefäßen ringförmige Einschnürungen bedingen. Die Klappen sind jenen der Venen ähnlich, auch im feineren Bau und in der functionellen Bedeutung. Sie folgen sich aber viel dichter. Zuweilen sind sie so nahe aneinander, dass das gefüllte Gefäß durch die den Klappen entsprechenden Buchtungen ein perlchnurartiges Aussehen erhält.

Die Lymphgefäße sind fast sämtlich auf ein sehr geringes Kaliber bis zu 1—2 mm, beschränkt. Nur einige erlangen als Hauptstämmche eine etwas bedeutendere Weite, ohne dass jedoch deren Wandung in gleichem Maße verstärkt wäre.

In beschränktem Vorkommen besteht eine engere Beziehung des Verlaufes der Lymphbahnen zu den Arterien. An verschiedenen Localitäten, so an den Arterien der Hirnrinde, sowie an denen der Knochen, auch noch an manchen anderen Orten, ist ein solches Verhalten nachgewiesen. Die Lymphgefäße werden hier durch perivasculäre Räume vorgestellt: die Arterien liegen hier in Lymphräumen, besitzen »Lymphscheiden«. Die bindegeweibige Gefäßscheide ist von der Adventitia der Arterie abgelöst, so dass zwischen beiden ein hie und da von einem Bindegewebsstrang durchzogener Raum besteht, der eben die Lymphbahn vorstellt. Dieses Verhalten repräsentirt eine bei niederen Wirbel-
thieren (Fischen, Amphibien und Reptilien) allgemein bestehende Einrichtung. Die Arterien sind hier auch noch in ihren größeren Stämmen von Lymphscheiden eingehüllt, und an den großen Stämmen sind die Lymphbahnen sogar weite Räume, Sinusse, wie denn die Bildung von Lymphsinussen bei jenen Thieren auch an anderen Körperstellen eine bedeutende Entfaltung erreicht.

An den Einmündestellen der Lymphgefäbsstämme ins Venensystem bestehen von den Fischen bis zu den Vögeln sogar besondere contractile Vorrichtungen, die man als Lymphphoren bezeichnet. Ein Muskelbeleg der Wandung des hier meist erweiterten Lymphstammchens vollführt rhythmische Contractionen, durch welche die Lympe in den Venenstamm abgeleitet wird.

Die Bezeichnung der Anfänge der Lymphbahnen zu Bindegewebszellen und deren der sogenannten »Säftcäuliachen« darstellenden Ausläufern bildet eine noch nicht zum völligen Abschluss gelangte Frage, doch dürfte die Annahme eines durch jene Zellen vorgestellten »plasmatischen Gefäßsystems« schwer mit der Thatsache zu vereinbaren sein, dass in den Bindegewebszellen Protoplasma enthaltende Formelemente vorliegen, gleichwie viel oder wie wenig von diesem Protoplasma noch in indifferenten Zustande vorhanden ist.

Mit den Lymphbahnen scheinen die serösen Höhlen des Körpers in offener Verbindung zu stehen. Sie würden dann »Lymphräume« vorstellen, die freilich durch die ganze Art ihrer Genese von anderen Lymphräumen bedentend verschieden wären. Das in ihnen vorhandene »Serum« wäre Lympe, die aber von der Lympe anderer Lymphräume verschieden ist. Der durch mancherlei Versuche wahrscheinlich gemachte, aber anatomisch nur in beschränktem Maße erwiesene Zusammenhang besteht in feinen, meist an der Grenze mehrerer Epithelzellen der Serosa liegenden Öffnungen (Stomata), die in Lymphgefäße führen. z. B. am Centrum tendineum des Zwerehells der Kaninchen und Meerschweinchen.

Lymphfollikel und Lymphdrüsen. § 218.

Unter den Formen des Bindegewebes ward eine als cytogenes Gewebe unterschieden (S. 33), weil in ihm aus Vermehrung der Formelemente des Bindegewebes hervorgegangene Wucherungen von Zellen stattfinden, welche beschränktere oder ausgedehntere Stellen infiltrieren. Solche Brutstätten von indifferenten Zellen sind reichlich in der Darmschleimhaut verbreitet und gehen, wie sie sich

1. Follikelbildung in Schleimhäuten.

1) Solitäre Follikel sind in der Schleimhaut des ganzen Tractus intestinalis verbreitet (S. 436), am häufigsten in der Dickdarmschleimhaut.

2) Peyersche Drüsenausläufe sind Gruppen zahlreicher Follikel. Sie
Vom Lymphgefäßsystem.

charakterisieren das Ileum [Vergl. S. 489]. Ähnlich gehäufte Follikel zeichnen das Ende des Wurmfortsatzes aus [S. 492].

H. Follikel als Bestandtheile von Organen, die keine Lagebeziehungen zur Schleimhaut besitzen.

2: Milz. Die Verwandtschaft dieses Organs mit den Lymphdrüsen ist durch die Follikel ausgesprochen, der mangelnde Zusammenhang der Oberfläche seiner Follikel mit Lymphbahnen verlangt eine gesonderte Vorführung, die am Schlusse der Darstellung des Lymphgefässsystems geschehen wird.

§ 249.

Die Lymphdrüsen (Glandulae lymphaticae, Lymphknoten, Ganglia lymphatica) stellen ovale oder rundliche, meist etwas abgeplattete Gebilde vor, welche innerhalb der bereits durch Lymphgefässästämchen gebildeten Lymphbahn liegen. Ihre Größe schwankt von einigen Millimetern bis zu mehreren Centimetern. Sie erscheinen von grau-rotlicher oder rötlicher Färbung und meist derber Consistenz. Von lockarem Bindegewebe umschlossen, besitzen sie eine mit diesem zusammenhängende, dichtere, bindegeweibige Hülle, von der ans Scheidewände ins Innere sich fortsetzen. Diese zerlegen die Rindenschichte des Organs in eine verschiedene große Zahl von größeren oder kleineren Fächern (Alveolen) und setzen sich dann als bindegeweibige Stränge weiter ins Innere fort, dort ein Maschennetz bildend, welches an einer zuweilen etwas vertieften Stelle der Drüse, dem Hilus, an die Oberfläche tritt. Wir unterscheiden somit eine Rindenschichte, welche die Marksubstanz umgibt, so dass diese nur an einer

Schema einer Lymphdrüse. a Bindegeweibige Hülle; b Septa; c Balkennetz der Markmasse; d Rindenfollikel; e Markstränge; f Vasa afferentia; g Lymphbahn im Mark; h Vas efferens.
beschränkten Stelle zu Tage tritt. Jedes Fach der Rindenschichte wird von einem Lymphfollikel eingenommen, aber nicht vollständig, denn um ihn findet sich noch ein von Bindegewebe durchsetzter Raum, welcher der Lymphbahn angehört (Lymphscheiden des Follikels). Der Follikel, ganz mit den oben beschriebenen Bildungen übereinkommend, ist nur dadurch von diesen verschieden, dass er sich mit einer schlankern, strangartigen Fortsetzung, dem Markstrange, in die Marksubstanz verfolgen lässt. Die Markstränge der einzelnen Rindensäftigkeit bestehenden Verbindungen, um zu bilden in der Marksubstanz der Drüse ein Maschenetz, welches in den Lücken des Netzes der Bindegewebsbalken angeordnet ist. Das vorstehende (Fig. 476) von Frey gegebene Schema einer Lymphdrüse versinnlicht diese Befunde. Die um die Rindenfollikel befindlichen Lymphscheiden setzen sich als Markscheiden, Lymphgänge, auf die Markstränge fort, bilden in der Marksubstanz gleichfalls ein Netzwerk.

Zu diesen die Lymphdrüse durchsetzenden Lymphräumen stehen die Lymphgefäße in bestimmter Beziehung. Sie verhalten sich zu ihnen als Vasa afferentia und Vasa efferentia. Gewöhnlich ist die Zahl der ersteren größer, und es besteht nur ein Vas efferens. Die Vasa afferentia (Fig. 174) treten zur Oberfläche der Rindenschichte, verzweigen sich daseits oft mehrfach, und lassen ihre Zweige durch die bindegewebsige Kapsel ins Innere gelangen, wo sie in den Lymphscheiden der Rindenfollikel sich anlösen. Die Lymphe der Vasa afferentia ergießt sich also in die Lücken und Spalten, welche um die Follikel sich finden, gelangt dann in die Marksubstanz, wobei sie die Markstränge gleichfalls bespült, verteilt sich in dem Netzwerk der Markscheiden und wird von da von den Wurzeln des Yas efferens [h] aufgenommen, welches am Hilus der Drüse sich in ähnlicher Weise verhält, wie die Vasa afferentia an der Oberfläche der Rinde. Das Wesentliche der Struktur einer Lymphdrüse besteht also in der Anlösung der zuführenden Lymphgefäße in zahlreiche enge, mit einander anastomosirende Bahnen, die an der Bildungsstätte von Lymphzellen vorüberziehen und sich in eine Minderzahl ausführender Gefäße sammeln. Die Vertheilung der Rinden- und Marksubstanz ist verschiedenartig, letztere ist in den Mesenterialdrüsen sehr ausgebildet, an den anderen nur in geringem Masse vorhanden. Auch die Follikel können unter einander zusammenhängen, sowie weiter nach innen zu einzelne Strecken der Markstränge durch voluminöse Gestaltung Follikelzähne gewinnen.

Die Lymphdrüsen finden sich theils vereinzelt, theils in Gruppen. Ersteres ist bei den am meisten peripherisch gelegenen der Fall. Je näher sie in den centralen Sammelpuncten der Lymphgefäße lagern, desto reicher sind die Gruppen an einzelnen Drüsen. Wenige größere vertreten nicht selten die Stelle zahlreicher kleinerer und umgekehrt. Aus der Form mancher Lymphdrüsen ergibt sich, dass Verschmelzungen mehrerer zu einer einzigen vorkommen. Die

Die functionelle Bedeutung der Lymphdrüsen für den Organismus geht teilweise schon aus ihrer Struktur hervor. Der sie durchsetzende Lymphstrom nimmt auf seinem Wege Lymphzellen auf. Die Lymph der Vasa efferentia ist reicher an Formbestandtheilen als jene der Vasa afferentia. Aber außerdem wird vielleicht noch eine andere Veränderung der Lymph bei dem Durchgang durch die Drüse bewirkt. —

Die in den Lymphdrüsen bestehende Auflösung der Vasa afferentia in viele feinere Bahnen war schon älteren Anatomen bekannt. Die nähere Kenntnis dieses Verhaltens, besonders in Bezug auf die functionell wichtigsten Bestandtheile dieser Organe, nämlich der Lymphzellen erzeugenden Gewebes, ist das Verdienst neuerer Zeit.

Anordnung des Lymphgefäβsystems.

§ 250.

Die Vertheilung der grösseren, mit den Venae anonymae (Brachio-cephalicae) communizirenden Stämme zeigt beiderseits ziemliche Übereinstimmung. Folgende Trunci lymphatici sind zu unterscheiden:

1) Truncus jugularis, zur Abfuhr der Lymphe von Kopf und Hals bestimmt.

2) Truncus subclavius. Sammelt die Lymphgefäße der oberen Extremität wie der vorderen Brustwand.

3) Truncus broncho-mediastinalis (dexter) führt am hinteren Mittelfellraume empor und ist linkerseits durch einen viel anschnücheren, längs der Brustwirbelsäule emporsteigenden Stamm, den Ductus thoracicus vertreten, der die Lymphe aus den Eingeweidien der Bauchhöhle vom Darme den Chylus, sowie aus den unteren Extremitäten und von der hinteren Brustwand

In den Lymphgefäßstämmen vereinigen sich Lymphgefäßzüge oder Stränge, welche Lymphdrüsen durchsetzen haben. Da diese letzteren in die Bahn der Gefäße eingeschaltet sind, wird ihre Darstellung mit jenen geboten. Die peripherisch gelagerten Drüsen senden ihre Vasa efferentia zu mehr central gelagerten Drüsen, für welche sie Vasa afferentia sind.

Den Submaxillardrüsen schließen sich vorne Gl. submentales (2—3) an, deren Vasa efferentia gleichfalls zu beiden Geflechten gelangen. In die Bahnen des Pl. jugularis externus sind Gl. cervicales superficiales (5—6) eingeschaltet, welche vom Platysma bedeckt theils auf dem M. sterno-cleido-mastoideus theils an dessen Hinterrand liegen, zuweilen zerstreut, einzelne auch wohl mehr nach vorne zu. Die Vasa efferentia derselben verlaufen zum Pl. jugularis profundus. Die oberen Glandulae cervicales superficiales schließen sich an die Gl. auriculares posteriores und Gl. submaxillares an.

Der Plexus jugularis profundus erstreckt sich längs der tiefen Halsgefäße bis zur Basis cranii, wo er aus der Schädelhöhle die Blutgefäße begleitende Lymphbahnen aufnimmt. Auf der ganzen Strecke des Plexus sind Gl. cervicales profundae (10—20) vertheilt, die wieder als obere und als untere unterschieden werden. Die letzteren liegen in der Fossa supraclavicularis, und an sie schließen sich die unteren Gl. cerv. superficiales an. Den oberen Gl. cerv. prof. streben Lymphgefäße vom Pharynx und von der Zunge zu. In die Bahnen der letzteren
sind *Gl. linguales* (3–4) zur Seite der *Mm. genio- und hyoglossi* eingelagert. Ferner sammeln jene tiefen Halsdrüsen Gefäße von der Wirbelsäule, von der tie-
fen Muskulatur des Nackens, von Kehlkopf und Schilddrüse. Mit den unteren
tiefen Halsdrüsen stehen endlich noch Lymphgefäße der Brustwand und der
Schulter in Zusammenhang.

2) *Truncus subclavius*. Setzt sich aus einem Strange von Lymphge-
fäßen zusammen, welche aus der Achselhöhle kommen und hier von den *Gl.
axillares* (10–15) durchsetzt sind. Diese theils in der Nachbarschaft der Blut-
gefäße lagernden, theils nach hinten unter der Scapula (*Gl. subscapulares*), theils
nach vorne unter dem *M. pect. minor* zerstreuten Drüsen sind die Sammelstätten
von Lymphgefäßen sehr verschiedener Regionen. Außer jenen der oberen Extre-
mität vereinigen sich hier die oberflächlichen Lymphgefäße des Nackens, des
Rückens bis zur Lendenregion, ferner jene der Brust auch der Mamma) und der
oberen Bauchgegend. Die von hinten kommenden schlagen sich um den *M.
latissimus dorsi*, die von der oberen Brustgegend um den *M. pectoralis major*
erum. Tiefere Gefäße ziehen unter dem letzteren Muskel, auch unterhalb des Latiss.
dorsi, in Begleitung der Blutgefäße empor. Einige *Gl. pectorales* sind in jene
geschaltet. An der oberen Extremität laufen die oberflächlichen Lymphgefäße
am Vorderarm zur medialen Seite des Oberarms empor, von den Fingern an dorsal
volar in weitem und langgestreckte Geflechte und Züge geordnet,
welche zumeist der *Vena basilica* folgen. In der Ellbogenbenge sind *Glandulae
cubitales superficiales* in sie eingeschaltet. Die tiefen Lymphgefäße folgen der
Blutgefäsbahn. Am Vorderarm ist zuweilen die erste Drüse ihnen zugehört.
Einige beständige finden sich in der Ellbogenbenge (*Gl. cubitales profunda*)
und erstrecken sich von da vereinzelt am Oberarm herauf.

3) *Truncus broncho-mediastinalis (dexter)*. Vereinigt die
Lymphgefäße des oberen Abschnittes der rechten hinteren Brustwand und sam-
mein solche von Organen der Brusthöhle. Aus der Lunge in Begleitung der Blut-
gefäße und Luftwege kommende Lymphgefäße senken sich am Hilus der Lunge
in *Gl. bronchiales*, welche auch die netzformig angeordneten Gefäße der Ober-
fläche der Lunge aufnehmen. Ablagerung schwarzen Pigmentes zeichnet diese
Drüengruppe aus, welche bis zur Theilung der Lufröhre verbreitet ist. Ein-
zelle erstrecken sich längs der Trachea und nehmen von daher gleichfalls Gefäße
auf. Die *Vasa efferentia* der rechtsseitigen bilden den Anfang des Truncus, mit
welchem intercostale Gefäße mit vereinzelten *Gl. intercostales* verbunden sind.
Aus dem hinteren Mediastinalraum treten Lymphgefäße vom Zwurchfell, vom
Herzbentel, dann vom Oesophagus, in Begleitung der Aorta thoracica empor und
verbinden sich, wenn auch nur zum Theil mit jenem Stamme; *Gl. mediastinales
posteriores* (6–12) sind in sie eingehaltet. Ebenso verbinden sich vom vor-
deren Mediastinalräume her Lymphgefäße mit dem Truncus. Sie sammeln sich
mediastinales anteriores* (10–15) gehören diesen Lymphbahnen an. Die meisten
derselben liegen vor und auf dem Aortenbogen.
Auch von der vorderen Brustwand, im Bereiche der Art. mammaaria interna, sammeln sich von Gl. sternales unterbrochene Gefäßstränge, und treten zu den Gefäßzügen des vorderen Mediastinalraumes. Sie bilden zuweilen auch einen besonderen beiderseits vorkommenden Stamm — den Tr. mammaarius, welcher zum bezeichnigten Tr. communis oder auch direct zur V. anonyma sich begibt.

Ductus thoracicus. Der Hauptstamm der Lymphwege, auch "Milchbrustgang" genannt, weil er den Chylus (Milchsaft) führt, beginnt in der Bauchhöhle zumeist an der Vorderseite der ersten Lumbalwirbelkörper und begibt sich rechterseits an der Aorta durch das Zwurchfell in die Brusthöhle, wo er zwischen Aorta und Vena azygos gelagert emporsteigt. Am Ursprunge des linken M. longus colli von der Wirbelsäule nach links zu abweichend tritt er bis zum Körper des letzten Halswirbels, dann im Bogen über die linke Arteria subclavia hinweg zum Anfange der linken V. anonyma, in die er sich einsenkt. Den Anfang des Stammes bildet die Vereinigung zweier Trunci lumbales und eines unaaren Truncus intestinalis, welche meist nur auf kurzen Strecken bestehen. Eine meist längliche Erweiterung des Anfangs bildet die Cisterna chyli. Von da erstreckt sich der Gang in überaus wechselvollem Befunde empor, bald sich verengend (meist in der Mitte des Weges) bald erweitert (ziemlich regelmäßig am Ende), zuweilen mit Ausbuchtungen versehen oder hie und da in gewundenem Verlaufe, auch in Äste aufgelöst, die wieder zusammenschließen. Sein Kaliber ist daher ein sehr unregelmäßiges (3—8 mm) und schwankt auch je nach dem Füllungszustande.

In den Anfang des Ductus thoracicus münden die drei oben benannten Lymphstämme ein, die gleichfalls mannigfach wechselnde Verhältnisse darbieten.

der Keimdrüsen in Begleitung der Art. spermatica interna, endlich Lymphgefäße aus der hinteren und seitlichen Bauchwand.

An die lumbalen Lymphgefäßegeflechte schließt sich ein die Umgebung der Arteria coeliaca einnehmendes Lymphgefäßegeflecht an, welches von zahlreichen Drüs en (Gl. coelicae) durchsetzt wird. Zu diesen führen Gefäße von der Leber, vom Magen, vom Pancreas und von der Milz. Die der Leber kommen vom Hilus derselben her, theils aus dem Innern, theils von der Unterfläche der Serosa dieser Drüse. Gl. hepaticae sind in sie eingebettet. Am Magen sind Lymphdrüsen sowohl längs der kleinen Curvatur, als auch an der großen, jedoch mehr in der Nähe des Pylorus vertheilt und vom Hilus der Milz an folgen Gefäße aus dem serösen Überzuge sammelnde Drüsen längs des oberen Pancreasrandes (Gl. splenico-pancreatica).

Am Colon verhalten sich die Drüsen (Gl. mesocolicae) in ähnlicher Weise. Die Vasa efferentia der innersten begeben sich gleichfalls zum Truncus intestinalis. Die vom Beginne der Flexura sigmoideae vorhandenen verlaufen zum Plexus aorticus; zwischen diesem und den benachbarten Geflechten bestehen jedoch vielfältige Verbindungen, so dass von dem Plexus coeliacus aus ein Theil der Vasa efferentia mit dem Truncus intestinalis in Verbindung tritt.

Milz [Splen, Lien].

§ 251.

Vom Lymphgefässysteme.

741

schmäler ist. Die beide innere Flächen trennende Kante ist von ebenso wech-
selnder Gestalt wie die übrigen Formverhältnisse des Organs. Sie stellt den
Hilus vor, und auf ihr oder gegen die Superficies gastrica zu treten die reichen
Blutgefäße des Organs aus und ein.

Die Farbe der Milz ist tief grauroth oder bläulichroth. Tiefengehende Ein-
schnitte lassen das Organ zuweilen gelappt erscheinen. Nicht selten kommen
dem vorderen Ende benachbart einzelne, im Baue mit der Milz übereinstim-
mende, kuglige Nebenmilzen vor. Auch das Volum des Organs ist großem
Wechsel unterworfen. bietet sogar periodische Schwankungen, indem es wäh-
rend des Verdauungsprozesses anschwillt. Bei manchen Krankheiten finden
bedeutende Vergrößerungen statt. Die Vergrößerung macht sich nach vorne zu
am meisten bemerkbar, da hinten durch die Niere eine Grenze geboten wird.
Unter normalen Verhältnissen schreitet jedoch die Milz nicht über eine Linie,
die man sich links vom Sternoclavienlargelenke bis zur Spitze der 11. Rippe
gezogen denkt.

Die Milz besitzt einen serösen Überzug. indem theils vom Zwurchfell. theils
vom Magenblind sack her das Peritonem sich als Duplicatur auf sie fortsetzt
(Lig. gastro-tienale und phrenico-tienale).

Bezüglich der Structur der Milz ist zunächst der Kapsel zu gedenken, welche
als eine dünnere aber feste bindegewebige Schichte das ganze Organ über-
kleidet und mit dem serösen Überzuge innig verwachsen ist. Diese Kapsel sendet
ins Innere gröbere und feinere Fortsätze ab, die sich unter einander zu einem
dichten Maschennetze verbinden (Milzbalken). Von den größeren Balken zwei-
gen sich feinere ab, und so wird das Parenchym des Organs von einem schwam-
migen Gerüst durchzogen, dessen feinste Maschen mikroskopisch sind. Die
Räume jener Maschen sind von einer dunkelrothen Substanz erfüllt, welche man
als »Pulpa« bezeichnete. Ihre Bedeutung wird durch den feineren Bau aufge-
klärt, bei welchem die Blutgefäße die wichtigste Rolle spielen.

Die am Hilus eintretenden Arterien verzweigen sich in der Milz unter oft
wiederholten Theilungen, ohne dass zwischen den verschiedenen Arteriengebieten
Anastomosen bestehen. Die kleineren Arterien lassen eine rasche Auflösung
in feine Zweige erkennen, welche größtentheils die Hohlräume des Balken-
netzes durchsetzen. An den in die Milz eintretenden Arterien ist der Adventitia
noch eine Bindegewebschichte als Arterienscheide angelagert. An manchen
Stellen zeigen kleinere Arterien in dieser Scheide reticuläres Gewebe mit ein-
gebetteten Zellen, und an anderen ist dieses Gewebe so reichlich, dass es einen
der Arterie ansitzenden Follikel vorstellt, mit den Lymphfollikeln in voller
Übereinstimmung. Die Arterienscheiden sind dadurch den Lymphscheiden ähn-
lieh. Solche Follikel erscheinen dem unbewaffneten Auge auf Durchschnitten
der Milz als graue oder weißliche von der dunkeln Pulpa sich abhebende Flecke,
die sogenannten Malpighischen Körperchen der Milz. Das Stützgewebe dieser
Follikel geht peripherisch in das feinste Balken netzwerk über.

Verfolgt man die arterielle Bahn weiter, so trifft man die terminalen

Stellen wir uns nun vor, wie das Blut durch die arteriellen Capillaren in jene Räume ergossen wird, so muss es die Arterienscheiden und deren zellige Infiltrationen bespülen, bevor es in die Venenbahn gelangt, verhält sich somit zu diesen Organen ähnlich wie der Lymphstrom zu den analogen Gebilden. Dass in jenem Verhalten die Stelle der Lymphbahn durch die Blutbahn vertreten ist, bildet die wesentlichste Eigenthümlichkeit der Milz. Die Lymphzellen können hier also direct in den Blutstrom gelangen. Damit steht auch die jedenfalls nur geringe Entwicklung von Lymphgefäßen in der Milz in Zusammenhang.

Von den Lymphgefäßen der Milz sind nur die, welche am Hilus austreten, mit der Function des Organs enger verknüpft, während die oberflächlichen nur dem serösen Überzug angehören. Die tieferen begleiten, wie von Säugethieren bekannt wurde, die Arterien und stehen auf der ferneren Verzweigung der letzteren mit dem der Arterienscheide angehörrigen cytogenen Gewebe in Zusammenhang, indem sie sich in die feinen Lücken desselben öffnen, also in die Räume des dort befindlichen reticulären Bindegewebes übergehen. Ob auch innerhalb der Balken Lymphbahnen bestehen, ist mindestens noch zweideutig.

Die Lymphfollikel der Milz zeigen in ihrem Verhalten zu den Arterien größte Übereinstimmung, bei mancher Variation unwesentlicher Punkte. Sie finden sich bald an den Theilungsstellen der Arterien, dann wieder von der Arterie durchsetzt. Im letzteren Falle ist die Umwandlung der Arterienscheide in Follikelgewebe rings um die Arterie erfolgt, während eine mehr einseitige Ausbildung die Lymphfollikel der Arterie ansitzend erscheinen lässt.

In den Milzbalken sind vereinzelte Züge glatter Muskelfasern vorhanden, die bei manchen Säugethieren (Hund, Katze, Schwein) in größerer Menge bestehen.

Siebenter Abschnitt.

Vom Nervensystem.

Allgemeines.

§ 252.

Zusammengesetzt wird das Nervensystem durch die Formelemente, welche oben (§ 29 und 30) als Ganglienzellen und Nervenfasern dargestellt sind. Ein Zwischengewebe vereinigt dieselben und bildet für sie ein Stützwerk.

das Schema B, in welchem zwei Ganglienzellen in Verwendung sind, deren eine mit dem sensiblen Endorgane, die andere mit einer Muskelzelle je durch eine Nervenfaser verbunden ist. Die Punktreihe (x) zwischen beiden Ganglienzellen drückt die wahrscheinliche Verbindung aus, die wohl zwischen den Ganglienzellen angenommen werden kann, wenn sie auch für jetzt noch nicht anatomisch erwiesen ist. Diese einfachen Verhältnisse sind jedoch nicht bloß dadurch complicirt, dass diese Gewebsbestandtheile in großen Mengen bei einander sich finden, sondern auch dadurch, dass die feinen Fortsätze der Ganglienzellen in ihrer Bedeutung kaum erkannt, und auch für die stärkeren (Nervenfortsätze) die weiteren Bahnen größentheils unmerklich sind.

A. Centrales Nervensystem.
Anlage und Entwicklung.

Die Ermittlung der zur Differenzierung des Centralnervensystemes führenden Vorgänge hat im Bereiche der Wirbeltiere, selbst für verschiedene Abtheilungen, so viele übereinstimmende Punkte nachgewiesen, dass wir sie auch für den Menschen zu Grunde legen dürfen. zumal das Wenige, was bei diesem hier-
Vom Rückenmark. 745

In dieser Genese des gesamten centralen Nervensystemes aus einer die primitive Körperhülle darstellenden epithelialen Gewebschichte, dem Ectoderm, spricht sich ein eigenthümliches Verhalten aus, welches seine Erklärung nur darin findet, dass im Bereiche niederer Thiere das Nervensystem an das Ectoderm selbst geknüpft erscheint, dass also jenes Organsystem in einem primitiven Zustande der Organisation vom Ectoderm vorgestellt wird.

I. Vom Rückenmark (Medulla spinalis).

1. Differenzirung der Anlage.

§ 253.

In diesem Befunde erstreckt sich das Rückenmark in der ganzen Ausdehnung des Rückgratcanals, also auch in den sacralen Abschnitt desselben, bis in die Caudalregion. Das einfache Medullarrohr erfährt bald eine Reihe von Veränderungen, welche es dem späteren Zustande näher bringen. Unter fortschreitendem Wachsthume des Ganzen leitet sich eine Massenzunahme der beiden seitlichen Hälften ein, während die Verbindungsstrecken beider eine geringe Dicke
Siebenter Abschnitt.

Das Wachsthum ist aber dorsal bedeutender als ventral, so dass dadurch jederseits ein vorderer (ventraler) Vorsprung gebildet wird, der allmählich zur Bildung einer vorderen medianen Rinne führt. Den Grund dieser Längsrinne (Fissura medialis anterior) bildet die vordere Commissur.

Durch bedeutendere Ausbildung vorderer und hinterer Theile in jeder Rückenmarkshälfte entfaltet sich der Centralcanal nicht gleichmäßig, sondern empfängt Einbuchtungen, durch welche er auf dem Querschnittsbilde rautenförmig sich darstellt (Fig. 478).

Mit diesen Veränderungen treten auch gewebliche Sonderungen ein, und die vorher einfachen, in der Wand des primitiven Medullarrohrs radiär angeordneten Zellen gehen, nachdem ihre Vermehrung Fortschritte machte, in complicirtere Bildungen über. Wir können dann im Allgemeinen folgende Theile unterscheiden (s. Fig. 478):

1) Eine den Centralcanal begrenzende, am mindesten veränderte Zellschichte bildet das Epithel desselben, welches also das aus der ectodermalen Anlage persistirende Gewebe vorstellt.

2) In den vorderen und hinteren Verdickungen der Seitentheile lassen zellige Elemente die Anlage grauer Substanz entstehen, und dazu kommt

3) die später erscheinende weiße Substanz, welche die graue äußerlich bedeckt. Sie entsteht teilweise aus einer Differenzirung der oberflächlichen Lage der Seitentheile des Medullarrohrs, zum größeren Theile wohl durch Fortsatzbildungen, welche von den Elementen der grauen Substanz ausgehen (Kupffer). Diese weiße Faserschichte bildet einen anfängs dünnen Beleg um die inneren Zellmassen der beiden Hälften des Rückenmarks.

So empfängt die Wandung des Medullarrohrs bis zur S. Woche eine beträchtliche Verdickung bis auf die als Commissuren bezeichneten Stellen. Diese bewahren den primitiven Zustand länger, doch erscheint an der vorderen Commissur bald außerhalb des Epithels eine differenzierte Gewebschichte, welche in die ausgebildete vordere Commissur übergeht.

Mit diesem Sonderungsvorgange sind auch die Anlagen der vom Rückenmark ausgehenden peripherischen Nerven deutlich geworden. Sie erscheinen als vordere und hintere von den Seitentheilen des Rückenmarks abgehende Bündel (vordere und hintere Wurzeln), an denen bestimmte Beziehungen zu den größeren Abtheilungen des Rückenmarks hervortreten (Fig. 478). Wie bemerkt, sind in der Länge der Rückenmarks-Anlage vier anschmiege, den Centralcanal einbuchtende Massen aufgetreten, deren jede innen aus grauer, außen aus weißer
Substanz besteht. Die vorderen Massen sind die mächtigeren, bestehen zum größten Theile aus grauer Substanz (Fig. 478), deren Überzug aus weißer Substanz besonders nach vorne zu an Stärke gewinnt und sich nach hinten zu als eine dünne Schichte erstreckt. Die hinteren Massen sind schwächer. Ihre graue Substanz steht mit der vorderen an der seitlichen Ausbuchtung des Centralcanals in Zusammenhang, während die weiße Substanz anfänglich nur eine beschränkte Stelle der grauen überlagert. In der Vertheilung der weissen Substanz und dem Verhalten der austretenden Nervenwurzeln zu dieser, sind bereits die Anfänge für späteres Verhalten wahrzunehmen. Aus den vorderen Massen treten die vorderen Wurzeln der Spinalnerven hervor und theilen den weißen Substanzmantel derselben in einen vorderen und einen lateralen Abschnitt. Ersterer ist die Anlage der Vorderstränge des Rückenmarks, letzterer jene der Seitenstränge. Beide zeigen ihre Zusammengehörigkeit auch später im Verlaufe ihrer Elemente. Verschieden hiervon verhalten sich die hinteren Wurzeln, insofern dieselben die weiße Substanz der hinteren Masse nicht durchsetzen, sondern seitlich von derselben anstreten. Jene weiße Substanz bildet die Anlage der Hinterstränge, welche somit durch die hinteren Wurzeln seitlich sich abgrenzen.

Die grauen Hörner stehen also nicht nur jederseits an ihrer Basis unter sich in Zusammenhang, sondern ebenso mit den anderseitigen, vermittels der den Centralcanal umgebenden grauen Substanz, die man als centrale von jener der Hörner selbst unterscheidet. Diese Einrichtungen zeigen jedoch kein ganz gleichmäßiges Verhalten durch die gesamte Länge des Rückenmarks, ergeben theils in der Vertheilung des Volums grauer und weißer Substanz, theils in der Gestaltung der ersteren viele Eigenthümlichkeiten, ebenso wie in der feineren Structur, was Alles weiter unten Berücksichtigung finden wird.

§ 254.

Das Rückenmark erstreckt sich anfänglich gleichmäßig durch die Länge des Rückgrateanals bis an das Ende desselben. Allmählich erlangen aber zwei Abschnitte eine bedeutendere Entfaltung. Der eine entspricht dem Halstheile des Rückgrats und bildet die Halsanschwellung (Intumescentia cervicalis); der andere liegt in der Lendengegend. Von der Lendenanschwellung (Int. lumbalis) an abwärts verjüngt sich das Ende des Rückenmarks in conischer Form (Conus terminalis). Die beiden Anschwellungen entsprechen den Abgangsstellen der Nerven für obere und untere Gliedmaßen und leiten aus diesen

Vom Rückenmark.

2. Äußeres Verhalten des Rückenmarks.

§ 255.

Das ausgebildete Rückenmark liegt von mehrfachen Hüllen umschlossen im Rückgratcanal, den es nur sehr unvollständig ausfüllt. Es stellt einen mit den oben erwähnten Anschwellungen versehenen cylindrischen Strang vor, der vorne, weniger hinten, etwas abgeplattet erscheint, und dieses am meisten an der Halsanschwellung kund gibt. Oben setzt es sich direct in das dem Gehirn zugehörige verlängerte Mark fort (Fig. 470).

An der Oberfläche des Rückenmarks macht sich eine Unterscheidung durch Längsfurchen am weißen Substanzmantel bemerkbar. Von solchen bestehen
Siebenter Abschnitt.

Das Rückenmark mit dem verlängerten Mark.

Zwei, das Rückenmark in zwei seitliche Hälften teilende mediane, zu denen noch seitliche kommen. Die vordere Medianfurche entspricht einer Spalte (Fissura mediana anterior), welche die sich nach vorne entwickelnden Vorderstränge der weißen Substanz zwischen sich entstehen lassen. Die Wandungen dieser wenig tief eindringenden Spalte werden von der Rückenmarks-Oberfläche gebildet. Die hintere Medianfurche (Sulcus medius posterior) führt dagegen zu keiner Fissur, sondern ihr entspricht nur ein mächtigeres hier eindringendes Bindegewebsseptum, welches die centrale graue Substanz erreicht und die beiden Halften des Rückenmarkes tiefer scheidet als die vordere Fissur.

Die Seitenfurchen zerfallen in eine vordere und eine hintere und sind durch die Austrittsstellen der Nervenwurzeln charakterisiert. In ihrer Ausbildung bieten sie beachtenswerthe Verschiedenheiten. Was als vordere Seitenfurche gilt (Sulcus lateralis anterior), ist bei unversehrtem Rückenmarke keine Furchen, sondern erscheint erst annähernd einer Furchen ähnlich, wenn man die Fäden der vorderen Nervenwurzeln durch Ausreißen entfernt, und dadurch eine Längsreihe den Austrittsstellen jener Fäden entsprechender Gräben erzeugt hat. Dagegen ist die
hintere Seitenfurche (Sulcus lat. post.) eine deutliche Vertiefung, in deren Länge die Fäden der hinteren Wurzeln austreten. Diese bilden zugleich für den Antheil jedes Spinalnerven eine ziemlich continuirliche Reihe, indess die vorderen Wurzeln ihre Fäden aus einzelnen getrennt nebeneinander austretenden Nervenfaserbündeln sich zusammensetzen lassen.

Durch dieses Oberflächenrelief wird der weiße Substanzmantel in die bereits oben berührten Nervenfaserstränge geschieden. Zwischen der Fissura mediana anterior und der vorderen Seitenfurche tritt jederseits der Vorderstrang (Funiculus anterior) vor. Die vordere und hintere Seitenfurche begrenzen den Seitenstrang (Fun. lateralis), hintere Seiten- und hintere Medianfurche den Hinterstrang (Fun. posterior). Da jedoch die vordere Seitenfurche nur eine künstlich darstellbare Vertiefung bildet, so sind Vorder- und Seitenstränge in innigerer Beziehung zu einander als Seiten- und Hinterstrang, wie das schon aus der Anlange dieser Gebilde hervorging. — Von mehr localer Bedeutung ist ein Sulcus intermedius [post.], welcher nur dem Halstheile des Rückenmarks zukommt und jeden Hinterstrang in einen schmalen medialen und etwas breiteren lateralen Abschnitt scheidet, die als besondere Stränge aufzuführen sind. Der Sulcus intermedius (Fig. 479 B) beginnt am oberen Ende des thoracalen Abschnittes des Rückenmarkes von der hinteren Medianfurche aus, und setzt sich dann auf der Halsanschwellung parallel mit der Medianfurche bis zum verlängerten Marke fort. Die laterale Portion des Hinterstranges stellt den Burdach'schen oder Keilstrang vor (Fun. cuneatus), die mediale ist der zarte Strang (Fun. gracilis oder Goll'scher Strang).

3. Innere Struktur des Rückenmarks.

§ 256.

Siebenter Abschnitt.

Die breiten Vorderhörner lassen von ihrem vorderen Umfang die Nervenbündel abgehen (Fig. 481), welche die vorderen Wurzelfäden zusammensetzen. Diese treten auf einem Querschnitt zu mehreren hervor und durchsetzen die vorliegende, sonst continuirliche weiße Substanzlage, die vom Vorderstrange in den Seitenstrang übergeht. Der laterale Theil jedes der in der Halsanschwellung sehr breiten Vorderhörner sondert sich gegen den Brusttheil zu in einen seitlich gerichteten, von der Basis des Vorderhornes ausgehenden Fortsatz, den man als Seitenhorn (Tractus intermedio-lateralis) bezeichnet. Weiter unten im Brusttheile ist diese Bildung nicht mehr deutlich. Schon oben am Halstheile zeigt sich auch am Hinterhorne eine Modification. Lateral von der Basis dieses Hornes, in dem zwischen ihm und dem Vorderhorn eingespringenden Winkel, schickt die graue Substanz lamellenartig unter einander sich durchflechtende Fortsätze aus, welche Bündel weißer Substanz umfassen und auf dem Querschnitt eine netzartige Bildung vorstellen: Formatio s. Processus reticularis. Dieser Befund ist nach abwärts in minderer Deutlichkeit anzutreffen, fehlt jedoch selbst im Lendentheile nicht ganz.

Der Centralcanal durchsetzt als keineswegs stets offener Canal die ganze Länge des Rückenmarkes, wo er besteht, mit einem Lumen von 0,05—0,1 mm; und ist als ein noch feinerer Canal im oberen Abschnitte des Filum terminale vorhanden. Die Form des Lumen bietet sehr wechselnde Verhältnisse. Im Allgemeinen wiegt der Querdurchmesser am Halstheile, der sagittale unten vor. Am Conus terminalis ist der Canal der hinteren Oberfläche sehr nahe gerückt und bietet hier eine längliche Erweiterung (Ventriculus terminalis, W. Krause).

Der Centralcanal öffnet sich vorne, beim Übergange des Rückenmarks in das Gehirn, in den Binnenraum des letzten Gehirnabschnittes. Sein Lumen zeigt häufig Abweichungen von der angegebenen Form. Nicht ganz selten fehlt der Centralcanal streckenweise, oder in größerer Ausdehnung, was im Halstheile die Regel sein soll. Dann findet sich an seiner Stelle ein aus Zellen bestehender Strang, der wohl von der epithelialen Auskleidung des Canals her entstanden ist.
Bezüglich des feineren Baues des Rückenmarks erfordern wieder die beiden Substanzen eine gesonderte Betrachtung.

a. Graue Substanz.

In der Zusammensetzung der grauen Substanz sind zweierlei differente Gewebe zu unterscheiden: erstlich dem Stützgewebe zugehörige Theile und dann solche, die dem Nervengewebe zukommen. Das Stützgewebe erscheint einmal als spärliches Bindegewebe in Begleitung der Blutcapillaren, welche die graue Substanz durchsetzen, und dann als eine eigenthümliche gelatinöse Substanz, die nur an bestimmten Localitäten vorkommt und sich durch gewisse chemisch-physikalische Befunde von den übrigen Bestandtheilen auszeichnet.

Das Nervengewebe der grauen Substanz besteht vor allem aus Ganglizzellen und ihren Fortsätzen, dann aus Nervenfasern, die zum Theile mit den letzteren in Zusammenhang stehen, zum Theile noch nicht in solchen Beziehungen erkannt sind. Sie bilden vielfache Durchflechtungen. Endlich spielt auch die Neuroglia eine Rolle. — Die gesammte graue Substanz unterscheiden wir in die centrale, welche um den Centralcanal die Verbindung der beiden Seitentheile herstellt, dann die beiden in die Hörner ausgezogenen Seitentheile.

Umgeben ist die gelatinöse Centralsubstanz von Zügen querverlaufender blasser Nervenfasern, denen im Großen und Ganzen die Verbindung der beiden Seitentheile zukommt. Sie werden daher als Commissur aufgefasst und nach ihrer Lage zum Centralcanal als vordere und hintere graue Commissur unterschieden. Die letztere ist am bedeutendsten gegen das Ende des Lumbaltheiles,
am schwächsten im Brusttheile. Der Verlauf dieser Fasern wird weiter unten berücksichtigt.

Vor der vorderen grauen Commissur, zwischen ihr und dem Grunde der vorderen Medianfissur, findet sich die weisse Commissur, welche durch markhaltige, schräg sich kreuzende Nervenfasern gebildet, nicht mehr der grauen Substanz angehört und bei den Vordersträngen nähere Betrachtung findet.

In den Seitenteilen der grauen Substanz trifft man die Vertheilung der Ganglienzellen, welche daselbst einzelne Abschnitte charakterisiren.

Der übrige Theil des Hinterhorns bietet nur zerstreute und kleine Ganglienzellen von Spindelform, die an beiden Enden in Fortsätze auslaufen. Die hintere Partie des Hinterhorns wird von gelatinöser Substanz (Substantia gelatinosa Rolandi) gebildet, welche einen terminal bedeutend ver dickten Überzug des Hinterhorns vorstellt und auf verschiedenen Höhen die Form etwas ändert. In ihr fehlen Ganglienzellen gänzlich, dagegen wird sie von blassen Nervenfasern durchsetzt.

Die von den multipolaren Ganglienzellen ausgehenden ramiﬁzierten Fortsätze bilden durch reiche Anastomosen ihrer feinsten Verzweigungen ein ziemlich dichtes Netzwerk (Geriach) und damit gleichfalls einen Bestandtheil der grauen Substanz. Dazu kommt endlich noch eine große Menge blasser, meist starker Nervenfasern, die zum Theile gleichfalls als Fortsätze der Ganglienzellen sich erweisen und in ihren Bahnen sehr verschiedene Verhältnisse erkennen lassen. Endlich besteht für einen anderen Theil der Fasern ein Übergang in die weiße Substanz, für noch andere ist die Verlaufsmrichtung problematisch.

Die Anordnung der Ganglienzellen in der grauen Substanz ist zwar im Allgemeinen eine continuumliche mit den für einzelne Regionen des Rückenmarks aufgeführten Modiﬁcationen, allein es ist hiemit eine Sonderung in einzelne den Abgangsstellen der Spinalnerven entsprechende Gruppen verbunden, so dass auch hier eine Metamerie sich ausspricht.

b. Weiße Substanz.

§ 257.

Die weiße Substanz des Rückenmarks wird oberflächlich von einer in verschiedene Lagen zu sondernden Bindegewebschichte umschlossen, deren weiter unten bei den Hüllen des Centralorganes des Nervensystems als Pia mater gedacht werden wird. Von dieser Bindegewebschichte treten zahlreiche Lamellen radiär in die Fasermasse der weißen Substanz und zerteilen die durch die Austrittsstellen vorderer und hinterer Nervenwurzeln sowie durch die vordere Median- spalte bereits abgegrenzten Stränge in Unterabtheilungen. Von diesen bindegewebigen Septen ist das die Hinterstraße von einander sondernde das bedeutendste (Fig. 452). Wie von diesem so gehen auch von den anderen feinere seitliche Abzweigungen ab, die sich hin und wieder unter einander verbinden, so dass dadurch die Fasermasse der einzelnen Stränge in viele kleinere Bündel zerlegt wird. Im Allgemeinen sind diese Septa an der Peripherie am stärksten und nehmen auf ihrem Wege gegen die graue Substanz mit ihrer Vertheilung an Mächtigkeit ab. An dem Processus reticularis gehen sie in denselben über. Während so das von Blut- und Lymphgefäßenbahnen begleitete Bindegewebe eine größere Zerlegung der weißen Fasermassen besorgt, schließt sich an dieses Geste das feinere Stützwerk der Neuroglia an, und erscheint als verbindendes Element zwischen den Formbestandtheilen. — Die Bindegewebs-Septa sind auf größeren Strecken in ziemlich gleichartiger Anordnung zu verfolgen, verlaufen aber keineswegs gleichmäßig in der gesamten Länge des Rückenmarks. Hin
und wieder werden sie schwächer, verschwinden, während neue daneben auftreten, was ebenso für die Verzweigungen derselben gilt. Dieses Verhalten correspondirt mit dem Verlaufe der Nervenfasern, deren Bahnen in der weißen Substanz vielfache Ablenkungen von der geraden Richtung erkennen lassen, wie weiter unten dargelegt wird.

Die Nervenfasern der weißen Stränge sind markhaltig, von sehr verschiedenem Kaliber, in der Regel durchmischt; an bestimmten Stellen jedoch werden vorwiegend je größere oder feinere angetroffen.

Die vordere Commissur bildet zum Theile die Fortsetzung einer am verlängerten Marke des Gehirns in prägnanterer Weise zum Ausdruck kommenden Einrichtung (Pyramidenkreuzung). Zum anderen Theile bestehen in ihr neue, dem Rückenmark eigene Verhältnisse, die jedoch noch wenig klar liegen.

An den Strängen des Rückenmarks sind die Verlaufsverhältnisse nur zum Theile genauer bekannt. Die wichtigeren, vorzüglich durch Flechsig ermittelten Züge sind in den nach diesem Autor in Fig. 483 dargestellten Querschnittsbildern durch schräfte Felder ausgedrückt.

In den Vordersträngen besteht ein die vordere Medianspalte lateral begrenzender Faserverzweigung, welcher sich aufwärts in die Pyramiden des verlängerten Marks fortsetzt. Es sind von den letzteren (direct ungekreuzt) herabsteigende Fasern, deren Menge distal abnimmt, so dass sie im unteren Thoracalmarke verschwunden sind. Diese Pyramiden-Vorderstrangbahn erscheint in großer individueller Variation, häufig auch in asymmetrischem Verhalten. Die distale Abnahme scheint dadurch zu Stande zu kommen, dass die Fasern dieser Bahn successive durch die vordere Commissur in die Basen der Vorderhörner der anderen Seite eindringen und von da in den Seitensträngen distal weiter verlaufen. Durch die continuirliche Fortsetzung dieses Verhaltens wird schließlich die Pyramiden-Vorderstrangbahn erschöpft, oder vielmehr sie ist in eine gekreuzte Pyramiden-Seitenstrangbahn übergegangen.

Fig. 483.

A: Fun. grac.
B: Fun. cun.
Kleinhirn-Seitenstr.
Pyramiden-Seitenstr.
Pyramiden-Vorderstr.
Hinterstrang
Kleinhirn-Seitenstr.
Pyramiden-Seitenstr.
Pyramiden-Vorderstr.

Zwei Querschnitte des Rückenmarks.
A aus der Halsanschwelling,
B aus der Thoracalregion,
mit Darstellung der Bahnen der weißen Substanz.
In den Seitensträngen begegnet man außer den vorerwähnten Pyramidenbahnen noch anderen, die schon vom verlängerten Marke an, aus der dort befindlichen Kreuzung der Pyramiden in sie übergingen. Diese Pyramiden-Seitenstrangbahn erscheint im hinteren Theile des Seitenstranges im oberen Cervicaltheile in oberflächlicher Lagerung, dann mehr in die Tiefe gerückt (Fig. 453.1) und gewinnt erst im unterenThoracalmarke wieder die Oberfläche. Distal nimmt der Umfang dieser oben sehr beträchtlichen Fasermasse ab. Bis zum Conus terminalis ist sie verfolgbar. Ob diese Abnahme durch allmäßlichen Übergang in die grauen Hörner und Verbindung mit dem daselbst befindlichen Ganglienapparat erfolgt, ist ungewiss. Die Pyramidenstränge des verlängerten Marks vertheilen sich also auf zwei Wegen zum Rückenmark. Eine grössere Portion tritt schon oben noch in der Med. oblongata auf und zwar gekreuzt in die Seitenstrange des Rückenmarks über, eine kleinere Portion nimmt in dem Vorderstrange der gleichen Seite ihre Bahn, um jedoch während dieses Verlaufes allmäßlich gleichfalls den Weg in die Seitenstränge der anderen Seite einzuschlagen. Durch ihre Kreuzung tragen sie zur Bildung der vorderen Commissur bei. Einen anderen Theil derselben bilden Fasern, die aus den Vorderhörnern der einen Seite in den Vorderstrang der anderen Seite übergehen. Diese Commissur hat also sowohl zu den Vorder- wie zu den Seitensträngen Beziehungen und darin kommt die engere Zusammengehörigkeit jener beiden Stränge zu neuem Ausdruck.

Für die Hinterstränge besteht im oberen Theile des Rückenmarks eine oberflächliche Sonderung in zwei Strangmassen, die Funiculi graciles (Goll'schen Stränge) und die Burda'schen Funiculi cuneati. Die ersteren sind durch das bindgewebige Septum der Hinterstränge von einander getrennt und erstrecken sich in die Tiefe bis gegen die hintere graue Commissur, welche von ihnen im Halstheile erreicht wird. Abwärts ist ihre Ausdehnung bis gegen die Mitte des Brusttheiles verfolgt. Von ihrer lateralen Nachbarschaft, den Keilsträngen, sind sie durch grössere Feinheit der Fasern unterschieden. Woher diese Fasern stammen, ist noch nicht sichergestellt und nur die eine Angabe sei erwähnt, dass Fasern aus den Clarke'schen Säulen zu ihnen eintreten. Sie sollen so ein
System von Längscommissuren vorstellen, welches vom Rückenmark zur Medulla oblongata verläuft. Auch über die Bahnen der übrigen Regionen der Hinterstränge ist nichts Sicheres bekannt, außer Beziehungen zu hinteren Wurzeln, über welche bei diesen das Nähere angegeben wird.

c. Die Wurzeln der Spinalnerven.

§ 258.

Bei der Beschreibung der Oberfläche des Rückenmarks ist der aus den sogenannten Seitenfurchen austretenden Wurzelfäden gedacht worden, welche peripherisch die Rückenmarksnerven zusammensetzen. Wir unterscheiden jene Wurzelfäden in vordere und hintere, die auch nach ihrer Function sich sondern, indem die vorderen motorisch, die hinteren sensibel sind.

in Längsbahnen um, auf denen sie eine Strecke abwärts verlaufen, um dann mit einer neuen Umbiegung wieder in mehr horizontalen Verlauf überzugehen. Sie finden sich dann als mehr oder minder compacte Bündel an der medialen Seite der Spitze des Hinterhorns (Fig. 481 m), wo sie zum Austritt gelangen.

Die zweite Abtheilung von Fasern kommt aus den Hinterhörnern (Hinterhornfasern), bildet aber eine dem Volum nach minder starke Masse, als die Hinterstrangfasern vorstellen. In dem verbreiterten Theile des Hinterhorns bilden sie größenthheits horizontal verlaufende bogenförmige Züge, welche den gewölbten Seitenflächen jenes Horns entsprechen und die gelatinöse Substanzschichte durchsetzend, sich erst an der Spitze des Hinterhorns sammeln (Fig. 481 l). Ein Theil dieser Fasern kommt von den Vorderhörnern her, ein anderer von der grauen Commissur, endlich noch andere kommen von Längsfaserzügen, welche die graue Substanz der Hinterhörner senkrecht durchsetzen.

Bezüglich der Literatur über den Bau des Rückenmarks heben wir hervor:
ROLANDO, Ricerche anatomatiche sulla struttura del midollo spinale. Torino 1824.
II. Vom Gehirn (Cerebrum).

1. Differenzierung der Anlage.

§ 259.

Diese fünf aneinander gereihten Abschnitte lassen ihre Binnräume mit einander communiziren und in den des letzten setzt sich der Centralsanal des Rückenmarks fort. Schon mit der Entstehung des secundären Vorderhirns haben sich Veränderungen der Axe der Gehirnanlage eingeleitet, die nicht mehr die gerade Richtung einhält. Das abwärts erfolgende Auswach-

Auch der Gehirnanlage kommt allmählich eine engere Verbindung mit dem sie anfänglich umgebenden Bindegewebe zu, und sie empfängt ähnlich wie das Rückenmark durch Einwachsen von bindegewebigen Theilen einen Stützapparat des nervösen Gewebes, welches aus der ersten ectodermalen Anlage entstand. Mit jenem Einwachsen von Bindegewebs-elementen vollzieht sich auch die Vascularisation des Organes und die äußerste Schichte des gefäßführenden Gewebes lässt die Gefäßhaut hervorgehen, die wir bei den Hülleen des centralen Nervensystems betrachten.

An dem mit dem Vollzuge der Krümmungen von dem primitiven Zustande bedeutend sich entfernenden Gehirne sind inzwischen noch andere Veränderungen aufgetreten, Umbildungen der einzelnen Abschnitte, theils durch geringere Ausbildung des einen, bedeutende Volumszunahme des anderen Theils, und Differenzierung nemer Gebilde.

Am Nachhirn tritt die Decke in schärferen Gegensatz zu dem Boden und den Seitenteilren, welche vorne lateralwärts sich ansziehen und das verlängerte Mark (Medulla oblongata) vorstellen. Die Decke (Fig. 485 A) bildet einen dünnen epithelialen Beleg der Gefäßhaut und geht an den Verbindungsstellen mit dem Hinterhirn sowohl, wie mit den Seiten des Bodentheiles in dünne Markplättchen über, die als rudimentäre Gebilde erscheinen. Bemerkenswerthe Verhältnisse bietet der vordere Theil dieser Decke, welcher unter den zum Cerebellum sich gestaltenden Theil einwächst und dadurch eine Art von Tasehe vorstellt, deren vordere Wand noch dem Cerebellum sich anschließt.

Weiterhin stellt die Decke die Tela chorioides des vierten Ventrikels vor. Als solcher erscheint der Binnenraum des Nachhirns mit seiner Fortsetzung unter das Hinterhirn. Das Dach des Hinterhirns, welches vorher nur durch eine wenig verdickte Markplatte gebildet war, gewinnt eine bedeutende Volumsentfaltung, welche wesentlich durch eine Vergrößerung der Oberfläche bedingt wird. Dieser
Vorgang tritt zuerst am medianen Abschnitte auf, dann auch an den seitlichen Theilen, die jedoch unter einander zusammenhängen und allmählich das *kleine Gehirn*, *Cerebellum* hervorgehen lassen. Die erst plane Oberfläche desselben erscheint schließlich in bedeutender Wölbung, die sich am ausgebildeten Kleinhirn sowohl vorne als hinten auch nach unten zu erstreckt. Die eigentliche Unterfläche wird dabei im Vergleiche zur grauen Oberfläche zu einer unbedeutenden Strecke, die als Dach des vorderen Abschnittes des vierten Ventrikels sich darstellt. Am Boden des Hinterhirns findet eine beträchtliche Ver- dickung statt, indem nicht nur Fasermassen von dem verlängerten Marke her zum Boden des Mittelhirns sich fortsetzen, sondern auch reiche Einlagerungen grauer Substanz bestehen; dazu bilden sich Querfasermassen aus, die zum Theile ins Cerebellum übergehen, an der Oberfläche aber einen bedeutenden ventralen Vorsprung darstellen, die *Brücke* (Pons Varoli).

Man pflegt die Brücke samt dem kleinen Gehirn dem secundären Hinterhirne zuzurechnen. Richtiger ist als secundäres Hinterhirn nur das Cerebellum anzusehen, da der später die Brücke darstellende Abschnitt des primitiven Hinterhirns keinen vom übrigen Hinterhirn (dem Nachhirn) schärfer gesonderten Theil vorstellt und auch bei niederer Wirbeltieren mit jenem Nachhirn zusammen ein einheitliches Ganze, die Medulla oblongata, bildet. Die Entstehung dieser Gebilde wie auch der Medulla oblongata aus dem primitiven Hinterhirn und die darin sich äußernde engere Zusammengehörigkeit spricht sich auch in dem diesem Theile gemeinsam eingefügten Binnenraume aus, der schon oben als *Ventriculus quartus* bezeichnet wurde. Dieser erstreckt sich also von der Medulla oblongata unter das Kleinhirn und zeigt seinen Boden von rhomboidal Gestalt *Rautengrube*, indem er nach vorne zu sich verschmälert, wie er von hinten her sich verbreitert hatte.

Das *Mittelhirn* empfängt nur Verdickungen seiner Wandung, so dass der Binnenraum bedeutend vermindert und schließlich zu einem engen Canale wird, der als *Sylvische Wasserleitung* den Binnenraum des Zwischenhirns mit dem vierten Ventrikel verbindet. Das Dach bildet eine Markplatte (Lamina quadrigemina), deren Oberfläche eine Sonderung in zwei seitliche Hälften beginnt, die später durch eine Querfurche wieder in je zwei flache Vorsprünge
getheilt werden. So gestaltet sich diese Oberfläche zu den **Vierhügeln Corpora quadrigemina** um. Den Boden und die seitlichen Theile stellen Fasermassen dar, welche zum Theile zu den folgenden Abschnitten sich begeben und als **Hirnstiele (Pedunculi cerebri)** aufgeführt werden.

Die Entfaltung der Oberfläche bahnt eine auch fernerhin noch zunehmende Vergrößerung dieser Hirntheile an, welche mit der Ausbildung von wichtigen Apparaten im Vorderhirn in Zusammenhang gebracht werden muss. In der Tiefe der Einsenkung zwischen beiden Hemisphären findet sich noch die Decke continuirlich, hinten in jene des Zwischenhirns fortgesetzt, vorne nach dem Boden des Vorderhirns sich umbiegend. Dieser stellt die Schlussplatte
(Lamina terminalis) vor, welche hinten bis zur Gegend der Abgangsstelle der Sehnerven reicht, also hier gleichfalls an das Zwischenhirn grenzt.

Die Communication beider Seitenventrikel unter einander erscheint zuerst als eine relativ weite Öffnung (Fig. 485 A), welche hinten von den Schühügeln, vorne von der als Lamina terminalis bezeichneten Verbindungsstrecke beider Hemisphären abgegrenzt wird. Unter bedeutender Volumszunahme des gesamten Vorderhirns nimmt der relative Umfang jener Communication ab, und geht allmählich in eine unansehnliche Öffnung über: das Monro’sche Loch. An der Grenze zwischen Vorder- und Zwischenhirn haben sich im Zusammenhange mit den erwähnten Veränderungen des Daches des Zwischenhirns gleichfalls Umwandlungen vollzogen, und zwar geht die Verdünnung des Daches des Zwischenhirns auf jene Grenzstrecke fort. Dieser Vorgang schreitet in trans-
versalter Richtung vor, gemäß der Ausdehnung der Großhirn-Hemisphären über die Schläfen. Die dünn gewordene Strecke bleibt in enger Verbindung mit der Gefäßhaut und stellt eine Epithelialüberkleidung derselben her. Eine Wucherung der Gefäßhaut gegen die Seitenventrikel erfolgt dann in Gestalt einer einragenden Falte längs der, wie oben bemerkt, jederseits schräg gelagerten Grenze zwischen Vorder- und Zwischenhirn. Diese Strecke gewinnt das Ansehen einer Spalte \textit{Fissura transversa cerebri}, durch welche die Gefäßhaut einzudringen scheint (vergl. Fig. 485 A. B). In Wirklichkeit besteht jedoch keine Lücke, denn die vorher hier vorhandene Decke überkleidet die Duplicatur der Gefäßhaut und setzt sich sowohl an dem oberen wie an dem unteren Rande der Spalte in die Gehirnwand fort.

Weitere Veränderungen betreffen theils die Oberfläche, theils die inneren Theile des Großhirns. Von ersteren heben wir eine neue, von der Unterfläche des Vordertheiles der Hemisphären ausgehende Bildung hervor. Wie eine Ausbuchtung der Hemisphären (Fig. 484) tritt jederseits die Anlage eines später kolbenförmig sich gestaltenden Gebildes auf, der \textit{Lobus olfactorius} (Fig. 486), welcher einen mit dem betreffenden Seitenventrikel communicirenden Binnenraum umschließt (Fig. 487).

Umfänglichere Differenzierungen gehen in der Begrenzung des Monro'schen Loches und der \textit{Fissura transversa} vor sich. Durch die das Wachsthum der Hemisphären nach vorne zu begleitende Ausdehnung der Seitenventrikel in der gleichen Richtung gelangt die Lamina terminalis immer mehr zur Bedeutung einer Scheidewand zwischen den Vordertheilen jener beiden Binnenräume. Sie setzt sich dabei jederseits in die von den Hemisphären gebildete obere Begrenzung der Fissura transversa fort, welche sich über den Schläfen seitlich, dann nach hinten und abwärts ausgedehnt hat. Dieser bogenförmig verlaufende Theil der Begrenzung jener scheinbaren Spalte ist der \textit{Randbogen}, aus dessen unterem Theile das \textit{Gewölbe Fornix} entsteht. Vor dem Monro'schen Loch erhebt sich der Fornix über den Schläfen und erstreckt sich in dem um letzteren herum gewachsenen Theil der Hemisphären nach hinten und abwärts. Die bis zu den vorderen Schenkeln des Gewölbes von vorne her eingebuchtete, eine paarige dünne Lamelle darstellende Schlußplatte bleibt als Scheidewand zwischen dem vorderen Abschnitte der Seitenventrikel fortbestehen und bildet das \textit{Septum pellucidum} (Fig. 486). Mit diesen Vorgängen ist, wieder von der Lamina ter-
Enthält ein, und zwar von dem vorderen Theile derselben, ein Commisuren-
system entstanden, welches beide Hemisphären unter einander in Zusammenhang
setzt. Dieses bildet den Balken (Corpus callosum). Vorne von dem
dahinter beginnenden Fornix durch jenes Septum getrennt. tritt der Balken mit
dem Fornix gleichfalls nach hinten, wobei er sich letzterem nähert und im Ver-
laufe der ferneren Ausdehnung des Fornix seine Unterfläche mit den divergi-
renden hinteren Schenkeln desselben verbunden erscheinen lässt.

Innerhalb dieser nur die wichtigsten Theile berührenden Conturen des
Entwickelungsganges des Großhirns erscheinen noch viele andere Zustände als
Differenzierungen der Anlage, auf deren Darstellung hier nicht eingegangen werden
cann. Aus dem Dargestellten ergibt sich aber die eminenten Bedeutung des Groß-
hirns, nicht bloss durch seine mächtigere Volumsentfaltung im Allgemeinen, son-
dern auch durch die Organe, die damit in ihm entstehen. Von diesen ist es die
Oberfläche der durch den Balken verbundenen Großhirnhemisphären, an welcher
die graue Substanz wichtige Theile bildet. Neben der Ausbildung grauer Sub-
stanzmasse im Innern beherrscht die Entfaltung der grauen Ober-
fläche die gesammte Entwicklung des Großhirns. Diese auch
noch in anderer Weise wie am ausgebildeten Gehirn gezeigt wird] sich aus-
drückende Oberflächenvergrößerung bedingt aber auch eine Vergrößerung des
Gesamtvolumes, insofern die sich vermehrende, Centralorgane vorstehende graue
Substanz der Rinde eine Vermehrung der in der weißen Substanz gegebenen
leitenden Apparate zur nothwendigen Folge hat. Endlich ist die Vergrößerung
der Oberfläche auch eine Bedingung der Umgestaltungen, die in der Bildung
des Fornix und des Balkens sich zeigen. Diese Theile werden in ihrer Ausbil-
dung geleitet von der Volumszunahme der Hemisphären, ihrem Auswachsen nach
vorne, oben, hinten, seitlich und abwärts, also so ziemlich nach allen Richtungen.
Damit steht im Einklang die Beschaffenheit jener Gebilde bei niederen Säuge-
thieren, deren Balken und Fornix in dem Maße eine geringere Entfaltung aufweisen,
as die Hemisphären des Großhirns mindere Oberflächen darbieten. Mit jenen Ver-
änderungen halten sie gleichen Schritt, und ebenso treffen wir sie bei den Säugethieren in
den verschiedenen, vom Menschen durchlauf-
fenen Stadien ihrer Ausbildung an die jeweilige
Entfaltung der Großhirnrinde geknüpft.

Betrachten wir das gesammte Gehirn in den
Grundzügen seines Verhaltens, so geschieht das
am einfachsten auf einem Wege durch die Binnen-
räume (Fig. 457), die aus dem Binnenraum des
primitiven Medullarrohrs hervorgingen. An den
Centralcanal des Rückenmarkes sehen wir den
vierten Ventrikel sich anschließen, dessen Bo-
den die Rautengrube bildet. Hinten gehört dieser dem verlängerten Marke an,
welches weiter vorne die Brücke unter sich hat. Den vorderen Theil der Rauten-
Vom Gehirn.

767

2. Structur des Gehirns.

§ 260.

Die genauere Betrachtung der Structur des Gehirns ordnet sich am naturgemäßesten nach den einzelnen, auf die Entwicklung gegründeten Abschnitten, wie ungleichartig sie auch ihrem Volum nach sind. Wir fassen dabei das primitive Hinterhirn als einen einzigen Abschnitt auf, da es sowohl in seinem Binnenraum, dem vierten Ventrikel, sich einheitlich fort erhält, als auch die aus ihm entstandenen Sonderungen, das secundäre Hinterhirn (kleines Gehirn), mit der Brücke, sich nur im Zusammenschlusse mit dem übrig gebliebenen Theile des primitiven Hinterhirns, dem Nachhirn oder der Medulla oblongata darstellen lassen. Auf das primitive Hinterhirn lassen wir das Mittelhirn folgen und reihen daran das Zwischenhirn, um mit dem Vorderhirn abzuschließen.

Die hinter dem zum Großhirn sich entfaltenden Vorderhirn befindlichen Abschnitte des Gehirnes treten an Volum gegen ersteres bedeutend zurück und bewahren dabei ihre ursprünglichen Lageverhältnisse zu einander viel vollständiger. Sie werden zusammen als Hirnstamm (Caudex cerebri) aufgefasst.

a. Hinterhirn.

Das verlängerte Mark bietet, wie auch der Name besagt, den Übergang des Rückenmarks ins Gehirn und besitzt demgemäß mit ersterem noch gemein-
same Einrichtungen. Diese erfahren jedoch in ihm allmähliche Umwandlungen, aus denen neue, in die folgenden Abschnitte des Gehirns sich fortsetzende Befunde entstehen.

Dem allmäßlichen Übergange des Rückenmarkes in die Medulla oblongata entspricht die Fortsetzung sämtlicher an ersterem sowohl äußerlich als im Inneren unterschiedener Theile.

An der Oberfläche sind es vorzüglich die Längsfurchen und die von ihnen abgegrenzten Stränge, welchen wir auch am verlängerten Marke, freilich mit bestimmten Modifikationen, begegnen. Die vordere Medianspalte ist am Beginne des verlängerten Markes durch die oben berührte Unterbrechung
ausgezeichnet (Fig. 488). Eine Anzahl von starken Nervenbündeln kommt hier aus der Tiefe von einer Seite hervor und kreuzt sich in der dadurch unterbrochenen Spalte spitzwinkelig mit eben solchen Bündeln der anderen Seite. Dies ist die Pyramidenkreuzung (Decussatio pyramidum), so genannt nach den Pyramidensträngen, die sich an der Vorderseite der Medulla oblongata zu beiden Seiten der Medianfurche befinden und in dieser Kreuzung abwärts gehen. Die Elemente der sich kreuzenden Bündel gehören zu den starken markhaltigen Nervenfasern. Man bezeichnet diese Pyramidenkreuzung auch als untere oder motorische, im Gegensatze zu weiter oben sich kreuzenden feinen Faserzügen, die als sensibel gelten. Diese Pyramidenkreuzung ist in verschiedenen Grade ausgeprägt, bald sehr bedeutend, aus jederseits 4—5 Bündeln gebildet, bald nur so schwach entfaltet, dass dann die vordere Medianspalte des Rückenmarks continuirlich auf die Medulla oblongata übergeht. Zuweilen überschreitet die Kreuzung die durch den ersten Cervicalnerven angegebene Grenze und trifft mit ihrem unteren Ende noch ins Gebiet des Rückenmarkes. In allen Fällen ist die obere Strecke der Medianspalte ziemlich tief und nimmt noch gegen die Brücke zu, wo sie mit einer Einsenkung endet. Die hintere Medianfurche ist im Gebiete der Medulla oblongata zu einer wenn auch schwächeren, aber doch deutlichen Spalte ausgebildet, welche am hinteren Ende der Rautengrube ihr Ende findet (Fig. 489). Die vordere Seitenfurche (Sulcus lateralis anterior) des Rückenmarks ist bis in die Gegend der Austrittsstelle der vorderen Wurzeln des ersten Halsnerven deutlich, darüber hinaus dagegen unterbrochen und erst wieder am obersten Theile des verlängerten Markes in der seitlichen Abgrenzung der Pyramidenstränge ausgeprägt. Die Austrittsstellen der Wurzelfäden des 12. Nervenpaars zeichnen sie aus (Fig. 513). Die hintere Seitenfurche (Sulcus lateralis posterior) nimmt vom Rückenmarke her auf der Medulla oblongata einen etwas eigen tümlichen Verlauf, welcher durch das Auseinanderweichen der hinteren Stränge der Medulla oblongata behufs der Bildung der Rautengrube bedingt wird. Sie tritt nämlich, durch austretende Nervenwurzeln ausgezeichnet, auf die Seite der Medulla oblongata über, in dem Maße, als die Rautengrube sich nach vorne zu verbreitert, und verschwindet am hinteren seitlichen Brückenrande. Die von den Längsfurchen abgegrenzten Stränge bieten wieder von denen des Rückenmarks abweichende Befunde. Die Vorderstränge des letztenen sind nämlich nicht als solche auf die Medulla oblongata fortgesetzt. An ihrer Stelle, d. h. zur Seite der vorderen Medianfurche und lateral von der vorderen Seitenfurche abgegrenzt, finden sich die Pyramiden (Pyramidenstränge, Funiculi pyramidales, vordere Pyramiden). Sie werden vorwiegend aus Faserzügen gebildet, welche unter der Brücke hervorkommen und sich in der oben beschriebenen »Decussatio« in einzelne in der vorderen Medianfurche sich kreuzende Bündel auflösen, die in der Tiefe verschwinden. Wenn man den Faserverlauf vom Rückenmarke zum Gehirne emporsteigend sich denkt, so kann man sagen, dass die Pyramiden durch die Decussatio entstehen, eben aus den Kreuzungsbündeln, die in der vorderen Median-
Siebenter Abschnitt.

Zur Seite der Pyramiden findet sich eine längliche, abgerundete Vorrangung, die Olive (Corpus olivae) (Fig. 488), an deren hinterer Grenze die vorher unterbrochene hintere Seitenfurche durch Ausstritte stellen von Nervenwurzeln wieder deutlich wird und sogar eine ziemliche Breite erlaucht. An der Oberfläche der Olive, besonders am unteren Ende derselben, bemerkt man bogenförmige Faserzüge (Fibræ arcuatae), die nach den Pyramiden zu sich vertheilen.

Die Fortsetzung der Hinterstränge des Rückenmarkes, die bereits am Hals theile in je zwei Theile gesondert waren (§. 757), werden mit einem Theile der Seitenstränge als Corpora restiformia, strickförmige Körper, bezeichnet. Sie theilen sich in mehrere Abschnitte. Medial, zur Seite der hinteren Medianfurche, setzen sich die Funiculi graciles, zarte Stränge, Golf'sche Stränge, verbreitert auf die Med. oblongata fort und enden mit einer als Clava, Keule, bezeichneten Anschwellung, dicht hinter dem Calamus scriptorius benannten Beginne der Rautengrube. Seitlich von den zarten Strängen befinden sich die Keilstränge (Burdach'sche Stränge), denen lateral ein neuer Theil, der laterale Keilstrang (Rolandoscher Strang) sich anschließt, welcher den vorerwähnten als medialen unterscheiden lässt. Diese Bestandtheile der Corpora restiformia treten am Beginne der Rautengrube in seitliche Richtung und geben damit, was besonders von den Keilsträngen gilt, die Begrenzung des hier sich seitlich verflachenden Bodens der Rautengrube ab. Weiter vorne wenden sie sich aufwärts und treten zum Cerebellum empor, daher man die Corpora restiformia auch Pedunculi cerebelli, Kleinhirnstiele, Crura cerebelli ad medullam benannt hat.

§ 261.

Mit der äußersten Umgestaltung des Rückenmarkes in die Medulla oblongata gehen Modifikationen der inneren Structur einher, welche die feineren Verhältnisse der grauen und der weissen Substanz betreffen. Wir betrachteten diese beiden Theile wieder gesondert. Bezüglich der grauen Substanz ist zu be-
merken, dass am Rückenmark durch die Verbreiterung der Hinterstränge eine Veränderung der Lage der Hinterhörner erfolgt, die mehr in seitlicher Richtung abgehen und terminal bedeutend an Stärke zunehmen. Um den Centralcanal erscheint die graue Substanz ebenfalls in bedeutender Zunahme und entfaltet sich damit in Zusammenhang auch nach der Peripherie. So erscheinen graue Kerne in den Funiculi graciles und nehmen aufwärts an Volum zu. Dann erstrecken sich ähnliche graue Substanzmassen in die medialen Keilstränge. Daraus resultiert eine Volumzunahme dieser Theile. Noch vor der Eröffnung des Centralcanals sind somit in der hinteren Hälfte der Medulla oblongata jederseits von der den Centralcanal umgebenden grauen Substanz drei am Anfange ungleich starke und auch nicht ganz scharf abgegrenzte graue Substanzleisten entfaltet, indem an die vorerwähnten Kerne lateral noch die Enden der Hinterhörner mit ihrer Substantia gelatinosa sich anschließen (Fig. 490, 491). Diese grauen Massen gelangen jedoch nicht in die Kleinhirnstiele. In der vorderen Hälfte der Medulla oblongata bestehen die Vorderhörner des Rückenmarks gleichfalls nicht mehr unverändert fort. Ihr Kopf, mit dem sich die Seitenhörner verbunden haben, wird vom basalen Theile abgeschnürt, durch aus den Seitensträngen in die Pyramidenkreuzung eingehende Fasermassen, von denen weiter unten nochmals die Rede sein wird. Der abgeschnittene Theil der Vorderhörner erhält sich zwar noch oberhalb der Pyramidenkreuzung, wird aber allmählich von ihm durchsetzenden Faserzügen aufgelöst. So besteht dann nur noch der basale Theil jener Hörner in der Nachbarschaft des Centralcanals, und bildet mit der Öffnung des letzteren in die Rautengrube den medialen Abschnitt des grauen Bodens derselben, während die hinteren grauen Substanzmassen eine laterale Lage einnehmen.

Im vorderen Theile der Medulla oblongata sind aber noch andere graue Massen aufgetreten, die dem Rückenmark abgehen. Das sind: 1) die Olivenkerne und Olivennebenkerne, 2) zerstreute graue Substanz, zumeist in Begleitung von sich in verschiedener Richtung durchsetzenden Faserzügen. Bezüglich dieser letzteren wird bei der weißen Substanz das Wichtigste anzuführen sein.

Der Olivenkern (Nucleus olivaris, Corpus dentatum olivae) Fig. 493) liegt der äußerlich als Olive bestehenden Anschwellung zu Grunde. Er wird gebildet durch eine Lamelle grauer Substanz, welche
Siebenter Abschnitt.

einen von weißer Substanz eingenommenen Raum kapselartig umschließt, aber an einer Stelle, medial und nach hinten zu, unterbrochen ist. An diesem *Hilus* treten Faserzüge hervor, welche theilweise die Wandung des Kernes durchsetzen. Oben und unten ist die durch jene Lamelle dargestellte längliche Kapsel geschlossen. Sie bietet an ihrer Wand zahlreiche Ein- und Ausbuchtungen, auch Knickungen dar, und parallel zum Olivenkern gestellt. Auf dem Durchschnitte erscheinen sie ein- fach als breite Züge grauer Substanz. Der eine, *mediale* oder innere Nebenkern (Fig. 492) liegt medial vom Olivenkern etwas nach vorne zu, der Medianebene des verlängerten Markes genähert, hinter den Pyramidensträngen, daher er auch *Pyramidenkern* benannt wird. Er scheint zuerst auf dem Quer- schnitte als ein einfacher Streif, weiter aufwärts ist er medial und nach vorne im Winkel gebogen. Der andere laterale, *äußere Nebenkern* (*Nucleus olivaris accessorius*) (Fig. 493) hat seine Lage nach hinten und außen vom Olivenkerne.

Bezüglich des Verhaltens der *weißen Substanz* im verlängerten Marke ergibt sich die erste bedeutende Veränderung in der bereits mehrfach berührten *Pyramidenkreuzung*. Indem hier Fasern aus den Seitensträngen die grauen Vorderhörner durchsetzen und in die Pyramide der anderen Seite übergehen (wel- chen Verlauf man sich auch in umgekehrter Richtung denken kann), so entsteht damit eine neue Anordnung, wobei die die Kreuzung eingehenden Bündel sich den von den Vordersträngen des Rückenmarks her umgekreuzt emporstiegen- den Fasermassen anschließen und mit diesen lateral verdrängten Theilen zusammen die Pyramiden der Medulla oblongata bilden. Hiebei hat man sich jedoch zu erinnern, dass schon am Rückenmarke in der *Commissura alba* eine ähnliche Kreuzung bestand, indem in derselben Vorderstrang-Seitenstrangfasern sich aus- tauschten und so dasselbe Verhalten darstellten, welches in der Pyramidenkreuzung durch das größere Volum der Nervenbündel nur zum mächtigeren Aus- druck gelangt. Die ganze Erscheinung führt also zu einer Überleitung der Seitenstränge in die Pyramidenstränge des verlängerten Markes. Ob außer die Fasern der Seitenstränge noch andere, aus hinteren Theilen der Medulla stammende Fasern in die Pyramidenkreuzung eingehen, ist zweifelhaft. Dagegen besteht eine solche Kreuzung durch Fasern, welche von hinteren Theilen der
Vom Gehirn.

...

grauen Substanz kommen, und oberhalb der Pyramidenkreuzung von einer Seite zur anderen verlaufen. Aus dieser in der Medianebene liegenden Bildung geht weiter aufwärts die Raphe des verlängerten Markes hervor.

An die Pyramidenkreuzung knüpft sich noch eine andere Einrichtung. Die bereits im Rückenmarke bestehende Auflösung von grauer Substanz, wie sie in der zwischen Vorder- und Hinterhörnern zu jeder Seite bestehenden Formatio reticularis bewirkt erscheint, kommt mit dem Beginne der Pyramidenkreuzung zu bedeutenderer Entfaltung. Sie erstreckt sich bald auf den ganzen Theil der Vorderhörner, welcher von den Kreuzungsbündeln der Pyramiden durchsetzt wird, und gewinnt aufwärts am ganzen vorderen Abschluß der Medulla oblongata eine mächtige Ausdehnung (vgl. Fig. 491, 492, 493), so dass sie einen ansehnlichen Bestandtheil des ersteren vorstellt. Diese Bildung nimmt dann am oberen Theile der Medulla oblongata den ventralen Abschnitt derselben ein, soweit er nicht durch die Pyramiden gebildet wird.

Das anfänglich unregelmäßige Bild der Netzform dieses Theiles des verlängerten Markes gewinnt aufwärts an Regelmäßigkeit mit dem Auftreten bogenförmiger Faserzüge, Fibrae arcuatae internae, die in der Medianlinie zum Theile sich kreuzen und daselbst ein medianes Septum des verlängerten Markes bilden, die Raphe (Fig. 493). Diese beginnt schon im Grunde der vorderen Medianfurche und erstreckt sich nach hinten hin zur grauen Substanz des Bodens der Rautengrube. Ihr zur Seite liegt die Formatio reticularis, welche von den Wurzelbündeln des 12. Hirnnervenpaares (N. hypoglossus) vom Boden der Rautengrube her durchsetzt wird. Dadurch wird an jener Formation ein medialer und ein lateraler Abschnitt unterscheidbar. Der mediale schließt sich an die vor ihm auf dem Querschnitte unterhalb liegenden Pyramiden an und führt in seinen Längsbündeln die aufgelösten Vorderstränge des Rückenmarkes, sowie den inneren Nebenkern der Olive. Im lateralen steigen Reste der Seitenstränge empor. Nach vorne findet sich der Olivenkern mit dem äußeren Nebenkerne. Zwischen den Längsbündeln dieses Theiles der Formatio reticularis verlaufen die Bogentasern, und graue Substanz mit kleinen Ganglienzellen findet daselbst ihre Vertheilung. Außer den inneren...
Bogenfasern bestehen noch oberflächliche: Fibrae arcuatae externae, welche von hinteren Theilen der Medulla oblongata kommen, zum Theile die Oliven umziehen und über die Pyramiden hinweg in die vordere Medianfissur eintreiben (Fig. 493). Von da bilden sie als Fibrae rectae einen Bestandtheil der Raphe. Sie stellen eine zusammenhängende, das verlängerte Mark gürtelförmig umziehende Schichte, die Gürtelschichte (Stratum zonale) vor.

2. Brücke Pons Varoli.

§ 262.

Äußerlich stellt die Brücke einen scharf geschiedenen Abschnitt vor, der als ansehnliche Anschwellung (Fig. 499) an der vorderen Fläche des verlängerten Markes erscheint und auf dem Clivus seine Lage hat. Auf der Mitte ihres gewölbten Vorsprunges erstreckt sich longitudinal eine flache Furche, Sulcus basilaris. Von den etwas verschmälerten Seitentheilen setzen sich nach hinten und aufwärts ihre Fasermassen in die Brückenarme fort, welche zu den Hemisphären des Kleinhirns sich begeben (Curva cerebelli ad pontem) (Fig. 499). Der hintere Rand der Brücke grenzt an die Medulla oblongata, der vordere an die Hirnstiele (Pedunculi cerebri), die hier unter der Brücke (die letztere bei aufwärts gekehrter Hirnbasis beträchtet hervorbrechen. Die Grenze der Brückenarme gegen den massiveren medialen Theil der Brücke bezeichnen die Austrittsstellen zweier Hirnnerven, des Facialis und des Trigeminus (Fig. 488). An der Oberfläche sind mehr oder minder deutliche Querfaserzüge bemerkbar, welche im Allgemeinen nach den Brückenarmen verlaufen. Die vordere Partie dieser Querfasern zieht am Beginne der Arme im scharfen Bogen nach hinten und umgreift dabei hintere Querfasern, welche unter jenen verschwinden. Oben (dorsal) erstreckt sich vom verlängerten Marke her der vordere Theil der Rautengrube.

Im Inneren der Brücke, resp. dieses Theiles des primitiven Hinterhirns, sind zwei Abschnitte unterscheidbar, welche Fortsetzungen und Modificationen der an der Medulla oblongata getroffenen Befunde vorstellen. Der vordere (ventrale) und bei weitem stärkste Theil der gesammten Brücke wird durch Querfaserzüge gebildet, welche in oberflächliche und tiefe unterschieden werden. Beide nehmen ihren Weg zu den Brückenarmen. In der Medianebene gehen sie eine Durchkreuzung ein und stellen damit eine Raphe dar, welche somit in ihrer Lage dem Sulcus basilaris entspricht. Zu beiden Seiten der Raphe treten die Pyramidensstränge zwischen oberflächlichen und tiefen Brückenfasern hindurch,

Den zweiten oberen (dorsalen) Theil der Brücke bildet eine Fortsetzung der Formatio reticularis vom verlängerten Marke her, über welcher eine den Boden der Rautengrube anskleidende Lage grauer Substanz mit bestimmter Anordnung ihrer einzelnen Ganglienzellengruppen (grauer Kerne) sich verbreitet. Die mediane Durchkreuzung der die Formatio reticularis schräg durchsetzenden Fasern stellt auch hier eine Raphe vor, welche an jene des ventralen Brückentheiles sich anschließt.

Außer diesen Bestandtheilen finden sich im Bereiche der Brücke noch manche andere, die theils ihr eigenthümlich sind, theils erst bei den folgenden Abschnitten Berücksichtigung finden können. Zu den ersteren gehört ein in dem der Medulla oblongata benachbarten Theile der Brücke lateral gelagerter grauer Kern, der als oberer Olivenkern bezeichnet wurde. In den Lagebeziehungen der beiden oben dargestellten Hauptbestandtheile der Brücke, dem ventralen, die Querfasern und die Pyramidenbündel führenden, und dem dorsalen durch die Formatio reticularis gebildeten Abschnitte, ergibt sich in der oberen Region dadurch eine Änderung, dass die Brückenarme (Crura cerebelli ad pontem), welche wesentlich aus dem ventralen Theile der Brücke hervorgehen, nach hinten gerichtet sind. Der dorsale oder reticuläre Brückentheil gelangt dadurch aus dem Bereiche jener Arme und tritt freier über dem ventralen Theile hervor. Er gelangt aber dann zwischen andere Fasermassen, die, vom Kleinhirn ausgehend, ihn umfassen, und als Bindearme des Kleinhirns, Crura cerebelli ad corpora quadrigemina, bei letzteren näher zu betrachten sind. Der vordere (obere) Theil der Brücke entspricht in seiner Lage nicht ganz genau den oberen, zum Hinterhirne zu rechnenden Bildungen, sondern erscheint vor diese geschoben, so dass noch Theile des Mittelhirns über denselben zu liegen kommen.

§ 263.

Wir haben oben [S. 761] das kleine Gehirn aus dem vorderen Theile der Decke des primitiven Hinterhirns entstehen sehen und dabei beachtet, dass es sich hier hauptsächlich um eine Vergrößerung der Oberfläche dieses Gebildes handelt, die auf verschiedene Art erreicht wird. Man hat sich so vorzustellen, dass die die Anlage des Kleinhirns repräsentirende Querlamelle sich gemäß jener Oberflächen-Vergrößerung unter Volumzunahme mehr und mehr wölbte, und zwar nicht blos in die Höhe, sondern auch nach vorne und hinten zu, sowie in nicht

Sowohl am Wurm wie an den Hemisphären kommt nur ein kleiner Theil der Leistenvorsprünge an der Oberfläche zum Vorschein. Die Mehrzahl liegt in den mehr oder minder tief eindringenden Furchen und wird erst beim Auseinanderziehen derselben, oder auch auf senkrechten Durchschnitten sichtbar. Im
letzteren Falle ergibt sich ein Bild von Ramificationen, die von der inneren weißen Markmasse gegen die Oberfläche ausstrahlen. Man sieht dann, dass man es in der gesammten vom Inneren gegen die Oberfläche ausstrahlenden Markmasse mit einer Art von Lappenbildung zu thun hat.

Jede Hemisphäre wird durch eine tiefe Horizontalfurche, welche seitlich und vorne gegen die Verbindung mit der Brücke anläuft, in zwei Abschnitte gesondert. Der obere umfasst mit einem vorderen Ausschnitt, dessen tiefste Stelle der Wurm einnimmt [Fig. 195], die Vierflügel. Ein hinterer seichterer Ausschnitt entspricht der Protuberantia occipitalis interna und setzt sich auch auf die Unterfläche fort. Am vorderen Ausschnitt geht die Außenfläche der Hemisphäre wie des Wurmes noch eine Strecke weit nach hinten und abwärts fort, und bedeckt hier die Crura cerebelli ad corpora quadrigemina, sowie das vordere Marksegel. Die obere Fläche des Cerebellum ist nach dem hinteren und seitlichen Rande zu sanft abgedacht. Ihre höchste Stelle entspricht dem Wurm. Am unteren Abschnitt (Fig. 195) erscheinen die Hemisphären bedeutender gewölbt und durch eine tieflere mediane Einbuchtung (Vallecula) von einander geschieden. In diese ragt median der untere Wurm ein. Die Wölbung der Unterfläche ist medianwärts bedeutender und lässt größere Abschnitte hervortreten, die selbst den Wurm hier bedecken, oder doch so überragen, dass er nicht vollständig sichtbar ist. Diese Theile drängen sich gegen den Boden der Rautengrube.

Die durch meist transversale Spalten von einander getrennten Markleisten bilden sowohl am Wurm wie an den Hemisphären Gruppen, welche durch tieflere Einschnitte von einander geschieden sind und als besondere Abschnitte aufgefasst werden können. Daraus resultirt nicht nur eine regionale Eintheilung der grauen Oberfläche des Cerebellum, sondern auch die Unterscheidung größerer und kleinerer, bis ins Innere reichender Lappen. Oben findet sich unterhalb des vorderen Ausschnittes am Wurm eine Gruppe von Blättchen, das Centralläppchen (Fig. 197). Diesem entsprechen seitlich an den Hemisphären einige kurze den Crura ad corpora quadrigemina aufliegende Blättchen, die Flügel des Centralläppchens. Vor dem letzteren erstrecken sich noch einige (4—6) terminal abgerundete und dachziegelartig sich deckende Lamellen auf das vordere Marksegel und bilden die Lingula (Fig. 189). Zur Seite der hinteren Blättchen desselben befinden sich noch einige kleine Vorsprünge (Frenda lingulae), welche sich bis gegen die Brückenarme zu ausdehnen.
Auf der oberen Seite der Hemisphären Fig. 495) ist eine größere von Markleisten gebildete Fläche von viereckiger Gestalt von einer dahinter liegenden schmalen Strecke unterscheidbar. Erstere bildet den Lobus quadrangularis, letztere, die den hinteren Rand der Hemisphären abgrenzt, wird Lobus semilunaris (superior) benannt. Der Lobus quadrangularis sondert sich wieder in zwei Abschnitte, einen breiteren vorderen und schmäleren hinteren Theil, Lobus lunatus anterior und posterior.

Der die viereckigen Lappen verbindende Abschnitt des Wurmes bildet den höchsten Theil der Oberfläche, daher Monticulus benannt, dessen Gipfel (Culmen) nach hinten (Fig. 495) ins Declivum übergeht. Diese beiden Theile des Wurmes entsprechen je einem Abschnitte des Lobus quadrangularis. Die Lamellen der halbmondformigen Lappen fließen gegen den Wurm in eine einzige, aber stärkere Lamelle zusammen, das Folium cuneinis (Wipfelblatt), welchem eine versteckte Lage zukommt (Fig. 497). An der unteren Fläche (Fig. 496) treffen wir durch die große Querfurche vom halbmondförmigen Lappen getrennt einen größeren, dem Tuber valvae des Wurmes entsprechenden Abschnitt: den Lobus posterior inferior. Der hintere Theil desselben wird auch als Lobus semilunaris inferior, der weiter nach vorne zu folgende als Lobus gracilis unterschieden. Die geringe Selbständigkeit dieser Theile lässt ihre Vereinigung zweckmäßig erscheinen. Deutlicher gesondert ist der folgende Abschnitt, Lobus cuneiformis (L. bipect.), an ihm gehen die schon an den Seitentheilen des vorhergehenden Abschnittes aus der queren in eine schräge, ja sogar sagittale Richtung abgeleiteten Markleisten noch vollständiger in letztere Richtung über. Am Wurme entspricht diesem Abschnitt eine gegen die Hemisphäre steil abgedachte Gruppe von Querleisten, welche zusammen die Pyramide bilden.

Diese Einteilung der Kleinhirnoberfläche ist, je nachdem man ein geringeres oder größeres Gewicht auf die in den Wurm eingehenden Gruppen ramiifizirter Markblätter.
Siebenter Abschnitt.

legt oder nur von dem Befunde an den Hemisphären ausgeht, in verschiedener Weise modifizierbar. Auf Grund der Entwicklung ergeben sich Anhaltspunkte für eine andere Gruppierungen. So gründet sich die Trennung des Lobus quadrangularis in die zwei oben erwähnten Theile auf ihr selbständiges Auftreten (Kötliker). In drei größere Abschnitte fasste HENLE den Complex des Kleinhirns zusammen, einen Lobus superior anterior und posterior, die an Wurm wie an Hemisphären sich ausdrücken. Drei mit diesen doch nicht völlig identische Abschnitte an Wurm und Hemisphären unterscheidet auch SCHWALBE, wobei er von der Verzweigung der Marklamellen im Wurme ausgeht. Dabei bildet der Lobus lunatus posterior, Lobus semilunaris superior, semilunaris inferior nebst gracilis den Lobus posterior, während sich die übrigen Abschnitte auf einen Lobus superior und inferior vertheilen. Diese Unterscheidung macht sich wesentlich am Wurme geltend, wie der Medianschnitt des Kleinhirns (Fig. 497) lehrt, ist aber an den Hemisphären nicht maßgebend.

Zum Cerebellum treten in starke Stränge vereinigte Fasermassen, welche die Verbindung mit benachbarten Gehirnteilen vermitteln. Sie werden Crura cerebelli benannt und verlaufen zum verlängerten Marke, zur Brücke, und, wenn auch nur scheinbar, zu den Vierhügeln. Die Crura cerebelli ad medullam sind die schon beschriebenen Corpora restiformia. Vor ihnen und seitlich kommen die bedeutend stärkeren Crura ad pontem (Brückenarme) am vorderen und seitlichen Rande der Hemisphären hervor und begeben sich zur Brücke. Medial von diesen und zugleich vor den Crura ad medullam treten die Crura ad corpora quadrigemina hervor. In Fig. 498 sind diese Theile quer durchgeschnitten dargestellt. Die letztgenannten Crura sind durch eine dünne, mit einem Belege grauer Substanzen versehene Markplatte (vorderes Marksegel, Velum medullare anterius) unter einander verbunden und fassen in convergentem Verlaufe das vordere Ende des Ventriculus IV. zwischen sich, um sich unter den Vierhügeln einzusenken, so dass der Zusammenhang mit letzteren nur ein scheinbarer ist. Nach hinten und oben geht das vordere Marksegel in den Wurm über. Die Lingula überlagert seinen hinteren Theil.

§ 264.

Das Innere des Cerebellum wird durch weisse Substanz gebildet, welche an der Oberfläche von der grauen Rindenschicht überzogen ist. Hemisphären und Wurm kommen darin mit einander überein. Auf senkrechten Durch-

Den schon durch seine mächtige Verbreitung wichtigsten Bestandtheil des kleinen Gehirnes bildet die graue Rinde der Markblätterchen und Leisten. Sie lässt mehrere verschieden zusammengesetzte Schichten erkennen, welche Ganglienzellen führen und die dem bloßen Auge theilweise durch verschiedene Färbung sich darstellen. So ist besonders eine äußere graue und eine innere mehr gelbliche Schichte wahrnehmbar.

§ 265.

Der vierte Ventrikel empfängt als Binnenraum des primitiven Hinterhirns Beziehungen zu allen drei aus letzterem entstandenen Hirnteilen, so dass seine Vorführung füglich dem Schlusse der Darstellung des gesammten Hinterhirns sich anreihet. Diese Räumlichkeit besitzt an ihrer Bodenfläche eine annähernd rhomboidale Gestalt, beginnt hinten am Calamus scriptorius mit der Erweiterung und schließlichen Öffnung des Centralcanals des Rückenmarkes, verbreitert sich dann nach vorne zu, da wo die Corpora restiformia zum Cerebellum emporsteigen, und gewinnt dann zwischen beiden Crura cerebelli ad corpora quadrigemina eine schmalere Form, mit der sie allmählich in den Binnenraum des Mittelhirns, den Aquaeductus Sylvii übergeht.

Am hinteren Abschnitte ist der Raum sehr niedrig und das hier befindliche Dach liegt ganz nahe dem Boden an. Weiter vorwärts erhebt sich das jetzt vom Kleinhirn gebildete Dach zeltförmig. Vorne endlich wird die Decke durch das vordere Marksegel gebildet, welches die Lingula trägt (vergl. Fig. 497).

Der die Rautengrube darstellende Boden des vierten Ventrikels kommt nur an seinem hinteren Abschnitte der Medulla oblongata im engeren Sinne zu, während der vordere der Brücke, oder vielmehr dem ventral in die Brücke differenzirten Abschnitte des primitiven Hinterhirns zugetheilt ist. Eine mediane Längsfurche scheidet ihn in zwei seitliche Hälften und lässt zur Seite zwei flach gewölbte Felder vortreten, die Eminentiae teretes (Pyramides posteriores). Sie beginnen hinten, schmal unterhalb des Calamus scriptorius und verbreitern sich vorwärts. Der graue Beleg des Bodens der Rautengrube erscheint nicht überall von gleicher Färbung. An der breitesten Stelle der Rautengrube wird er durch mehrere weiße Querstreifen unterbrochen, welche von der Medianfurche aus jederseits in lateraler Richtung ziehen: Striae medullares oder Striae acusticae, da sie in den Hörnerven sich fortsetzen. In Fig. 498 sind sie sichtbar. Sehr häufig verhalten sie sich asymmetrisch. Durch sie wird
Vom Gehirn.

783

Diese Gebilde sind 1) der Obex (Riegel) (Fig. 498), ein kleines querstehendes Markblättchen, welches zwischen den am Calamus scriptorius divergirenden Enden der Clavae sich einschiebt; 2) der Ponticulus (Brückchen), eine verschieden breite Marklamelle, welche am hinteren Theile des Randes der Rautengrube entspringt und sich mit dünnem freiem Rande medial erstreckt. In Fig. 498 ist dieses Gebilde auf der linken Seite dargestellt. Vorne setzt sich der Ponticulus unmittelbar in 3) die Taenia (Riemchen, Ligula) fort, eine schmale Marklamelle, die um das Corpus restiforme herum lateral umbiegt und die hintere Abgrenzung der hier vom Ventriculus quartus gebildeten seitlichen Ausbuchtung vorstellt.

Diese nach Entfernung der Decke der Rautengrube zum Vorschein kommenden Gebilde, die übrigens auch nicht selten mit jener Decke sich ablösen, gehen in das Epithel der letzteren über und begründen auch dadurch ihre Zusammengehörigkeit mit der bindegewebigen Schichte (Pia mater), welche in die Oberfläche der Medulla oblongata unmittelbar übergeht (Fig. 493). Vorne tritt die Decke der Rautengrube mit dem kleinen Gehirne in Zusammenhang und bildet unter dem letzteren eine taschenförmige Einsenkung. Der obere Theil der-
selben setzt sich in die Pia mater des Kleinhirns fort, und verbindet sich zugleich mit dem Velum medullare posterius, dessen dünne Marklamellen mit den vorhin beschriebenen Markblättchen in gleiche Kategorie gehören, als rudimentäre Seitentheile des Daches des vierten Ventrikels.

Die bindegewebige Decklamelle entwickelt Gefäßgeflechte, den Plexus chorioïdes ventriculi quarti, welcher gegen den Boden zu vorragt und mit der oben erwähnten Epithelschichte bekleidet ist.

b. Mittelhirn.

Vierhügel und Hirnstiele.

§ 266.

Das primitive Mittelhirn lässt unter Dickezunahme seiner Wandung und relativer Verminderung seines Binnenraumes nicht sehr voluminöse Theile hervorgehen, von denen die unteren (ventralen) im Anschlüsse an die Brücke an der Basis des Gehirns sichtbar sind, indess die oberen (dorsalen) vom Vorder- oder Großhirn völlig bedeckt werden und somit scheinbar unter derselben liegen. Beide, obere und untere Theile, sind durch eine laterale Furche gegeneinander abgesetzt. Die ersteren bilden die Vierhügelplatte, die letzteren die Hirnstiele (Crura cerebri). Unter der Vierhügelplatte erstreckt sich der auf einen engen Canal reducirete Binnenraum des Mittelhirns als Sylvische Wasserleitung nach vorne.

Die aus dem Dache der primitiven Mittelhirnblase entstandene Vierhügelplatte bildet zwei Paare von Erhebungen [Fig. 499] (Corpora quadrigemina s. bigemina), von denen die vorderen größer aber flacher gewölbt,
zugleich etwas dunkler gefärbt als die hinteren erseheinen. Letztere treten bei
gerin gerem Um fange meist schär fer hervor und bieten stärker gewölbte Ober-
flächen. Eine breitere mediane Vertiefung scheidet die beiderseitigen und in
diese Furche legt sich von vorne her die Zirbel zwischen die vorderen Hügel.
Vor dem vorderen Vierhügelpaare und bedeckt von dem Stiele der Zirbel, welche
Theile beim Zwischenhirn zu beschreiben sind, findet sich die hintere Commissur,
ein querer Faserstrang, unmittelbar über der Anmündung des Aquaeductus in
den dritten Ventrikel. An der hinteren Grenze der hinteren Hügel tritt zwischen
beiden eine weiße longitudinale Erhebung zum Vorderrande des Velum medullare
anterius, als dessen Frenum sie bezeichnet wird. Seitlich und etwas nach vorne
zu sind beide Hügelpaare weniger scharf abgegrenzt. Da erstrecken sich von ihnen
aus abgerundete Stränge gegen das Zwischenhirn zu, die Arme der Vierhügel
(Albathia). Der vordere, schwächere ist nur kurz und wird vom Hinterrande des
Schürgelsg überfragt, unter welchem er sich seitlich wendet, um dann als ein
abgegrenzter Zug in den Tractus opticus (s. unten) überzugehen. Deutlicher
tritt der Arm des hinteren Hügels hervor. Er zieht am Seitenrande des vor-
deren Hügels nach vorne, und geht an einem von dem Schügel überragten querer
Vorsprung, dem medialen Kniehöcker (Corpus geniculatum mediale
s. internum). Gegen diese hinteren Arme und den hinteren Hügel tritt unter
den Brückenarmen hervorkommend ein breiter Streif empor und legt sich schräg
über das Crus cereblli ad corpora quadrigemina, welches er hier bedeckt, um
scheinbar unter die Vierhügel einzutauchen. Er bildet die äußerlich wenig deut-
liehe Schleife (Lemniscus s. Laqueus). Seitlich bemerkt man in der Ansicht von
oben die vom Vierhügelgebiete scharf abgesetzten Hirnstiele (Fig. 498).

Die Hirnstiele (Cūra s. pedunculi cerebri) sind zwei mächtige,
am Vorderrande der Brücke zum Vorschein kommende Faserstränge, die auf
ihrer Außenfläche durch schräge Furchen eine Zusammensetzung aus Bündeln
kundgeben. Sie sind oben und lateral durch
eine tiefe Furche von der Schleife und dem
medianen Kniehöcker getrennt, und ver-
laufen divergirend theils zu den Schügel, theils zum Vorderhirn. Eine schwärzliche
Schichte (Substantia nigra) erstreckt sich quer durch die Masse der Hirnstiele
und scheidet dieselbe in zwei übereinander
liegende Theile (Fig. 500). Der äußere,
untere, an der Hirnbasis sichtbare, bildet
den Fuß (Basis) und ist aufwärts rinnen-
förmig vertieft. Hier legert sich, durch die Substantia nigra geschieden, die
innere, obere Schichte ein, die Haube (Tegmentum). Der Scheidung des Inner-
der Hirnstiele entspricht eine laterale oberflächliche Furche, bis zu welcher die
Substantia nigra sich erstreckt.

Gegenbaur, Anatomie.
Siebenter Abschnitt.

Wie oben bemerkt, gehören die Hirnstiele nicht ausschließlich dem Mittelhirn an. Diesem fällt nur ihr hinterer Abschnitt zu, eine im Vergleich mit der Ausdehnung der Vierhügelplatte unanschauliche Strecke. Die basalen Theile des Mittelhirns sind also minder als die dorsalen entfaltet. Dieser Umstand leitet sich von der am Gehirne auftretenden Krümmung ab (S. 760) und man hat sich hier zu erinnern, dass die Mittelhirnläuse durch ihre sehr frühzeitig bedeutende dorsale Ausdehnung dem Scheitelworsprung der embryonalen Kopfbildung entspricht.

Unterhalb des grauen Bodens des Aquaeductus findet sich eine Fortsetzung der Formatio reticularis von gleichem Baue, wie er bei der Brücke beschrieben ward. Sie liegt hier dem als H au b e (Tegmentum) beschriebenen Theile der Pedunculi cerebri zu Grunde. Median besitzt sie eine Raphe wie an den hinteren Abschnitten. Ihre Längsfaserzüge sind zum Zwischenhirn verfolgbar. Zur Seite der Formatio reticularis kommen vom Kleinhirn her dessen Bindearme, die so- genannten Crura cerebelli ad corpora quadrigemina, die da, wo sie in die Region des Mittelhirns treten, von der Schleife bedeckt sind. Jeder Bindearm umfasst mit concaver Fläche die Formatio reticularis erst an der Seite, dann immer mehr von unten her, indem beide Arme allmählich convergiren. Schließlich treten sie unterhalb (ventral) der Formatio reticularis in eine Kreuzung über, indem die Fasern der einen Seite unter gegenseitiger Durchfliehtung auf die andere Seite gelangen. Die jederseits sich wieder neu formirenden Stränge durchsetzen unterhalb des vorderen Vierhügels eine Ganglienzellenmasse, den rothen Haukenkern (Nucleus tegmenti) (Fig. 512) und ziehen von da, verstärkt durch neue, in jenem Kerne entspringende Elemente, im Tegmentum weiter nach vorne. Sie sind in den unteren Theil des Sehhügels verfolgt worden, gelangen wohl auch zu Theilen des Vorderhirns.
Die Schleife besteht aus bogenförmigen Faserzügen, welche jederseits von den Vierhügeln ausgehen und eine. die Crura cerebelli ad corpora quadrigemina umgreifende, und zwischen diesen und den Brückenkernen sich nach hinten einsenkende compacte Schicht bilden. Sie stellt dann eine longitudinale Fasermasse vor, welche in der Region der Brücke zwischen dem ventralen Theile der letzteren und der Formatio reticularis verläuft. In die Längsbündel der letzteren scheint sich ein Theil der Schleifenbündel fortzusetzen, während ein anderer in die Seitenstränge übergehen soll. Man wird sich also die Schleife aus Nervenfaserzügen gebildet vorzustellen haben, welche in verschiedenen Theilen des verlängerten Markes emporsteigen und sich zu den Vierhügeln, zum Theile zu den Armen derselben begeben. Ob sie im Vierhügelgebiete über dem Aquaeducte eine Kreuzung eingehen, lassen wir dahingestellt.

Den unteren Theil der Hirnstiele (Basis) repräsentirt eine Fortsetzung der Pyramidenstränge des verlängerten Marks. Die beim Verlaufe durch die Brücke sich immer mehr auflösenden Pyramidenbündel werden auf diesem Verlaufe durch Ursprünge von den Brückenkernen und Fasern aus der Formatio reticularis bedeutend verstärkt und gelangen dann als compacte Faserstränge vor der Brücke zum Vorschein.

Die Substantia nigra wird durch braun pigmentirte Ganglienzellen dargestellt. Diese besitzen feine Fortsätze, und erscheinen in Gruppen angeordnet, welche mehrere Schichten bilden.

Die Commissura posterior findet sich im Anschlusse an die vorderen Vierhügel und zwar an die im Inneren derselben vorkommenden, der Schleife zugehörigen Bogenfasern. Ihre Fasern gehen seitlich in die Formatio reticularis über.

c. Zwischenhirn.

Sehhügel und dritter Ventrikel.

§ 267.

Diese Grobhirn-Entfaltung, welche die Verbindung mit dem Zwischenhirn in eine seitliche verwandelte, lässt auch eine Überlagerung des Zwischenhirns durch das Großhirn entstehen, so dass ersteres schließlich wie in letzteres eingeschoben sich darstellt. Aus dieser Lagebezeichnung entstand die frühere Auffassung des Zwischenhirns als eines Großhirnteiles.

Wir unterscheiden am Zwischenhirn 1) die Sehhügel mit dem von ihnen begrenzten Binnenraum, dem dritten Ventrikel, 2) die Decke, und müssen damit endlich 3) noch besondere Bildungen an der Basalfläche der Zwischenhirnregion in Vorführung bringen.

1) Sehhügel (Thalami optici) (Fig. 501). Diese mächtigen Gangliennmassen besitzen an ihrer oberen Fläche einen Überzug von weißer Substanz.
Diese Fläche ist gewölbt, vorne mehr "Tuberculum anterius", dann etwas weniger aber mit medialer Neigung. Eine leichte Einsenkung beginnt hinter dem vorderen Höcker und zieht schräg nach hinten. Daselbst findet sich ein bedeutender, gegen die vorderen Vierhügel gerichteter und deren Arme theilweise überragender, wulstartiger Vorsprung (Polster, Pulvinar). Dieser wölbt sich nach abwärts zur hinteren Fläche des Sehlügels, welche der lateralen Fläche des primitiven Zwischenhirns entspricht. Unterhalb des vom Polster gebildeten Wulstes bemerkt man den von ihm überragten medialen Kniehöcker, der dem Mittelhirn angehört, und lateral davon, aber schon an der unteren Fläche des Sehlügels befindet sich der laterale Kniehöcker (Corpus geniculatum laterale) (Fig. 499, 502). Von den medialen und lateralen Kniehöcker geht ein platter Faserzug aus, welcher die Seite des beizüglichen Hirnstieles umgreift und nach unten und vorne zur Basis des Gehirns verläuft (Tractus nervi optici) (Fig. 502). Vorne und lateral bildet ein weißer Streif (Stria terminalis, Grenzstreif) die Grenze gegen den Streifenkörper des Vorderhirns (Fig. 501). Unter ihm verläuft vorne eine Vene (Vena terminalis), welche dem Grenzstreifen, besonders häufig bei Älteren, ein bräunliches Aussehen verleih (Stria cornea, Hornstreif).

Medial biegt die obere Fläche mit scharfer Kante in die mediale Fläche über, welche den dritten Ventrikel von der Seite begrenzt. An jener Kante beginnt vorne, vom Boden emporsteigend, ein weißer Faserzug (Stria s. taenia medullaris), der im Verlaufe nach hinten sich etwas verbreitet und am hinteren Ende in den Stiel der Zirbeldrüse sich fortsetzt. Noch bevor dieser Faserzug in mediale Richtung umbiegt, verbindet er sich mit einer unter dem abgerundeten medialen Rande des Sehlügels hervorkommenden Markmasse, die jederseits vor den Vierhügeln mit einem kleinen dreiseitigen Felde sichtbar wird. Vor und unterhalb der Verbindung der beiden zur Zirbel tretenden Stiele bemerkt man einen weissen queren Faserzug (Commissura posterior), welcher den dritten Ventrikel hinten begrenzt und bereits oben bei dem Mittelhirn angeführt wurde. Die vordere Grenze bildet ein dem Vorderhirn zugehöriges Gebilde, die Säulen des Gewölbes (Columnae fornicis), welche vor den Sehlügeln emporsteigen und an einer Stelle etwas davon abstehend, von vorne eine Öffnung
Siebenter Abschnitt.

begrenzen, welche die Communication des dritten Ventriks mit den Seitenventrikseln der Großhirnhemisphären vermittelt (Foramen Monroi).

Die mediale Fläche der Sehnhügel ist von grauer Substanz bedeckt und steht mit der anderseitigen an einer ovalen Stelle durch graue Substanz im Zusammenhang. Dieser löst sich sehr leicht beim Auseinanderweichen der Sehnhügel, daher jene Verbindung Commissura mollis (C. media) benannt wird (Fig. 501). Durch dieselbe geben sich im dritten Ventrikel bei der Betrachtung von oben zwei Abschnitte zu erkennen. Der vor der Commissura mollis befindliche senkt sich zu einer Vertiefung der Basis, dem Trichter herab, und bildet den Aditus ad insinuendum; der hintere nimmt die unterhalb der hinteren Commissur liegende vordere Mündung der Sylvischen Wasserleitung auf: Aditus ad aqueductum.

2) Die Decke des Zwischenhirns wird nach ihrer Umwandlung aus dem primitiven Zustande durch die Tela chorioides superior vorgestellt, eine dreiseitig gestaltete Duplicatur der Pia mater, welche von den Vierhügeln her über den dritten Ventrikel hinweg, vorne bis zum Monro'schen Loche, seitlich über den größeren Theil der Sehnhügel—Oberfläche sich ausdehnt. An letzterer Grenze setzt sie sich in Gefäßgeflchtete fort, welche auf ihrer Unterfläche schon da be-beginnen, wo sie den dritten Ventrikel bedeckt und am Monro'schen Loche in die lateralen Geflechte (Plexus chorioides) der Seitenventrikel übergehen, deren später Erwähnung geschieht. Von dieser Duplicatur der Pia mater gehört nur das untere Blatt dem Zwischenhirn an, obwohl es mit dem oberen zum Vorderhirn gehörigen, durch Bindegewebe innig vereinigt ist. Man hat sich so die gesammte Tela chorioides superior als eine nach hinten geöffnete Tasche zu denken, deren geschlossene Theile in die vorerwähnten Plexus chorioides der Seitenventrikel übergehen. Die untere Wand dieser Tasche hat sich über dem dritten Ventrikel mit der Epithellage in Verbindung gesetzt, welche die primitive Zwischenhirndecke vorstellte. Von dieser letzteren ging auch die Anlage eines morphologisch wie physiologisch noch unklaren Gebilde aus:

der Zirbeldrüse (Glandula pinealis, Conarium, Epiphysis cerebri) (Fig. 501). Diese ist ein graurothliches Organ von Zapfenform, von oben nach unten etwas abgeplattet und mit abgerundeter Spitze nach hinten gerichtet. Es bettet sich in die Einsenkung zwischen beiden vorderen Vierhügeln, vorne mit einem Stiele in Zusammenhang, welchen wir durch die Vereinigung der beiderseitigen Striae medullares gebildet sahen. Unterhalb dieses Stieles tritt ein aufwärts umgerolltes Markblättchen von der hinteren Commissur mit jenem in Verbindung, so dass beide eine gegen die Zirbel tretende Einsenkung vom Raume des dritten Ventriks umfassen.

Der feinere Bau der Zirbel weist außer reichen Blutgefäßen follicelärtige Bildungen auf, welche mit Zellen erfüllt sind und zuweilen auch einen Binnenraum umschließen. Die Zellen sind Abkömmlinge der primitiven Decke des Zwischenhirns und formiren ursprünglich Schläuche, die sich allmählich abschnüren. Die Follikel führen hin und wieder Ceremente, den sogenannten Hirnsand (Acervulus).
3) Die basale Fläche des Zwischenhirns empfängt ihre vordere Abgrenzung durch einen jederseits um die Pedunculi cerebri herum verlaufenden etwas abgeplatteten weißen Strang, den wir bereits oben als Tractus opticius von den Kniehöckern kommen sahen. Beide Tractus convergiren nach vorne und vereinigen sich median im Chiasma (Fig. 502). Aus diesem geht jederseits ein Nervus opticus nach vorne und seitlich ab. Nicht so deutlich lässt sich die hintere Grenze dieser Region bestimmen, da hier, wie schon oben bemerkt wurde, die vor der Brücke hervortretenden Pedunculi cerebri theilweise auch dem Mittelhirn angehören. Wir fassen also die ganze Basalfäche zusammen, wie sie hinten von Brücke, seitlich von Hirnstielen und vorne von Tractus opticius und Chiasma begrenzt wird.

zusammen. Seine Bedeutung bleibt rätselhaft, da es auch nicht auf ein in niederem Zustanden ausgebildetes Organ mit Sicherheit beziehbar ist.

§ 268.

Die Masse des Thalamus opticus wird oberflächlich durch eine weiße Faserschicht (Stratum zonale) bedeckt. Sein Inneres bildet graue Substanz, welche in drei, jedoch nicht überall von einander abgegrenzte Abschnitte unterscheidbar ist. Diese grauen Kerne werden mehr oder minder von feinen weißen Markstreifen durchzogen, welche lateral an der Grenze des Seh hügels gegen das Großhirn eine reticuläre Schicht (Gitterschicht) darstellen und von da in das Großhirn ausstrahlen (Radiatio thalami optici). Ein vorderer grauer Kern (Fig. 509 a) nimmt das Tuberculum anterius ein und verjüngt sich in oberflächlichem Verlaufe nach hinten. Der mediale (b) graue Kern schließt sich an die Ventrikelauskleidung an und der laterale (c), die größte Masse des Thalampus vorstellend, erstreckt sich von vorne bis ins Polster des Seh hügels. In diese grauen Massen strahlen Faserzüge ein, welche zum Theile aus der Haube kommen. Einen gesonderten grauen Kern enthält das dem Thalamus angeschlossene Corpus geniculatum laterale. Die graue Substanz derselben wird von weißen Markzügen durchsetzt, die aus dem Thalamus kommen und mit oberflächlichen Zügen in den Traetus optici übergreifen.

Unterhalb der grauen Masse des Seh hügels lagern die Pedunculi cerebri, deren Basis anfänglich noch von der dunkel pigmentirten Ganglienzellenschicht der Substantia nigra überlagert wird. Darüber folgt das Tegmentum, welches hier in das Corpus subthalamicum (Hexle) übergeht, eine pigmentirte, biconcav gestaltete Ganglienzellenmasse, die wieder in mehrere Schichten gesondert wurde.

noch commissurartige Bildungen zu erwähnen, welche von mehreren Stellen des Bodens des dritten Ventrikels beschrieben worden sind.

d. Vorderhirn (Großes Gehirn).

1. Übersicht des Ganzen.

§ 269.

Die Ausbildung des secundären Vorderhirns sowohl in seinen beiden Hemisphären, als auch in den diese verbindenden Theilen, hat dasselbe großen Veränderungen entgegengeführt, die in ihren Umrissen bereits oben (S. 764) geschildert sind. Von diesen Veränderungen ist die Volumentfaltung beider Hälften der Anlage die bedeutendste. Sie erscheint im Zusammenhange mit der Differenzierung der Rindenschichte der Oberfläche in graue Substanz. Es entstehen also hier in ansehnlicher Ausdehnung centrale Apparate, welche im Innern mit weißer Substanz in Verbindung stehen müssen. Die Entfaltung der Oberfläche beherrscht also auch das Innere, wenigstens einen großen Theil desselben, und ist damit für das Verhalten des Gesammtvolums des secundären Vorderhirnes, welches sich daraus den Namen «Großhirn» erwarb, als wichtigstes Causalmoment anzusehen. Obwohl also darin manche Ähnlichkeiten mit den Verhältnissen des Kleinhirns liegen, so bestehen doch wieder bedeutende Diffe- renzen, was aus dem Einzelnen sich ergeben wird. Median sind beide, aus dem einfachen Vorderhirn entstandene Hemisphären durch eine senkrechte Spalte
getrennt, welche vorne wie hinten tiefer greift, und daselbst die Hemisphären vollständig scheidet, während dazwischen auf einer großen Strecke der beide Hemisphären verbindende Balken den Boden der Spalte bildet. Mit der Entfaltung der Hemisphären nach verschiedenen Richtungen werden ebenso viele Abschnitte unterschieden: Lappen, Lobii. Nach vorne zu entfaltet sich der Lobus anterior s. frontalis, Stirnlappen, nach hinten der Lobus posterior s. occipitalis, Hinterhauptsflappen, und nach unten und der Seite zu bildet sich der Lobus inferior s. temporalis oder Schläfenlappen aus (Fig. 503), welcher die mittlere Schädelgrube einnimmt. Der Occipitallappen gewinnt am spätesten seine definitive Ausdehnung. Zwischen Stirn- und Schläfenlappen entsteht — schon im dritten Monate deutlich wahrnehmbar — eine flache Grube, die schräg nach hinten und aufwärts gerichtet, bald tiefer sich darstellt, indem die angrenzenden Strecken sich stärker vorwölben. Allmählich wachsen dieselben bedeutender gegeneinander, und so wird die Grube (Fossa Sylvii) von benachbarten Theilen bedeckt und an ihrer Stelle erscheint oberflächlich eine engere Spalte, Sylvische Spalte, welche aber zu einer am Boden der Grube befindlichen Oberflächenstrecke hinführt, die den Stammflappen (Lobus centra- lis) oder die Insel vorstellt. Eine von oben her gegen die Sylvische Grube herabtretende Partie, welche durch eine von der Sylvischen Spalte ausgehende Furche vom Stirnlappen sich abgrenzt, bildet den Klappdeckel (Operculum). Die anfänglich glatte Oberfläche der Hemisphären erfährt, wohl in Zusammenhang mit der fortschreitenden Differenzierung der Rindenschichte in eine Lage grauer Substanz und einer damit stattfindenden Vergrößerung der Oberfläche, eine Umbil- dung: es treten schon mit dem Beginn des 5. Monates Furchen (Sulci) auf, die immer zahlreicher werden und dann wulstförmige, gewundene Erhebungen (Gyri) von einander abgrenzen. So kompliziert sich die gesamte Oberfläche von Neuem. (Über die Furchen und Windungen siehe das Nähere S. 503.)

Die Differenzierung der Oberfläche ist von inneren Veränderungen begleitet. Der Binnenraum der Hemisphären ist nicht in gleichem Maße, in dem die Ausdehnung der Hemisphären erfolgte, mit ausgewachsen, vielmehr wird er unter Zunahme derDicke der Wandungen, relativ unmanselilicher, zumal noch vom Boden der Hemisphäre her der Streifenkörpervineinruigt. Er findet sich dann unmittelbar vor den Sehhügeln und stellt den Seitenventrikel vor.

An der Grenze zwischen Vorder- und Zwischenhirn, wo mit der Rückbildung der primitiven Hirndecke ein Vorwachsen der Gefäßhaut erfolgt war, haben wir mit dem Auswachsen des Vorderhirns nach der Seite den Anschein einer Querspalte (Fissura transversa cerebri) entstehen sehen [S. 765], welche jedoch erst nach Entfernung der hier in die Seitenventrikel gewucherten Gefäßhaut eine offene Communication darstellt. Dieser Zugang bildet also eine um die Sehhügel gekrümmte Spalte Fig. 503), welche infolge des Auswachens der Hemisphären nach hinten, von diesen verdeckt wird. Der obere Rand jener Spalte stellt den Randbogen vor, welcher sich von vorne zur medialen Fläche des Schläfenlappens somit bis gegen die Hirnbasis hin erstreckt (vergl. S. 765). Dieser Randbogen ist vorne mit der Schlussplatte des Vorderhirns verbunden, durch welche beide Hemisphären untereinander in Zusammenhang stehen. In diesem Theile nimmt der Balken von vorne her seine Entwicklung und trennt, im Randbogen nach hinten zu fortschreitend, den unteren Theil des letzteren ab. Aus diesem haben wir den Fornix entstehen sehen. Da aber die Ausbildung des Balkens an jene der Hemisphären des Großhirns geknüpft ist, die Hemisphären aber auch nach vorne zu in die Stirnlappen anscheinlich sich entfalten, so ergibt sich daraus eine Ausdehnung des Balkens auch in jener Richtung. Dadurch wird eine Entfernung des Balkens vom Fornix am vorderen Abschnitte beider hervorgerufen und zwischen beiden erstreckt sich eine von der verdünnten Schlussplatte gebildete Doppellamelle, das Septum pellucidum (Fig. 504). Diese leitet sich also von der Ausbildung der Frontallappens des Großhirns ab, und damit steht auch die vordere Gestaltung des Balkens in Zusammenhang, der durch seine Entfernung vom Fornix hier eine knieförmiige Biegung empfängt. Mit der Sonderung der im Balken gegebenen Commissur ist eine zweite vor dem Anfang des Fornix entstanden, welche einen unbedeutenden Umfang behält. Sie wird als Commissura anterior unterschieden.
Die in den beiden Hemisphären des Großhirns sich findenden Räume, Seitenventrikel, sind aus dem ursprünglich einheitlichen Binnenräume des Vorderhirns entstanden, welcher unmittelbar vor dem dritten Ventrikel sich fand. Die Entfaltung des Vorderhirns in die Hemisphären lässt schon sehr frühzeitig aus jenem Raume zwei ansehnliche seitliche Räume hervorgehen, die, da sie laterale Fortsetzungen des ursprünglich medialen Ventrikels des Vorderhirns sind, mit diesem und durch diesen untereinander communiciren (vergl. Fig. 485). Es ist also nicht etwa blos eine Theilung des anfänglich einheitlichen Raumes in zwei, sondern eine laterale Ausdehnung des letzteren, welche vorliegt. Während aber der primitive mediane Raum mit dem fortschreitenden Wachsthum sich nicht vergrößert, erreichen seine seitlichen Ausbuchtungen einen relativ viel bedeutenderen Umfang, und daher kommt es, dass dann jener erstere Raum nicht beachtet und dem vordersten Theile des dritten Ventrikels zugeschrieben wird. Er wird aber zwischen den beiderseitigen Communications des dritten Ventrikels zu suchen sein, entspricht also dem Raume zwischen beiden Monro'schen Löchern.

Der ursprüngliche Seitenventrikel bildet mit dem Auswachsen des Vorderhirns und der Entstehung des Fornix Fortsätze oder Ausbuchtungen, die man Hörner nennt (vergl. Fig. 505) und nach ihrer Richtung und Lage, die den großen Abschnitten der Hemisphären entsprechen, als Vorder-, Hinter- und Unterhorn unterscheidet. Das letztere folgt dem Sehhügel oder vielmehr der um diesen herum verlaufenden Spaltbildung, welche von der hier eindringenden Pia mater verschlossen wird. Ein wulstförmiger Vorsprung folgt der Krümmung des Unterhorns, in welches er einragt. Er wird als Ammonshorn oder Hippocampus bezeichnet.

§ 270.

Eine gesonderte Darstellung bedürfen die die Fissura transversa cerebri von oben her begrenzenden Theile, welche mit dem Wachsthum des Großhirns ins Innere desselben zu liegen kommen und schließlich vom Balken überlagert sind.

Der Balken (Corpus callosum, Commissura magna cerebri) bildet eine beide Hemisphären verbindende weiße Markmasse, deren Oberfläche im Grunde der die Hemisphären trennenden Längsplatte sichtbar wird. Vorne bildet er die erwähnte knieförmige Umbiegung nach der Hirnbasis zu (Genu corporis callosi) (Fig. 503) und läuft hier in einen nach hinten gerichteten schwächeren Fortsatz (Rostrum) ans, der in die Lamina terminalis übergeht. (Man vergleiche hierüber das senkrecht sich Durchschnittsbild in Fig. 504). Hinten endet der Balken gewulstet mit einem wie eingerollt erscheinenden Wulste (Splenium corporis callosi). Die Einrollung des Balkens bringt die Richtung der Entfaltung des Hinterlappens zum Ausdrucke, indem der untere eingerollte Theil dem unteren Abschüttel der Lamina entspricht. Es stellt sich somit auch am Wulste ein vor- und abwärts entwickelter Abschnitt dar. Mit demselben überlagert der Balken die Vierhügel, über die er sich sogar etwas hinaus erstreckt. Unter ihm setzt sich die Pia mater in die Tela chorioides des dritten Ventrikels fort.

Seiner Bedeutung als Commissur gemäß besteht der Balken aus querer, in Gestalt von Lamellen angeordneten Faserzügen, was sich auf der Oberfläche durch eine quere Streifung bemerkbar macht. Diese Striae transversae sind aber unterbrochen durch ihnen aufgelagerte Längsfaserzüge. Solcher finden sich einige nahe der Medianlinie. Sind sie von einander getrennt, so lassen sie die sogenannte Raphe zwischen sich, mit welchem Namen man auch die Streifen selbst bezeichnet hatte. Andere sind mehr an die Seite gerückt und werden von den Hemisphären bedeckt (Striae oblectae), denn der Balken setzt sich in dem Grunde der Hemisphären-Spalte nicht unmittelbar in die Hemisphären fort, sondern es wird hier noch eine, allerdings schmale Strecke desselben von den Hemisphären überlagert. Mit dem Eintritt des Balkens in die Hemisphären findet ein Auseinanderreten seiner Lamellen in verschiedenen Richtungen statt (Balkenstrahlung). Die Unterfläche des Balkens bildet theilweise, vorne und lateral, eine Decke über dem Seitenventrikel (Fig. 510—512), theilweise verbindet sie sich an ihrer hinteren Hälfte mit dem Fornix.

Siebenter Abschnitt.

Schenkel, Crura anteviora. des Gewölbes. Sie beginnen an der Basis des Gehirns, an den Corpora mammillaria, durchsetzen die graue Substanz des Bodens des dritten Ventrikels und kommen dann im Innern des Großhirnes vor dem Vorderende des Thalami zum Vorschein, wobei sie mit einander convergiren. In Fig. 501 sind diese Säulen auf dem Querschnittsbilde sichtbar. Bevor sie sich an einander legen, ist die vor ihnen verlaufende vordere Commissur zwischen ihnen sichtbar geworden. Sie umziehen dann allmählich sich abplattend die Oberfläche der Sehhügel und bilden dabei eine der Unterfläche des Balkens sich anschließende Markplatte, die erst den dritten Ventrikel, dann einen Theil der Oberfläche der Sehhügel bedeckt, von diesen Theilen aber durch die Tela chorioïdes getrennt wird. Der laterale Rand dieser Platte ist zugespitzt (Fig. 512 zeigt diesen Theil des Fornix auf dem senkrechten Querschnitt). Im Verlaufe nach hinten divergiren beide Hälften der Fornixplatte wieder (Fig. 505) so, dass zwischen ihnen ein Theil der Unterfläche des Balkens mit seinen queren Faserzügen bloßgelegt wird (Lyra). Jene auseinandertretenden Theile bilden nach zunehmender Abplattung die hinteren Schenkel (Crura posteriora) des Gewölbes. Indem sie über den hinteren Theil der Sehhügel verlaufen, bleiben sie dem Balken innig verbunden, fügen sich aber dann einem andern Gebilde, dem Hippocampus major an, theils in denselben übergend, theils als ein saumartiger Vorsprung (Fimbria) denselben in seinem Verlaufe um den Sehhügel gegen die Gehirnbasis zu begleitend (Fig. 505). Da der Fornix die von Seite des Großhirns dargestellte obere Begrenzung der Fissura transversa bildet, deren untere Begrenzung mit der Stria terminalis zusammenfällt, so könnte man erwarten, dass der Fornixrand an letzterer Stelle liege. Derselbe weicht aber mehr oder weniger davon zurück auf die Oberfläche des Sehhügels, so dass vom letzteren noch eine Strecke in den Seitenventrikel sieht (Fig. 505). In dieser gegen den früheren Zustand auf-
getretenen Lageveränderung spricht sich eine allmählich erlangte Selbständigkeit des Fornix aus. Dadurch aber, dass der Sehhügel nicht völlig frei in den Seitenventrikel ragt, sondern noch theilweise von der Tela chorioides überdeckt wird, ist das ursprüngliche Verhalten noch angedeutet.

Das Septum pellucidum, dessen Lage bereits oben angegeben, verbindet vorne den Balken mit den Säulen des Gewölbes (Fig. 504) und umschließt mit seinen beiden Lamellen einen vertikalen, spaltähnlichen Raum, den Ventriculus septi pellucidi (vergl. Fig. 501 wo dieser Ventrikel auf dem horizontalen Duschschnitt zu sehen ist. Auch in Fig. 509 ist das Septum pellucidum sichtbar). Der Binnenraum ist in der Regel auf einen minimalen Umfang beschränkt, so dass man sich beide Lamellen des Septums einander berührend vorstellen mag. Mit den übrigen Ventriken des Gehirns hat er keinerlei Zusammenhang, und ist auch ganz anders als diese aufzufassen; er stellt vielmehr eine von der Oberfläche her, und zwar von der Lamina terminalis gebildete Einsenkung vor, die mit der Entfernung des Balkens vom Fornix sich gestaltete und ihre Seitenwände in die beiden Lamellen des Septum übergehen ließ.

Mit dem Fornix steht das als Hippocampus (H. major, Pes hippocampi major) oder Ammonshorn oben vorgeführte Gebilde in engster Verbindung. Dieser Theil erhebt sich beim Übergang des Fornix in die Fimbria mit einer gegen das Lumen des Seitenventrikels gerichteten Wulstung und begleitet die um den Sehhügel verlaufende sogenannte Fissura transversa cerebri. Daraus resultirt die allgemeine Form dieses Gebildes, welches medial concav, lateral convex sich darstellt (Fig. 505). Nach abwärts nimmt die Wölbung des Ammonshorns zu, und sein Ende ist in der Regel bedeutend verdickt, lateral mit einigen Einbuchtungen versehen, welche mehrere Vorsprünge (Dügitationes) von einander abgrenzen. Der Körper des Ammonshornes entspricht in der Hauptsache der Rindenschichte des Großhirns und bildet eine eingerollte Lamelle, die an ihrer Begrenzungsfäche der Fissura transversa vom Fornix nicht nur einen weißen Überzug empfängt, sondern auch noch die Fimbria aufgelagert hat. Der unterhalb der letzteren, an der concaven Seite des Ammonshorns befindliche Theil des Körpers bietet wieder graue, sogar leicht gelbliche Färbung und zeigt eine Crenelirung, die ihn den Namen Fascia dentata (F. d. Torini) verlieh. Indem die Fimbria die Fascia dentata begleitet, treten in beiden obere und untere Theile des primitiven Randbogens wieder in nachbarliche Beziehungen.

§ 271.

Die beiden Seitenventrikel haben wir oben (S. 761. 790) als Differenzirungen des ursprünglich einheitlichen Binnenraums der Vorderhirnblase kennen gelernt, sahen in ihnen Anpassungen des Binnenraums an die bilaterale Entfaltung des Großhirns. In ähnlicher Weise sind die Ausbuchtungen zu verstehen, welche
als Vorder- und Hinterhorn in die bezüglichen Lappen der Hemisphären sich erstrecken, während das Unterhorn, weil der Fissura transversa folgend, den mit der Ausdehnung der Hemisphären um den Sehhügel gleichfalls in jener Richtung entfalteten Hauptraum des Seitenventrikels vorstellt. Das erweist sich durch sein Verhalten zum Adergeflechte. Betrachtet man an Gehirnen von Säugetierembryonen (Fig. 506) den durch Abtragung der lateralen Wand der linken Hemisphäre sich darstellenden Binureraum der letzteren, so bemerkt man an der bloßliegenden lateralen Wand den Plexus chorioides, welcher durch die bogenförmige Fissura transversa eindringt. Das ist die Stelle, an welcher das Dach zwischen Vorder- und Zwischenhirn nicht in Nervengewebe sich umwandte, sondern zu einer dünnen Epithelschichte ward. Diese verschloss die Spalte. Mit der Epithelschichte verband sich aber die Oberfläche des Gehirns bekleidende Gefäßhaut (Pia mater) und wucherte, immer durch die Epithelschichte vom Ventrikelraum getrennt, gegen den letzteren ein (Fig. 506 B). Dieser einwachsende Pia-materfortsatz, den man sich selbstverständlich als Duplicatur zu denken hat, verschließt ebenso die Spalte, und erhält allmählich mächtigere Blutgefäße, die den gesamten Fortsatz als Adergeflecht, Plexus chorioides des Seitenventrikels, bezeichnen lassen. Außerhalb der Spalte geht dieses Adergeflechte in die Tela chorioides des dritten Ventrikels über, bildet eine Fortsetzung derselben, und am Monro'schen Loche biegt das Adergeflechte in jenes von der Tela chorioides ventriculi tertii gebildete um. Wie der Raum des Seitenventrikels der mit der Volumzunahme der Hemisphäre sich vergrößernden Fissura cerebri um die Schügel herum folgt, so findet sich immer das Adergefl echt im Gefolge jener Spalte und erstreckt sich ins sogenannte Unterhorn, da eben dieses den lateral und nach unten ausgedehnten Seitenventrikel repräsentirt.

Den Boden des Seitenventrikels bildet noch eine laterale Strecke des Thalamus opticus, dem sich vorne und seitlich der Streifenkörper (Streifenhügel, Corpus striatum) anschließt (Fig. 505). Dieser erscheint als starke keulenförmige Anschwellung mit abgerundeter Oberfläche, welche aus grauer Substanz besteht. Der mächtigere Theil ragt mit starker Wölbung ins Vorderhorn. Von da setzt sich der hintere Abschnitt unter bedeutender Verschmälerung längs des
lateralen Randes des Sehhügels fort, und biegt in der Gegend des Pulvinar in die Wandung des Unterhornes um, in dessen Decke er sich verliert. Vom Sehhügel ist der Streifenkörper oberflächlich durch die Stria terminalis geschieden, deren schon bei ersterem gedacht ist. Sie beginnt unmittelbar vor dem Monro’schen Looche, unter welchem sie mit den Columnae formieis in Zusammenhang steht. Ihr distales Ende beginnt sich an die Decke des Unterhorns. Vor dem Streifenkörper und von diesem lateral begrenzt, erstreckt sich das Vorderhorn in den Stirnlappen. Wie die Columna formieis an der Begrenzung des Seitenventrikels sich betheiltigt, so ragt auch der Fornix mit seinem Rande in denselben ein, soweit er nicht mit dem Balken verbunden ist (Fig. 517). Über dem Fornix resp. der daraus gewordenen Fimbria sowie über den Anfang des Ammonshorns erstreckt sich der Seitenventrikel nach hinten in den Occipitalappen und stellt damit das Hinterhorn vor.

Der in seinem Umfang sehr variable Raum des Hinterhorns verläuft in sanft medialer Krümmung zugespiitzt aus. Von der medialen Wand her ragt ein wulstförmiger Vorsprung ein, der zuweilen einige schwache Eindrücke darbietet, es ist der Vogelsporn (!) Calcar (C. avis oder Pes hippocampi minor).

Wie das gesamte Hinterhorn ist auch der Calcar zahlreichen Variationen des Volums unterworfen. Seine Ausbildung ist an Verhältnisse der Hirnoberfläche geknüpft, da er eine Einfaltung derselben vorstellt. Er entspricht einer Furche (Sulcus calcarinus) der medialen Fläche des Occipitalappens (s. S. 304). In ähnlicher Weise verhält sich eine lateral vom Ammonshorn liegende, ins Unterhorn ragende Erhebung der Ventrikelland, die Eminentia collateralis Meckeli.

Als Auskleidung der Binnenräume des Gehirns findet sich eine Gewebsschichte, die man als Ependym (Ependyma ventriculorum) aufführt. Sie bildet im verlängerten Mark die Fortsetzung der gelatinösen Centralsubstanz des Rückenmarks. Wie sie in diesem die Wandung des Centralcanals darstellt, so bildet sie im Gehirn einen Über-

Gegenbacher, Anatomie. 51
zug der Wandflächen der Ventrikel. Die innerste Schichte dieser »gelatinösen Substanz« ist eine Epithellage, deren Zellen in Jugendzuständen Wimperhaare tragen.

4. Oberfläche des Großhirns.

Tractus und Bulbus olfactorius.

§ 272.

Der *Tractus olfactorius* besitzt als Fortsetzung des Tuber eine dünne Lage grauer Substanz als Überzug, unter welchem weisse, dem ganzen Tractus diese Färbung verleihende Faserstränge verlaufen. Diese umschließen graue Substanz, die in der oberen Kante des Tractus am mächtigsten ist, während hier die weisse am meisten zurücktritt. Auch Reste der gelatinösen Substanz, welche den ursprünglichen Binnenraum umgab, sind erkennbar. Am *Bulbus* gewinnt die graue Rindenschichte an der unteren Seite.
eine bedeutende Stärke, und sie ist es, welche die Anschwellung erzeugt. In dieser ventralen Rinde besteht eine mehrfache Schichtenbildung, die in manchen Beziehungen Ähnlichkeit mit dem Bau der Großhirnrinde erkennen lässt. Einige dieser Schichten führen kleine oder größere Ganglienzellen. In der äußersten besteht eine Durchsichtung feiner blasser Nervenfasern, aus welcher die einzelnen Riechnerven austreten.

Großhirnrinde und Windungen des Großhirns.

§ 273.

An der Oberfläche des Großhirns bieten sich in der Beschaffenheit der Rindenschicht im Großen und Ganzen übereinstimmende Verhältnisse dar. Für die **Struktur der Rinde** ist hervorzuheben, dass in ihr Ganglienzellen von verschiedener Größe in mehreren Lagen vertheilt sind, wodurch die Rinde als Sitz centraler Apparate verständlich wird. Solche sind in ihr physiologisch nachgewiesen. Die graue Substanz erscheint von verschiedener Dicke (2—4 mm) und lässt, bald mehr bald minder deutlich, durch ihre Farbe unterscheidbare Lagen wahrnehmen.

Über den Bau der Rinde s. vorzüglich **Briesert**, Vierteljahresschr. f. Psychiatrie I.

Die mit Fortsätzen versehenen Zellen der Rinde werden als die wichtigsten Gebilde zu gelten haben, und ihrer Vermehrung entspricht die durch die Windungen zum Ausdruck kommende Vergrößerung der Oberfläche der Hemisphären. Die Bedeutung dieser, die Großhirnrinde repräsentirenden Apparate als materieller Substrate für bestimmte Functionen lässt die Orientirung über das complicirt erscheinende Relief der Oberfläche von Wichtigkeit erscheinen. Wir gewinnen diese Orientirung durch den Verfolg der allmählichen Complication. An der erst glatten Oberfläche beginnen sehr frühzeitig einzelne Furchen aufzutreten. Sie erscheinen meist in symmetrischer Anordnung und grenzen Strecken der Oberfläche von einander ab. Nach und nach treten neue Furchen auf, einfach oder ramificirt, und so werden die durch die primären Furchen gesonderten Strecken in neue Abschnitte zerlegt, die schließlich als Windungen sich darstellen. Dabei
erhält sich die Symmetrie nur für die größeren Abschnitte, und je reicher die Entfaltung der Windungen statt hat, desto mehr tritt uns ein ungleiches Verhalten derselben an beiden Hemisphären entgegen. Die Symmetrie entspricht also einem früheren Zustande, der zuweilen sich forterhält. In der Entfaltung eines größeren oder geringeren Reichthums von Windungen ergeben sich jedoch zahllose individuelle Schwankungen, deren Bedeutung noch gänzlich unbekannt ist.

Bezüglich dieses Reliefs der Großhirn-Oberfläche ist der erste, Modifikationen der letzteren hervorbringende Vorgang bereits oben erwähnt (S. 794). Wir haben hier wieder seiner zu gedenken. Er beruht in der Bildung der Fossa Sylvii, die vom Stirn- und Schläfenlappen umzogen in die Tiefe tritt. Dann treffen wir zwischen beiden Lappen eine tiefe Spalte (Fissura Sylvii), die sich nach hinten und oben gabelt (Fig. 508 B, s'), und damit den Klappdeckel, Opercnum, begrenzt (Fig. 508 B, Op). Beim Auseinanderziehen der Ränder der Sylvischen Spalte und Aufheben des Operculum erblickt man den Boden der Sylvischen Grube, eingenommen von einer Gruppe kurzer, mehr oder minder verticaler Windungen, welche die Insel (Insula Reilii) oder den Stammlappen (Lobus centralis) bilden. In den Figg. 509—512 ist die Insel auf Durchschnitten sichtbar.

Auf der Oberfläche des Scheitelappens erstreckt sich von der Occipitalfurche aus, oder vor ihr beginnend, schräg nach vorne und seitlich der S. interparietalis (Fig. 508 A, ip) herab. Er grenzt lateral den Praecuneus an der Oberfläche der Hemisphäre ab, und trennt den Scheitelappen in einen oberen (mit dem Praecuneus zusammenfallenden) und einen unteren Abschnitt. Am Schläfenlappen erscheint äußerlich vom unteren Theile des Scheitelappens meist nahe am Sulcus interparietalis ausgehend, der S. temporalis superior (B, t) als constante secundäre Furche.
Sie verläuft bis nahe aus vordere Ende. Tiefer herab, zum Theil auf der Unterfläche sind noch zwei mit jenen ziemlich parallele Furchen (S. temporalis medius B. C. F und inferior F) vorhanden, die jedoch sehr inconstante Verhältnisse darbieten. Als vierte Furche zieht auf der Unterfläche des Occipitallappens beginnend

![Diagram](image)

Fig. 508.

bis zum Schläfenlappen nach vorne der S. occipito-temporalis C. B). Bei vollständiger Ausbildung grenzt diese Furche den medial von ihr verlaufenden Gyrus hippocampi (Subiculum) ab, welcher vorne in den dem Tractus opticus auflagernden Flankenwulst (Gyrus uncinatus C. w) übergeht.

Zu diesen Furchen treten auf der gesammten Oberfläche der Hemisphären nene, die deshalb untergeordnete Bildungen vorstellen, weil sie minder constant und auch in der Form variabler sind. Sie unterscheiden sich auch durch ihre
geringere Tiefe von den früher entstandenen, von denen die primären zugleich die tiefsten sind. Die Furchen grenzen nach ihrem zahlreichen Auftreten die Windungen oder Bandwülste (Gyri) ab, welche wieder, theils in Ganzen, theils einzeln unterschieden und größtentheils nach den Abschnitten des Großhirns, denen sie angehören, benannt werden. Die Furchen erscheinen aber als das Primäre, wenn wir sie auch nicht als Einsenkungen vorher vorspringender Flächentheile, also durch Substanzschwand an bestimmten Stellen entstanden ansehen dürfen, vielmehr dadurch hervorgegangen, dass die benachbarten Theile eine bedeutendere Volumsentfaltung erfahren. Sie bringen also dieses ungleichmäßige Wachsthum der Hirnrinde zuerst zum Ausdruck und dürfen demnach auch hier in den Vordergrund gestellt werden. Sie grenzen auf der platten Oberfläche der Hemisphären zuerst große, anfangs ebenfalls noch glatt erscheinende Bezirke ab. Durch Fortsetzung dieses Processes auf die größeren Bezirke entstehen kleinere, deren letzte die Windungen sind. Der Differenzierungsprocess entspricht also einer Ausbildung bestimmter, schließlich in den Gyris erscheinender Regionen der Oberfläche.

Ferner:

5. Graue und weiße Substanz im Innern des Großhirns.

§ 274.

Außer der grauen Substanz, die das Großhirn über eine Oberfläche verbreitet trägt, kommen ihm noch im Innern solche Massen zu, die man zum Theile als Großhirnganglien bezeichnete. Solches sind 1. der Streifenkörper, und 2. der Linsenkern.

Der Streifenkörper (Corpus striatum) bildet einen bedeutenden Theil des Bodens des Seitenventrikels, bei welchem das Verhalten seiner daselbst sichtbaren Oberfläche dargestellt ward (S. 500). Hier handelt es sich um seine innere Structur.
Diese zeigt röthlichgrane Substanz, welche vorn am mächtigsten, ihren größten Durchmesser in schräger, von der Seite medianwärts einfallender Richtung besitzt. Am Boden des Vorderhorns steht diese graue Substanz mit jener der grauen Auskleidung desselben in Zusammenhang und ebenso mit der grauen Substanz der Lamina perforata anterior. Diese vorn somit anschauliche graue Masse vervünft sich nach hinten und verläuft der Oberfläche des Streifenhügels folgend mit diesem umbiegend zum Dache des Unterhorns. Nach dieser Gestaltung wird sie geschweifter Kern, Nucleus caudatus, bezeichnet. Der vordere Theil wird als Kopf, der hintere als Schwanz desselben bezeichnet. Beide sind auf der in Fig. 509 dargestellten Schnittfläche sichtbar; in Fig. 510 der Kopf auf senkrechtem Querschnitt, ebenso in Fig. 511 der Schwanztheil. Gegen den Sehhügel ist er oberflächlich durch die Stria medullaris abgegrenzt. Weiter in der Tiefe und an der lateral gewendeten Unterfläche des Nucleus caudatus bildet eine weiße Markmasse, die wir beim Linsenkern als innere Kapsel desselben beschreiben, die Abgrenzung. Von dieser treten weiße Züge in die graue Substanz des geschweiften Kerns und verleihen seinen inneren Parteien auf senkrechten Längsschnitten ein gestreiftes Aussehen. Am Kopftheile setzt sich die graue Substanz unten in jene des Linsenkerns fort, mit dem sie auch durch graue, die innere Kapsel durchsetzende Züge in Zusammenhang steht (Fig. 510).

Der Linsenkern (Nucleus lentiformis) bildet eine zwischen der grauen Substanz des Sehhügels und der Insel gelegene Gangliennasse von biconvexer Gestaltung. Die laterale Fläche ist schwach, die mediale stärker gewölbt und formt sich in der Mitte sogar zu einem kegelförmigen Vorsprunge, so dass das Gebilde auf dem verticalen Querschnitte (Fig. 511 1, 2, 3) keilförmig erscheint. Dadurch wird die mediale Fläche in eine obere und eine untere gesondert. Diese untere Fläche stößt medial an die Substantia perforata anterior. Die Spitze des Keiles
ist nach unten und medianwärts gerichtet. Sowohl die laterale als die mediale Fläche werden durch weiße Markmassen abgegrenzt, die man die graue Substanz des Linsenkernes kapselartig umschließend sich vorstellt und als äußere und innere Kapsel bezeichnet, obwohl sie sehr differente Hirnteile sind.

Die innere Kapsel (Figg. 509. 511) stellt eine breitere, von der Basis des Hirnstieles aus zwischen Linsenkern einerseits, Schädel und Nucleus cancratus andererseits eindringende Masse vor, welche an der Grenze der lateralen und medialen Oberfläche des Linsenkerns mit der schwächeren äußeren Kapsel zusammenfließt. An diese letztere stößt lateral eine senkrechte graue Schicht, die Vormauer oder das Claustrum (Figg. 509. 511. 512.). Dieses scheidet die äußere Kapsel von der weißen Substanz, welche den Windungen der Insel zugetheilt ist. Der obere freie Rand des Claustrum ist etwas lateral gebogen, der untere Theil dagegen setzt sich unmittelbar in die graue Substanz der Lamina perforata anterior fort, lässt also das Claustrum als eine dem Umfange der Insel entsprechende Einsenkung grauer Rindensubstanz erscheinen. Diese Beziehung zur Insel gibt sich auch an der lateralen Fläche des Claustrum zu erkennen, welche leichte, den Gyris der Insel entsprechende Erhebungen besitzt.

Der Linsenkern selbst bildet keine gleichmäßige Masse grauer Substanz, sondern ist von der late-
Vom Gehirn.

809

Vom Gehirn.

809

Fig. 512.

Nucleus caudatus
Corpus callosum
Fornix

Claudius
Commiss. mollis
Nucleus lentif.
Nucleus tegmenti
Subst. nigra
Basis
Ped. cereb.
Hippocampus

Frontalschnitt durch das Großhirn hinter der Commissura mollis. Vordere Schnittfläche.

Die Balkenstrahlung (Radiatio corporis callosi) repräsentiert ein beide Hemisphären verbindendes Commissuresystem, dessen bereits beim Balken Erwähnung geschehen.

Der Verlauf der Faserzüge des Balkens zu den Oberflächetheilen des Groß-

Auf diese einzugehen mussten wir verzichten, nicht bloß weil es sich hier um eine anatomische Darstellung handelt, sondern auch weil durch die ungenügende Erkenntnis der anatomischen Befunde eine einfache Einreihung derselben noch keineswegs möglich ist. Bezüglich ausführlicher Darstellungen kann auf die größeren Handbücher der Anatomie von Henle und Krause, dann auf Schwalbe's Lehrbuch der Neurologie verwiesen werden.

III. Hüllen des centralen Nervensystems (Meninges).

§ 275.

Dura mater zu unterscheiden pflegt, erscheint also jede in besonderen Beziehungen, welchederen Worthals einen eigenen, von dem der anderen sehr verschieden. erkennen lassen. Als das diese Sonderungen hervorrufende Causalmoment sind Lymphräume anzusehen, welche sich reichlich zwischen jenen Hüllen enthalten.

§ 276.

Die Pia mater des Gehirns erscheint größtenteils gefäßreicher, dabei aber noch zarter als jene des Rückenmarkes. Von der Randeschichte der Hemisphären-Oberfläche lässt sie sich, freilich nur unter Zerreißung der Gewebscontinuität, leicht ablösen, wobei die zahlreichen feinen, von Lymphbahnen umscheideten Blutgefäße, welche sie in die Hirnrinde sendet, sich aus dieser ausziehen. Aus dieser Trennbarkeit erwächst der Anschein von Selbständigkeit, der die Pia mater mit den anderen Hüllen zusammenstellen ließ. Dass die Pia
mater sowohl am Großhirn in die Sulci, wie am kleinen Gehirn zwischen die Lamellen der Oberfläche eindringt und überall die grüne Rindenschichte überkleidet, geht aus ihrer oben dargelegten Natur als gefäßführende Oberflächenschichte hervor. Einige wichtige Verhältnisse zu Decktheilen der Gehirnanlage sind schon oben dargestellt [S. 783, 800], so dass hier nur ihre Anordnung im Ganzen vorzuführen ist.

Am verlängerten Marke setzt sich die Pia mater des Rückenmarks in jene des Gehirns fort, bietet aber noch ähnliche Verhältnisse wie an ersterem, und zwar bis gegen die Grenze der Rautengrube.

Die gesammelte Oberfläche der weichen Hirnhaut besitzt keine so deutliche Abgrenzung wie jene des Rückenmarks, sie steht vielmehr überall durch Bindegewebszüge mit der im Allgemeinen über ihr befindlichen Arachnoides in Zusammenhang. Dieses Sub arachnoideal-Gewebe umschließt je nach den Localitäten engere oder weitere Lymphräume und bringt die Arachnoides in engere Beziehungen zur Pia mater. Dasselbe in Lamellen, Zügen oder Netzform sich darstellende Gewebe füllt auch die Räume zwischen den Duplicaturen der Pia mater aus, so dass die letzteren dadurch als einheitliche Lamellen erscheinen.

§ 277.

Der unterhalb der Arachnoi des, zwischen ihr und der Pia mater gelegene Raum, Subarachnoidealraum, ist von einem wässerigen, klaren Fluidum erfüllt, dem Liquor cerebro spinalis, welcher nur wenig feste Bestandtheile enthält. Diese Flüssigkeit steht mit Lymphbahnen in Zusammenhang, zunächst mit solchen, welche die vom Centralnervensystem abgehenden peripherischen Nerven begleiten.

§ 278.

Die innere Lamelle dagegen ist derber, besteht aus sehnenigen Fasern, welche auch auf der im Allgemeinen glatten Innenfläche in Gestalt manngfaltig sich durchkreuzender Züge zum Ausdruck kommen. An den Verbindungsstellen (Nähten) der Knochen besteht ein festerer Zusammenhang der Dura mit dem jene verbindenden Gewebe, und dem periostalen Charakter der Dura entspricht es, dass sie sowohl in Vertiefungen und Lücken der Knochen sich fortsetzt und Unebenheiten überbrückt, als auch die Communications-Öffnungen der Schädelhöhle auskleidet.

Während so die Dura mater durch ihre äußere Schichte als Periost erscheint, gewinnt sie durch ihre innere Schichte Beziehungen zum Gehirn. Diese sind vorzüglich durch Fortsätze bildungen ausgesprochen, welche von der Dura mater her zwischen größere Gehirnabschnitte sich einsenken. Indem sie diese von einander trennen, bilden sie einen Stützapparat, von welchem eine senkrechte, zwischen beide Hemisphären sich einsenkende Lamelle (Großhirnsichel) und eine fast horizontale, zwischen Kleinhirn und Hinterlappen des Großhirns tretende Lamelle (Kleinhirnzelt) die anschmächesten sind.

Von diesen Fortsätzen der Dura mater beginnt die Großhirnsichel (Falx cerebri) vorne an der Crista galli und steigt von da an empor mit ihrem convexen Rande in der Medianlinie des Schädeldaches befestigt. Hinten reicht sie
bis zur Protuberantia occipitalis interna und steht von dieser an nach vorne zu in ihrer ganzen Breite mit dem Tentorium cerebelli in Zusammenhang. Ihr unterer freier Rand ist gegen den Balken gerichtet, von dessen Oberfläche er jedoch ziemlich weit entfernt bleibt. (Fig. 365 auf S. 439).

Das Tentorium deckt das Kleinhirn, und wird durch seine Verbindung mit der Großhirn-Sichel emporgesteilt, so dass es die Hinterlappen des Großhirns zu stützen versagt.

Eine unschuldliche Fortsatzzbildung ist die Kleinhirnsichel (Falx cerebelli), eine zwischen beide Hemisphären des Kleinhirns einragende Dura mater-Falte, welche von der Protub. occip. interna gegen das Foramen magnum herabsteigt und sich in dessen Nähe in zwei flach anlaufende Schenkel theilt. Endlich setzt sich die Dura mater über die Sattelgrube hinweg, vom Sattelknopfe bis zur Sattellehne verlaufend (Diaphragma scle. turcicae). Eine Öffnung in der Mitte dieser Membran lässt das Infundibulum zu der in der Sattelgrube liegenden Hypophysis gelangen und an den Rändern dieser Öffnung schlägt sich die Dura mater zur Auskleidung der Sattelgrube um.

Die Arterien der Dura mater des Gehirns sind die Arlt. meningeae (vgl. S. 655) Über die Venensinusae vergl. S. 713.

Die Verschiedenheit des Verhaltens der Dura mater des Rückenmarks von jeuer des Gehirnes wird aus Anpassungen an verschiedene Bedingungen verständ-

B. Peripherisches Nervensystem.
Allgemeines Verhalten.
§ 279.

Gegenbaur, Anatomie. 52
Die im Stamme des Körpers am Skelette und auch an der Muskulatur aus-gesprochene Metamerie findet eine Wiederholung an den Spinalnerven, und dieses bildet einen der wesentlichsten Charaktere der letzteren. Bestehen auch in dem distalen Verhalten manche Verschiedenheiten, so sind diese doch inso-fern untergeordnet als sie durch außerhalb des Körperstammes liegende Ver-hältnisse, unter diesen vorzüglich durch die Anfügung der Gliedmaßen, bedingt sind. Durch die diesen zugetheilten Nerven wird der Grundcharakter der Metamerie nicht aufgehoben, er erweist sich vielmehr auch an jenen von ihrem Ursprunge an auf ganzen Strecken ihres Verlaufs. Auch das speziellere Verhalten der Spinalnerven bietet wichtige Übereinstimmungen. Es ist an ihnen zunächst eine Zusammensetzung aus vorderen und hinteren Wurzeln (Fig. 513 m. s.) un terscheidbar; jede derselben besteht aus einer Anzahl aus dem Rückenmarke tretender Fäden, die bis zu dem bezüglichen Foramen intervertebrale, der Aus trittstelle des Nerven, sich vereinigen. Die hin tere, sensible Wurzel (Fig. 513 s) geht hier in ein Ganglion (G. spinale s. intervertebrale g) ein, an welchem die vordere, motorische Wurzel (m) vor überläuft, um sich jenseits des Ganglion mit den aus diesem austretenden Fasern zu verbinden. Daraus entsteht der einheitliche Spinalnerv (sp), welcher motorische und sensible Elemente führt.

Außer diesen jedenfalls die Hauptbestandtheile des peripherischen Nervensystems darstellenden Nerven hat man in functioneller Beziehung noch secretorische zu unterscheiden, die für die Drüsenorgane bestimmst sind. Vasomotorische Nerven für die Wandung der Blutgefäße bilden nur eine Unterabtheilung der motorischen.

Jeder Spinalnerv theilt sich bald in zwei Äste. Ein meist schwächerer, Ramus posterior (dorsalis) (b), wendet sich nach der Dorsalregion; ein Ramus anterior (ventralis) (a, a) verläuft nach der vorderen Seite des Körpers. Vom R. anterior zweigt sich ein Ästchen zu inneren Organen ab: R. visceralis (i). Es geht in Nervenbahnen über, welche am Tractus intestinalis und seinen Adnexis, am Urogenitalsystem, sowie am Gefäßapparat verzweigt sind und als sympathisches Nervensystem unterschieden werden. Durch den Reichthum der Ganglieneinlagerungen, wie durch die Beschaffenheit der faserigen Elemente unterscheidet sich dieser Theil vom übrigen peripherischen Nervensystem, das man ihm als cerebrospinales gegenüber zu stellen pflegt.

Bei Austritt aus dem Centralsystem sowie beim Durchtritte durch die Dura mater erhalten die Nerven eine von den Umhüllungen jener Centren auf sie abgehende bindegewebige Scheide, die sie auf ihrem Verlaufe begleitet.

Das die Nerven somit in verschiedener Art begleitende Bindegewebe ist auch der Weg für Lymphbahnen, die überall verbreitet sind, auch zwischen den Lamellen des Perineurium und in dem die Nervenfasern direct umgebenden Gewebe.

Unter *Anastomosen* der Nerven hat man sich ganz anders geartete Verhältnisse als bei den Anastomosen von Blutgefäßen vorzustellen, desshalb, weil es sich bei jenen nicht um eine wirkliche »Einmündung«, sondern nur um eine streckenweise Verbindung verschiedener Nervenbahnen handelt. Da ein Nerv nichts in dem Sinne Einheitliches ist, wie ein Blutgefäß, da er vielmehr immer aus einer Summe discreter Nervenfasern besteht, bedingt die Abweigung eines Theiles seiner Elemente zu einem anderen Nerv keine wesentliche Alteration des letzteren, der sich dann nur im räumlichen Zusammenhange mit den ihm zugeführten neuen, functionell gleichartigen oder ungleichartigen Elementen darstellt, um diese ebenso wie seine ihm schon vorher angehörigen Formelemente zu den bezüglichen Gebieten gelangen zu lassen. Wenn also ein motorischer Nerv durch Anastomosen mit einem sensiblen zu einem gemischten Nerven wird, so bezieht sich die Mischung auf die Zusammenlagerung der Faserlemente, die sich auf dem weiteren Verlaufe doch wieder von einander trennen. — Durch Anastomosen werden übrigens mannigfaltige und ebenso verschiedene Befunde ausgedrückt. Sie können eine bloß einseitige Verbindung darstellen, oder eine wechselseitige, indem sie sich um einen Austausch von Fasern gesieht. Auch die Bahnen, welche die durch die Anastomose neue Combinationen eingehenden Nervenfasern einschlagen, sind verschieden. Ein Theil der letzteren kann streckenweise centripetal verlaufen, während ein anderer peripherisch sich fortsetzt.

Über die Nervenzellen der *Cerebrospinalganglien* s. G. RETZIUS, Arch. für Anatomie.
I. Gehirnerven. (Nervi cerebrales.)

§ 280.

Aus dem Gehirne treten 12 Paare von Nerven ab, welche unter sich sehr ungleichwerthige Bildungen vorstellen. Da sie fast alle ihr ausschließliches Verbreitungsgebiet am Kopfe besitzen, pflegen sie auch als Kopfnerven bezeichnet zu werden. Ein Theil von ihnen lässt in Bezug auf Ursprung. Zusammen-
merie zu Grunde liegt, die am Skelette desselben nur geringe Spuren hinterlässt. Ein anderer Theil ist gleichfalls noch auf Spinalnerven beziehbar, repräsentirt solche jedoch nur sehr unvollkommen; endlich bestehen noch andere, welche ein völlig eigenartiges Verhalten darbieten, und weder mit Spinalnerven noch mit Portionen von solchen vergleichbar sind. Das sind die beiden ersten, welche auch durch ihren Ursprung, der erste vom Vorderhirn, der zweite vom Zwischen- und Mittelhirn, sich vor den übrigen auszeichnen. Diese letzteren haben dagegen das gemeinsam, dass ihre Ursprungsstellen am primitiven Hinterhirn bestehen, größentheils am Boden der Rautengrube und deren Fortsetzung zur Sylvischen Wasserleitung, wovon nur einer dadurch, dass er mit seinen Ursprüngen auch auf das Rückenmark übergreift, eine Ausnahme macht (XI). Die unter diesen Nerven bestehenden Verschiedenheiten lassen sich in Folgendem darstellen:

I. Olfactorius.
II. Opticus.

III. Oculomotorius.
IV. Trochlearis.
V. Trigeminus.
VI. Abducens.
VII. Facialis.
VIII. Acusticus.
IX. Glossopharyngeus.
X. Vagus.
XI. Accessorius.
XII. Hypoglossus.

Die beiden ersten Nerven schließen sich von den übrigen zehn dadurch aus, dass sie gar nichts auf Spinalnerven Beziehbares besitzen, wie sie denn auch unter sich total verschieden sind. Die übrigen lassen sich in Gruppen ordnen, die ich nach den in ihnen dominirenden Nerven als Trigeminus- und Vagusgruppe benannt habe.

In der Trigeminusgruppe erscheinen Oculomotorius und Trochlearis durch ihren Ursprung sowie durch ihr Verbreitungsgebiet schwer auf Spinalnerven beziehbar, und der letztere ist sicher einem solchen nicht zu vergleichen. Vielleicht ist er eigener Art oder er hat als ein gelöster Theil des Trigeminus zu gelten, welch' letzterer in seinem Verhalten mit dem der Spinalnerven übereinkommt. Der Abducens reiht sich im Ursprung dem Facialis an, welcher mit dem Acusticus zusammen gleichfalls einem Spinalnerven entspricht.

In der Vagusgruppe ist der Glossopharyngeus wieder einem Spinalnerven ähnlich, während im Vagus um vieles complicirtere Verhältnisse vorliegen, die ihn als aus einem Complexe von Nerven entstanden beurtheilen lassen. Ihm reiht sich der Accessorius an, dagegen scheint der Hypoglossus einer Anzahl vorderer, in niederen Zuständen dem Vagus zugehöriger Wurzeln zu entsprechen.
Für diese drei letzten Nerven ist eine bei weitem größere Veränderung im Bezug auf die bei Spinalnerven bestehenden Verhältnisse ausgebildet als es bei denen der Trigeminusgruppe der Fall ist. Näheres hierüber bietet die vergleichende Anatomie.

I. *N. olfactorius*.

§ 281.

Ein Nervus olfactorius besteht beim Menschen nicht als einheitlicher Nerv, sondern wird durch zahlreiche feine Nervenfäden vorgestellt, welche vom Bulbus olfactorius in zwei Reihen abgehen und unmittelbar durch die Löcher der Siebplatte in die Nasenhöhle treten. Die *mediale Reihe* tritt zur Scheidewand, die *laterale* zur Seitenwand der Nasenhöhle. In Fortsätzen der Dura eingeschlossen nehmen die Nerven unter Plexusbildung ihren Verlauf in der Tiefe der Schleimhaut, seitlich bis in die mittlere Muschel sich vertheilend, am Septum in einer der seitlichen Ausbreitung entsprechenden Strecke. Aus den Geflechten lösen sich feinere Bündel ab, welche die Schleimhaut durchsetzen und in die Endapparate dieser *Regio olfactoria* übergeben. (Siehe darüber bei den Sinnesorganen).

Auch die feinere Beschaffenheit der Formelemente dieser Nerven ist eigenthümlich, und unterscheidet sich von allen übrigen. Sie bestehen aus blassen Fasern, die eine kernführende Scheide besitzen und sich in feine Fibrillen zerlegen lassen.

II. *N. opticus*.

§ 282.

Die beiden Sehnerven treten jederseits aus dem Chiasma, und verlaufen divergent zu dem Foramen opticum, welches sie durchsetzen um in die Augenhöhle zu gelangen. Hier begibt sich jeder in schwach bogenförmigem Verlaufe zum hinteren Umfange des Augapfels, in welchen er eintritt und schließlich in den in der Netzhaut des Auges bestehenden Endapparaten sich ausbreitet.

Trigeminusgruppe.

§ 283.

III. N. oculomotorius. Versorgt sämtliche Muskeln der Augenhöhle mit Ausnahme des M. obliquus superior und M. rectus externus. Er verlässt dicht vor der Brücke medial von den Hirnstielen als ein starker Nerv das Gehirn (Fig. 514), begibt sich zwischen der Arteria cerebelli superior und inferior anterior hindurch lateralwärts zur Seite des Processus clinoides posterior, wo er die Dura mater durchsetzt und in die obere Wand des Sinus cavernosus tritt. In diesem liegt er der letzten Krümmung der Carotis interna an und gelangt durch die Fissura orbitalis superior in die Augenhöhle.

Vor seinem Eintritte hat er sich in einen schwächeren oberen und stärkeren unteren Zweig gespalten, welche beide lateral vom Opticus liegen.

Ram. inferior. Strahlt sehr bald in eine größere Anzahl von Zweigen aus, die unterhalb des Opticus zum M. rectus internus und M. rectus inferior verlaufen, und von denen einer längs des lateralen Randes des M. rectus inferior nach vorne tritt. Dieser sendet meist gleichfalls noch an diesen Muskel Zweige ab und gelangt zum M. obliquus inferior. Nahe an der Abgangsstelle bildet dieser Ast durch 1—2 ganz kurze aber starke Zweige (Radix brevis) das

Ganglion ciliare (G. ophthalmicum). Am vorderen Theile des Ganglions gehen meist zwei Bündel feiner Nerven, _Nervuli ciliares breves_ ab, welche in geschlängeltem Verlauf das Fett der Augenhöhle durchsetzen, und sich zum Augapfel begeben, dessen hinteren Umfang sie in der Nähe der Eintrittsstelle des Sehnerven durchbohren. (Siehe Näheres beim Auge.)

§ 254.

V. N. trigeminus. Dieser mächtigste Hirnnerv verläuft mit zwei getrennten Portionen das Gehirn nahe am vorderen Rande der Brückennarbe (Fig. 514) und tritt gegen die obere Kante der Felsenbeinpyramide, nahe deren Spitze in eine Spalte der Dura mater ein. Die breite und abgeplattete Portio major ist sensibel. Sie wird aus einer Anzahl locker verbundener Nerven-
bündel dargestellt. Durch Auseinanderweichen dieser Bündel und Einlagerung von Ganglienzellen wird ein Ganglion gebildet, welches von der Dura mater bedeckt, an der Vorderfläche der Felsenbeinpyramide in eine flache Vertiefung lateral von deren Spitze sich einbettet: Ganglion Gasseri (s. semilunare). Es ist abgeplattet, halbmondförmig mit abwärts gerichteter Convexität, aus der drei Nervenstämmme divergirend hervortreten (Fig. 515 V. I. II. III). Diese sind zusammen stärker als die ins Ganglion eintretende Portion. Die bedeutend schwächere Portio minor besteht aus motorischen Elementen. Sie liegt am Felsenbein hinter der größeren, und verläuft so hinter und unter dem Ganglion herab, um dem dritten der Äste sich zuzugesellen. In diesem Verhalten des Trigeminus wird eine Übereinstimmung mit Spinalnerven erkannt. Das Ganglion Gasseri entspricht einem Spinalganglion, welche Deutung auch in der Beschaffenheit der Ganglienzellen begründet ist.

Im Ursprung des Trigeminus sind die Verhältnisse beider Wurzeln zu unterscheiden. Jede derselben besitzt einen durch Ganglienzellen gebildeten Kern am vorderen Theile des Bodens der Rautengrube, und zwar seitlich und etwas in der Tiefe gelagert. Die Portio minor kommt vom medialen Kerne und empfängt Zuwachs von Faserzügen, die unter dem Boden des Aquaeductus im Bereiche der vorderen Vierhügel auftreten und sich nach hinten und abwärts begeben. Sie bilden die »absteigende Wurzeln«. Die Portio major entspricht zum Theile von dem lateral von motorischen Kerne gelegenen Kerne und nimmt ebenfalls aus anderen Gebieten entstammende Züge auf. Diese sind schon am oberen Theile des Rückenmarks in der Höhe des zweiten Cervicalnerven vorhanden und steigen in Form eines die Wölbung des Hinterhorns umfassenden starken Bündels im verlängerten Marke als »aufsteigende Wurzeln« empor (Fig. 493), um sich den aus dem genannten Kerne hervorgehenden Zügen anzuschließen. Andere Ursprungsbeziehungen sind noch nicht sicher gestellt.

Von den Ästen des Trigeminus ist der erste einem Ramus posterior (dorsalis) homolog, der zweite und dritte entsprechen zusammen einem R. anterior oder ventralis.

1. N. lacrymalis. Dieser schwächste Zweig verläuft in lateraler Richtung unter der Periorbita und über dem M. rectus externus gegen die Thränendrüse. Ehe er diese erreicht hat, gibt er lateral einen Zweig ab, der sich mit einem Zweige des N. subcutaneus malae, (Trig. n.) verbindet. Daran tritt das Ende des Nerven in mehrere Zweige getheilt zur Thränendrüse und mit diese durchsetzenden oder darüber laufenden Fäden zur Bindehaut des Auges; auch zur Haut des Augenlides (Ramus palpebralis) in der Nähe des lateralen Augenwinkels findet eine Verzweigung statt.
2) N. frontalis. Der stärkste Zweig, verläuft in der Fortsetzung des Stammes unter dem Dache der Orbita, sowie über dem M. levator palpebrae superioris vorwärts und theilt sich in zwei Äste:

a. N. supratrochlearis begibt sich früher oder später schräg medianwärts gegen den M. obliquus superior, an dessen Rand er weiter verläuft und über der Trochlea theils zum oberen Augenlide theils zur Haut der Stirne an der Glabella sich verzweigt. Zuweilen bestehen zwei Supratrochlearnerven, von denen einer schon weit hinten, der andere weiter vorne sich abzweigt.

b. N. supraorbitalis stellt den stärksten Ast oder vielmehr die Fortsetzung des Frontalnerven vor, begibt sich zum Foramen supraorbitale, oder zur gleichnamigen Incisur, und tritt durch diese unter Abgabe kleiner Zweige zum oberen Augenlide unterhalb des M. frontalis verlaufend, zur Haut der Stirne, an die er sich bis zur Scheitelgegend verzweigt.

3) N. nasociliaris. Dieser Ast repräsentirt die Fortsetzung des Stammes, der meist schon im Sinus cavernosus die vorerwähnten Zweige abgegeben hat. und dann unterhalb desselben zwischen Oculomotorius und Abducens liegt, mit denen er in die Augenhöhle eindringt. Er wendet sich unmittelbar über dem Sehnerven medianwärts zur Orbitalwand, dringt als N. ethmoidalis durch das Foramen ethmoidale anterius und geht von da auf die Siebplatte, wo er von der Dura mater bedeckt und dadurch eigentlich von der Schädelhöhle ausgeschlossen wird. Durch ein vorderes Siebloch dringt er in die Nasenhöhle ein, und endigt mit Zweigen an die Schleimhaut wie auch an die äußere Haut der Nase (Nn. nasales). Nach Abgabe eines feinen, zum Ganglion ciliare (siehe beim N. oculomotorius) verlaufenden, und dessen sogenannte Radix longa bildenden Zweiges entsendet er:

a. Nervi ciliares longi, meist mehrere feine Fäden, die vom Nasociliaris in der Nähe seines Verlaufes über den Opticus abgehen und zum hinteren Umfang des Augapfels gelangen, dessen Selera sie durchbohren.

c. N. infratrochlearis. Von Foramen ethmoidale anterius an verläuft der Nerv längs der medialen Orbitalwand vorwärts zur Trochlea, unterhalb welcher er sich in Endzweige spaltet: einen zum oberen Augenlide, Ramus palpebralis sup., welcher mit dem N. supratrochlearis sich verbindet, und in die Haut des inneren Augenwinkels, auch gegen die Nase zu sich vertheilt, einen unteren zum Thräenansatz und unteren Augenlide (R. palpebralis inferior).

d. Nn. nasales anteriores. Sind die Endzweige des N. ethmoidalis, welche, nachdem er in die Nasenhöhle gelangt ist, sich in derselben vertheilen. Sie scheiden sich in innere und äußere.

1) Nn. nasales interni, welche im vorderen Theile der Nasenhöhle in der Schleimhaut sich verzweigen, verlaufen theils zur lateralen Wand, theils zur Scheidewand der Nasenhöhle.

2) N. nasalis externus, ein Endast, welcher in einer Furche der Innenfläche des Nasale bis zum vorderen Raude desselben herabverläuft und dann auswärts auf die knorpelige Nase tritt, um in der Haut bis zur Nasenspitze sich zu verzweigen.

Der Nasalis externus verläuft beim Embryo gleich vom Anfange an auf der knorpeligen Ethmoidalkapsel, hat also zum Inneren der Nase gar keine Beziehung. Diese gewinnt er erst nach Schwund der knorpeligen Unterlage auf welcher die Nasalia entstanden sind.
II. *Ramus secundus (R. maxillaris superior)*. Stärker als der erste verläuft dieser rein sensible Nerv vom Ganglion Gasseri aus zum *Foramen rotundum* und gelangt in die Flügelgaumengrube (S. 209), die er in der Richtung des Canalis infraorbitalis durchsetzt. Letzteren Canal durchziehend kommt er als *N. infraorbitalis* am gleichnamigen Loche zum Vorschein, und strahlt daselbst in seine Endäste zum Gesichte aus.

Vor dem Verlassen der Schädelhöhle gibt er den *N. recurrens* ab, einen oder einige sehr feine Zweige in die Dura mater und zum vorderen Aste der *Arteria meningea media*.

Die ferneren Äste sind:

Der Verlauf des Nerven durch die im Jochbein befindlichen Canäle ist nach der bezüglich dieser bestehenden Variation ein wechselnder (vergl. S. 196).

2) *N. sphenopalatinus* (Fig. 515). Begibt sich von der die Flügelgaumengrube durchsetzenden Strecke des Stammes abwärts und tritt theilweise mit einem sympathischen Ganglion (*G. sphenopalatinnum*) in Verbindung, durch welches seinen Verzweigungen Elemente anderer Gebiete zugeführt werden. Aus der Fortsetzung des Stammes des Nerven, zum Theile aus dem Ganglion, welches weiter unten (S. 529) Beschreibung findet, gehen folgende Nerven hervor:

 a. *Nn. nasales posteriores* verlaufen größtenteils durch das *Foramen sphenopalatinum* in die Nasenhöhle, wo sie sowohl an der lateralen Wand als an der Scheidewand, meist von hinten nach vorne und abwärts gerichtet, ihre Verbreitung nehmen.

 Die medialen (*Nn. septi nari um*) von den durch's Foramen sphenopalatinum in die Nasenhöhle gelangenden Nerven treten als 2—3 Fäden zur Nasenscheidewand. Ein größerer (*N. nasso-palatinus Scarpae*) verläuft schräg nach vorne gegen den
Siebenter Abschnitt.

Canalis incisivus, auf welchem Wege er feine Zweige absendet und endigt, diesen Canal durchsetzend, in der Schleimhaut des harten Gaumens.

Vom Palatium major zweigen sich die vorerwähnten Nn. nasales posteriores laterales inferiores ab. In die Gaumennerven treten vom Ganglion sphenopalatinum aus fremde Elemente, unter denen motorische mit den Palatini minores zur Gaumennuskulatur gelangende Fasern von Wichtigkeit sind.

a. Nn. alveolares superiores treten an verschiedenen Stellen ab, und verlaufen in feinen Canälichen der Wandung der Kieferhöhlöh, also innerhalb der Oberkieferknochen zu den Wurzeln der Zähne. Sie gelangen in den Zahnkanal und enden in der Zahnpapille oder der sogenannten Pulpa dentis.

Nn. alveolares superiores posteriores sind 2—3 dicht am Eintritte des Stammes in den Infraorbitalcanal entspringende Nerven, welche theils zum Zahnfleisch Zweige abgeben, auch wohl an die Wange schleimhaut, und dann durch einige Öffnungen am Tuber maxillare in die hintere Wand der Kieferhöhle eindringen. Sie begeben sich zu den Molarenzähnen.

b. Endäste des Infraorbitalis gehen nach dem Austritte des Stammes aus dem Foramen infraorbitale nach verschiedenen Richtungen. Sie durchsetzen Muskeln und endigen in der Haut. Es sind:

1) Rami palpebrales inferiores, welche sich aufwärts zum unteren Augenlid begeben. Diese sind die schwächsten.

2) Rami nasales laterales, einige zum Nasenflügel verlaufende Zweige, sind stärker als die vorhergehenden.

3) Rami labiales superiores. Begeben sich in größerer Anzahl abwärts zur Haut der Oberlippe und bilden die mächtigsten Endäste des N. infraorbitalis.
Ganglion sphenopalatinum s. nasale.

Dieses dem zweiten Trigeminusast zugehörige Ganglion steht mit letzterem durch den meist von zwei kurzen Nerven vorgestellten N. sphenopalatinus in Zusammenhang (Fig. 514): Es ist abgeplattet, circa 4 mm breit. Jener N. sphenopalatinus repräsentirt die sensible Wurzel. Zwei andere Wurzeln empfängt es durch den Vidischen Kanal, in welchem zwei, früher als N. Vidianus zusammengefasste Nerven von hinten her in es eintreten. Einer ist die motorische Wurzel, der N. petrosus superficialis major, welcher aus dem N. facialis stammend, zum Hiatus canalis Fallopii heraustritt, an der vorderen Fläche der Felsenbeinpyramide in einer vom Hiatus ausgehenden Rinne median und abwärts, vom Ganglion Gasseri bedeckt, zum Foramen lacerum (Fissura sphenopetrosa) zieht und dessen faserknorpeligen Verschluss durchsetzend, zur hinteren Mündung des Vidischen Canals gelangt. Eine dritte Verbindung wird als sympathische Wurzel aufgefasst. Dies ist ein vom sympathischen Geflechte der Carotis interna sich ablösender Nervenfaden, welcher gleichfalls in die hintere Mündung des Vidischen Canals gelangt und als N. petrosus profundus major den vorrigen begleitet.

iii. Ramus tertius (R. maxillaris inferior) ist der stärkste Ast des Trigeminus, welcher aus dem aus dem Ganglion Gasseri hervorkommenden dritten Aste und der gesammten Portio minor trigemini sich zusammensetzt. Er verlässt die Schädelhöhle durch das Foramen ovale. Nach dem Austritte durchflechten sich beide den Nerven darstellende Theile und bilden so einen, sensible und motorische Elemente umschließenden, gemeinsamen aber nur kurzen Stamm, da die motorischen Elemente zum größten Theile sich sehr bald entweder wieder in ein Stämmchen sammeln, oder auch in mehrfache einzelne Nerven gruppiert werden. Ist ersteres der Fall, so kann der übrigens gleichfalls nur ganz kurze Stamm als N. crotophilico-buccinatorius (masticatorius) unterschieden werden.

Gleich nach dem Austritt geht vom Stamm des dritten Astes ein Fäden zur Art. meningea media und verläuft mit dieser in die Schädelhöhle (N. recurrens rami tertii).

Die einzelnen Zweige des dritten Astes sind:
1) N. auriculo-temoralis (temporalis superficialis) entspringt am hinteren Rande des Stammes, meist mit zwei die Arteria meningea media vor ihrem Eintritte ins Foramen spinosum umfassenden Wurzeln. Der Nerv verläuft dann nach hinten und lateral gegen den Gelenkfortsatz des Unterkiefers, tritt hinter dem Kiefergelenk, dem äußeren Gehörgang genähert empor, über die Wurzel des Jochfortsatzes des Schläfenbeins, und theilt sich dann die Arteria temporalis superficialis begleitend in seine Endzweige. Während des Verlaufs gibt er zahlreiche Äste an die benachbarten Theile ab:

b. Rami parotidei dringen in die Ohrspeicheldrüse ein, sie werden zuweilen von den vorgenannten abgegeben.

e. Rami temporales sind die Endzweige des Nerven, welche in die Haut der Schläfe vor und über dem Ohre sich vertheilen, und mit Zweigen benachbarter Hautnerven Verbindungen eingehen.

Der Nerv ward einmal durch einen Zweig des N. mandibularis vertreten gefunden. Auch einer der Nn. alveolares sup. (H. Trig.) kann ihn ersetzen (Turner).

In der Nähe des G. oticum gehen von diesem Nerven ab:
1) N. tensoris tympani, welcher mit dem N. petros. superf. minor verläuft und unterhalb desselben zum M. tensor tympani tritt.
2) N. tensoris veli palatini begibt sich abwärts in den gleichnamigen Muskel und empfängt, wie auch der vorige, Verbindungen aus dem G. oticum.

Nach Abgabe dieser Äste in geringer Entfernung von der Antrittsstelle aus dem Foramen ovale bleibt noch der größere, vorwiegend aus sensiblen Fasern bestehende Theil des Ramus III, der in zwei bedentende Äste gespalten seinen Weg abwärts fortsetzt. Der eine dieser Äste ist der

7) N. lingualis. Dieser verläuft mit dem andern großen Endaste hinter dem M. pterygoideus externus abwärts, tritt dann zwischen diesem Muskel und dem M. pteryg. internus hervor und kreuzt letzteren, schräg ab- und vorwärts zum Boden der Mundhöhle gerichtet. Beim Verlaufe auf dem M. pterygoïd. internus oder auch höher oben tritt an den Lingualis von hinten und oben her die vom N. facialis stammende Chorda tympani, ein Nervenfaden der den Lingualis auf eine Strecke begleitet. (S. darüber weiter unten, Fig. 515). Indem er sich mit dem Ductus Whartonianus, der über ihn wegzieht, kreuzt, begibt er sich medianwärts gegen die Zunge, und strahlt zur Seite des Genioglossus in seine Endäste aus. Außer mehreren feinen Fädchen, welche zum Zahnfleisch der Molarzähne des Unterkiefer treten, entsendet der Lingualis:

2) N. sublingualis. Geht vom Stämme des Lingualis nach seinem Eintritt in die Mundhöhle zur seitlichen Fläche der Glandula sublingualis, und sendet dieser wie der Schleimhaut des Bodens der Mundhöhle und dem Zahnfleische feine Äste zu.

Den andern Endast bildet der
8) N. mandibularis (maxillaris inferior). Derselbe verläuft anfänglich mit dem N. lingualis, den er an Stärke übertrifft, zwischen M. pterygoideus externus und internus herab, trennt sich aber von jenem, indem er sich gegen das innere Kieferloch begibt und durch dasselbe in dem Canal des Unterkiefers seinen fernen Weg nimmt. Seine Zweige sind:

1) N. mylohyoideus tritt als dünner Nerv vom N. mandibularis vor dessen Eintritt in den Unterkiefer ab, verläuft zwischen den letzteren und dem M. pterygoi-
Siebenter Abschnitt.

Ganglion oticum.

Das zweite dem dritten Trigeminusaste verbundene sympathische Ganglion ist das

Ganglion submaxillare (G. sublinguale).

Wie oben beim N. lingualis erwähnt, findet es sich beim Antritte dieses Nerven zum Boden der Mundhöhle, unmittelbar bevor derselbe den Hinterrand des M. mylohyoideus erreicht. Hier gelangen vom Lingualisstamme einige kurze Fäden zu dem unterhalb des Stammes gelegenen, meist rundlichen oder ovalen Ganglion. Diese Fäden stellen die Wurzeln des Ganglion vor, und bestehen
theils aus Elementen des N. lingualis theils ans der Fortsetzung der letzterem Nerven beigelagerten Chorda tympani. Während so sensible und motorische Fäden dem Ganglion zugeführt werden, kommen zu denselben noch sympathische aus dem die Arteria maxillaris externa begleitenden Geflechte.

Aus dem Ganglion treten Nerven zur Glandula submaxillaris. Auch in die Endausbreitung des N. lingualis scheinen Nerven vom Ganglion überzugehen.

Nicht selten ist das Ganglion durch einen Plexus repräsentirt. Die vom Stamme des Lingualis sich abziegenden Nerven durchflechten sich und zeigen die Ganglien- zellen an den Knotenpunkten zerstreut. In diesem Geflechte tritt zuweilen an einer Stelle oder an einigen eine Ganglienbildung deutlicher hervor, und daran knüpf't sich der zuerst beschriebene Befund an.

§ 255.

VI. N. abducent. Verlässt das Gehirn am hinteren Rande der Brücke (Fig. 514) und beginnt sich unterhalb und etwas medial von der Durchtrittsstelle des Trigeminus durch die Dura mater unter letztere, um zur Seite der Sattellehne emporzutreten. Von da gelangt er in den Sinus cavernosus, seitlich von der Carotis interna, tritt durch die obere Orbitalfissur und durchsetzt den Ursprung des M. rectus externus. Gleich nach dem Eintritte in die Orbita verzweigt er sich an der medialen Fläche des genannten Muskels, den er versorgt.

Der Ursprung des N. abducentis im Gehirne liegt dem Facialiskerne benachbart, jedoch oberflächlicher als dieser, unmittelbar am Boden der Rautengrube vor den Striae acusticae. Da von diesem Kerne auch Elemente des Facialis entspringen, deutet er die engere Zusammengehörigkeit dieser Nerven an, wenn auch dem größten Theile des Facialis ein anderer Ursprung zukommt.

VII. N. facialis. Dieser Nerv erscheint in inniger Beziehung zum Hör- nernen, verlässt mit diesem das Gehirn am hinteren Rande der Brücke (Fig. 514) mit zwei Wurzeln, einer größeren und einer kleineren, die Portio intermedia be nannt wird. Sie liegt zwischen der ersteren und dem Acusticus, der in der Zusammenfassung mit dem Facialis die Portio nolis vorstellt, während die größere Wurzel dieses Nerven als Portio dura gilt. Mit dem Acusticus, bleibt der Facialis auf dem Verlaufe zum Porus acusticus bis zu dessen Grunde vereinigt und wird in jenem Canal vom Acusticus wie von einer Halbrinne umschlossen. Der größere Theil der Fasern der Portio intermedia mischt sich auf diesem Wege dem Facialis bei. Im Grunde des Porus acusticus setzt der Facialis seinen Weg durch den Canalis Fallopii fort, erst in lateraler Richtung bis in die Gegend des Hiatus canalis Fallopii, von wo aus er in knieförmiger Biegung (Geniculum) (Fig. 515) nach hinten über die obere Wand der Paukenhöhle, und dann in sanftem Bogen abwärts und etwas lateralwärts zum Foramen stylomastoideum tritt. Am Geniculum bietet der Nerv eine schwache aber deutliche Ans- schwellung, das Ganglion geniculi. An der Austrittsstelle aus dem Schädel wendet sich der Stamm des Nerven von der Parotis bedeckt nach vorn und außen, und theilt sich in zwei starke Äste, welche um den Gelenkfortsatz des

GegenbaR, Anatomie. 53

Für die Verzweigung des Facialis können drei Strecken unterschieden werden, a. auf dem Wege durch den Canalis Fallopii, b. von der Mündung des letzteren bis zum Antritte auf den Unterkieferast und c. die Verzweigung des *Plexus parotideus*, welche die Endäste begreift.

Der Verlauf des Facialis durch der Fallopischen Canal ist nicht gleichwertig dem Austritt irgend eines anderen Hirnnerven aus der Schädelhöhle; vielmehr ist in dieser Beziehung durch die Entfaltung der Pankenhöhle und ihre Einstülzung in das aus verschiedenen Elementen sich zusammensetzende Schlafenbein (S. 169) eine bedeutende Änderung eines primitiven Verhaltens eingetreten, von welchem auch noch später deutliche Spuren nachzuweisen sind (S. 174, Anm.). Dieser Auffassung gemäß entspricht der *Hiatus* der Mündung, hier findet sich die erste Abzweigung (*N. petrosus superficialis major*) und proximal besitzt der Nerv das Ganglion.

a. Auf dem Wege durch den Canalis Fallopii gibt der Nerv mehrere meist feine Zweige ab; es sind folgende:

1) *N. petrosus superficialis major* (Fig. 515). Entspringt aus dem Ganglion geniculi und beginnt sich durch den *Hiatus* canalis Fallopii, in eine von dort beginnende Furche eingebettet, zur Fissura spheno-petrosa, die er durchsetzt, um in den Vidi'schen Canal und durch diesen zum *Ganglion sphenopalatinum* zu gelangen (S. 529).

2) *Nervus stapediaus*. Ein kleiner, von dem hinter
der Paukenhöhle absteigenden Theile des Facialis entspringender Nerv, welcher zum Muskel des Steigbügels tritt (s. beim Gehörorgan).

8) **Rami bucco-labiales superiores** verlaufen zu den in die Oberlippe eingehenden Muskeln, verbinden sich mit Zweigen des N. buccinatorius, und gelangen mit diesen zum gleichnamigen Muskel; sie anastomosieren ferner mit den Endzweigen des N. infraorbitalis, auch mit anderen kleinen Hautästen des Trigeminus.

9) **Rami bucco-labiales inferiores** treten schräg über den Masseter hinweg gegen den Mundwinkel und die Unterlippe, die hierher gehörigen Muskeln versorgend. Sie verbinden sich sowohl mit dem N. buccinatorius, wie mit den höher verlaufenden Facialiss zweigen.

10) **Ramus marginalis** nimmt seinen Verlauf längs der Außenfläche des Unterkieferrandes, vertheilt sich nach den Muskeln des Kinnes und der Unterlippe und geht mit den Nn. mentales und labiales inferiores aus dem dritten Aste des Trigeminus Verbindungen ein.

11) **Ramus subcutaneus colli superior** verläuft vom Unterkiefer abwärts, oder tritt schon hinter demselben herab zur Halsfascie, die er durchsetzt, um sich im oberen Theile des Platysma myoides bis in die Gegend des Zungenbeins zu verzweigen. Er verbindet sich mit Hautästen von Cervicalnerven (dem N. auricularis magnus und subent. colli medius).

Im **Plexus parotideus** besteht eine Auflösung und weitmaschige Durchflechtung der Faserzüge des Facialis. Aufwärts tretende Züge werden wieder abwärts abgeleitet, und umgekehrt, bilden mit anderen neue Combinationen, woraus unter Wiederholung dieses Verhaltens eben das Geflechte entsteht. Für diese eigenthümliche Bildung wird als Causalmoment eine stattgefundenene Umlagerung der Muskulatur des Antlitzes angenommen werden müssen, so dass jene Muskeln, die wir oben (S. 327 ff.) als Differenzierungen des Platysma betrachteten, nicht von vorne herein die ihnen zukommenden Localitäten einnahmen, und mit ihrer Wanderung zugleich Veränderungen in der Anordnung der ihnen zugehörigen Facialiss zweigen hervorriefen.

VIII. N. acusticus. Der Nerv des Hörorganes fügt sich aus mehreren gesonderten Bündeln zusammen und nimmt lateral vom N. facialis seinen Austritt aus dem Gehirn. Er verläuft mit jenem, ihm hohlrinnenförmig von unten umfassend zum Porus acusticus. Dabei nimmt er einen Theil der Portio intermedia (S. S33) auf, und theilt sich in zwei Hauptäste: **N. vestibuli** und **N. cochleae**, welche beide wieder mehrfach getheilt durch feine, im Grunde des Porus acusticus befindliche Öffnungen zum Ohrlabyrinth verlaufen. Das Nähere wird beim Hörorgan angeführt.

Vagusgruppe.

§ 286.

IX. N. glossopharyngeus. Der Zungenschlundkopf-Nerv verlässt das Gehirn (Fig. 514) mit zwei Bündeln unterhalb des Facialis und Acusticus, unmittelbar über den obersten Wurzelfäden des N. vagus. Beide Bündel bilden ein Stämmchen, welches zum vorderen Theile des Foramen jugulare verläuft, und hier durch eine von der Dura mater gebildete Brücke von der Austrittsstelle des N. vagus und Accessorius getrennt wird. Dicht am Austritte bildet der Nervenstamm ein Ganglion, welches sich auch höher hinauf, in's Foramen jugulare fortsetzt, und daselbst eine zweite, schwächere Anschwellung zum Ausdruck kommen lässt. Das untere, an der Fossula petrosa (S. 173) gelagerte, ist als Ganglion petrosum, das obere als G. jugulare unterschieden worden. Wir sehen beide als zusammengehörige Bildungen an. Vom Ganglion an verläuft der Nerv, erst vor dem Vagus gelagert, abwärts, und sendet einen Ast zum Pharynx, dann verläuft er zwischen Carotis interna und dem M. stylo-pharyngeus, dem er an dessen medialer Seite folgt. Weiter abwärts sendet er sich um den letzigenannten Muskeln herum, worauf er die Carotis externa an seiner lateralen Seite hat, tritt dann zwischen M. stylo-pharyngeus und styloglossus an der Tonsille vorüber zur Zungenwurzel, wo er in seine Endäste zerfällt.

Der Ursprung des Glossopharyngens findet sich im vordersten Theile des Vaguskernes am Boden der Rautengrube, so dass man also den Glosso-pharyngeuskern mit dem des Vagus als einheitlich sich vorzustellen hat. Über diesen Kern sowie über eine aufsteigende Wurzel siehe Näheres beim N. vagus. — Der Glosso-pharyngeus entspricht einem Spinalnerven. Ob seine beiden Wurzelbündel in das Ganglion petrosum eingehen, oder nur
Die Zweige des Glossopharyngeus sind:

1) N. tympanicus (N. Jacobsoni). Ein feiner Nerv, welcher vom Ganglion petrosum abgeht und durch den Canalicus tympanicus in die Paukenhöhle, und zwar zur medialen Wand derselben verläuft. Dasselbst liegt er am Promontorium (S. 173) in einer Furche eingebettet, und geht sowohl Verzweigungen, als Verbindungen mit anderen Nerven ein. Diese repräsentiren ein feines, an der Labyrinthwand der Paukenhöhle liegendes Geflechte, den Plexus tympanicus (Fig. 516).

Den Hauptnerven des Pl. tympanicus bildet eben der N. tympanicus. Außer mehreren Zweigen in die Schleimhaut, unter denen einer zum innern Theil der Tuba Eustachii am beständigsten ist, ferner Zweigen zu den beiden Fenstern der Paukenhöhle, und zu den Cellulæ mastoideæ gibt er ab:

a. N. caroticotympanicus. Ein oder zwei feine Fädchen, welche durch die Canaliculi carotico-tympanici zum Canalis caroticus verlaufen und ihr das sympathische Geflecht der Carotis interna übergehen.

b. N. petrosus profundus minor beginnt sich durch ein Canälchen unter dem M. tensor tympani gleichfalls zum Canalis caroticus in den sympathischen Plexus der Arterie.

c. N. petrosus superficialis minor (Fig. 516) erscheint als die Fortsetzung des N. tympanicus und tritt durch die obere Wand der Paukenhöhle auf die vordere Fläche des Petrosum vor dem Hiatus canalis Fallopii herab, dann an der lateralen Seite des im Canalis caroticus liegenden horizontalen Abschnittes der Carotis interna vorüber durch die Fissura sphenopetrosa zum Ganglion oticum (S. 832). Damit bildet dieser Nerv eine Verbindung des Glossopharyngeus mit jenem Ganglion — Jacobsonische Anastomose. — Ob vom Knie des Facialis her noch ein Fädchen mit dem N. petrosus superficialis minor sich verbindet, ist nicht allgemein anerkannt, sowie auch über manche andere Verhältnisse, vor allem über die Verlaufsrichtung der Nervenbahnen verschiedene Meinungen existiren.

4) Ramus stylo-pharyngeus begibt sich zum gleichnamigen Muskel, meist durch mehrere Fächer vertreten, die während des Verlaufes des Stammes um den Muskel entspringen. Theilweise sind sie mit dem Muskel zum Pharynx verfolgbar.

5) Rr. tonsillares gehen beim Verlaufe des Stammes unter der Tonsille her von jenem zu dieser, und begeben sich auch zum vorderen Gaumenbogen.

6) Rr. linguales stellen die Endäste des Nerven vor, welche sich von der Seite her zur Schleimhaut der Zungenwurzel, hinten bis zur Epiglottis, vorne bis zu den Papillae circumvallatae, und in diese selbst vertheilen. Sie repräsentiren für diesen Abschnitt der Zunge die Geschmacksnerven.

§ 287.

emporsteigter Ramus recurrens. Auf diesem Wege liegt der Stamm des rechten Vagus weiter nach vorne als jener des linken, wie aus dem Verhalten zu den Arterien hervorgeht.

Man hielt den Vagus früher für einen rein sensiblen Nerven, der seine motorischen Zweige nur vom Accessorius empfing. In neuerer Zeit wird ihm schon an seinem Austritte aus dem Gehirn eine gemischte Beschaffenheit zugeschrieben.

Der Vagus kann nicht als nur einem einfachen Spinalnerven homologer Nerv gelten, denn die vergleichende Anatomie vermag seine Zusammensetzung aus einer Summe einzelner Nerven zu begründen. Diese erscheinen aber nicht sowohl als vollständige Spinalnerven, sondern entsprechen nur hinteren Wurzeln von solchen, wie auch das Verhalten des Austrittes aus der Medulla oblongata lehrt.

Nahe am Austritt des Vagus bestehen Verbindungen mit anderen Nerven. Ein Zweig tritt vom Gangl. jugulare aus, oder auch etwas tiefer zum Ganglion cervicale supremum (des Sympathicus) zu dem auch vom Plexus nodosus her einige kurze Fäden gelangen. Auch zum Glosso-pharyngeus und zwar zum Ga-

Gleich den Ästen des Trigeminus entsendet der Vagus einen feinen R. recurrens zur Dura mater der Schädelhöhle; dieser entspringt vorne vom Ganglion jugulare und verläuft ins Cavum cranii getreten zum Sinus transversus.

Die ferneren Verzweigungen des Vagus sind:

Der eine kommt dicht hinter dem Meatus audit. externus hervor, und wird zur Haut der Muschel und des äußeren Gehörganges verfolgt. Der andere Endzweig verbindet sich mit dem N. auricularis posterior (VII).

b. R. internus, stärker als der vorige, verläuft medial von der Arteria thyreoidea superior am hinteren Ende des Zungenbeins vorüber mit der Art. laryngea superior zur Membrana thyreo-hyoidea, die er durchbohrt. So gelangt er unmittelbar unter die Schleimhaut (Plica nervi laryngei S. 523) und verzweigt sich in mehrere Äste. Diese vertheilen sich sowohl zur vorderen wie hinteren Fläche der Epiglottis, erstere bis zur Zungenwurzel, dann zum Eingang des Kehlkopfes, und von da an der Schleimhaut des Innern, dann an der die hintere Fläche des Kehlkopfes überkleidenden Schleimhaut der vorderen Pharynxwand. Mit einem Zweige verbindet er sich mit dem N. lar. inferior.

Siebenter Abschnitt.

anonyma, linkerseits in der Höhe des Aortenbogens ab, oder auch unterhalb dieser Stelle. Häufig sind sie Zweige des folgenden Nerven.

Einem der oberen Nn. cardiaci scheint der bei Säugetieren als N. depressor bezeichnete gleichwertig zu sein; bei dessen centraler Reizung sinkt die Herzthätigkeit.

5) N. recurrens (N. laryngeus inferior). Auf beiden Seiten bietet er verschiedenes Verhalten, welches durch die Arterienstämme, um die er herumläuft, bestimmt wird; links geht er tiefer ab, indem er sich um den Arenus aortae herum aufwärts wendet, während er rechts um die Art. subclavia tritt (S. 840). Hinter der betreffenden Arterie verläuft er etwas medial gegen die Speiseröhre und Trachea, legt sich zwischen beide und gelangt bis zum Kehlkopf empor. Er gibt ab:

a. Rr. cardiaci inferiores, wenn diese nicht schon, wie oben bemerkt, direct vom Stamm entsendet sind. Sie entspringen beim Verlauf des Recurrens um die Arterie.

b. Rr. tracheales et oesophagei oesophagei superioriores sind zahlreiche zur Trachea und zum oberen Abschluß des Speiseröhrenverlaufenden Zweige, von denen die letzteren auch bis zum Pharynx gelangen.

Durch die Versorgung sämtlicher zum Stellknorpel gelangenden Muskeln wird der Larynx inferior zum Stimmnerv.

Die Eigenthümlichkeit des Verlaufes der Recurrens ist durch die Lageänderung der großen Gefäßstämme, um die er sich herumschlingt, erworben. Indem diese Gefäße aus dem ursprünglich weit oben liegenden Arterienbogen-Systeme (vergl. S. 640) sich erhalten, vor welchem der Vagus herabläuft, wird mit der Umbildung jener Arterienbogen und ihrem tiefen Herabrückten der Vagus gewissermassen mit ausgezogen, und der untere Kehlkopfnerv in eine rückläufige Bahn gebracht.

7) Rr. oesophagei inferiores entspringen vom freien Verlaufe des Vagusstammes und bilden ein die untere Strecke der Speiseröhre begleitendes Geflechte (Plexus oesophageus). Sehr häufig ist auch der Stamm des Vagus in dieses von beiden Seiten her gebildete Geflechte aufgelöst, oder wird jederseits durch einige stärkere Nerven im Geflecht vertreten.
Auch zum hinteren Theile des parietalen Blattes des Pericardiums sind Zweige aus dem Plexus oesophageus beobachtet.

Mit den Bahnen des Sympathicus wurden auch zu Nebenniere und Niere Elemente aus dem Vagus verfolgt.

Die Vertheilung des Vagus am Magen erhält durch die Lageveränderung, welche der letztere in einer früher embryonalen Periode erfährt, ihre Erklärung. Indem die hintere Magenwand ursprünglich die rechte, die vordere die linke ist, wird begreiflich, dass der rechte Vagus vorwiegend ersterer, der linke dagegen letzterer angehört.

Indem wir oben die Verbreitung des Vagus auf Theile, die von der Ursprungsstelle des Nerven weit entfernt in der Brust- und Bauchhöhle liegen, aus Lageveränderungen jener Organe erläutert, haben wir damit das Fremdartige entfernt, welches ohne jene Rücksichtnahme auf die Entstehungsgeschichte der Organe die Verbreitung dieses Nerven umgibt. Die Versorgung der Lungen und Luftwege durch den Vagus erklärt sich wiederum aus der Entwicklung, welche jene Theile als Differenzierungen des Endes der Kopfdarmhöhle kennen lehrt.

Organe der Brust- und der Bauchhöhle werden also von einem Kopfnerven versorgt, weil sie ursprünglich der Kopfregion angehören, dort ihre Entstehung fanden und erst durch allmähliche Lageveränderung den Ort ihrer schließlichen Einbettung erreichten. Die einzelnen Etappen dieses Weges finden wir bei Wirbeltieren verbreitet. Von den höheren werden sie zurückgelegt, erscheinen als Entwicklungsstufen, die um so früher auftreten, je ältere Zustände sie darstellen.

im Bogen zum Foramen jugulare, und hinter dem Vagus durch dasselbe heraus. Er theilt sich alshald in zwei Äste.

Was das Verhalten des Accessorius zur Stammesmuskulatur betrifft, so ist biebe in Erwägung zu ziehen, dass beide Muskeln der oberen Gliedmaße angehören, deren Homologen bei Fischen noch zu dem Kopfe engere Beziehungen besitzen. Die Innervation ohnehin theilweise vom Schädel entspringender Muskeln von einem Kopfnerven ergibt sich daraus als eine letzte Spur jenes primitiven Verhältnisses der oberen Extremität.

§ 288.

XII. N. hypoglossus. Der Austritt dieses Nerven aus dem verlängerten Mark findet sich zwischen Pyramide und Olive in einer Reihe von Wurzelfäden (Fig. 514), die sich ganz ähnlich den vorderen Wurzeln der Spinalnerven verhalten. Im Zusammenhalte mit dem Vagus und Accessorius stellt der Nerv vordere Wurzeln dar, die aber nicht etwa jenen eines einzigen Spinalnerven homolog sind.

Wurzeln von Spinalnerven, als der Hypoglossuskern an die Reste des Vorderhorns des Rückenmarks sich reiht.

Die Wurzelfäden vereinigen sich stets in zwei Bündel, die zum Canalis hypoglossi (Foramen condyl. ant. S. 101) verlaufen und denselben, wenn er einfach ist, durch einen Dura mater-Fortsatz von einander geschieden, durchsetzen. Außerhalb der Schädelhöhle findet eine Vereinigung beider Stränge statt. Der daraus entstandene Nerv liegt dem Vagus enge an und empfängt von dessen Plexus nodosus einige feine Zweige, geht auch mit dem Ganglion cervicale suprnum Verbindungen ein. Dann wendet er sich um die äussere Seite des Vagus herum, längs der Carotis interna abwärts, und in einem Bogen nach vorne. Dabei umgreift er die V. jugularis interna, sowie die Carotis communis nahe an ihrer Theilungsstelle, und wird dabei vom hinteren Banche des M. digastricus bedeckt. Über die Concavität des Bogens verläuft die Art. sterno-cleido-mastoidea (S. 652) herab. Oberhalb des großen Zungenbeinhornes nimmt er seinen Weg vorwärts am M. hyoglossus vorbei und strahlt dann in seine Endäste zur Muskulatur der Zunge aus.

Beim Verlaufe hinter dem Vagus nimmt der Hypoglossus noch Bündel vom Cervicalis I, oder von diesem und dem Cervicalis II und III auf. Seine Zweige sind:

II. Rückenmarksnerven.

§ 289.

Die Rami posteriores versorgen die ursprüngliche Dorsalregion des Körpersstammes, Haut und Muskeln, von den letzteren also jene, die wir bereits oben (§ 102) als eigentliche Rückennmuskeln von den sie nur überlagernden Gliedmaßenmuskeln des Rückens schieden. Die Rami anteriores sind für die ventrale Region des Körpers bestimmt, welche durch Umschließung des Darmsystems sowie des Urogenitalsystems und der hauptsächlichsten Theile der Circulationsorgane eine viel bedeutendere Ausdehnung besitzt. Diese erhöht sich noch durch die Gliedmaßen, welche gleichfalls der ventralen Region des Körpersstammes angehören, wie immer sie auch durch Schultergürtel und Becken dorsawärts sich erstrecken mögen. Aus diesen Verhältnissen leitet sich die bedeu-
tende Stärke der Rami anteriores im Gegensatz zu den Rami posteriores ab. Aber auch innerhalb der Rami anteriores bestehen wieder bedeutende Verschiedenheiten in der Mächtigkeit, nach dem Umfange der zu versorgenden Theile, und vor allem sind es die in die Nerven der Gliedmassen sich fortsetzenden Rami, welche durch bedeutendere Stärke von den fäbrigen ausgezeichnet sind.

In ihrer Reihenfolge geben die Spinalnerven einen scharfen Ausdruck für die Metamerie des Körpers. Wie aber die einzelnen Metameren einen schon in der Verschiedenartigkeit der Wirbel ausgesprochenen verschiedenen Werth haben, so sind auch an den Spinalnerven Verschiedenheiten ausgeprägt. Diese werden vorzüglich durch die größeren, auch an der Wirbelsäule unterscheidbaren Abschnitte beherrscht, weshalb man die Spinalnerven in diesen entsprechende Gruppen theilt. Demgenauß unterscheidet man Cervicalnerven (S), Thoracalnerven (12, Lumbalnerven (5), Sacralnerven (5) und noch einen oder zwei Steißbein- oder Caudalnerven.

Da das Rückenmark anfänglich sich durch die ganze Länge des Rückgratcanals erstreckt, gelangen die Nervenwurzeln mit ihren in lateralem Verlaufe convergirenden Fäden direct zu den ihnen entsprechenden Foramina intervertebralia. Mit der allmählich erscheinenden Wachsthumssdifferenz zwischen Rückenmark und Wirbelsäule, in Folge deren das erste nicht mehr die ganze Länge jenes Canals durchsetzt (vergl. S. 748), verlängern sich die Wurzeln der Spinalnerven auf ihrem Wege durch den Rückgratcanal. Diese Verlängerung wird um so bedeutender, je größer der Abstand zwischen Austritt der Wurzeln aus dem Rückenmark und dem betreffenden Zwischenwirbelloch ist. Daher wächst die Länge der Wurzeln von den oberen Nerven nach den unteren zu. und die aus dem unteren Theile des Rückenmarks hervorgehenden Nervenwurzeln bilden über das Ende des letzteren weit herab sich fortsetzende Züge, welche im Duralsacke eingeschlossen die Cauda equina vorstellen.

Cervicalnerven.

§ 290.

Dagegen ist der R. posterior des N. cerv. 2 durch bedeutende Stärke ausgezeichnet. An ihm hat die Nachbarschaft des Kopfes mit der Entfaltung der Hinterhauptsregion Modifikationen hervorgerufen. Er bildet den

Die Rami anteriores der Cervicalnerven verbinden sich unter einander durch Äste. und stellen damit Geflechte dar. Diese scheidet man in ein oberes Geflechte oder Pl. cervicalis, und ein unteres, den Pl. brachialis.

Plexus cervicalis.

§ 291.

zweige aus dem 3.—4. Cervicalnerven zugeleitet werden. Mächtiger sind die übrigen, größtenteils oberflächliche Bahnen einschlagenden Äste. Es sind folgende:

Nicht ganz selten ist einer der mittleren, das Schlüsselbein kreuzenden Zweige von einem durch jenen Knochen gebildeten Canalis umschlossen. Das Schlüsselbein hat dann bei seinem Dickwachsthum einen der Nerven umfasst.

Zu Muskeln verlaufen:

Insofern der R. descendens hypoglossi selbst aus Zweigen von Cervicalnerven sich zusammensetzt, gehören der Cervicalis descendens und jener R. descendens zusammen, zumal der erstere auch nur durch weit oben zum Ram. dese, hypoglossi verlaufende Communicationen vertreten sein kann, wobei dann selbstverständlich die Schlinge fehlt.

Auch die Pleura soll einige Zweige vom Phrenicus erhalten, und die vertebrale Portion des Zwerchfells durchsetzende Zweige gelangen zur unteren Zwerchfellfläche, wo sie in den Pleurapalmarübergang, auch ins Lig. suspensorium der Leber verfolgt wurden (Rr. phrenico-abdominales). Auch Verbindungen mit sympathischen Geflechten bestehen. Luschka, der Nervus phrenicus, Tübingen 1853.

Plexus brachialis.

§ 292.

Die Rami anteriores der vier unteren Cervicalnerven bilden mit einem kleinen Zweige des vierten Cervicalnerven und dem größeren Theile des ersten Brustnerven das Armgeflecht. Die Nervenstämmchen lagern dabei zwischen Scalenum anticus und medius, der 5.—7. Cervicalnerv steigt steiler herab, und kommt über die Arteria subclavia zu liegen. Der Cerv. 5 liegt hinter der Subclavia, und ebenso, aber zuerst etwas unter ihr, weil über die erste Rippe emporretretend, liegt das vom ersten Brustnerv kommende Stämmchen. Durch die Vereinigung der Stämmchen oder der aus ihrer Theilung hervorgegangenen Äste entsteht das von der Subclavia auf die Art. axillaris sich fortführende und diese auf ihrem Verlaufe durch die Achselöhle umspinnende Geflechte. In demselben sind drei Hauptstränge, sowohl durch ihre Lage zur Arterie wie durch die Vertheilung der von ihnen abgehenden Nerven bemerkenswerth. Ein Strang liegt lateral von der Arterie, er bildet sich aus den drei oberen Nerven des Plexus. Ein zweiter Strang hat eine mediale Lage zur Arterie und wird vorwiegend durch die beiden letzten Nerven des Plexus gebildet. Der dritte Strang liegt hinter der Arterie und setzt sich mehr oder minder aus Theilen aller in den Plexus eingehenden Nerven zusammen (Fig. 518).

Die Lagerung der drei Stränge zur Arteria axillaris ist derart, dass der mediale und der laterale als vordere erscheinen und dadurch zusammen von hinten sich unterscheiden. Diese Verhältnisse lassen einen Zusammenhang mit dem Vertheilungsgebiete der aus den Strängen hervorgehenden Nerven wahr-
nehmen, dessen weiter unten Erwähnung gescheht. In der Umgebung der Arterie liegen die Stränge in parallelem Verlaufe ziemlich nahe bei einander und erst allmählich löst sich diese Anordnung auf.

Außer den für den Arm bestimmten größeren Nervenstämmen geht aus dem Plexus brachialis eine Anzahl von Nerven für die um die Schulter sich gruppirenden Muskeln der oberen Gliedmaße hervor. Im Einzelnen ergeben sich sowohl für die Zusammensetzung der den Plexus brachialis bildenden Schlingen als auch für die Ursprungsbeziehungen der abgehenden Nerven zu den Strängen des Geflechtes zahlreiche Verschiedenheiten. Noch vor der Plexusbildung entsenden die Cervicalnervenstämmchen einzelne Nerven zu den Scalenis und zum M. longus coli.

Die aus dem Armgeflecht zur Schulter wie zur Brustwand verlaufenden Nerven (Fig. 517) sind, von vorne nach hinten aufgesucht, folgende:

1) N. subclavius. Löst sich aus dem N. cerv. 5 ab und beginnt sich dem M. scalenus anticus folgend, zu dem ihm gleichnamigen Muskel herab.

2) Nn. thoracici anteriores. Einer kommt meist aus dem N. cerv. 5 und 6 und ein anderer aus dem N. cerv. 7, zuweilen auch noch ein dritter aus dem medialen Strange. Im Ganzen zeigen sie große Verschiedenheiten des Abganges vom Plexus und verlaufen hinter der Clavicula gegen die Mm. pectorales herab. Nachdem sie hier manchmal Verbindungen untereinander eingingen, vertheilen sie sich zu jenen Muskeln.

Die zwei zum Pectoralis major verlaufenden Zweige treten theils über, theils unter dem Pectoralis minor hinweg, hin und wieder wird dieser Muskel auch von einem zum P. major verlaufenden Zweige durchsetzt.

3) N. thoracicus longus (thoracicus posterior s. lateralis). Geht aus dem N. cerv. 5 und 6, oder aus dem 6., 7. oder aus dem 6., 7. und 5.

Fig. 517.
Rückenmarksnerven. S53

(Fig. 517) hervor und durchsetzt den M. scalenus medius, auf welchem er zur seitlichen Brustwand herab verläuft, wo er allmählich an dem M. serratus anterior major sich verzweigt *N. respiratorius externus. CH. BELL*.

N. cutaneus humeri posterior zur Haut des Oberarmes. Dieser Nerv sendet theils Zweige um den Deltoideus herum zur Haut der seitlichen und hinteren Schulterregion, theils verläuft er an der hinteren Seite des Oberarm bis zum Olecranon herab.

6) *N. suprascapularis*. Wird vom N. cerv. 5 (Fig. 517) oder diesem und dem N. cerv. 6 abgegeben und begibt sich in Begleitung des hinteren Banges des M. omohyoideus zur Incisura scapulae. Unter dem diese überbrückenden Bande hindurch verläuft er in die Fossa suprascapulata, gibt dem gleichnamigen Muskel einen Zweig und begleitet die Arteria transversa scapulæ um das Collum scapulæ zur Untergrätenrunde. Hier endet er im M. infraspinatus.

7) *N. dorsalis scapulæ* (*Thoracicus posterior*). Vom N. cerv. 5 entspringend durchsetzt er den M. scalenus medius nach hinten gewendet, gelangt dann unter den M. levator scapulæ, dem er ein Ästchen abgibt, und verläuft unter dem M. rhomboideus herab, wobei er sich an diesen vertheilt. Die zu beiden Muskeln gehenden Portionen können auch getrennten Ursprungs sein.

Die aus dem übrigen Theile des Armgefechtes hervortretenden Nerven gelangen sämmtlich zur Extremität. Die drei oben unterschiedenen Stränge besitzen in ihrer Anordnung enge Beziehungen zu den Verbreitungsbezirken jener Nerven, der laterale Strang sowie der mediale, welch' beide mehr nach vorne zu
liegen, gehen Nerven zur Beugeseite der Extremität ab, sowohl die Haut wie die Muskulatur versorgend. Die aus dem lateralen Strange hervorgehenden Nerven gehören dabei mehr der Radialseite, jene des medialen Stranges der Ulnarseite an. Der hintere Strang setzt sich in einen Nerven für die hintere, oder Streckseite des Ober- und Vorderarmes fort, Haut und Muskeln versorgend, nachdem der gleichfalls von ihm abgehende N. axillaris mit seinen Hautästen (s. oben) bereits an die Haut der Streckseite des Oberarmes sich verzweigt hatte.

Wir begründen auf dieses Verhalten die Scheidung dieser Nerven in Beug- und Strecknerven. (Fig. 518). Aus dem lateralen Strange {l} setzt sich der N. musculo-cutaneus fort, indess der größere Theil des Stranges mit einem fast ebenso starken Bündel des medialen Stranges vor der Arteria axillaris sich zum N. medianus vereinigt. Aus dem medialen Strange {m} lösen sich ziemlich weit oben zuerst Hautnerven ab: die Nn. cutanet brachii interni, beide als major und minor unterschieden. Dann geht das vor der Arterie verlaufende Bündel zur Bildung des N. medianus ab, und der Haupttheil des Stranges verläuft als N. ulnaris weiter. Der hintere Strang {p} setzt sich, nachdem er den N. axillaris (siehe oben) abgegeben, als N. radialis fort. N. medianus, ulnaris und radialis bilden die Hauptnerven der Extremität, die auch die Hand versorgen, indess die anderen nicht bis dahin gelangen und zum Theile nur Hautnerven sind (Nn. cutanet brach. interni).

1) N. musculo-cutaneus. Er geht mit dem den Nervus medianus darstellenden Bündel aus dem lateralen Strange hervor, verläuft dann längs des ihm anliegenden M. coracobrachialis, um in der Mitte der Länge desselben ihn zu durchbohren — daher N. perforans — wobei er Zweige an ihn abgibt. Unter dem kurzen Kopfe des M. biceps aus dem M. coracobrachialis hervorgetreten, verläuft der Nerv zwischen M. biceps und brachialis internus lateralwärts herab, diese Muskeln mit Zweigen versorgend, und gelangt nahe an der Ellenbogenbeuge im Sulcus bicipitalis lateralis zur Oberfläche, um als Hautnerv die Fascie zu durchsetzen. Damit bildet er den

N. cutaneus brachii externus. Die Durchtrittsstelle dieses Nerven findet sich in der Nähe der Vena cephalica. Seine Verzweigung an der Haut des Vorderarmes trifft theils die Radialseite, theils die Vorderfläche desselben. So verbreitet er sich bis in die Nähe des Handgelenkes.

2) N. medianus. Die beiden, diesen Nerven zusammensetzenden Bündel aus dem Plexus brachialis Fig. 518 umfassen die Arteria axillaris und vereinigen sich dann auf derselben. Der so gebildete Stamm begleitet die Arterie in medialer Lage (vergl. den in Fig. 271 gegebenen Durchschnitt des Oberarms), tritt erst distal wieder vor die Arterie und gelangt so, ohne am Oberarm sich zu verzweigen, zur Ellbogenbuge. Hier lösen sich mehrere Zweige von ihm ab und begeben sich zu der oberflächlichen Gruppe der Begennuskeln mit Ausschluss des M. flexor carpi ulnaris. Der Stamm des Medianus durchsetzt dann den M. pronator teres und gelangt zwischen die oberflächliche und tiefe Begennusklegruppe. Schon während des Durchtrittes durch den Pronator teres gibt er Zweige für den M. flexor digitorum sublimis ab. Dann sendet er einen schon weiter oben abgelösten Zweig zur tiefen Beugerschichte. Nach Abgabe eines Nerven für den Flexor pollicis longus sowie anderer an die medialen Bäuche des Flexor dig. profundus, setzt sich der genannte Medianus-Zweig zwischen jenen beiden Muskeln als

N. interosseus internus auf die Membrana interossea fort. Hier begleitet er die gleichnamige Arterie und gibt meist noch feine Ästchen an die ihm begrenzenden beiden Muskeln. Sein Ende tritt in den Pronator quadratus.

Ein feines Ästchen wird der Membrana interossea zugeheilt und verläuft in derselben, wieder in zwei Zweige gespalten längs der Verbindungsstrecke jener Membran mit den Vorderarmknochen (RAUBER).

Der zwischen Flexor dig. comm. sublimis und profundus seinen Weg fortsetzende Stamm des Medianus entsendet dem ersteren Muskel zuweilen nochmals einen Zweig, und gegen das Ende des Vorderarms den feinen

Ramus palmaris, der neben der Endsehne des Flexor carpi radialis sich einen oberflächlichen Weg bahnt und durch die Fascie zur Haut des Vorderarms tritt. Hier verzieht er sich in der Haut des Handtellers gegen den Ballen des Daumens zu.

Mit den Endsehnen der Fingerbenger tritt der Stamm des Medianus unterhalb des Lig. transversum carpi zur Hohlhand, gibt getrennt oder vereinigt entsprechende Zweige zur Muskulatur des Daumenballens und löst sich in sieben nach den Fingern verlaufende Äste auf. Es sind die

Die Fingernerven verlaufen in Begleitung der Blutgefäße: sie treten am Vorderrande der Palmaraponeurose hervor, nachdem sie vorher noch feine Zweige zum distalen Theile des Handtellers entsendet. Die volaren Hautnerven der Finger verlaufen bis zur Endphalange und verzweigen sich auf diesem
Siebenter Abschnitt.

Wege auch gegen den Fingerrücken hin, der am Nagelbette sowie auch noch am zweiten Gliede ganz von den volaren Ästen versorgt wird. Die Hauptverzweigung bleibt aber vorwiegend volar, und ist noch reich an der Fingerbeere. Am Daumen ist sie ausschließlich volar.

Die Lagerung des Medianus-Stammes zur Arterie ist nicht selten alterirt und die ihn darstellende Ansicht findet sich hinter der Axillararterie. Dann ist der Arterienstamm gar nicht die typische Armarterie, sondern ein aus einer Collateralarterie entstandener, jene vertretender Gefäßstamm. Übergangsstadien decken die jene scheinbare Verlagerung der Nerven begründenden Verhältnisse auf (G. Rug).

3) N. cutaneus brachii internus minor. Vom medialen Strange des Plexus brachialis löst sich dieser schwache Nerv meist schon weit oben ab und verzweigt sich, mit dem N. intercosto-humeralis aus dem 2. oder 3. N. intercostalis verbunden, in der Haut der Achselhöhle und an der medialen Fläche des Oberarmes gegen den Epicondylus medialis herab.

Der Verlauf des Cutaneus br. internus kann auch von dem des Interostico-humeralis gesondert sein, wobei dann letzterer vor ersteren sich findet. Auch 2—3 Interostico-humeralernerven können sich mit dem Cut. br. internus verbinden.

4) N. cutaneus brachii internus major. Geht in der Regel unterhalb des vorigen vom gemeinsamen Strange ab und entsendet bald einige Hautäste durch die Fascie zum Oberarm, wo sie meist einzeln austreten und bis zur Ellbogenbeuge sich verzweigen. Der Stamm verläuft dann an der Vena axillaris herab, durchsetzt die Fascie da wo die Vena basilica sich einsenkt, und tritt gewöhnlich mit zwei schon weiter oben entstandenen Ästen zur Haut der Ellbogengebene und des Vorderarmes herab.

a. Ramus volaris. Dieser begibt sich mit der V. basilica zur Beugefläche des Vorderarmes, kreuzt mit seinen Zweigen die Vena mediana cubiti und vertheilt sich bis zum Handgelenk herab.

R. palmaris tritt zur Arteria ulnaris und mit dieser zur Hohlhand. An die Arterie gibt der Nerv Zweige ab, und in der Hohlhand versorgt er noch einen kleinen Theil der Haut.

R. dorsalis tritt unter dem M. flexor carpi ulnaris um die Ulna zum Rücken des Vorderarms, gibt feine Zweige zur Haut und theilt sich schließlich in Äste für die Rückenseite der Finger. Einer geht an die Ulnarseite des kleinen Fingers, zwei vertheilen sich an die einander entgegengekehrten Seiten des 4. u. 5., und des 3. u. 4. Fingers (Nn. digitales dorsales). Diese Nerven, viel schwächer als die volaren, gelangen selten in den Bereich des zweiten Fingergliedes.

Das Ende des Ulnaris-Stammes gewinnt eine oberflächliche Lagerung. Der Nerv tritt allmählich unter dem M. flexor carpi ulnaris hervor und verläuft neben der Endsehne dieses Muskels in Begleitung der Arterie über dem Lig. transversum nach innen vom Pisiforme zur Hohlhand. Sein

Ein Astchen des Ramus dorsalis verläuft zuweilen außen längs der Sehne des M. flexor carpi ulnaris um das Pisiforme und verbindet sich mit den Fingerästen des R. superficialis.

Mit den Fingerzweigen des N. ulnaris sowohl als des N. medianus stehen in nicht geringer Zahl Poetinische Körperehen (vergl. S. 55) in Zusammenhang. Man vermag dieselben beim Darstellen der Verzweigungen nicht unschwer zu bemerken, indem sie sich durch ihr etwas pellucidides Aussehen vom benachbarten Fettgewebe abheben.

R. profundus vertheilt sich mit einem Aste an die Ballenmuskeln des Kleinfingers und tritt dann zwischen den Ursprüngen des Flexor brevis und Abductor dig. V in die Tiefe der Hohlhand vom tiefen Aste der Arteria ulnaris begleitet, und wie dieser in bogenförmigem Verlaufe. Er entsendet Nerven zum M. lumbricalis III und IV, sowie zu den Mm. interossei, und endet am Abductor pollicis und M. interosseus dorsalis I.

6) N. radialis. Der Stamm dieses die Fortsetzung des hinteren Stranges bildenden Nerven begleitet die Axillararterie im Verlaufe vor der Endsehne des M. latissimus dorsi, tritt dann vor dem Anconaeus longus, zwischen diesem Muskel und dem Ancon. internus an den Oberarmknochen. Vom Ancon. brevis bedeckt verläuft er längs der oberen Ursprungsgrenze des Anconaeus internus im Sulcus radialis des Humers (vergl. das in Fig. 271 gegebene Durchschnittsbild des Oberarmes) spiralig um letzteren und bettet sich am lateralen Rande des

N. cutaneus brachii posterior superior (Cat. brachii internus Arnoldi). Ein kleiner median vom Anconeus longus zur Haut tretender und meist mit dem diesem Muskel zugehörigen Zweige entspringendem Ast, der über dem Anconeus longus bis zum Cubitalgelenke herab verlaufend an der Hinterseite des Oberarms sich verzweigt.

N. cutaneus brachii posterior inferior (Cutan. br. externus superior). Lösst sich vom Stamme des Nerven während dessen Verlauf um den Humerus ab, und kommt lateral am Oberarme zwischen Anconeus externus und internus zum Vorschein, von wo er sich in mehrere Zweige getheilt noch an der Haut des Oberarms wie an der Streckseite des Vorderarmes bis zum Handgelenke verbreitet.

Von den beiden Endästen des X. radialis ist der eine Hautnerv, der andere Muskelnerv, demgemäß der erstere einen Ramus superficialis, der andere einen Ramus profundus vorstellt. Der

R. profundus gibt noch am Oberarm Zweige zum Brachio-radialis und zu den beiden Mm. extensores carpi radiales (l. et br.) auch zur Gelenkkap- sel ein Ästchen, verläuft den Ursprung der Extensores carpi radiales angeschlossen über das Brachio-radialgelenk zum M. supinator (brevis). Nachdem er diesen durchsetzt und auch innervirt hat, gelangt er auf der Streckseite des Vorderarmes zwischen der oberflächlichen und tiefen Muskelschichte hervor und verzweigt sich sofort an die Muskeln dieser Schichten, kürzere Zweige zu den benachbarten, längere zu den entfernteren Muskeln entstehend.

Einer der letzteren Zweige setzt sich auf der Membrana interossea vom M. extensor poll. longus gekreuzt zum Rücken des Handgelenkes fort.

Rückenmarksnerven. 859

Einer Verbindung mit dem die Ulnarseite des Mittelfingers versorgenden Aste des N. ulnaris ist bereits gedacht; ebenso des Übergreifens des einen oder des anderen dieser beiden Nerven, wodurch die Vertheilung der Nerven zum Rücken der mittleren Finger vielfache Abänderungen erfährt. Im Ganzen finde ich das Übergreifen des N. radialis in das dem N. ulnaris gewöhnlich zugehörrte dorsale Endgebiet häufiger als den umgekehrten Fall. In seltenen Fällen ist der N. ulnaris völlig auf die Ulnarseite beschränkt und der N. radialis verbreitet sich zur Dorsalseite sämtlicher Finger (Kaufmann).

Thoracalnerven.

§ 293.

Rami posteriores setzen das gleichmäßige Verhalten jener der Cervicalnerven fort, sind aber etwas stärker als diese. Die medial zur Haut sich begebenden Zweige sind an den oberen Nerven anschlanker als an den unteren, und verlaufen, nachdem sie den Ursprung des M. trapezius durchsetzt, transversal zur Schultergegend. An den unteren Nerven dagegen sind die medialen Äste schwach oder senden gar keine Hautzweige ab. Dagegen sind die lateralen anschlanker und verbreiten sich lateralwärts über den M. latissimus dorsi, den sie durchsetzen, während durch ihre medialen Hautzweige das Fehlen selbständiger Zweige dieser Art kompensirt wird.

Am letzten Intercostalnerv ist der vordere Zweig des Ramus lateralis häufig sehr anschnall und lässt dann einige Nerven über die Crista ossis iliei herab zur Haut der Hüfte und des Gesäßes gelangen (Nn. cut. clunium superiores). Der Nerv ersetzt dann einen Ast des ersten Lumbalnerven, oder nimmt diesen auf seinem Wege zur Darmbeinerclista auf.
Rami anteriores treten von den oberen Intercostalnerven zur Seite des Sternum hervor, durchsetzen häufig getheilt den M. pectoralis major und verbreiten sich in der Haut der Brust (Nn. cut. pectoris anteriores) vorzüglich mit lateral verlaufenden Zweigen. Von den unteren Intercostalnerven gehen doppelte, aber nicht regelmäßig ausgebildete Endäste zur Haut, die einen nahe der Linea alba, andere seitlich davon durch die Aponenrose des M. obliquus externus (Nn. cut. abdominis anteriores).

Lendennerven.

§ 294.

Die fünf Lendennerven zeigen eine allmähliche aber bedeutende Zunahme an Stärke, welche jedoch ausschließlich dem vorderen Aste zu Gute kommt. Die Rami posteriores sind nämlich von geringer Mächtigkeit, und nehmen nach unten zu ab, so dass die der letzten gar nicht mehr zur Haut gelangen. Von denen der ersten Lumbalnerven werden dagegen Hautäste abgegeben, welche den M. sacrospinalis durchsetzen und über die Darmbeinerista zur Haut des Gesäßes verlaufen: Nn. cut. clunium superiores.

Die Rami anteriores bilden ein zwischen den Ursprüngen des M. psomas liegendes Geflechte, an welchem sich jedoch nur die ersten Lendennerven ganz, der vierte nur mit einem Bündel betheiligt, indess er ein anderes, schwächeres Bündel zum fünften Lendennerven sendet, mit dem es als Truncus lumbosacralis ins kleine Becken herabzieht.

Plexus lumbalis.

Das Lendengeflecht wird wesentlich durch Schlingen dargestellt, indem vom ersten Nerv zum zweiten ein schwacher, vom zweiten zum dritten ein stärkerer Verbindungszweig sich begibt. Der daraus sich fortsetzende, auch vom vierten Lendennerven ein Bündel empfangende Stamm ist der Oberschenkelnerv, N. femoralis, der Hauptnerv des Geflechtes, welches nach ihm auch Pl. femoralis (Pl. cruralis) benannt ist. Außer jenem Nerv gehen noch andere aus den Schlingen des Plexus hervor oder bilden die Fortsetzung der in jene eingehenden Rami anteriores. Wenige der dem Plexus entstammenden Nerven finden gleich nach dem Abgange...
ihr Endgebiet: zwei oder drei Nerven treten zum M. psoas (Fig. 519 ps), einer durchsetzt den oberen Theil des letzteren und tritt in den M. quadratus lumborum. Die übrigen Nerven haben ihren Verbreitungszweck in der unteren Bauchwand und an der unteren Extremität, wo sie die gesamte Streckseite des Oberschenkels, am Unterschenkel und Fuße noch Hautflächen versorgen.

In keinem peripherischen Nervengebiete waltet eine so bedeutende Variation des Verlaufs wie der terminalen Verbreitung, als in jenem, welches von den drei zuerst aufzuführenden Nerven versorgt wird. Auch der vierte nimmt wenigstens in seinem Verlaufe an dieser Variation Theil.

Der Nerv ist zuweilen mit dem folgenden verbunden und zeigt auch in seiner Verbreitung vielerlei Variationen.

2) N. iléo-inguinalis. Entweder mit dem vorigen vereinigt, oder getrennt von ihm aus dem zweiten Lendennerven kommend nimmt der Nerv seinen Weg über den M. iliaceus internus, oder längs des Hüftbeinkammes gegen die Spina iliei ant. superior zu. Im ersteren Falle gelangt er früher, im letzteren später durch den M. transv. abdominis, zwischen diesem und dem M. obliq. int. zum Leistencanal. Hier liegt er der oberen Wand deselben an, oder in der Muskulatur und tritt im oder am Annulus inguinalis externus hervor zur Haut des Schambergs.

Äste zum Hodensack oder zu den großen Schamlippen sind zweifelhaft. Bei gemeinsamem Ursprunge mit dem Ileo-hypogastricus erscheint er wie ein gegen den Leistencanal sich abzweigender Ast desselben.

3) N. genito-femoralis (Genito-cruralis) (Fig. 519). Entsteht meist aus dem ersten und zweiten Lumbalnerven, von einer Schlinge, welche den M. psoas durchsetzt, so dass der Nerv auf dessen Vorderfläche zum Vorschein kommt. Er theilt sich in zwei Zweige, welche auch getrennten Ursprungs sein können, und sich zum Leistencanal und zur Haut über der Fossa iléo-pectinea begeben. Diese Zweige sind:

a. N. lumbo-inguinalis. Verläuft vom M. psoas zu den Vasa femoralia, wo er sich in 2—3 Äste theilt, welche unter dem Leistenbande hervortreten und die Fascie durchbrechend in der Haut sich vertheilen, zuweilen weit am Oberschenkel herab.
b. N. spermaticus externus. Bei getrenntem Ursprunge verläuft er medial am M. psoas herab, kreuzt die Schenkelgefäße am inneren Leistenring, und begleitet den Samenstrang, unter Verzweigungen, die auch dem M. cremaster zugehen. Im Scrotum sendet er auch der Tunica dartos Zweige. Beim Weibe begleitet er das Lig. uteri teres und endet in den Labia majora.

Beide Nerven bieten vorzüglich in Abgang und Verlauf ihrer Stämme zahlreiche Varietäten.

4. N. cutaneus femoris externus. Entsteht aus zwei vom 2. und 3. Lumbalnerven kommenden Bündeln (Fig. 519) hinter dem M. psoas, von dem er über den M. iliacus internus hinweg lateralwärts zieht. In der Nähe der Spina ilei ant. superior tritt er nach außen, bald als Stamm, bald in Äste gespalten, und begibt sich zur Haut an der lateralen Fläche des Oberschenkels, wo er sich bis zum Kniegelenk herab verzweigt.

Sowohl die Stelle des Austritts aus der Bauchhöhle wie der Durchtritt durch die Oberschenkelfaszie sind großem Wechsel unterworfen. Bald gelangt der ganze Stamm gleich an der Spina in oberflächliche Lage, bald verläuft er eine Strecke weit unterhalb der Fascie und sendet seine Äste einzeln an verschiedenen Stellen durch die letztere. Bald theilt er sich schon in der Bauchhöhle, und die Äste nehmen differente Durchtrittsstellungen an. Auch unter dem Leistenbande kann der Stamm zum Austritte gelangen.

5. N. obturatorius. Bildet sich aus mehreren Schlingen der Lumbalnerven (Fig. 519), welche den Stamm medial am M. psoas hervortreten lassen. Der Nerv verläuft von da an der Seitenwand des kleinen Beckens durch den Canalis obturatorius. Auf dem Wege durch diesen theilt er sich in Äste, welche nach dem Austritte aus dem Canal sich als vorderer und hinterer verhalten. Der letztere gibt Zweige zum M. obturator externus, die schon im Canal von ihm abgehend und setzt sich auf den M. adductor magnus fort, den er versorgt. Der vordere Ast ist in seinem Verlaufe vom hinteren Äste durch den M. adductor brevis getrennt und theilt sich in mehrere Zweige für die übrigen Adductoren, auch den M. pectineus. Der zum M. gracilis verlaufende Zweig gibt einen Nerven an die mediale Schenkelfläche, der vor dem Græalis die Fascie durchbohrt und zur Haut seinen Weg nimmt.

Von einer dem dritten und vierten Lumbalnerven entstammenden Schlinge, oder auch blos aus einem dieser Nerven, kommt zuweilen ein accessorischer N. obturatorius, der mit dem Strome des eigentlichen N. obturatorius herabläuft, aber von ihm sich trennt, vor dem Schambinde das Becken verlässt. Außer mehreren theils zur Fascie, theils zum M. pectineus gelangenden Zweigen entsendet er einen, welcher eine Verbindung mit dem aus dem Canale hervorgetretenen N. obturatorius eingeht.

N. femoralis cruralis. Aus Bestandtheilen aller den Plexus bildenden Lumbalnerven entstanden legt sich der starke Stamm dieses Nerven (Fig. 519) zwischen Mm. psoas und iliacus, und tritt im Muskelbauche zur Laccountus musculorum hervor. Außer Zweigen zum M. iliacus gibt er auf seinem Wege nach außen keine Zweige ab. Ausgetreten liegt er lateral von den Schenkelgefäßen und theilt sich in zwei alsbald sich wieder theilende Äste. Ein schwächerer vorderer ist vorwiegend Hautnerv. Ein stärkerer hinterer vertheilt sich vorwiegend an die Streckmuskeln des Oberschenkels (Extensor quadriceps).
Der Ramus anter i or gibt dem M. sartorius Zweige und entsendet einen Ast, der bald vor, bald hinter den Schenkelgefäßen zum M. pectineus verläuft. 3—4 Hautäste durchbohren die Fascie und verlaufen an der vorderen und medialen Fläche des Oberschenkels bis zum Knie sich vertheilend herab.

Von diesen Hautästen repräsentiren die vorderen den N. cutaneus femoris medi us, der sich bis zum Knieselenk herab verzweigt; die medialen, häufiger durch einen einzigen Nerven vertreten, stellen einen N. cutaneus femoris internus vor. Sein Gebiet erstreckt sich gleichfalls bis zum Knie herab. Mit dem vorigen besteht ein compensatorisches Verhalten.

Der Ramus poster i or theilt sich in zahlreiche Muskelläste, von denen einer lateral zum M. rectus femoris und mit der Art. circumflex. ext. zum M. vastus externus tritt. Andere verlaufen zum M. femoralis und M. vastus medialis. Ein feiner Zweig begibt sich zur Arteria femoralis und begleitet dieselbe. Endlich geht noch als Fortsetzung des N. femoralis zum Unterschenkel, ein langer Hautast hervor: der

N. saphenus major (s. magn us), welcher an der medialen Seite des Unterschenkels bis zum Fußrücken hinab sich verzweigt.

Er nimmt seinen Weg mit den Schenkelgefäßen in den Hunter'schen Canal eingeschlossen, verlässt aber die Gefäße da, wo sie die Sehne des Adductor magnus durchsetzen, und liegt dann unter dem M. sartorius. Hinter dessen Endsehne, selten vor derselben, tritt der Nerv am Knieselenk abwärts und durchbohrt die Fascie, nachdem er einen am Condylus medialis tibiae herum verlaufenden, aufwärts zur Haut des Knies sich verzweigenden Ast abgegeben hat. Dieser Kniesast tritt nicht selten durch den Sartoris, oder er kommt selten) vor dem Ende des Muskels zum oberflächlichen Verlaufe. Auf seiner weiteren Bahn hält sich der zuweilen in längere Äste aufgelöste Stamm zur gleichnamigen Vene, gibt Zweige an die Haut des Unterschenkels und endet vor dem Malleolus medialis herabtretend an der medialen Seite des Fußrückens.

Sacral- und Caudalnerven.

§ 295.

Das Bestehen von Geflechten an diesen Rami posteriores ist von der Reduction der Caudalregion und den damit zusammenhängenden Veränderungen auch der Sacralgegend abhängig, so dass also diese Geflechte, wie sie auf eine andere Genese deuten, auch nicht als Grund gegen die oben (S. 557 Anm.) gegebene Erklärung der Plexusse an den Rami anteriores aufgeführt werden können.

Rami anteriores kommen aus den Foramina sacralia anteroria her. Der letzte zwischen letztem Sacral- und erstem Caudalwirbel. Für sie gilt das schon bezüglich der Stärke der Nervenstämme selbst Angegebene. Sie convergiren gegen das Foramen ischiadicum majus, vor dem M. pyriformis ge- lagert, den sie theilweise bedecken. Dahin verläuft auch von oben herab der letzte Lumbalnerv mit einem von ihm aufgenommenen Aste des vierten, mit welchem er den Truncus lumbosacralis bildet (Fig. 519). Durch die Verbindung aller dieser Nerven unter einander entsteht der

Plexus sacralis.

Siebenter Abschnitt.

Außer kleinen Zweigen für die benachbarten Muskeln der kleinen Beckenhöhle: zum M. pyriformis, levator ani und adductor coccygis, gehen aus dem Plexus noch mancherlei feine Fächer zu den im kleinen Becken liegenden Organen des Harn- und Geschlechtsapparates sowie zum Rectum, und lösen sich da in die Verzweigungen des sympathischen Nervensystems auf.

Vom oberen Theile des Plexus sacralis gehen hervor:

3) N. cutaneus femoris posterior. Aus dem dritten Sacralnerven und einem Aste des N. glutaecus inferior sich zusammensetzend verlässt er mit letzterem die Beckenhöhle, wobei er hinter dem Stamme des N. ischiadiens liegt; er theilt sich medial vom N. ischiadiens in mehrfache Zweige zur Haut des Gesäßes, zur Dammgegend, zum Scrotum oder zu den großen Schamlippen und zur Hinterfläche des Oberschenkels. Diese Zweige werden unterschieden als:

c. R. cutaneus femoris. Bildet die an der hinteren Fläche des Oberschenkels abwärts verlaufende Fortsetzung des Stammes. Verbreitet sich in der Regel bis zur Kniekehle, zuweilen auch weit auf die Wade herab.

in die Kniekehle fortsetzt. Durch die gegen das Knie zu stattfindende Divergenz der vorgenannten Muskeln kommt der Stamm des Ischiadicus allmählich zwischen sie.

Die vom Stamm abgehenden Nerven sind, von Gelenkästen abgesehen, nur für Muskeln bestimmt. Ganz oben schon lösen sich einige Nerven für Obturator internus und Quadratus femoris ab; dann folgen solche für Semimembranosus, Semitendinosus und den langen Kopf des Biceps femoris. Endlich treten solche zum kurzen Kopf des letzteren aus dem peronealen Theile des Nerven, indess die anderen Zweige für die Beuger aus dem tibialen stammen.

Der für den M. semimembranosus abgehende Zweig sendet sehr häufig einen Nerv zum Adductor magnus, und zwar zu der medialen Portion desselben, welche in die den Schlitz für die Schenkelarterie umgrenzende Endschale übergeht.

A. N. peroneus (N. fibularis). Er folgt dem Verlaufe des M. biceps femoris zum Capitulum fibulae, tritt deshalb zum Ursprung des M. peroneus longus, den er durchbohrt, und ist dabei in zwei, ziemlich gleich starke Äste getheilt, die als N. peroneus profundus und superficialis unterscheiden werden. Auf dem Wege zum Capitulum fibulae gibt der N. peroneus Hautzweige zum Unterschenkel und einen unter der Endschale des M. biceps nach vorne zur Kapsel des Kniegelenks verlaufenden Ast. Die Hautzweige sind:

3) N. peroneus superficialis. Verläuft unter den M. peroneus longus gelangt, zwischen diesen und dem M. peroneus brevis, beiden Muskeln lange Zweige abgebend. Weiterhin tritt der Stamm etwas medial gegen den M. extensor digit. comm. longus in oberflächlichere Lage, durchbohrt am unteren Drittel des Unterschenkels die Fascie und theilt sich in zwei Hautäste (einen medialen und einen lateralen), die zum Fußrücken verlaufen.

b. N. cutaneus dorsi pedis medius. Der schwächere, laterale Ast erscheint mit sehr variablen Befunden. Außer zur Haut des Fußrückens gibt er Zweige

Im besonderen Verhalten ergeben diese Äste folgendes:

Auf dem Verlaufe zwischen den Mm. soleus und tibialis posticus werden Zweige für diese Muskeln wie für den Flexor dig. longus und Fl. hallucis longus entsendet, und zuletzt noch ein Zweig zur Ferse. Dann folgt zwischen den Endsehnen der beiden langen Beuger die Theilung in die beiden Plantarnerven, die unter dem Ursprunge des Abductor hallucis zur Fußsohle treten. Der

N. plantaris externus (lateralis). Dieser verläuft in Begleitung der Art. plantaris schräg zwischen M. flexor digit. brevis und dem Caput plantare des M. fl. digit. longus gegen den lateralen Fußrand und theilt sich in einen oberflächlichen und einen tiefen Ast. Noch bevor er zwischen die obengenannten Muskeln tritt, gibt er einen Zweig lateral zum Abductor dig. v. Weiterhin verzweigt er sich an das Caput plantare flexoris longi, und am lateralen Rande des letzteren gehen die beiden Endäste hervor.

Siebenter Abschnitt.

b. **Ramus profundus.** Der Stamm dieses Nerven entsendet meist sofort mehrere feine Zweige, welche zu den in den letzten Interstitien gelegenen Zwischenknochenmuskeln gehen. Eine Fortsetzung des Stammees wendet sich in die Tiefe der Fußsohle, vom Arcus plantaris begleitet, und gibt den übrigen Mn. interossei Zweige sowie den beiden Köpfen des M. adductor hallucis.

§ 296.

Aus dem unteren, als Plexus pudendus bezeichneten Abschnitte des Sacralgefälsches setzt sich der N. **pudendus communis** fort. Er tritt mit dem N. ischiadius, zuweilen auch noch mit ihm verbunden, unterhalb des M. pyriformis aus dem Foramen ischiad. majus hervor und verläuft in Begleitung der Arteria pudenda communis um die Spina ischiadica, an der lateralen Wand des kleinen Beckens gelagert, wo sein Ende gegen die Schambeinsymphyse emportritt, und als N. dorsalis penis s. clitoridis weiter verläuft. Die Verzweigungen sind, jenen der gleichnamigen Arterie ähnlich, an den After, die Dammregion und die äußeren Geschlechtsorgane vertheilt. Es sind folgende:

a. Nn. haemorrhoidales inferiores, welche zur Haut und zur Muskulatur des Afters (Sphincter ani) sich verbreiten.

c. N. dorsalis penis s. clitoridis ist das Ende des Stammes, welches mit der gleichnamigen Arterie neben dem Lig. suspensorium zum Rücken des Penis oder der Clitoris verläuft und demnach eine verschiedene Stärke besitzt. Nach Abgabe seitlicher Zweige zur Haut des Penis bis zum Praepu- tium geht der Nerv gerade zur Glans herab in Zweige getheilt, welche in der Haut der Glans penis s. clitoridis endigen.

Sympathische Nerven. 871

Plexus coccygeus oder candalis eingehenden Nerven, findet die an der Caudal-
region des Körpers bestehende Rückbildung ihren anatomischen Ausdruck auch
am Nervensystem, wie er schon am Skelette (§ 63), an der Muskulatur (§ 119)
und auch am Arteriensysteme (S. 687) sich zu erkennen gab.

III. Sympathische Nerven (Eingeweidenervensystem).

§ 297.

Unter dem Namen des «Sympathicus» oder des «sympathischen Nerven-
systems» wird ein Theil der peripherischen Nerven verstanden, welcher von
den cerebrospinalen durch Anordnung, Verbreitungsgebiet und auch theil-
weise durch die Beschaffenheit der in ihm verwendeten Formelemente unter-
schieden ist. Die Nervenfasern sind marklose (S. 52), welche mit mark-
haltigen Fasern gemischt Stränge und Fäden zusammensetzen. Diese sind wegen
ihrer Farblosigkeit wenig deutlich wahrnehmbar (grane Nerven). Sie bil-
den grobentheils Geflechte und Netze, welche distal immer feiner und eng-
maschiger werden. Dadurch gestalten sich die Bahnen dieser Nerven in bedeu-
tend complicirterer Art. Im Verlaufe jener Geflechte finden sich reichlich ver-
theilte Ganglienzellen, welche vorzüglich an den Knotenpunkten der Netze und
Geflechte größere oder kleinere Ganglien darstellen (daher: Gangliennerven-
system). Auf solchen Bahnen verbreiten sich die sympathischen Nerven durch
den Körper, grobentheils in Begleitung der Gefäße zu mannigfaltigen Organen,
vorzüglich zum Darmcanal und seinen Adnexis wie zum Urogenitalsystem. Ihre
Beziehung zum Herzen wie zur Arterienwand hat diesen Theilen des sympathi-
ischen Systems auch den Namen «vasomotorisches Nervensystem» verschafft.

Diese Eigenthümlichkeiten werden noch durch solche physiologischer Natur
vermehrt, entheben aber die sympathischen Bahnen nicht der Abhängigkeit
vom übrigen oder cerebrospinalen Systeme, von dem sie nur einen Theil vor-
stellen. Das Verhalten der Spinalnerven zu den sympathischen Nerven lässt diese
Beziehung verstehen. Die vorderen Äste der Spinal-
nerven geben, wie schon oben erwähnt, je einen Zweig
ab: den R. visceralis (Fig. 520 i, (R. communicans
der Autoren), der dem sympathischen System nicht
nur Spinalnerven zuleitet, sondern auch sympathische
Bahnen den Centralorganen verbindet. In der Auf-
fassung dieser Äste nicht als bloßer Communicationen
beruht der Cardinalpunkt für das anatomische Ver-
sständnis des sympathischen Systemes. Diese Äste
bilden einen Längsstrang, indem sie nicht sofort zu
ihrem Endgebiete gelangen, sondern abwärts gerichtet
sich mit den nächstfolgenden verbinden und wohl auch aufwärts verlaufende
Fasern entsenden.
Man denke sich so die Rami viscerales (Fig. 521 rv) nach ihrem Abgange von den Spinalnerven eine kürzere oder längere Strecke längs der Wirbelsäule verlaufend, so dass untere von oberen erreicht werden, bevor sie zur peripherischen Verbreitung (s) sich begeben, so wird dadurch ein längs der Wirbelsäule sich erstreckender Nervenstrang (gg) entstehen. Es ist also zunächst der nicht directe Verlauf der Rami viscerales, von dem wir diesen Längsstrang ableiten können, und dieser Umstand erscheint wieder bedingt von der, vom Kopf an gerechnet, abwärts gehenden Lageveränderung der vom Sympathicus versorgten Organe. Auch die von jenem Strange entsendeten größeren Nerven schlagen sämtlich jene Richtung ein.

Da jener Strang somit an der Grenze der Spinalnerven, die ihm ihre visceralen Zweige entsendet, und der von ihm abgehenden sympathischen Nerven liegt, ward er Grenzstrang benannt. In ihm beginnt bereits die Einlagerung von Ganglienzellmassen, und damit die Bildung von Ganglienzellmassen, sowie das Auftreten markloser Nervenfasern, welche in den Ganglienzellmassen, die durch die Rami viscerales zugeführten markhaltigen Nervenfasern werden also im Grenzstrange mit marklosen Fasern gemischt, und von da an treten sie nach Maßgabe des Zuwachses an letzteren in den sympathischen Bahnen gegen die blossen Fasern an Menge zurück. Durch diesen Zuwachs von neuen Elementen complicirt sich also das von den Rami viscerales abgeleitete einfachere Verhalten. Weitere Complicationen ergeben sich durch Zutritt aufsteigender Bahnen im Grenzstrange.

Die Ganglien des Grenzstranges sind in der Regel an der Verbindungsstelle der Rami viscerales mit dem Grenzstrang vorhanden, an Größe wie an Gestalt verschieden. Bald sind sie einander genähert bis zur Verschmelzung, oder es sind wirklich mehrere unter einander verbunden, was aus der Zahl der eintretenden Rr. viscerales erkannt werden kann; bald sind sie weiter auseinander gerückt. Demgemäß variiert auch die Länge der Zwischenstrecken des Grenzstranges, welche wie Commissuren der Ganglienzellmassen erscheinen. Zuweilen sind diese Commissuren doppelt.

Die Rami viscerales (communicantes) sind nach dem Dargestellten als die Anfänge der sympathischen Nerven anzusehen. Sie sind nicht immer einfache Äste, sondern kommen auch mehrgfach vor, von verschiedenen Stellen eines Spinalnerven abgehend, zuweilen auch so, dass ein Zweig von dem peripherischen Theile des Nerven her in den Ramus visceralis übergeht, und dann wohl aus dem Grenzstrange durch den Ramus visceralis in die periphere Bahnstrecke des Spinalnerven verlaufend angesehen werden möchte. Im Übrigen sind an der Zusammensetzung der Rr. viscerales beide Wurzeln der
Spinalnerven beteiligt. Schon auf dem Wege zum Grenzstrange geben die Rt. viscerales feine Zweige ab, vernehmlich solche, die in den Rückgratcanal verlaufen, und solche, die zu der nächsten Intercostal- oder Lumbal-Arterie gehen.

§ 298.

Ob auch am Kopfe, an welchem wir schon bei den Cerebranerven die wichtigsten Verhältnisse des Sympathicus dargestellt haben, der Grenzstrang repräsentirt sei, wird verschieden beantwortet. Man kann zwar vom Nervus caroticus ans sympathische Bahnen zu allen mit den Kopfnerven verbundenen sympathischen Ganglii verfolgen, allein dieser Weg führt nicht in einer der Lage des vertebalen Grenzstranges entsprechenden Richtung, und jene Bahnen selbst weisen keinerlei Ähnlichkeit mit dem Verhalten des Grenzstranges auf. Das erste sympathische Ganglion, als welches wir das Ganglion carilare (S. S23) betrachtet, steht sogar außerhalb aller jener Bedingungen, die für die Ganglien des Grenzstranges statuirt wurden, und die in es eingehenden Nerven stellen keine visceralen Äste vor. Wie das von ihm versorgte Auge selbst ein Sinnesorgan sui generis ist, so ist auch ähnlich jenes Ganglion zu beurtheilen.

Bereiche der Trigeminusgruppe kein Grenzstrang vorkommt, obwohl sich mindestens eine Ganglienbildung findet, welche einem Grenzstrangganglion entspricht, gründet sich auf den Umstand, dass die Rami viscerales der Nerven dieser Gruppe ihr Endgebiet (Nasenhöhle und Gaumen) in unmittelbarer Nähe finden. Es fehlt damit die Bedingung zur Grenzstrangbildung. Auch der als Chorda tympani S. S34 bezeichnete Zweig des N. facialis entspricht einem R. visceralis, der aber nicht in ein, einem Grenzstrangganglion gleichwertiges sympathisches Ganglion tritt, denn das G. submaxillare hält als ein peripherisches Ganglion des Sympathicus zu gelten.

Wie alle Ganglien in der Anlage relativ viel umfänglicher erscheinen als später, so ergibt sich auch an der Anlage des Grenzstranges ein bedeutendes Volum der zu Ganglien sich ausbildenden Abschnitte desselben, so dass die Zwischenstrecken (Commissuren der Ganglien) dagegen nur kurz sich darstellen, oder gar nicht bestehen. Am obersten Halsganglion ist dieses Verhalten zur villigen Concerescenz weiter gediehen. Zuweilen erstreckt sich dieses Ganglion bis zum Eingang des carotischen Canals.

Sympathische Nerven.

875

nerven auf, und ist meist dem folgenden so genähert, dass eine Concrescenz mit demselben leicht verständlich ist.

Verbindungen der beiderseitigen Grenzstränge kommen in verschiedenen Grade entfaltet auf dem Kreuzbein vor, hin und wieder auch an höher gelegenen Abschnitten.

Die Nn. splanchnici entspringen vom mittleren und unteren Abschnitte des Brusttheiles des Grenzstranges. Ein größerer sammelt sich mit 2—4 Fädenen
Geflechte der sympathischen Nerven.

§ 299.

Nach den großen Regionen des Körpers gruppiren sich die Geflechte folgendermaßen:

läuft der Pl. aorticus unter Aufnahme einiger Fäden vom Grenzstrange aus der Brusthöhle ins Abdomen.

Ein Pl. hepaticus beginnt sich nach Abgabe von Nerven an den Plexus coronarius des Magens zur Leber, an deren Pforte auch an die Vena portae wie an die Gallenblase Nerven sich abzweigen. Mit den Gefäßen dringt der Plexus in die Leber ein.

Der Pl. lienalis folgt der Arterie mit feinen Netzen zur Milz. Ein Pl. coronarius begibt sich mit der Art. coronaria ventriculi sinistra zur kleinen Curvatur des Magens und verbindet sich mit den Magenästen des Vagus.

Pl. mesentericus superior. Aus dem untersten Theile des Pl. coeliacus auf die Art. mesenterica superior fortgesetzt, verzweigt er sich mit dieser zum Darmcanal, wohin er durch das Gekröse seinen Weg nimmt. Auf diesem verzweigen die Nerven sich häufig und bilden Anastomosen. Die feinen Nerven verlassen die, die größeren Äste der Art. mesenterica begleitenden Geflechte und treten selbständig unter ferneren Verzweigungen zum Darm. In der Wandung des letzteren bilden die Nerven feine, mit Ganglienzellen ausgestattete Geflechte. Eines davon liegt zwischen beiden Muskelschichten der Darmwand Pl. myentericus, Auerbach. Es ist durch abgeplattete Faserzüge ausgezeichnet, die ziemlich enge

Pl. me'sentericus inferior vom Pl. aorticus kommend, verläuft ähnlich wie der Pl. mesent. superior. Am Anfange des Gefüchtes findet sich ein sehr variables Ganglion über der Arterie gelagert.

Die Varietäten des peripherischen Nervensystems behandeln: Jäger, die Varietäten der Oeulumotoriusgruppe, des Trigeminus u. Vagus, Gießen 1864. Kaufmann, die V...
Von den Nebennieren.

§ 300.

Die Nebenniere (Glandula s. Capsula suprarenalis, Ren succenturialis) ist ein dem oberen und medialen Rande jeder Niere aufgelagertes Organ (Fig. 522) welches außer dieser Lagebeziehung, die ihm den Namen gab, nichts mit der Niere gemein hat. Dass man es als »Drüse« aufführt, hängt mit der veralteten Vorstellung von der Existenz sogenannter »Blutgefäßdrüsen« zusammen, über welche S. 540 Anm. verhandelt ist. Da das Organ diesen ihm beigezählten anderen Gebilden: Thymus, Schilddrüse etc. völlig fremd ist, besteht nicht, es einem derselben anzuschließen. Dagegen sind auf vergleichend-anatomischem Wege Beziehungen zum sympathischen Nervensysteme erwiesen, die wenn auch in vielen Punkten noch unklar, doch ein Recht geben, das Organ hier anzureihen, wenigstens für so lange, bis bessere Gründe die definitive Zuweisung zu irgend einem anderen Organsysteme ermöglichen.

Die Substanz des Organes besteht aus einer äußeren oder Rindenschichte, welche die innere oder das Mark umschließt. Erstere ist von gelblicher Farbe und festerer Consistenz, während das Mark grau oder bräunlich gefärbt und von weicherer Beschaffenheit ist.

Achter Abschnitt.

Vom Integument und den Sinnesorganen.

Allgemeines.

§ 301.

Wir vereinigen in diesem Abschnitte die Darstellung der äußeren Bedeckung des Körpers mit jener der Sinnesorgane, nicht bloß, weil erstere zugleich der Träger allgemein sensibler Bildungen ist, sondern vor Allem deshalb, weil alle spezifischen Sinnesorgane von jener ihren Ausgang nehmen. Das den Körper gegen die Außenwelt abgrenzende Gewebe, eine Epithelialschichte, lässt also auch die Organe hervorgehen, welche die Beziehungen des Organismus zur Außenwelt vermitteln. Es liegt zu Tage, wie dieser äußersten, den umgebenden Medien und ihren Zuständen ausgesetzten Körperschichte die Bildung von Organen zukommen muss, welche Eindrücke jener Zustände empfangen. Wie immer auch dem Integumente in seiner differenzierten Gestaltung vielerlei andere Beziehungen zur Ökonomie des Organismus zufallen, so ist doch das die bedeutungsvollste, dass es in seiner indifferenten Form den Mutterboden für die Entfaltung jener Organe abgibt. Eine Voransetzung dieser Sinnesorgane ist aber die Existenz des Nervensystems, dessen Entstehung aus gemeinsamer Grundlage mit den Werkzeugen der Sinne, aus dem primitiven Ectoderm, im vorigen Abschnitt (S. 745) hervorgehoben ward.

Von der Bedeutung des Ectoderms als eines Primitivorgans, bleibt auch dann, nachdem Nervensystem und Sinneswerkzeuge aus ihm entstanden, noch ein großer Theil übrig. Er gibt sich kund an minder differenzierten Einrichtungen, die der Empfindung dienen, und an vielerlei anderen Bildungen, die zum Schutze des Körpers und auch für speziellere Zwecke wirksam sind. Auch für die ausgebildeten Organe der höheren Sinne leistet das Integument noch manche wichtige Dienste, indem es einen Theil der Hilfsorgane darstellt. Damit vermehren sich nicht nur die Beziehungen der äußeren Körperbedeckung, sondern sie gewinnen jener auch neue Leistungen, und erheben den functionellen Werth dieses Organsystems für den Gesammtorganismus.
A. Vom Integumente.

Structur der äußeren Haut.

§ 302.

Von diesen beiden genetisch und functionell-verschiedenen und auch sonst differenten Lagen stellt die oberfächliche, epitheliale, aus dem Ectoderm stammende, die Oberhaut oder Epidermis, die tiefere, bindegewebige, die Lederhaut oder das Corium vor.

geformt sind, und ihr Protoplasma unter Verlust des Kernes in Hornstoff umgewandelt zeigen. Sie bilden die Hornschichte, das Stratum corneum (Fig. 523). Beide Schichten sind von wechselnder Mächtigkeit.

Im Stratum Malpighii bilden die Zellen mehrfache Lagen, welche zwischen die am Corium vorhandenen Vorsprünge eindringen, und diese derart füllen, dass das Relief der Coriumoberfläche die Hornschichte wenig oder gar nicht beeinflusst. Die tiefste Zellenlage der Malpighi'schen Schichte besteht aus längeren Elementen, welche zur Oberfläche der Lederhaut senkrecht gestellt sind und mit feinen Fortsätzen oder Zacken in eben solche Vertiefungen der äußersten Lederhautschichte eingreifen (Fig. 524). An gefärbten Hautstellen wie in der Haut der farbigen Menschenrassen, sind diese Zellen der Sitz des Pigmentes, welches in Gestalt von gelblichen, bräunlichen oder schwärzlichen Körnchen sich darstellt. Die darübrer folgende Schichte des Stratum Malpighii bietet mehr ründliche Zellformen dar, die mit den sich berührenden Flächen innig unter einander zusammenhängen, hin und wieder auch leichte Färbung zeigen. Gegen das Stratum corneum werden die Zellen platter und gehen so allmählich in ersteres über. Aber die Grenze wird durch eine gegen Reagentien sich eigenthümlich verhaltende Zwischenschichte, das Stratum intermedium (Str. lucidum) vorgestellt. Jenseits derselben folgen die Schichten des

Die Elemente der Malpighi'schen Schichte sind an ihrer Oberfläche mit einander in inniger Verbindung, indem zahlreiche feine Protoplasmafaden von einer Zelle zur benachbarten verlaufen und dabei eine schwache Zwischenschichte (Kittsubstanz) durchsetzen. Dieses Verhalten hat man früher als eine "Verzahnung" angesehen, als ein E ineinandergreifen feiner Fortsätze der Zellenoberflächen zwischen die Verzahnungen der Fortsätze der benachbarten (Stachel- und Rißzellen). Beim Übergange in die Hornschichte verliert sich dieser Zusammenhang. Das Aufhören dieser Verbindung ist also an den Untergang des lebenden Protoplasma geknüpft.
§ 303.

Die Papillen der Lederhaut bilden verschieden dicht stehende Erhebungen (Fig. 523, 524) von variabler Länge. Sie stehen am gedrängtesten am Handteller und an der Fußsohle und erscheinen daselbst, aber auch noch an manchen anderen Orten z. B. der Brustwarze, am längsten. Die kleinsten zeigt die Haut des Gesichtes. Zuweilen sind einige mit einander an der Basis verbunden, so dass sie als Papillengruppen erscheinen. Am Handteller und an der Fußsohle wie an der Volarfläche der Finger und Zehen ist eine solche Gruppierung noch vollständiger ausgeführt, indem die Papillen hier auf leistenförmigen Erhebungen des Corium sich finden, welche auch äußerlich wahrnehmbar sind. Die Entwicklung der Papillen beginnt im 5. Monat der Fötalperiode.
Die Blutgefäße der Haut vertheilen sich mit ihren größeren Ästen im Unterhautbindegewebe, und verzweigen sich von da aus in die Lederhaut, gegen deren Oberfläche zu feinere Netze bildend, aus denen Kapillarschlingen in die Papillen einragen (Fig. 523). Ein Theil der letzteren entbehrt der Gefäße und enthält Endorgane von Nerven. Die Lymphgefäße bilden sowohl in der Lederhaut wie im Unterhautbindegewebe ein Netzwerk; von dem des Coriums treten Fortsätze in die Papillen und gehen da in Lymphspalten über, welche näher als die Blutcapillaren gegen die Oberfläche herantreten.

Die Dicke der Haut wechselt nach der Örtlichkeit; am dicksten ist sie an der Streckfläche des Rumpfes, auch an der Streckseite der Gliedmaßen. An den mit längeren Papillen versehenen Stellen ist in der Regel die Epidermis bedeutend verdickt, wie an Handtellern und Fußsohlen, und an der Beugefläche der Finger und Zehen.

Von den Epidermoidalgebilden.

1. Verhornnte Organe.

1. Haare.

§ 304.

Die Oberfläche des Körpers trägt fast in ihrer Gesamtheit dieselben Gebilde, die das Haarkleid der Säugentiere vorstellen. Während des fotalen Lebens bedeckt sich die Haut mit einem dichten Flanne feiner Härchen, der Lanugo, die auch an jenen Strecken der Körperoberfläche besteht, an denen die Behaarung später zurücktritt. Dieses Haarkleid bringt der Mensch mit zur Welt. An manchen Strecken zwar hat es sich schon vor der Geburt verändert; die Haare sind straffer, auch länger geworden, wie an der Kopfhaut, oder sie zeigen sich als stärkere Gebilde, wie an den Wimpern der Augenlider, aber am übrigen Körper haben die feinen Härchen der Lanugo noch ihre Verbreitung. Erst nach der Geburt tritt die Differenzierung des Haarkleides insofern bedeutender hervor, als die Lanugo teilweise verschwindet und die Behaarung bestimmter Stellen mächtiger wird.

Die erste, zur Entstehung der Haare führende Veränderung der Epidermis erscheint zu Ende des dritten Monats des Fötallebens und beginnt in Gestalt unansehnlicher Verdickungen der noch schwachen Epidermisschicht. Diese zeigt kleine, sowohl nach außen als nach innen, gegen die Lederhaut steigende Prominenzen. Während die oberflächlichen Vorragungen sich allmählich wieder ausgleichen, nehmen die einwärtsgehenden zu, und zwar durch Wucherungen der Malpighischen Schichte. So entstehen walzenförmige, terminal abgerundete
Fortsätze des Stratum Malpighii, welche in die Lederhaut eingesenkt sind und deren Gewebe allmählich als eine um die Zellmasse sich anordnende Binde- gewebschicht wahrnehmen lassen. Das gesammte Gebilde stellt, nach und nach in die Tiefe wachsend, die Anlage eines Haarbalges (Folliculus pilii) vor (Fig. 525 A), in welchem die Differenzierung des Haares selbst stattfindet. Am Grunde des Haarbalges bildet sich von der Lederhaut her eine in ersteren einragende Papille, *Papilla pilii*, welche als eine Modifikation der Hautpapillen erscheint, und wie diese Blutgefäße führt.

Von den die Haarbalganlage darstellenden Zellen, welche kontinuierlich ins Stratum Malpighii übergehen, formen sich die inneren zu einem kegelförmigen Gebilde, welches mit seiner Basis gegen die Papille zu verbreitert ist, dieselbe umfasst. Das ist die Anlage des Haares, welche allmählich gegen die Oberfläche zu anwächst (B). Die um die Haaranlage befindlichen, nicht zu letzterer verwendeten Zellschichten bilden die Wurzelscheide. Die Elemente derselben gehen im Grunde des Haarbalges in die Basis des Haares ohne scharfe Grenze über. Wurzelscheide und Haaranlage hängen hier zusammen, indess weiter aufwärts letztere von ersterer nur umschlossen wird. Von der Spitze der Haaranlage aus gegen die Basis zu beginnen die schon mit der Sonderung der Haaranlage länger gewordenen, nun spindelförmig gestalteten Zellen einen Verhornungsprocesse einzugehen, verbinden sich inniger mit einander zu Fasergebilden, und stellen so den festen *Haarschaft* vor, der gegen die Papille zu in indifferenten Zellen, jene der *Haarzwiebel* (Bulbus pilii), übergeht. Indem im Bereiche der letzteren immer neue Zellen gebildet werden, während die älteren verhornend dem Haarschaffe sich anschließen, wächst der letztere: seine Spitze dringt bis zur Hornschichte der Epidermis empor, legt sich hierzuweilen in mehrfache Biegungen (C), bevor der fortwachsende Schaft den in jener Schichte gebotenen Widerstand zu überwinden vermag, und kommt endlich zum Durchbruch. Sowohl am Haaralg wie am Haare selbst sind aber bereits früher Differenzirungen aufgetreten, so dass beide zu complicirten Gebilden sich gestaltet haben.

Am ausgebildeten *Haare* wird der Schaft zum größten Theile von den oben beschriebenen spindelförmigen und spröden Plättchen zusammengesetzt, welche zu Fasern innig verbunden ihm unter dem Mikroskope ein fein längsgestreiftes Aussehen verleihen. Diese Zellen bilden die am menschlichen Haare überaus mächtige *Rindenschichte*, welche der Sitz der Färbung des Haares ist. In seiner Axe wird dieser den Körper des Haarschaftes darstellende Strang zuweilen von

Vom Integumente.

Fig. 525.

Schematische Darstellung der Entwicklung der Haare.
Achter Abschnitt

Vom Integumente.

Über den feineren Bau des Haares s. die Handbücher über Gewebelehre.

§ 305.

Mit den Haaren stehen noch andere Gebilde in Verbindung: Muskeln und Drüsen. Die Muskeln werden durch Züge glatter Muskelfasern gebildet, welche in der Lederhaut, etwas entfernt von der Mündung des Haarbalges, entspringen und schräg zu letzterem verlaufend sich gegen dessen Ende hin an der Faserschichte des Haarbalges befestigen (Fig. 526). Indem sie den stumpfen Winkel, den der schräg stehende Haarbalg bildet, durchsetzen, richten sie den letzteren auf und sträuben das Haar (Mm. arrectores pilorum). Da diese Muskelzüge auch an den kleineren über den Körper vertheilten Haaren vorkommen, wo ihre Wirkung zugleich eine Erhebung der die Haarbalgmündung umgebenden Hautstellen hervorbringt, so rufen sie bei ihrer Gesammtwirkung jenen Zustand der Haut hervor, den man als Cutis anserina (»Gänschauts) bezeichnet hat.

Die Drüsen der Haarbalge sind Talgdrüsen, welche mit dem Drüsenapparate der Haut ihre Darstellung finden (§ 309).

Die Behaarung des Körpers, wie sie schon in der Lanugo gegeben war, zeigt nur wenige Stellen ausgeschlossen. Haare fehlen gänzlich an Handtellern und Fußsohlen, auch am Rücken der Endphalangen von Fingern und Zehen, am rothen Lippenrande und an der Glans penis wie an der Innenfläche des Præputiums, welche letztere Theile übrigens ihrem Entwicklungsgange gemäß der Körperoberfläche ursprünglich fremd sind.

An den übrigen Strecken der Körperoberfläche kommt die Behaarung in verschiedenem Masse zur Entfaltung, zeigt Alters- und Geschlechtsdifferenzen und auch mancherlei individuelle Verschiedenheiten. Ebenso erscheint in der Stärke
der Haare eine bedeutende Verschiedenheit, sowie auch ihr Querschnitt verschiedener Formen besitzt. Während die straffer und schlachten Haare mehr oder minder cylindrisch sind, zeigt das gedrungene Haar sich etwas abgeplattet, am meisten bei den kraushaarigen Rassen. Auch die Anordnung der Haare an gleichartig behaarten Strecken ist mannigfach. An der Kopfhaut bilden sie Gruppen.

2. Nägel.

§ 396.

Die auf dem hinteren Theile des Nagelbettes befindliche papillenträgende Strecke ist durch eine vorne convexe Linie gegen die leistenenträgende abgegrenzt. Letztere ist reicher an Blutgefäßen als die erstere, woher es kommt, dass bei einer größeren
Achter Abschnitt.

Auszehung der ersteren nach vorne zu eine weißliche Stelle auf der Fläche des Nagels vor dem Nagelwalle sich unterscheiden lässt: die Lunula. In der Regel ist diese am Daumen, seltener an den nächst folgenden Fingern bemerkbar.

II. Drüsen der Haut.

§ 307.

In beiden Abtheilungen erscheint die Funktion der Organe mannigfaltig, indem ähnlich gebaute Drüsen verschieden geeigenschaftete Secrete liefern. Die mächtige Entwicklung des Drüsenapparates der Haut zeigt sich weniger im Volum der einzelnen Organe als in der großen Verbreitung derselben über das gesamte Integument. Daraus resultirt auch die Bedeutung dieser Drüsen, die uns nicht bloß in der Production von Auswurfstoffen entgegentritt, sondern auch von solchen, die in der Ökonomie des Organismus noch Verwendung finden.

1. Knäueldrüsen der Haut.

§ 308.

a. Schweifdrüsen (Gl. sudoriferae) bilden die über das gesamte Integument verbreiteten, dem unbewaffneten Auge zumeist nicht mehr sichtbaren

Die Menge der auf einen Quadratzoll der Handfläche treffenden Schweißdrüsen wird von C. Krause auf 2736 berechnet.

Einfachere Formen der Schweißdrüsen finden sich an den Augenlidern. Sie entbehren des Knäuel und stellen leicht gewundene Schläuche dar, die mit den Haarbälgen der Wimpern ausmünden (Moll'sche Drüsen). Solche Bildungen, sowohl was die Form der Drüse als die Verbindung mit Haarbälgen angeht, sind bei Säugentieren an den gewöhnlichen Schweißdrüsen nicht selten.

b. Ohrschnalzdrüsen (Gil. ceruminiferae) finden sich in der den äußeren Gehörgang auskleidenden Haut als eine continuirliche Lage bis zu dem Beginne der knöchern umwanderten Strecke jenes Ganges vor. Ihr Secret ist das
Ohrschmalz (Cerumen), welches die Drüsen als gelbliche Lage erscheinen lässt. Im Rane kommen sie in wesentlichen Punkten mit den Schweißdrüsen überein.

e. Analdrüsen (Gl. anales) bilden einen die Afteröffnung umgebenden Ring, sind um mehrfaches größer als die Schweißdrüsen und liefern einen Riechstoff. Bei Säugetieren finden sich solche Drüsen in bedeutender Entfaltung.

Alle diese Drüsen spielen durch die Production von Riechstoffen, die dem Sekrete beigemischt sind, bei den Säugetieren eine wichtige Rolle.

2. Aeinöse Drüsen.

§ 309.

a. Talgdrüsen (Glandulae sebaceae). Diese gleichfalls fast über das gesamte Integument verbreiteten Drüsen sind größentheils mit den Haarbälgen verbunden (Fig. 526). Es sind bald mehr bald minder reich verzweigte Gebilde, deren in der Regel kurze, mit Acinis besetzte Ausführgänge je zu einem weiteren Ausführgange sich vereinigen, und mit diesem gewöhnlich in den Hals eines Haarbalges münden, mit dem sie sich entwickelt hatten. Sie sondern den Hauttalg (Sebum cutaneum) ab. An den stärkeren Haaren finden sie sich in größerer Anzahl, zuweilen in rossettenförmiger Gruppierung um den Follikel. An den feinen Wollhaaren sind sie zwar an Zahl geringer, aber von relativ sehr anschmückendem Umfang, so dass der Haarbalg wie ein Anhang an dem Ausführgange der Drüse sich ausnimmt. Zwischen den Haarbalgen und den dazu gehörigen Talgdrüsen finden sich hin und wieder isolierte, von einfacherer Form. Es sind terminal erweiterte Schläuche, oder solche, welche nur mit wenigen Acinis besetzt sind. Diese kleineren Formen der Talgdrüsen finden sich auch an einigen sonst haarlosen Stellen, so eine Zone um rothen Lippenrande (Kölliker).

Große Talgdrüsen sind in der Haut des Gesichtes, besonders an der Nase verbreitet, wo eine Verstopfung des Ausführganges und infolge dessen Ausmahlung des Talgs in der Drüse die sog. Comedonen erzeugt. Häufig sind diese Talgdrüsen von einer mikro-
Vom Integumente.

b. Milchdrüsen (Glandulae lactiferae). Diese durch ihr Secret beim säugenden Weibe in anderer functioneller Beziehung stehenden Drüsenorgane bilden in morphologischer Hinsicht eine Abtheilung der aemösen Hautdrüsen. Sie stellen sich daher den Talgdrüsen sehr nahe, und geben allen Grund zur Annahme, dass sie bei den niedersten Säugethieren aus Drüsen, die eine andere Function besaßen, sich hervorbildeten, und erst allmählich in die ihnen gegenwärtig zukommenden Verhältnisse eintraten.

Sie bilden beim Menschen einen jederseits unter dem Integumente der Brust liegenden Drüsencomplex (die Mamma), der auf einer Erhebung, der Brustwarze (Papilla mammae) ausmündet. Die Genese dieses für die ganze Klasse der Säugethiere höchst charakteristischen Apparates ist auch beim Menschen mit manchen Erscheinungen verknüpft, welche auf sehr primitive Zustände hinweisen. Da aus ihnen auch manches Eigenthümliche des ausgebildeten Befundes sich erklärt, können sie hier nicht unberücksichtigt bleiben.

Während diese Differenzierung der Drüsen einen relativ langen Zeitraum beansprucht, sind an der Oberfläche nur wenig Veränderungen entstanden. Die Fläche, von der aus die Drüsen in die Lederhaut einsprosten, das Drüsenfeld, ist etwas größer geworden; außer den vorhin beschriebenen, reich ramifizirten, haben sich mehr peripherisch auch andere Drüsen angelegt, welche mindere Ausdehnung erreichen. Die Vertiefung des Drüsenfeldes flacht sich allmählich ab und bei Neugeboren liegt es fast im Niveau der benachbarten Haut, durch röthliche Färbung von ihr unterschieden. Die ferneren Veränderungen bestehen äußerlich in einer allmählichen Erhebung der Mitte des Drüsenfeldes, auf welcher

§ 310.

Die beim Weibe stattfindende Weiterbildung der Milchdrüsen lässt den jederseits auf der oberflächlichen Brustfascie befindlichen Complex zu einem anschnlichen Organe, der Mamma, sich gestalten. Deren Umfang gründet sich
aber nicht ausschließlich auf die Entfaltung der Drüsenmasse, vielmehr bildet sich in der Regel noch reichlich Fett in deren Umgebung aus, welches teilweise auch zwischen die Drüsen dringt. Die oberflächliche Fettlage wird radial von Bindegewebszügen durchsetzt, welche vom Integument aus in die Drüsenmasse sich fortsetzen. Der linke Drüsencomplex ist meist etwas größer als der rechte. Die zwischen den Wölbungen der beiderseitigen Mammae befindliche, dem Brustbeinkörper entsprechende Einsenkung stellt den Busen (Sinus) vor.

Gegenbaux, Anatomie.

Nach dem Aufhören ihre Function treten die Drüsen eine theilweise Rückbildung an. Der ganze Apparat wird kleiner, und Epithelzellen mit einer zähen Zwischensubstanz füllen die Lumina der verengerten Milchgänge. Der Eintritt der Involutionsperiode des Weibes äußert sich an der Milchdrüsen durch fortgesetzte Reduction, so dass im höheren Alter nicht nur die Acini geschwunden sind, sondern auch die Milchgänge nur theilweise erhalten bleiben. Auch das interstitielle Bindegewebe nimmt an dieser Rückbildung teil.

Die Lage der ausgebildeten Mamma des Weibes erstreckt sich von der dritten bis siebenten Rippe, und überschreitet selten den Rand des M. pectoralis major. Die Lage der Brustwarze entspricht beim Manne in der Regel dem 4ten Intercostalraume, zeigt aber gleichfalls viele Schwankungen.

Noch mehr aber wird auf eine Ableitung der Milchdrüsen von Talgdrüsen dadurch hingewiesen, dass die auf dem Warzenhofe befindlichen Exemplare der letzteren Drüsen mit dem Eintreten der Function der Milchdrüsen sich nicht nur vergrößern, sondern dass manche von ihnen wirklich milchabsondernde Drüsen werden, die sogenannten Montgomery'schen Drüsen. Man hat sie verirrte Milchdrüsen genannt, wir fassen sie als Zwischenglieder auf, welche die Verknüpfung der Milch- und Talgdrüsen darthun, und damit die ursprüngliche Gleichartigkeit von beiderlei Drüsen demonstrieren.

B. Von den Sinnesorganen.

Allgemeiner Bau.

§ 311.

Diese einfacheren Befunde, die wir als fundamentale betrachten dürfen, erleiden aber Complicationen sowohl in den aus dem Epithel hervorgegangenen Bildungen als auch durch die Verbindung benachbarter Gewebe und Organe mit dem eigentlichen Sinnesapparat. Diese Veränderungen erscheinen im Ganzen auf eine Steigerung der Function gerichtet, welche bei diesem Übergange von einem niederen in einen höheren Zustand eine specifische Ausprägung empfängt. Auf diese functionellen Verhältnisse erscheinen dann alle jene Complicationen beziehbar und stellen sich als Anpassungen dar. Das Organ wird dann nicht mehr ausschließlich von den epithelialen Bildungen dargestellt, die seine erste Anlage abgaben, sondern es sind ganze Serien anderer Theile mit ihm in Zusammenhang getreten, die sich als Hilfsorgane in verschiedenem Maße erweisen.

Niedere und höhere Sinnesorgane unterscheiden sich also auch nach ihrer functionellen Bedeutung; der größere Werth der letzteren für den Organismus steht im Zusammenhang mit der höheren morphologischen Ausbildung, in der sie sich darstellen, und darf wohl als deren Causalmoment gelten. Während wir für die höheren Sinnesorgane bestimmt abgegrenzte Leistungen kennen, und sie dadurch in functioneller Beziehung präcis zu definiren vermögen, ist dieses bei den niederen nicht allgemein der Fall. Wir begegnen hier vielmehr Verhältnissen, welche auch in Bezug auf die Function an indifferentere und damit niedere Zustände erinnern. Die niederen Sinneswerkzeuge umfassen die Organe des Hautsinnes, die Geruchs- und Geschmacksorgane, die höheren jene des Sek- und des Hörgangs.
Von den Sinnesorganen.

A. Niedere Sinnesorgane.

1) Organe des Hautsinnes.

§ 312.

Diese Tastkörperchen finden sich in großer Anzahl an der Volarfläche der Hand und an der Sohlfläche des Fußes, am reichsten an den Fingerbeeren, etwas spärlicher an Hand- und Fußrücken, an rothen Lippenrade, an Glans penis und clitoriis. Mehr vereinzelt an den übrigen Körperstellen.

Das Eigenthümliche dieser Organe besteht in der knäuelförmigen Windung der Nervenfaser, sowie in ihrer Einbettung in die Lederhaut. Durch letzteres sind sie der sonst die Bildungsstätte von Sinnesorganen abgebenden Schicht entzückt, verschieden von dem übrigen Sinnesapparate, wie er allgemein im Thiereiche sich darstellt.

Man kann nun jene Lage als eine secundäre betrachten, wofür mancherlei Gründe bestehen, auch die Analogie mit ganzen Epithelialcomplexen, die, wie das Ohrlabyrinth, von ihrem Mutterboden sich trennen und eine tiefe Einbettung eingehen, allein für’s Erste wird man sich an die Thatsache zu halten haben.
Als Endorgane sensibler Nerven sind auch die Pacini'schen Körpurchen anzusehen (S. 54) die durch ihr an sehr verschiedenen Theilen nachgewiesenes Vorkommen in funktioneller Beziehung noch sehr unklar sind, in morphologischer Hinsicht jedoch sich den Vorvorwähnten anreihen lassen.

§ 313.

Das Epithel besteht aus langen, Cilien tragenden, leicht granulirten Zellen, deren unteres Ende in einen schlanken Fortsatz ausläuft. Durch Ramificationen erscheint dieser mit der Bindegewebschicht der Mucosa verbunden. Zwischen diesen Fortsätzen liegen jüngere spindelförnige oder rundliche Epithelzellen, welche nicht zur Oberfläche treten. Zwischen diesen Epitelzellen finden sich reich verteilte die Riechzellen (Fig. 529). Sie bestehen aus einem fast ganz vom rundlichen Kerne eingenommenen Körper, der zwischen den schlanker Strecken der Epithelzellen liegt. Davon geht ein feiner, stäbchenartiger Fort-
Von den Sinnesorganen.

Die Riechzellen, welche als die percepirenden Organe der Riechschleimhaut anzusehen sind, treffen sich so zwischen den Epithelzellen angeordnet, dass um eine der letzteren etwa 5—6 stehen. Bei Fischen laufen sie, etwas modifizirt, noch über die Epithelzellen hinaus, und bei Amphibien trägt ihr Ende mehrere feine, haarähnliche Gebilde (Riechhaare). Bei Vögeln besitzen sie stärkere, aber gleichfalls sein auslaufende Fortsätze.

Die beschränkte Fläche, auf der beim Menschen die Riechzellen vertheilt sind, lässt den ganzen Apparat im Vergleiche mit der Mehrzahl der Säugethiere in geringer Ausbildung erscheinen. Damit stimmt, dass auch der Geruchsinn beim Menschen viel weniger als bei Säugethieren entwickelt ist.

Die Schmeckzellen selbst sind wieder nach beiden Ender in einen Fortsatz ausgezogene Elemente. Vor der stärksten, den ovalen Kern bergenden Stelle geht ein stäbchenförmiger Fortsatz nach außen, und läuft in eine feine Spitze aus. Nach innen dagegen verläuft ein feinerer Fortsatz, der bis gegen die Bindegewebslage verfolgt wird. Man nimmt an, dass die Schmeckzellen mit Nerven im Zusammenhang stehen, also die Endapparate der Geschmacksnerven vorstellen.

B. Höhere Sinnesorgane.

I. Vom Sehorgane.

Aufbau des Augapfels.

§ 314.

Das als Auge erscheinende Schwerkzeug bildet einen höchst zusammengesetzten Apparat, an dessen Herstellung nicht nur sehr verschiedene Gewebe, sondern auch mannigfache Organräume sich beteiligen. Wir unterscheiden am Sehorgan vor Allem den eigentlichen Sehhilfsorganapparat umschließenden Theil, den Augapfel, von den diesen umgebenden, aber im Dienste desselben stehenden Theilen, den Hilfsorganen des Auges.

Die Augenblase zeigt sich nach Entstehung des secundären Vorderhirns mit dem Zwischenhirn mittels eines dünnern, stielartigen Theiles im Zusammenhang, und die Communication ihres Innenraums mit dem des Gehirns findet durch einen engeren, in jenem »Stiele« verlaufenden Canal statt (Fig. 530 a). Der ganze Vorgang erscheint wie eine unvollständige Abschnürung der Augenblase vom Gehirn. Da wo diese primäre Augenblase gegen das Ectoderm
Vom Sehorgane.

grenzt, hat sich an diesem gleichfalls eine Veränderung vollzogen (Fig. 530 b). Eine ver- dickte Stelle des Ectodermis bildet unter Vermehrung ihrer Elemente eine grubenförmige Einsenkung (Fig. 530 c), durch welche die vordere Wand der primitiven Augenblase gegen die hintere Wand gedrängt wird. Dieser Vorgang greift an einer Stelle auf den Stiel der Augenblase über, indem das Gewebe des Mesoderms auch hinter der grubenförmigen Einsenkung gegen die Augenblase und deren Stiel einwächst. Die Augenblase ist mit dieser Umwandlung becher- förmig gestaltet, und besteht aus zwei Lagen, davon die innere gegen die äußere eingestülpt ward (Fig. 530 c). Beide Lagen gehen am Rande des Bechers in einander über, aber auch vom Rande her längs der ganzen Strecke bis auf den Stiel fortgesetzt, wo einwachsendes Mesodermgewebe eine Fortsetzung der Einfaltung der Blasenwand erzeugte. Die an dieser secundären Augenblase bestehende, am Stiel als Rinne sich darstellende Längs- spalte beginnt durch Gegeineinanderwachsen der sie begrenzenden Ränder sich zu schließen, und dann erscheint die Augenblase nur nach vorne zu offen und umfasst hier die inzwischen tiefer eingesenkten Ectodermgrube. Diese tritt all- mäßig aus dem Zusammenhang mit dem Ectoderm und gestaltet sich, von jenem abgeschnürt, zu einem blasenförmigen Gebilde, der Anlage des wichtigsten licht- brechenden Mediums des Auges, der Linse (Fig. 531).

Die gesamte Anlage des Schorganes besteht also: 1) aus der aus dem Gehirn hervorgegangenen secundären Augenblase, deren Schichten in die Anlage des Seherven sich fortsetzen; 2) aus der Anlage der Linse, welche gegen die innere Schichte der Augenblase eingesenkt ist; 3) aus Mesodermgewebe, welches den Raum zwischen Linse und Augenblase erfüllt, und sowohl seitlich durch den
Spalt der secondären Augenblase (Fig. 531 B) wie auch vorne im Umkreise der Linsenanlage mit dem die gesamte Anlage umgebenden Mesodermgewebe in Zusammenhang steht. Von demselben Gewebe hat man sich so die nach innen von der Ectodermenschicht in Fig. 531 A dargestellten Lücken zwischen Linse und Augenblase erfüllt zu denken.

Somit besteht jetzt die Anlage des Auges aus der vorzüglich die Anlage der Retina vorstellenden secondären Augenblase und der von derselben umfassenden Anlage der Linse. Mit der letzteren ist aber auch gefäßführendes Bindegewebe ins Innere der secondären Augenblase gelangt. Es steht in Zusammenhang mit dem in ein Strecke des Stieles der Augenblase eingewucherten Gewebe, und gibt Anlass zur Entstehung eines neuen durchsichtigen Mediums im Auge, des Glaskörpers, welchen wir später zwischen Netzhaut und Linse antreffen. Mit dem Verschluß der seitlichen Spalte der secondären Augenblase, deren Ränder gegen einander wachsen Fig. 531 B) schwindet hier der Zusammenhang der Glaskörperanlage mit dem das Auge umgebenden Gewebe, und dem gesammten Organe wird eine einheitlichere Form.

Vor der Augenanlage hat sich das Ectoderm nach Abschürung der Linse mit einer bindigewebigen Mesodermenschicht in Zusammenhang gesetzt und schließt das Auge nach außen hin ab. In der Umgebung der secondären Augenblase sind aber gleichfalls aus dem Mesoderm stammende Sonderungen aufgetreten. Zunächst kommt in der unmittelbaren Umgebung des Tapetum nigrum eine reiche Entwicklung von Blutgefäßen zum Vorschein. Diese wandelt sich in eine, wie vorher gegen die Augenblase zu, so auch nach außen hin schärfer abgegrenzte Schicht um, welche der Außenfläche der secondären Augenblase folgt und vorne am Rande der letzteren mit Gefäßen in Zusammenhang steht, welche von der Anlage des Glaskörpers her die Linse umgeben. Aus dieser Gefäßschicht geht die Gefäßhaut des Auges hervor. Ihr vorderer Abschnitt verbindet sich inniger mit dem vorderen, dünner gewordenen Abschnitte der secondären Augenblase, in welchem nur die Tapetumschicht zur Ausbildung kommt. Mit dieser wächst die Gefäßhaut ringsum vor
die Linse (Fig. 532), die somit von einer ringförmigen Membran, der Iris, theilweise bedeckt wird. Der übrige Theil der Gefäßhaut bildet die Chorioides. Endlich wird nach außen von dieser eine aus dichterem Bindegewebe sich zusammensetzende Hülle bemerkbar. Sie geht hinten in die Faserhülle des Sehnerven über; vorne dagegen in eine durchscheinende, vor der Linse mit dem Integumente zusammenhängende Membran. Diese Faserhaut bringt somit den ganzen bis jetzt geschilderten Sehapparat zum äußeren Abschluß, und bildet die äußerste Schichte des Augapfels. Der vorderste mit dem Integumente in Verbindung getretene Abschnitt wird durch pellucides Gewebe gebildet und stellt die Hornhaut (Cornea) vor, der hintere, größere Abschnitt der Faserhaut bleibt unendlich und wird zur Sclera oder Sclerotica (Fig. 532).

Der Augapfel baut sich also aus einzelnen Schichten auf, welche lichtbrechende Medien umschließen. Um die innerste, wichtigste, die vom Gehirn her angelegt wird, und die wir als Nerven oder Netz haut bezeichnen, bildet sich die Gefäßhaut, und um diese wieder die Faserhaut, welche Theile sammmtlich in verschiedene Abschnitte sich sondern.

Die Entwickelung des Auges aus einem Theile der Hirnanlage weist ihm eine durchaus singuläre Stellung unter den Sinnesorganen an und lässt zugleich den mit ihm aus derselben Anlage hervorgehenden Sehnerven aus der Reihe der übrigen Hirnnerven scheiden (vergl. S. 521).

Bau des Sehnerven.

§ 315.

Nachdem die allgemeinen Verhältnisse des N. opticus schon oben (S. 522) ihre Darstellung fanden, handelt es sich hier um seine spezielle Structur.

Der Augapfel in seiner Zusammensetzung.

§ 316.

Im § 314 ward in Kürze dargestellt, wie sich die erste Anlage des pereipirenden Apparates mit anderen Gewebeschichten umgab und solche zu ihren Diensten verwendete, woraus mannigfache, Sicherung und Erhöhung der Leistungen jenes Apparates erfüllende Einrichtungen hervorgingen. Diese sämmtlich sind im Augapfel zu einem einheitlichen Ganzen vereinigt.

Der Augapfel besitzt eine annähernd kuglige Form, die noch genauer dadurch präcisirt wird, dass man sich etwa ein Sechstel der vorderen Oberfläche von stärkerer Wölbung als das übrige vorstellt, derart, dass jene Strecke durch eine ringförmige Einsenkung von der Kugeloberfläche abgesetzt ist. Der sagittale Durchmesser ist der längste (ca. 24 mm.; der transversale nur wenig geringer, am kürzesten aber der senkrechte Durchmesser ca. 23 mm.). An der hinteren Fläche des Bulbus und zwar medianwärts vom hinteren Pole der sagitalen Axe, fügt sich der Sehnerv an den Bulbus (Fig. 533).

Die Stütze des gesammten Bulbus bildet dessen derbe Faserhaut (! Tunica fibrosa). Sie umschließt die übrigen weicheren Theile des Bulbus und sichert die Lage und die Gestalt desselben. In ihren hinteren, größeren Abschnitt, die Sclera, setzt sich die Duralscheide des Nervus opticus fort. Der durchsichtige Theil, die Hornhaut nimmt das vordere stärker gewölbte Segment am Bulbus
Vom Sehorgane.

...ein. Da der Bulbus unter dem Integumente, und sogar mit dessen Betheiligung entsteht, so erstreckt sich eine modifizirte Schicht des Integumentes auch über die Vorderfläche des Bulbus, überkleidet die Cornea und auch noch einen Theil der Sclerotica. Das ist die Bindehaut des Augapfels, *Conjunctiva bulbi.*

Die *Gefäßhaut* (*Tunica vasculosa*) erstreckt sich von der Eintrittsstelle des Sehnerven an, längs der ganzen Innenfläche der Sclera nach vorne, und setzt sich hier, anfänglich zwischen Linse und Cornea vorwachsend, später mit der Ausbildung eines zwischen diesen entstehenden Raumes, mehr von der Cornea sich entfernend (*Fig. 532*), in eine in der Mitte durchbrochene Membran fort. Die der Sclera folgende Strecke der Gefäßhaut bildet die Aderhaut im engeren Sinne, *Chorioide*, deren vor die Linse gelagerte Fortsetzung die *Iris* vorstellt (*Fig. 533*). Diese umkreist das Sehloch, die *Pupille*. Die Iris verengert also dem Lichte den Zugang ins Innere des Bulbus, sie bildet eine Blendung. Durch Muskulatur in ihrer Ausdehnung veränderlich kann die Iris die Pupille erweitern oder verengern.

Von der in der seccundären Augenblase bestehenden Anlage der Netzhaut ist der vorderste Theil der in die Iris fortgesetzten Chorioides gefolgt (Fig. 532). Aber nur die äußere, in eine Pigmentschicht umgebildete Lage hat sich an der hinteren Irisfläche erhalten, und überkleidet auch die Ciliarfortsätze der Chorioides. Hinter der Ora serrata stellt sie eine der Chorioides glatt anliegende Pigmentschicht [Tapetum nigrum] vor. Die innere Schicht der Netzhautanlage lässt die eigentliche Netzhaut hervorgehen. An dieser ist der hintere umfänglichere Theil, von der Eintrittsstelle des Sehnerven bis zur Ora serrata, als nervöser Theil der Netzhaut vom vorderen, dünneren zu trennen, der auf die Ciliarfortsätze als Pars ciliaris retinae fortgesetzt ist. Der nervöse Theil der Netzhaut trägt die Ausbreitung des Sehnerven und die damit in Zusammenhang stehenden Endapparate. Im lebenden Auge vollkommen durchsichtig, trübt sich die Retina bald nach dem Tode. Die Eintrittsstelle des Sehnerven ist auch im lebenden Auge ausgezeichnet. Sie stellt sich als eine weiße, kreisförmige Fläche dar (Fig. 535), die zuweilen als Erhebung erscheint, daher man sie als Papilla nervi optici bezeichnete (Po). In ihrer Mitte treten die Gefässe der Retina aus dem Sehnerven hervor. Lateral von dieser Stelle, in einer Entfernung von 4 mm vom Mittelpunkte der letzteren, findet sich der gelbe Fleck (Macula lutea) (Fig. 535 Mi), eine ovale oder kreisförmige Fläche, deren gelbe Färbung nach der Peripherie nicht scharf sich abgrenzt, und nach dem Tode bald verschwindet. In der Mitte des gelben Fleckes ist eine dem hinteren Pole der sagittalen Augenaxe entsprechende Vertiefung vorhanden, die Fovea centralis (Fig. 533).

Der Raum vor der Linse wird durch die Iris in zwei Abschnitte gesondert, der größere, zwischen Cornea und Iris, ist die *vordere*, der kleinere zwischen Linse, Iris und Ciliarfortsätzen ist die *hintere* Augenkammer [Fig. 533 p]. Beide communiciren durch die Pupille mit einander, und werden von einer serösen Flüssigkeit (*Humor aqueus*) erfüllt, welche mit Lymphbahnen in Communication steht.

Den großen Raum hinter der Linse nimmt der *Glaskörper* (*Corpus vitreum*) ein, eine vollkommen glashelle, gallertige Substanz, welche aus dem hinter der Linsenanlage in die secundäre Augenblase eingedrungenen gefäßführenden Bindegewebe hervorging.

Der in dem Augapfel zusammengesetzte Sehhapparat repräsentirt eine Dunkelkammer, in deren Grund die pereipirende, die Endapparate des Sehnerven enthaltende Netz haut mit dem Lichte zugewendeter Concavität sich ausbreitet, und an deren enger Zugangsöffnung, dem Schloche, eine Sammellinse angebracht ist. Eine solche allgemeine Struktur des Schapparats findet im Thierreiche eine große Verbreitung, aber nur bei den Vertebraten ist das Auge nach der oben dargelegten Form im Speziiellern ausgesucht, wie auch mannigfaltige und bedeutende Modifikationen an den einzelnen Theilen bestehen mögen. Die Eigenthümlichkeiten dieses Auges sind aber durch die Entwicklung bedingt, die hier vom Gehirne ausgeht, die Netzhaut aus letzterem sich sondern lässt, während bei den einen gleichen physiologischen Grundtypus zeigenden Augen der Wirbellosen das Integument mit seiner Epithelschichte, also direct das Ectoderm, die Netzhaut-Anlage hergibt. Daraus entspringt eine wesentliche Verschiedenheit des morphologischen Typus des Wirbelthierauges, und dieser findet an zahllosen Eigenthümlichkeiten, von denen die Anordnung der Schichten der Retina die bedeutendsten sind, seinen Ausdruck.

Die einzelnen Theile des Bulbus.

1) *Sclera* und *Cornea*.

§ 317.

Die beiden Abschnitte der den Augapfel abgrenzenden Faserhaut bestehen der Hauptsache nach aus Bindegewebe, dessen Fasern durch die Art ihres Gefüges dieser Membran eine feste, derbe Beschaffenheit verleihen. Im Speziellen ergeben sich jedoch an beiden Theilen verschiedene, mit dem verschiedenen functionellen Werthe derselben harmonirende Befunde.

Die *Sclera* (*Sclerotica*) setzt sich an der Eintrittsstelle des Sehnerven aus den in sie umbiegenden Faserschichten der Duralscheiden des letzteren zusammen. Diese Lamellen gehen jedoch alsbald Durchschnitte ihrer Faserzüge ein, so

Beim Übergange der Selera in die Cornea hellen sich die undurchsichtigen Fibrillenbündel auf und gewinnen eine andere Anordnung, die für den Bau der Cornea maßgebend wird. An dieser Übergangsstelle, aber noch der Selera angehörig, verläuft mehr gegen die Innenfläche zu ein venöser Sinus — Canalis Schlemmii (Figg. 533, 536) — der zuweilen streckenweise in mehrere kleinere Räume aufgelöst ist.

Beim Eintritte des Schneuven in den Bulbus bietet die Selera für letzteren eine außen weitere, innen engere Öffnung; die Selera ist also hier von einem trichterförmigen Canal durchsetzt, der diese Gestalt einer Verminderung des Umfanges des Opticus verdankt, die dieser beim Durchtritte erleidet. Die Dicke der Selera beträgt hinten 1 mm., vorne 0,4 mm. — So wenig an der Selera eine Lamellenstruktur besteht, ebensoweit ist eine bestimmte Faserrichtung in ihr nachweisbar. Äquatoriale und meridionale Faserzüge finden sich an verschiedenen Stellen, aber auch schräg verlaufende bestehen. Bindegewebszellen mit ramifizierten Ausläufern trifft man in den Interstitien der Fibrillenbündel. Am hinteren Abschnitte in der Umgebung der Eintrittsstelle des Opticus, aber auch am vorderen Theile kommen Pigmentzellen vor. — Die Fasern der Selera sind spärlich und stammen aus den Artt. ciliares posticae und anticae, sowie den entsprechenden Venen. Die Außenfläche der Selera ist durch sehr lockeres Bindegewebe mit der Umgebung in Zusammenhang. (Siehe darüber S. 928).

Die Cornea oder Hornhaut geht aus der Selera an einer als Corneal falz bezeichneten Stelle hervor, an welcher die Faserzüge der Selera ein anderes Gefüge bilden und vollkommen durchscheinend sich darstellen. Diese Übergangsstelle greift von links weiter über als hinten, so dass die Cornea wie in einen Falz der Selera eingelassen erscheint. Da dieses Übergreifen der Selera über die Cornea oben und unten bedeutender ist, als lateral und medial, so erscheint die hinten kreisrunde Fläche der Cornea vorne etwas elliptisch und in die Quere gestellt.

Am Aufbau der Cornea beteiligt sich nicht nur die den Bulbus umschließende Faserhaut, sondern es geht auch das äußere Integument mit seiner Epithel- und Bindegewebslage als Conjunctiva corneae in sie ein, dergestalt, dass die vorderen Bindegewebslagen der Cornea von jener Bindegewebsicht des Integumentes ableitbar sind.

Die Dicke der gesamten Cornea beträgt in der Mitte 0,9 mm., an der Peripherie 1,12 mm. Im höheren Alter schwindet die Durchsichtigkeit der Cornea von der Peripherie her, indem sich oben und unten am Rande je ein trüber Halbkreis bildet, welche schließlich zu einem Kreise zusammentreten (Arcus senilis). Die Trübung rührt von fettiger Umwandlung der Corneaelemente her.

In der Zusammensetzung der Hornhaut unterscheidet man: 1) die Bindegewebschichten, 2) den äußeren und 3) den inneren epithelialen Überzug derselben. 1) Die Bindegewebslamellen, stellen die Hauptmasse der Cornea vor. Sie liegen schichtenweise, parallel mit der Krümmung der Cornea. Die Schichten bestehen aus Bündeln in denen Fibrillen durch eine Zwischensubstanz untereinander verbunden sind. Die Fibrillenbündel durchkreuzen sich, aber innerhalb
der einzelnen Lamellen, und nur in den oberflächlichen Schichten findet durch mehrfache Lamellen ein Austausch von Faserzügen statt. Zwischen diesen Ge-
bilden finden sich ramifizirte Lückenräume, in welchen ähnlich verzweigte Zellen
lagern. Diese stehen mit ihren Ausläufern untereinander in Zusammenhang, und repräsentiren die Formbestandtheile des Bindegewebes der Hornhaut, *Horn-
hautzellen*. Die Hornhaut ist demzufolge von einem Netzwerk mit ihren Aus-
läufern verbundener Zellen durchzogen, welches bei der größeren Festigkeit der es begrenzenden Substanzen präzise Formen aufweist. In den oberflächlichen
Schichten, welche allmälih dünner werden, finden sich auch kleinere Form-
elemente; zuerst gewinnen die Faserbündel eine feinere Beschaffenheit und schließen sich an eine anscheinend homogene Lamelle, die sogenannte *Basal-
membran* an, welche von der faserigen Unterlage nicht scharf abgegrenzt ist.

Über die Beschaffenheit dieser Bestandtheile bestehen ebenso wie über die Bedeu-
tung der in ihnen enthaltenen Lücken manngfache Meinungen. Wir glauben die bezüg-
lichen Befunde im Einklange mit dem ähnlichen Verhalten anderer Bindegewebsgebilde
auflüssen zu müssen. Außer diesen, von Zellen und deren Ausläufern erfüllten Räumen,
sondern in den interfasciculären Spalten dargestellt werden, welche die Lymphbahnen angehören.

2) Die vordere Begrenzung der Cornea bildet ein *Epithel*, welches der Bas-
alsmembran aufsitzt. Es gehört der Bindehaut an, besteht aus mehrfachen
Zelllagen und trägt den Charakter eines mehrschichtigen Plattenepithels, inso-
erne die obersten Lagen aus platten Zellformen bestehen.

Die tiefsten Zellen sind längere Prismen (Cylinderzellen), deren Basis schräg zur
Basalmembran gerichtet ist. Dann folgen Zellen von manngfaltiger Gestalt, die sich
mit Fortsätzen zwischen benachbarte einsenken und zu äußerst in jene platten Formen
übergreifen, die aber noch in der oberflächlichen Lage kernhaltig sind.

3) Als hintere Begrenzung der Hornhaut erscheint eine glasähnliche, homogene
Eine einfache Lage platter Zellen bedeckt sie gegen die vordere Angenkammer zu.

Blutgefässe der Cornea kommen nur deren Bindehautantheil zu, in welchem sie beim
Fötus ein Netz bilden. Allmählich löst sich das Netz von der Mitte aus, und seine
Maschen ziehen sich als Gefäßschanlen gegen den Rand der Cornea zurück, in dessen
Umkreis sie mit Gefäßen der angrenzenden Conjunct. scleroticae in Verbindung bestehen
bleiben.

Nerven kommen der Cornea in großer Menge zu. Sie treten als 40—45 Stämchen
markhaltiger Fasern am Cornealrande in die Bindegewebsschichten, verlieren bald ihre
Markhülle und stellen dann blasse Fasern vor, welche sich in einem weitmaschigen Plexus
vertheilen. Aus diesem lösen sich Fasern zur Bildung eines engmaschigen Geflechtes ab,
welches in den äußersten Bindegewebsschichten sich verbreitet und feinstes Fasern in
das Epithel eindringen lässt. Auf welche Weise sie hier endigen, ist noch nicht völlig
sicher.

Über *Sclera und Cornea* vergl. WALDEYER in Graefe und SAEMISCH, Handbuch der
Augenheilkunde I. Über Cornea: His, Beiträge zur normalen und path. Anatomie der
Heidelberg 1860. ROLLITT in Strickers Handbuch der Gewebelehre. S. 1001. SCHWEigger-

Gegenbarh, Anatomie.
2) Chorioides und Iris.

§ 318

Der vordere Abschnitt der Chorioides (*Pars ciliaris, Corpus ciliare*) zeigt zu innerst eine Zone feiner, radiär stehender Fältchen, welche an ihrem Beginn durch die dazwischen einspringenden glatten Strecken eine gezähnelt erscheinende Grenze darstellen helfen, die Ora serrata. Nach vorne zu vereinigen sich mehrere dieser Fältchen zu stärkeren Vorsprüngen, den Processus ciliares, deren 70—80 bestehen (Fig. 531). Sie bilden, radiär zur Linse gestellt, einen
diezogene Kranz, Corona ciliaris. Die faltentragende Strecke wird bis zum Beginne der Processus ciliares als Orbiculus ciliaris unterschieden. Manche der Fältchen setzen sich noch zwischen die Processus ciliares fort. — Im Orbiculus ciliaris ist die bindegewebige Grundlage der Aderhaut von mehr parallel angeordneten Gefäßen durchzogen, die in den Ciliarfortsätzen Geflechte bilden. Die Choriocapillaris erstreckt sich nicht mehr auf diese Theile, dagegen setzt sich die Glashaut auf sie fort. Zu diesen an der Innenfläche des Corpus ciliare erscheinenden Eigenthümlichkeiten treten auch äußerlich, gegen die Selera zu, neue Einrichtungen. Glatte Muskelfasern bilden einen Beleg, den M. ciliaris, der da, wo er die Ciliarfortsätze umfasst, seine größte Mächtigkeit hat. Am Corpus ciliare ist also ein äußerer muskulöser Theil (das frühere Ligamentum ciliare), und ein innerer faltentragender zu unterscheiden.

Die Iris (Blendung, Regenbogenhaut) ist die frei vor die Linse tretende Fortsetzung der Aderhaut des Auges, sie umgibt die etwas medial gerückte Pupille. Der diese begrenzende Rand ist der Papillarrand der Iris, jener, an dem sie mit dem Corpus ciliare zusammenhängt, der Ciliarrand. Die hintere Fläche der Iris erscheint durch eine Pigmentschicht (Uvea) schwarz, und lässt bei genauem Zusehen zahlreiche feine, radiäre Fältchen unterscheiden. Die Vorderfläche ist sehr mannigfach gestaltet, im Ganzen uneben, zuweilen rauh oder flockig. Diese Beschaffenheit geht bis nahe an den Papillarrand, an welchem eine schmale, glattere Zone bemerkbar ist, auf der dichte Radiärfältchen stehen.

Hell- oder dunkelbraunes Pigment bedingt die Färbung der Iris. Wo dieses Pigment fehlt ruft die durchsichernde schwarze Pigmentschicht der hinteren Irisfläche infolge der Interferenzwirkung des Irisgewebes eine blaue oder bläuliche Färbung hervor. Der Pigmentmangel blonder Individuen waltet also auch noch im Auge.

Von den beiden Augenkammern ist die vordere, vorne von der Cornea abgegrenzte, der aushöhlhichere Raum, der an der Pupille mit der hinteren in Verbindung steht. Da aber die Iris der vorderen Linsenfläche aufliegt, ist diese hintere Augenkammer (Fig. 533 p) nur geringen Umfanges.

Die Muskulatur wird von einer nahe der hinteren Fläche gelagerten Schichte radiär angeordneter Fasern gebildet, welche am Ciliarrande mit discreten Bündeln entspringt, und gleichmäßig bis zum Pupillarrande verläuft. Sie repräsentiren den M. dilatator pupillae. Am Pupillarrande formiren die meisten dieser Fasern schleifenförmige Züge, die einander durchkreuzen, wobei sie im Ganzen eine circuläre Anordnung eingehen und den M. sphincter pupillae, Verenger des Schlosses, vorstellen. Dieser umgibt somit die Pupille als ein 0,5—0,8 mm. breiter Ring, dessen Außenrand etwas verdickt ist.

Gefäßsystem der Aderhaut.

§ 319.

Die Venen der Gefäßhaut sammeln sich in Bahnen, welche größtentheils von jenen der Arterien abweichen.

Vier größere Venenstämmechen (Vv. vorticosae, Wirtelvenen), zuweilen noch 1 bis 2 kleinere, bilden sich in der Chorioideas, indem die aus der Choriocapillaris hervorgehenden Venen an eben so vielen Stellen zusammentreten. Die zu jenen Stämmchen convergirenden, somit wirtelförmig angeordneten Venen verlaufen geschlängelt, und gehen häufige Anastomosen ein, so dass sie streckenweise das Ansehen eines Geflechtes darbieten. Die von vorne her zu einer Vena vorticosa sich sammelnden Venen nehmen von Iris, Ciliarfortsätzen und Ciliarmuskel Venen auf. Die von hinten her kommenden zeigen Anastomosen zwischen den Gebieten benachbarter Wirtelvenen.

Die Stämmchen dieser Venen durchsetzen die Sclera und münden je in benachbarte Wurzeln der Vena ophthalmica inferior.

Ein minder ansehnlicher Ableiteweg des Venenblutes besteht in dem Canalis Schlemmii (Fig. 536) benannten Ringgefäss, welches die Sclera nahe am Cornealfalze durchzieht, stellenweise in 2—3 Gefasse sich auflöst und so einen Circulus venosus darstellt. In diesen münden kleine Venen aus dem Ciliarmuskel, welche auch mit Zweigen die Sclera durchbohren und mit oberflächlicheren Venen (der Augenmuskeln) in Verbindung stehen.

Für die Lymphbahnen der Gefäßhaut kommt der perichorioideale Lymphraum
in Betracht. Aus ihm führen die Venae vorticosae umscheidende Wege, welche in den den Bulbus umgebenden Tenon'schen Raum [s. S. 925] einzumünden.

3) Retina und Tapetum.

§ 320.

Das Stützgewebe der Retina besteht aus Fasern, welche die Netzhaut durchsetzen, somit eine radiale Anordnung darbieten. Diese Radialfasern sind in den inneren Schichten der Netzhaut stärker, verbreitern sich gegen die innere Oberfläche und treten daselbst mit ihren Basen in eine feine Membran zusammen, welche die Retina nach dem Glaskörper zu abgrenzt (Membrana limitans interna), aber noch andere Beziehungen zu letzterem besitzt, daher sie M. limitans hyaloidea benannt wird. In den äußeren Schichten der Retina spalten sich die Radialfasern in feine Fibrillen oder zarte, blätterige, oder reticuläre Bildungen, und treten auch hier in eine feine Membran zusammen, welche die Retina, soweit sie zellige Bestandtheile führt, nach außen zu überkleidet. Diese M. limitans externa ist aber nicht vollkommen continuirlich, sondern bietet dicht-
Vom Sehorgane.

919

stehende feine Löcher dar, durch welche noch zur Retina gehörige Theile, eine äußerste Schichte derselben darstellend, mit den innerhalb der Limitans externa gelegenen Gebilden in Zusammenhang stehen.

Die einzelnen in der Retina sich darstellenden Straten sind folgende:

Gegen die Macula lutea verlaufen nur wenige Fasern direct, die für die lateralen Regionen der Retina bestimmten Fasern umziehen vielmehr jene Stelle in bogenförmigem Verlaufe, um vor derselben lateral gegen einander zu treten. So entsteht also hier eine Abweichung des sonst bestehenden Faserverlaufes.

Somit bestehen an diesen Elementen ähnliche Verhältnisse, wie an den Ganglienzellen des Centralnervensystems. Die Zellen bilden über den größten Theil der Retina eine einfache Lage, die nach der Ora serrata hin sogar allmählich unterbrowen wird, indem die Zellen weiter auseinander rücken, und endlich ganz schwinden. Gegen den gelben Fleck zu wächst die Schichte, es bestehen in dessen Umgebung zwei Lagen, und an der Macula lutea selbst findet noch ein bedeutender Zuwachs (bis 8—10 Zelllagen) statt.

3) Innere reticuläre Schichte (Fig. 537). In dieser feinkörnig sich darstellenden, an Dicke wenig variablen Schichte scheint eine netzartige Verbindung
feiner Fasern zu bestehen, deren Beziehungen zu den übrigen Schichten der Retina noch nicht sicher erkannt sind. Dass an diesem Netzwerk die in die Schichte eingetretenen äußeren Fortsätze der Ganglienzellen beteiligt sind, wird in hohem Grade wahrscheinlich. Jedenfalls liegt hier eine Bildung vor, die der Aufklärung noch sehr bedarf.

Die ihr gegebene Bezeichnung "granulirte Schichten" ist nicht mehr zutreffend, nachdem das Wesentlichste nicht in Körnchen, sondern in netzförmigen Faserchen erkannt ist.

4) **Innerse Körnerschichte.** Hier treten wieder deutliche Zelligbilder auf, welche den größten Theil der Schichte darstellen. Es sind ovale oder spindelförmige Elemente, welche durch ihr Verhalten mit Ganglienzellen Ähnlichkeit besitzen und an beiden Polen in einen feinen Fortsatz übergehen.

Die Stützfasern der Retina führen in dieser Schicht einen Kern und gehen hier in eigenthümliche Ausbreitungen über. Die feinen nervösen Fasern, welche diese Schichte durchsetzen, zeigen in der Macula lutea einen schrägen Verlauf.

5) **Äußere reticuläre Schichte.** Ähnliche Schwierigkeiten wie bei Nr. 3 bestehen auch für diese Schichte. Auch hier ist es ein feines, dicht verfilztes Netzwerk von Faserbildungen, welches außer den durchziehenden Radiärfasern die Schichte im Wesentlichen constituirt. Stellenweise finden sich mit dem Netze ramifizierte Zellen in Zusammenhang, so dass das Netz von den Ausläufern der letzteren gebildet scheint. Es ist nicht wahrscheinlich, dass diese nervöser Natur sind, als solche erscheinen vielmehr nur die Fasern, welche von der inneren Körnerschichte hier in das Reticulum eintreten.

6) **Äußere Körnerschichte.** Ihre bestandtheile sind Fasern, welche an einer Stelle einen großen Kern umschließen, der die Faser als Modification einer Zelle ansehen lässt. Diese Kerne bilden die am meisten ins Auge fallenden Gebilde der Schichte und erscheinen in Reihen über einander.

Man unterscheidet je nach ihren Beziehungen Stübechenfasern und Zapfenfasern. Die ersteren sind feiner, zuweilen variiös, Nervenfasern nicht umhänlich. Die letzteren sind dicker, besitzen die kernführende Anschwellung meist nahe an der Limitans, und scheinen mit verbreiterter Basis der äußeren reticulären Schichte aufzusitzen. Der wahre Zusammenhang beider Bildungen mit der reticulären Schichte, also auch mit den Opticusenden ist noch nicht ermittelt. Die Kerne der Stübechenfasern (Stübechenkörner) sind elliptisch und bieten eine Schichtung einer helleren und dunkleren Substanz, die als Querstreichung sich ausspricht. Mit der äußeren Körnerschichte haben die Retinasschichten, soweit sie aus direkten Abkömmlingen der durch zellige Elemente gebildeten Anlage entstanden, ihren Abschluss erreicht.
Vom Sehorgane.

§ 321.

Pars ciliaris retinae. In der an der Ora serrata beginnenden Pars ciliaris der Retina erhält sich ein rückgebildeter Zustand der gesamten Membran. Unter beträchtlicher Abnahme der Dicke zeigt die Retina an jener Übergang-
Eine Pigmentzelle des Tapetum mit einer Anzahl Stäbchen.

Die Blutgefäße der Netzhaut gelangen in diese vom Sehnerven aus, in dessen Axe sie eine Strecke weit verlaufen (vergl. S. 658). Nachdem an der Eintrittsstelle

stelle noch radiäre Elemente, welche auch in eine Fortsetzung der Membrana limitans interna übergehen. Bald aber sind jene Gebilde durch cylindrische Zellen vertreten, welche eine epithelartige Schicht zusammensetzen (s. Fig. 540). Sie überkleiden, auf der Pigmentschicht, von der in der Figur drei Zellen mit dargestellt sind, zuerst, den Orbiculus ciliaris, modifiziert auch die Ciliarfortsätze, und sind zu innerst mit einer homogenen Membran in Verbindung, welche die Fortsetzung der Membrana limitans interna vorstellt.

Vom Sehogane.

923

des Sehnerven unbedeutende Anastomosen mit dem Gefäßsystem der Chorioides stattfanden, bleibt das Gefäßsystem der Netzhaut vollenommen für sich abgeschlossen. Venen wie Arterien verbreiten sich radiär in den Nervenfaserschichten, lateral den gelben Fleck im Bogen umkreisend, und verweisen sich zu Capillaren, welche jedoch nicht die äußere Körnerschicht erreichen, die gefäßlos bleibt. — Lymphbahnen begleiten scheidendarig die Blutgefäße.

4) Glaskörper und Linse.

§ 322.

Das bei der Entstehung der sekundären Augenblase in diese hinter der Anlage der Linse eindringende gefäßführende Bindegewebe, welches ebenso die Anlage des Sehnerven eine Strecke weit eingestülpt hat, umfasst die Linse und steht eine Zeit lang mit einer die Linse auch vorne umgebenden Bindegewebslage in Zusammenhang (Fig. 542). Diese Verhältnisse hat man sich zu vergegenwärtigen, weil aus ihnen eine Reihe späterer, außerdem unverständlicher Bildungen sich ableitet. Der von der Retina umschlossene und vorne von der Linse begrenzte Theil lässt ein eigenthümliches Gewebe hervorgehen, das Corpus vitreum (Fig. 533). Dieses ist im ausgebildeten Zustande eine glashelle, gallertige, von reicher Flüssigkeit durchtränkte Substanz. Diese entsteht also aus einer Umwandlung von embryonalem Bindegewebe unter Rückbildung von dessen Formelementen und der es durchsetzenden Blutgefäße. Die letzteren sind nicht blos für den Aufbau des Glaskörpers selbst von Belang, sondern auch für die Entwicklung der Linse, welche während der Fetalperiode von einer blutfäßführenden Schicht umgeben ist. Diese Blutgefäße treten von den im Sehnerven eingeschlossenen ab, von welchen sich später die Gefäße der Retina abzweigen. Für die Blutgefäße der Glaskörperanlage tritt allmählich eine Sonderung ein. Ein Theil erhält sich in der Peripherie der Anlage, zunächst der Retina, die von diesen Gefäßen aus vascularisirt wird. Ein anderer trifft sich nahe der Hinterfläche der Linse. Beide Gefäßnetze rücken mit der Ausbildung der Glaskörpersub-

Über den feineren Bau des Glaskörpers, ob er concentrisch geschichtet oder aus radiären Segmenten zusammengesetzt sei, bestehen verschiedene Meinungen. Hier mag genügen hervorzuheben, dass im ausgebildeten Zustande mit großer Wahrscheinlichkeit feinste, nach der M. hyaloidea strebende Lamellen den Glaskörper durchsetzen und in jene Membran übergehen, während in seinem Innern keinerlei Formelemente mehr sich finden. Der M. hyaloidea zerstreut aufliegende Zellenreste sind alles, was von der ehemaligen Organisation geblieben ist.

Die Linse (Lens crystallina) geht aus der schon mit der ersten Differenzirung gewonnenen mehr sphärischen Gestalt, die während der Fötalperiode waltet, allmählich in jene über, nach der das Organ benannt wird. Eine vordere, schwächer gekrümmte Fläche tritt bis zu dem Äquator benannten Rande und setzt sich da in die hintere, stärker gewölbte Fläche fort. In dem Entwickelungs gang der Linse haben wir bereits eine an der vorderen Fläche gelagerte Zellenschicht, (Linse n epithel) und die aus der hinteren Wand der Anlage hervorgehenden, die Hauptmasse der Linse darstellenden Fasern unterschieden.

In der Anordnung und dem speziellen Verhalten der Linsenfasern ergeben sich einige Besonderheiten. Die Fasern erscheinen als sechseitige, stark abgeplattete Pris-

Der sagittale Durchmesser der Linse beträgt beim Erwachsenen im Mittel 3,7 mm., der äquatoriale 9 mm. Für die vordere Krümmungsfläche ist der Radius auf 8,2, für die hintere auf 6 mm. berechnet. Mit dem Alter treten durch Minderung der Wölbung beider Flächen Modificationen ein, und die Linsensubstanz nimmt eine gelbliche Färbung an.

Die Kapsel umschliesst die Linse allseitig, und vermittelt zugleich die Fixierung des Organes. Es ist eine homogene, glashelle und elastische Membran, welche mit der ersten Differenzierung wahrscheinlich als Cuticularbildung von Seite der Elemente des Linsengewebes ihre Entstehung nimmt. Mit der Kapsel verbindet sich der Befestigungssapparat der Linse. Von den am meisten vorspringenden Theilen der Ciliarfortsätze, aber anch zwischen denselben erstreckt sich eine zarte, eigen tümliche Fasern führende Membran, die Zonula ciliaris (Z. Zinnii, Strahlenblättchen) als Fortsetzung der Membrana hyaloidea nach dem Äquatorialumfang der Linse. Dieses Gebilde ist der Rest des von der Anlage des Glaskörpers her die Linse umfassenden Gewebes. Indem es von Vorsprüngen der Ciliarfalten wie auch den dazwischenliegenden Vertiefungen abgeht, bietet es gleichfalls eine radiäre Faltung dar. In der Nähe des Linsenrandes spaltet es sich in zwei Lamellen; die vordere legt sich am Äquator der Linse an die Vorderfläche der Kapsel und verschmilzt mit ihr, indess eine hintere Lamelle etwas hinter dem Äquator zur hinteren Wand der Kapsel tritt (vergl. Fig. 533). Durch das Auseinanderweichen dieser Lamellen wird ein Raum gebildet, der von der Linse, die er ringförmig umzieht, abgeschlossen wird: der Ca-
Achter Abschnitt.

nalis Petiti. Dieser Apparat ist also aus dem in die secundäre Augenblase eingedrungenen Bindegewebe hervorgegangen. Während das hinter der Linse befindliche Gewebe den Glaskörper entstehen ließ, hat das den Äquator der Linse umfassende gleiche Gewebe (Fig. 512) in jene Membran sich umgewandelt.

Hilfsorgane des Auges.

§ 323.

Diese beim Menschen kaum Bedeutung besitzende Muskelschichte (*M. orbitalis*) ist bei Säugthieren, deren Orbita mit der Schlächengrube in meist offener Communication
Vom Schädeln.

927

steht (z. B. Carnivoren), eine ansehnliche, jene beiden Räume trennende Membran (H. Müller). Sie hat hier offenbar eine Wirkung auf den Orbitalraum und verliert diese Bedeutung in dem Maße, als sie mit der Ausbildung einer knöchernen Orbital- temporal-Scheidewand sich rückbildung muss.

a. Muskeln des Augapfels.

Die den Augapfel bewegenden Muskeln werden nach ihrer Anordnung in zwei Gruppen gesondert: in gerade und schräge. Die 4 geraden (Mm. recti) verlaufen vom hintersten Theil der Orbita vorwärts und entsprechen, indem sie divergirend allmählich den Bulbus zwischen sich fassen, den Seiten einer vierseitigen Pyramide (Fig. 545). Nach ihrer Lage werden sie als M. rectus superior, inferior, externus (lateralis) und internus (medialis) unterschieden. Die Ursprünge dieser Muskeln nehmen die Umgangung der Eintrittsstellen des N. opticus und oculomotorius in die Orbita ein. Jeder Muskel bildet einen abgeplatteten Bauch, welcher anfangs der Periorbita angelagert nach vorne zieht. Nur der des M. rect. superior ist gleich am Beginne durch den über ihm liegenden Hebemuskel des oberen Augenlides (s. unten) von der Orbita abgedrängt.

Mit der Annäherung an den Bulbus durchsetzen die Muskeln die Fettschicht, dann legen sie sich der Wölbung des Bulbus an und gehen in ihre Endsehnen über, welche an der vorderen Hälfte des Bulbus sich der Scleara inseriren. Die Insertionsstellen aller vier Muskeln liegen in einer, jedoch nicht regelmäßigen Kreislinie, deren Mittelpunkt lateral und nach oben vom Mittelpunkte der Cornea liegt.

Die beiden Mm. obliqui bieten verschiedene Verhältnisse. Der M. obliquus superior (Fig. 545) entspringt medial vom Ursprunge des R. rectus superior von der knöchernen Orbitalwand und bildet einen schlanken, abgeplatteten Bauch, der über dem Rectus internus läuft. Seine dünne Endsehne schickt er durch eine an die Spina oder an die Fovea trochlearis (S. 150) befestigte scharfe Schleife (Rolle, Trochlea) und lässt sie dann in spitzen Winkel noch hinten und lateral gerichtet zum Augapfel treten, auf welchem Verlaufhe sie sich ausbreitet und unter den Bauch des M. rectus superior gelangt. Von diesem Muskel bedeckt findet die Insertion an der hinteren Circumpferenz der Scleara statt.
Der M. obliquus inferior entspringt an der Augenhöhlenfläche des unteren Orbitalrandes, dicht an der unteren Begrenzung der Fossa sacri laery-
malis (S. 210). Sein breiter Bauch verläuft schräg lateral, den M. rectus inferior von unten her kreuzend, zum hinteren Umfang des Bulbus, wo er sich, zum Theil vom M. rectus externus bedeckt, in einer schrägen Linie inserirt.

Die Verbindung der Muskelschichten mit der Sclera geschieden dadurch, dass ihre Fasern in die Sclera selbst eindringen, und sich mit dem Gewebe der letzteren innig ver-
tenen Fällen von einem dünner Muskelchen — M. gracillimus — welches sich an ver-
schiedenen Stellen (zuweilen an der Trochlea) inserirt.

Die Anordnung der Muskeln des Bulbus ist derart, dass je zwei einer Dreh-
bewegung des letzteren um eine Axe vorstehen, wobei einer zum andern sich an-
tagonistisch verhält. Der durch diese Muskulatur dem Bulbus zuTheil werdende hohe Grad von Beweglichkeit spricht sich auch in der nächsten Umgebung des hinteren Abschnittes des Bulbus aus. Das benachbarte Bindegewebe bedeckt hier nur lose den Bulbus, indem es von demselben durch einen von wegen Faser-
zügen durchsetzt, spaltartigen Lymphraum getrennt wird. Man hat sich so den Bulbus von einer besonderen Bindegewebsschicht umgeben vorgestellt, und diese als Fascia Tenoni (Tenons'sche Kapsel) bezeichnet. In der That ist diese gegen den Bulbus abgegrenzte Bindegewebsschicht in ähnlicher Weise als das Produkt der Bewegungen des Bulbus anzusehen, wie die Muskelfasern der Muskelaction ihre Differenzierung verdanken (S. 304). Der von der erwähnten Schicht aufgeschlossene, ohne Injection vielfach nur auf einzelnen Strecken dar-
stellbare Tenon'sche Raum erstreckt sich zwischen den Mm. recti weiter nach vorne zu als unterhalb der letzteren, zumal die Endsehnen jener Muskeln oft schon vor ihrer eigentlichen Insertion Bindegewebsschleim zum Bulbus sich ab-
zweigen lassen.

b. Augenlider und Bindehaut.

§ 324.

Die Verbindung der Anlage des Schorganes mit dem äusseren Integumente führte zu einem bleibenden Zusammenhange beider, der allmählich neue Theile entstehen lässt. Der Bulbus empfängt dadurch nicht nur an seiner vorderen Fläche einen vom Integumente stammenden Überzug, sondern jenes kommt auch zur Herstellung von besonderen Schutzorganen in Verwendung. Der mit seiner vorderen Fläche anfänglich frei liegende Bulbus lässt die ihn sogar zum größten Theile überziehende Integumentschichte zuerst ohne schärfere Grenze in die Nach-

Die Augenlider (Palpebrae) stellen, wenn auch als Hautfalten entstanden, doch einen complicirteren Apparat vor, der nicht bloß dem Auge Schutz verleiht, sondern auch durch seine Bewegungen zur Vertheilung der Thränenflüssigkeit auf der freien Fläche des Bulbus, und damit zur Entfernung von Fremdkörpern auf der Hornhaut dient. Die Querspalte der Augenlider ist beiderseits durch die Augenlidwinkel (Canthus lateralis und medialis) begrenzt. Der mediale läuft in eine ausgerandete Bucht aus: die Thränenbucht (Thränensee). An der Grenze der Lidspalte und jener Bucht bildet jedes Lid einen kleinen Vorsprung (Papilla lacrymals), auf dessen Höhe die punktförmige Öffnung eines Thränenkanälchens sich darstellt (Thränenpunkt, Punctum lacrymale).

In jedem Augenlid setzt sich die Pars palpebralis des M. orbicularis oculi (S. 333) bis zum freien Liderrande fort, und bildet für die innere und äussere, das Lid darstellende Hautlamelle eine Grenzschichte. In der hinteren, der Bindehaut angehörigen Lamelle der Augenlider ist das Bindegewebe zu einer festen Platte von knorpelähnlicher Consistenz verdichtet. dem Tarsus, der jedes Augenlid eine Stütze abgibt, und durch seine Form die Gestaltung der Lidöffnung bedingt. Beide Tarsi verschmäleren sich nach den Augenwinkeln. Der obere ist bedeutend höher als der untere, und entspricht darin der gesamten Lidbildung. Ihre Ausdehnung stimmt mit der Größe der Bindehautfläche zusammen, welche bei der Bewegung der Lider auf dem Augapfel auf und ab gleitet. Vom Orbitalrand jedes Tarsus geht eine bis zur Orbita verfolgbare, aber nur künstlich als Membran darzustellende Bindegewebschichte aus, welche am late-
ralen, deutlicher noch an medialen Augenwinkel in ein Ligament übergeht (Lig. palpebrale mediale et laterale). Man kann sich so die beiden Tarsi mit dem medialen und lateralen Orbitalrand in Verbindung denken.

An den Rändern beider Lider finden sich die Reihen der borstenartig starren Augenwimpern (Cilia) und dahinter die Münderungen der Tarsaldrüsen (Meibom'sche Drüsen). Letzteres sind gelappten, den Tarsus durchziehende Drüsen, deren fettiges Secret den Augentalg (Lena, Sebum palpebrale) vorstellt.

Während das untere Augenlid beim Nachlass der Wirkung des M. orbicularis oculi herabsinkt und damit an der Öffnung der Lidspalte sich beteiligt, wird das obere Augenlid durch einen besonderen Muskel gehoben. Der M. levator palpebrae superioris theilt Ursprung und Lage mit den geraden Muskeln des Augapfels. Er entspringt über der Eintrittsstelle des N. opticus in die Orbita und begibt sich über dem M. rectus superior (Fig. 545) nach vorne, wo er verbreitert in seine dünne, über den Tarsus superior sich ausbreitende Endschichte übergeht.

Die gegen einander wachsenden Augenlidfalten lassen an ihrem freien Rande eine epitheliale Wucherung auftreten, durch welche, nachdem die Ränder sich einander bedeutend genähert haben, im 3.—4. Fötalmonate ein Verwachsen der Augenlider in jener Schichte erfolgt. Die Lösung wird durch das Hervorsprennen der Ciliarien an der Nahtstelle vorbereitet und erfolgt noch vor der Geburt.

falls hier in Betracht. — Der *M. levator palpebræ superioris* kommt nicht exclusiv am oberen Tarsusrande zur Insertion, sondern läßt seine Schenke auch an der vorderen Tarsusfläche ausstrahlen. Daher kommt es, dass das obere Lid resp. sein Tarsus umgestülpft werden kann, ohne dass der Muskel eine Zerrung erfährt. Vom genannten Muskel zweigen sich zuweilen Züge medial oder lateral ab, letztere gegen die Thräändrüse.

Die Bindegewebe des Auges, *Conjunctiva*, erscheint mit dem Entstehen der Augenlider in Form eines über die Vorderfläche des Bulbus gelegten Sackes, dessen Zugang die Lidspalte bildet (Conjunctivalsack). Am Bulbus überkleidet die Bindegewebe (Conjunctiva bulbi) die Cornea (S. 917) sowie einen Theil der Sclera, und schlägt dann in ziemlich gleicher Entfernung vom Rande der Cornea auf die Augenlider (Conjunctiva palpebrarum), deren innere Fläche sie überkleidet. Die Umschlagestelle der Conjunctiva bulbi in die Conj. palpébrarum wird als Gewölbe der Bindegewebe in Form einer solchen aufgesagt.

Ihr Bindegewebe geht an der Conjunctiva palpébrarum in das verfilzte Faserstrang der Tarsi über. Die noch die Tarsi überkleidende dünne Bindegewebsbälle ist mit *Lymphzellen* infüllt. Auch noch über dem Tarsus hinaus, gegen den Fornix, besteht dieses adenoide Gewebe in diffuser Form, während bei vielen Säugetieren distinete Follikel vorkommen.

Eine Schichte glatter Muskelfasern verläuft vom Orbitalrande jedes der beiden Tarsi bis in die Umschlagestelle (H. Müller). Das *Epithel* ist an den Lidern ein mehrschichtiges Cylinderepithel, welches am fornicalen Abschnitte in das Plattenepithel der Bindegewebe des Augapfels übergeht.

Von *Drüsen* sind außer den am Lidrande mündenden noch besondere, in beiden Lidern der Orbitalrande der Tarsi benachbart gelegene anzuführen, die am Fornix ausmünden. Es sind mit rundlichen Acini besetzte kurze Schläuche, die in Gruppen beisammen stehen, und als die indifferenteren Formen jener erscheinen, die wir in den Thräändrüsen in voluminöserem Zustande antreffen. Waldeyer l. c.

§ 325.

Von den mehrfachen, größtenteils oben schon aufgeführten Drüsenorganen des Integumentes, welche dem Sehorgane benachbart, auch in functioneller Verbindung mit ihm stehen, kommt den *Thräändrüsen* eine hervorragende Bedeutung zu. Ihr seröses Secret ist die Thräändflüssigkeit. Eine Anzahl (10—15) von Drüsenanlagen entsteht am lateralen Theile des oberen Fornix conjunctivae, und wächst gegen die Orbita ein. Jede Drüsenanlage bildet sich nach dem aciniösen Typus weiter aus, aber nicht alle erreichen gleiches Volum. Die Mehr-
zahl bildet kleinere Drüsen, welche der Conjunctiva benachbart liegen bleiben. Eine Minderzahl (3—5) wächst allmählich zu bedeutenderen Umfängen, und entfernt sich in demselben Maße von der Conjunctiva, mit der sie nur durch die Ausführungsgänge in Verbindung bleibt.

F. Boll, Archiv für Mikroskopie, Bd. IV. und Strickers Handbuch.

Die Abführwege der Tränenflüssigkeit sind sehr frühzeitig beim Embryo angelegt. Die Augennasenfurche (Tränenfurche), welche vom Auge zwischen seitlichem Nasenfortsatz und Oberkieferfortsatz zur Riechgrube zieht, bildet sich allmählich zu einem Canal um, der am medialen Augenwinkel mit zwei discontinen Öffnungen beginnt. Wir haben demnach an den Abführwegen zwei Strecken zu unterscheiden, den paarigen Abschnitt, die Tränenmäulchen, und die einfache Strecke, den Tränennasengang.

Die Tränenmäulchen (Canaliculi lacrymales) sind feine, mit den Tränenpunkten beginnende, in der Umgrenzung der Tränenbruch verlaufende Röhren (Fig. 547). Sie divergiren am Anfange etwas, convergiren am Ende jeher Bucht und gelangen dabei hinter das Ligum. palpbral mediale, wo sie sich schließlich dicht nebeneinander, oder schon vor-
her vereinigt, in den Thränennasengang einsenken. Der Canalis s. Ductus nasolacrimalis zerfällt in zwei Strecken. Die obere, an der medialen Wand der Orbita in der Fossa lacrymalis (S. 210) gelagerte, der sogenannte Thränen- sack (Saccus lacrymalis) ist nach oben zu mit einer blind geendigten Ausbuch- tung versehen. Er bildet den freiliegenden, zum großen Theile bewegliche Wandungen besitzenden Abschnitt. Aus ihm setzt sich der untere Abschnitt in den von Thränenbein und Oberkiefer unschlossenen Canal fort. Die sehr ver- schiedenartig gestaltete Mündung liegt von der unteren Muschel überragt im unteren Nasengange (Fig. 517).

Die Verbindung des Orbicularis oculi mit den Thränenkanälchen, auch die am Thränen sack vorbeiziehenden Züge des Muskels, hat man mit der Fortleitung der Thränen- flüssigkeit in Beziehung gebracht. Am naturgemäßsten erscheint mir die Annahme, dass die als Capillarröhren wirkenden Thränenkanälchen die Flüssigkeit aufsaugen, während in der Nasenhöhle durch den die Athemwege passierenden Luftstrom eine stete Verdunstung des an den Wänden des Thränennasenganges herabkommenden Thränenflui- dum statt hat, und ebendadurch wieder auf fortgesetzten Zufluss durch die Capillarröhren eingewirkt wird.
II. Vom Gehörgange.

Aufbau des Gehörgangs.

§ 326.

Mit diesem ursprünglichen, das eigentliche Sinnesorgan darstellenden Gebilde verbinden sich mannigfaltige Hilfsorgane. An dem das Labyrinth bergenden Theile des Petrosum zog anfänglich der Canal der ersten Kiemenspalte vorüber, eine Durchbrechung der seitlichen Wand der Kopsdrumhöhle (S. 76). Der mittlere Theil dieses Canals wird sehr frühzeitig durch in ihn einwucherndes Gewebe verschlossen, und darin lagern sich jene ursprünglich den ersten zwei Kiemenbogen angehörrigen Skelettheile, aus welchen die Gehörknöchelchen entstehen (S. 198). Der innere Theil des Canals communicirt später mit dem Pharynx und stellt die Tuba...
Eustachii dar. Von da aus wird der die Gehörknöchelchen bergende Abschnitt ziemlich spät wieder in einen Hohlraum umgewandelt, die Paukenöhle, welche nach außen durch das Trommelfell einen Abschluss erhält. Da alle diese Theile in den Dienst des Gehörorgans treten, wie fremd sie ihm auch ursprünglich sein mochten, erwächst dem gesamten Apparate damit eine neue, seine Leistungen fördernde Complication und dieser neue Organecomplex bildet das mittlere Ohr.

Die Umgebung der äußeren Öffnung der zum größten Theile ins mittlere Ohr einbezogenen ersten Kiemenspalte wächst zu einem Canal aus, in dessen Grund das Trommelfell eine Abgrenzung der Paukenöhle bildet. Dieser Canal stellt den äußeren Gehörgang vor. Das ihn äußerlich begrenzende Integument bildet die Ohrmuschel. So kommt zu dem Ganzen ein dritter Abschnitt, das äußere Ohr, hinzu. — Diese drei Theile des Gehörorgans sind also sowohl in ihrer Entstehung wie in ihrem functionellen Werthe außerordentlich ungleichartig. Der eigentliche Sinnesapparat besteht in der Wandung des Labyrinthes, alles andere sind nur Hilfsorgane, die in der Wirbeltierreihe allmählich dem Labyrinththe functionell sich zugesellen.

1) Labyrinth (inneres Ohr).

G e s t a l t u n g d e s s e l b e n.

a. Häutiges Labyrinth.

§ 327.

Ganzen die Gestaltung des Labyrinthes wiederholen, hat man sie knöchernes Labyrinth benannt und davon die aus dem Labyrinthbläschen entstandenen Gebilde als häutiges Labyrinth unterschieden.

Der Recessus labyrinthi theilt sich innerhalb des Felsenbeines in zwei Schenkel, deren jeder mit einem der beiden aus dem zuerst einfachen Bläschen entstandenen Gebilde zusammenhängt.

Der Utriculus (Sacculus ellipticus) bildet einen im Allgemeinen länglichen Schlauch, dessen spezielle Gestalt aus der in Fig. 548 nach einer Darstellung von G. Retzius schematisirten Abbildung zu ersehen ist. An seinen beiden Enden gehen aus ihm bogenförmige Canäle, die häutigen Bogengänge (halbkreisförmige Canäle, Canales semicircularis), hervor. Dieser bestehen drei; jeder derselben besitzt eine Erweiterung, Ampullae (Fig. 548 A), an seinem Beginne vom Utriculus; es ist also ein ampullentragendes und ein ampullenloses Ende für jeden einzelnen Bogengang zu unterscheiden. Die drei Bogengänge beschreiben verschiedenen große Kreise. Sie werden nach der Richtung der Ebene, in welcher jeder verläuft, in zwei verticale und einen horizontalen unterschieden. Die Ebenen der beiden ersteren treffen nahezu im rechten Winkel zusammen, so dass alle drei Bogengänge im Allgemeinen ebenso viele sich rechtwinkelig schneidende Ebenen einnehmen. Nach ihrer Lage im Felsenbein bezeichnet man den einen der vertikalnen als vorderen (oder oberen), den anderen als hinteren (oder unteren), den horizon-

Der Sacculus (Saccus sphaericus s. rotundus) (Fig. 548 S) besitzt eine runde, etwas abgeflachte Gestalt und sendet gleichfalls eine besondere Bil- dung ans, die, obwohl sie an sich einfacher ist, doch durch die Art der Ver- bindung mit dem knöchernen Labyrinth complicirtere Verhältnisse darbietet. Man mag sich vorstellen, dass vom Sacculus ein Canal auswächst, welcher sich nach Maßgabe seiner zunehmenden Länge in eine Spiraltour legt und blind endigt. Er bildet als Canalis cochlearis den wichtigsten Bestandtheil der Schnecke (Cochlea), welche beim knöchernen Labyrinth nähere Darstellung findet. Am ausgebildeten Gehörorgane erscheint der Canalis cochlearis nicht unmittelbar vom Sacculus fortgesetzt, er steht vielmehr mit demselben durch einen engeren Canal, den Canalis reuniens (Hensen) in Zusammenhang und setzt sich von diesem durch ein blindsackartiges, noch im Vorhofs liegendes An- fangsstück ab. Sowohl der Sacculus wie der Canalis cochlearis erhalten ihre Nerven von dem als N. cochlearis unterschiedenen Aste des N. acusti. Die Binnenräume des gesamten Labyrinthes sind mit einer Flüssigkeit, der Endo- lymph erfüllt, welche bei dem Mangel von Communicationen mit wirklich Lymphräumen wohl als ein Transsudat aus dem das häutige Labyrinth umgebenden Lymphräumen betrachtet werden darf.

b. Knöchernes Labyrinth.

§ 328.

Die als knöchernes Labyrinth bezeichneten Räume des Petrosum wiederholen im allgemeinen die Formverhältnisse, welche dem häutigen Labyrinth zukommen, so jedoch, dass sie dem oben bemerkten Verhalten gemäß bedeutend weiter sind, als durch das häutige Labyrinth für sich bedingt wäre. Sie umschließen mit dem häutigen Labyrinth noch Lymphbahnen, welche letzteres in verschiedenem Umfange umgeben. Das Knöchengeflecht ist in der Umgebung dieser Räume bis auf die noch speziell zu besprechenden Durchlassstellen von Nerven durchweg aus compacter Substanz gebildet, bietet hier eine größere Resistenz, so dass man die Wandungen des knöchernen Labyrinthes aus dem Petrosum herauszupräpariren im Stande ist. Ein solches Präparat stellt Fig. 549 dar. Eine dünne Schicht periosstalen Gewebes bildet die Auskleidung der Räume und setzt sich durch die oben erwähnten Gewebsstränge auf das häutige Labyrinth fort, wo dasselbe nicht unmittelbar der Wandung anlagert.

Man unterscheidet im knöchernen Labyrinth drei zusammenhängende Abschnitte. Den mittelsten bildet der Vorhof (Vestibulum labyrinthi). Es ist eine länglich gestaltete Cavität, deren Durchmesser von vorne nach hinten am bedeutendsten ist. Die mediale Wand ist dem Grunde des Meatus acusticus internus zugekehrt, die laterale sieht gegen die Paumenhöhle, bildet jenen Theil der Labyrinthwand der letzteren, welcher durch die Fenestra ovalis ausgebildet ist (vergl. S. 173 und Fig. 549). Der vordere, bei der natürlichen Lage des Schlüsselbeins zugleich etwas medial gerichtete Theil des Vorhofes grenzt an die Schnecke, der hintere laterale an die knöchernen Bogengänge. Der medialen Vorhofs wand sind die beiden Säckchen in Vertiefungen angelagert. Eine rundliche Einsenkung, Recessus sphaericus (R. hemisphaericus) nimmt den Sacculus

in denen sie im Allgemeinen angeordnet sind. Auch bezüglich der Gestalt des Lumnens bestehen keineswegs übereinstimmende Verhältnisse.

An den vorderen und medialen Theil des Vorhofs schließt sich die knöcherne Schnecke an, in welche der Vorhofsraum gleichsam fortgesetzt ist.

§ 329.

Als Schnecke (Cochlea) erscheint der in seinen knöchernen Wandungen dem Gehäuse einer Helix ähnliche Theil (Fig. 549) des Labyrinthes, welcher den Canalis cochlearis und diesen begleitende, somit gleichfalls spiralig verlaufende Lymphräume birgt. Diese Räume bilden $2^{1/2}$ Windungen unter allmäßlicher Verjüngung ihres Lumnens. Denkt man sich den Binnenraum zunächst einheitlich, so kann man ihn bei natürlicher Lage des Organs vom Vorhofe beginnend sich vorstellen, zuerst nach unten, vorne und medialwärts gerichtet, dann aufwärts und nach hinten gekrümmt, und so die Windungen fortgesetzt wie im Allgemeinen schon aus der oben in Fig. 548 gegebenen Darstellung des Canalis cochlearis ersichtlich ist. Da die Windungen eine etwas lateralwärts gezogene Spiraltour darstellen, ist die Schnecke im Ganzen betrachtet nach jener Richtung gewölbt und die letzte halbe Windung entspricht der Kuppel der Schnecke (Fig. 549), demgemäß findet sich oben an der entgegengesetzten Seite, also medial und etwas nach hinten eine Vertiefung, welche einem Theile des Grundes des Meatus acusticus internus entsprechirt. Von da aus erstreckt sich in die Axe des Organs, um welche die Windungen verlaufen, wiederum ähnlich wie in einem Schneckengehäuse, die Spindel. Die Lage der Schnecke im Felsenbeine erscheint wir aus Fig. 550. Da die Windungen des Schneckenraumes terminal enger werden, so nimmt auch die Spindel an Mächtigkeit ab. Der Theil der Spindel (Modiolus), um welchen die erste Windung verläuft, ist der stärkste, schwächer ist der von der zweiten
Windung umzogene Abschnitt der Spindel, von dem ans sich eine dünne Lamelle schräg gegen die Kuppel entfaltet, mit der sie in Verbindung tritt, das Spindelblatt (Lamina modioli). Es gehört der letzten halben Windung an. Von der knöchernen Spindel aus erstreckt sich in das Innere der Windungen des Schneckenraumes eine dünne Lamelle, welche den letzteren in seiner ganzen Länge in zwei Abschnitte, die Treppen, Scalae, scheidet. Jenes Knochenblätthchen verläuft der Windung des Schneckenraumes gemäß in Spiralform und bildet die Lamina spiralis ossea (Fig. 551). In der letzten Windung reicht diese nicht bis ans blinde Ende des Raumes, sondern hört vorher mit hakenförmiger Biegung (Hamulus) auf. Der Hamulus ist mit seiner Convexität gegen das Spindelblatt gekehrt, von dem er durch eine halbmondförmige Spalte getrennt ist. Hier kommunizieren also die beiden Scalae dicht am Spindelblatt unter einander (Helicotremu). Die knöchernen Spiralplatten ragt etwa bis gegen die Mitte des Schneckenraumes vor, welcher also der Convexität der Windungen entlang, an der knöchernen Schnecke einheitlich sich darstellt.

An ihrem Beginne ist die Spirallamelle am breitesten und setzt sich hier in einen Vorsprung fort, welcher den Anfang der ersten Windung mit ihrem unteren Theile vom Vorhofe trennt. Mit dem freien Rande der Lamina spiralis ossea steht der Canalis cochlearis in Zusammenhang und füllt den Raum, welcher vom Rande jener Knochenlamelle bis zur äußeren Wand der Schnecke hin besteht. Der Canalis cochlearis ergänzt so gewissermaßen die durch die knöchernen Spiralplatten gebildete Scheidung der beiden Scalae. Die Schnecke wird somit von drei Räumen durchzogen, einer gehört dem häutigen Labyrinth an und befindet sich innerhalb des Canalis cochlearis, die zwei anderen sind die beiden Scalae, welche theils vom Canalis cochlearis theils von der Lamina spiralis ossea von einander geschieden sind. Denkt man sich die Schnecke mit ihrer Kuppel aufwärts sehend (Fig. 551), so ist in jeder Schneckenwindung eine der beiden Scalae oben, die andere unten von Canalis cochlearis und Lamina spiralis ossea zu finden. Die obere Scala communicirt oberhalb des Beginnes der Spiralplatte mit dem Vorhofe, sie bildet die Vorhofstreppe (Scala vestibuli); die untere, von der ersten durchweg getrennte, sieht mit dem Anfange ihrer knöchernen Wandung gegen die Paukenhöhle, an deren Labyrinthwand sie das Promontorium (S. 173) darstellt. Eine Lücke der knöchernen Wand bildet die Fenestra triquetra (Figg. 139, 140, 549), welche durch eine Membran, auf die das beiderseitige Periost fortgesetzt ist, verschlossen wird (Membrana tympani secundaria). Dadurch erhält diese Scala Beziehungen zur Paukenhöhle, und wird Scala tympani benannt. Die beiden Scalae begleiten also den Canalis cochlearis, jedoch nicht gleichmäßig, denn nur die Scala vestibuli folgt ihm bis zu seinem Ende in der
Kuppel der Schnecke, während die Scala tympani nicht mit in die dritte halbe Windung gelangt. An dem vom Hamulus umzogenen, auch von der Wand des Canalis cochlearis begrenzten *Helicotrema* findet dann die Verbindung der Räume beider Scalae statt.

erscheinen nicht immer gleichmäßig. Die Ossification der Spindel bietet nicht nur, wo sie von Nervenbündeln durchsetzt wird, ein röhriges Gefüge, sondern ist auch sehr häufig unvollständig, mit größeren Lücken versehen.

Am Anfange der Scala tympani, und zwar am Boden derselben, befindet sich eine feine Öffnung, mit welcher ein schräg abwärts verlaufendes Canälen beginnt, welches an der unteren Fläche der Felsenbeinpyramide dicht an der Fossa jugularis ausmündet. Dieses Canälen stellt den Aqueductus cochleae (S. 173) vor und leitet eine kleine Vene nach außen.

Feinerer Bau des Labyrinthes.

§ 330.

Modificationen zeigt die Epithelschichte an den Verbindungsstellen mit den Zweigen des Acusticus, wodurch eben das Labyrinth als Sinnesorgan erscheint. Solche Stellen finden sich in den Ampullen der Bogengänge sowie in den beiden Säckchen. An allen diesen Theilen ist die betreffende Wandstrecke bedeutend verdickt, so dass sie einen Vorsprung ins Innere bildet. An den Ampullen erscheint dieses Gebilde in Gestalt einer queren Leiste, Hörleiste (Crista acustica), welcher an der Außenfläche der Ampulle eine leichte Einsenkung entspricht. Im Utriculus wie im Sacculus besteht eine rundliche oder längliche Stelle als Hörfleck (Macula acustica).

§ 331.

Viel complicirter als der Bau der Cristae und Maculae acusticae stellt sich der im Canalis cochlearis befindliche Endapparat des Hörnerven heraus. Bei der Beschreibung dieser Einrichtungen stellen wir uns die Schnecke nicht in ihrer natürlichen Lage, sondern so vor, dass die Kuppel aufwärts, die erste Windung abwärts gerichtet ist. Die Scala vestibuli liegt dann über der Scala tympani (Fig. 551). Wir haben uns den Canalis cochlearis zwischen die beiden Scalae eingefügt vorzustellen, längs der Convexität der Wandungen des knöchernen Schneckenraumes angelagert und an der entgegengesetzten, der Schneckenspindel zugekehrten Seite mit der knöchernen Spirallamelle in Zusammenhang (Fig. 552).

Durch diese Beziehungen empfängt der Canalis auf dem Querschritte eine dreiseitige Gestalt, wobei jede Seite seiner Wand einem andern Theile zugewendet ist. Die nur allmählich entstandene Erkenntnis des gesammten Organges hat diesen verschiedenen Wandstrecken verschiedene Namen gegeben, die nur insofern noch eine Berechtigung besitzen, als jenen Wandstrecken auch eine andere Structur zukommt. Die der Scala tympani zugekehrte Wand erscheint mehr oder minder in der Ebene der knöchernen Spirallamelle, so dass man sie vor der Erkenntnis des gesammten Canalis cochlearis als häutige Spiralplatte (Lamina spiralis membranacea) bezeichnen, und als Fortsetzung der knöchernen ansehen durfte. Wir bezeichnen sie mit Bezug auf den Canalis cochlearis als Lamina basilaris. Sie bildet den wichtigsten Wandtheil des Canalis cochlearis, da sie den nervösen Endapparat trägt. Wie die Lamina basilaris die tympanale Wand des Canalis cochlearis bildet, so besteht ihr gegenüber die vestibulare Wand als Reißner'sche Membran, welche wie die vorgenannte von der Lamina spiralis ossea aus beginnt und mit der ersteren nach außen divortirt. Hier treten beide mit der dritten Wandstrecke in Verbindung. Diese ist bedeutend dicker als die Reißner'sche Membran, und besteht gleichfalls vorwiegend aus Bindegewebe (Ligamentum spirale). Dieses setzt sich aber gegen die Lamina basilaris...
fort, und bildet nach innen gegen die Reißner'sche Membran zu eine gefäßreiche Schicht (Stria vascularis). Die Verdickung dieser lateralen Wand des Canalis cochlearis gründet sich auf den hier stattfindenden Zusammenhang mit dem knöchernen Labyrinth, so dass hier die Periostalanskleidung des letzteren mit der Wand des häufigen Labyrinthes verschmolzen erscheint.

An ihrer Verbindungsstelle mit dem Canalis cochlearis bietet die Spiralplatte besondere Einrichtungen. Ihr freier Rand läuft in zwei Lippen aus, welche durch eine hohlkehlfartige Furche (Sulcus spiralis) von einander getrennt sind. Von jenen beiden Lippen springt die untere (tympanale) weiter vor, als die obere. sie ist an ihrem freien Rande zum Durchlasse der Schneckenerven durchbrochen (Labium perforatum). Die obere (vestibulare) Lippe trägt eine aus eigentümlichem Stützgewebe gebildete Verdickung, welche sich über die ganze Spiralplatte erstreckt (Crista spiralis). Kleine warzenartige Vorsprünge, die gegen den freien Rand hin in länliche, durch Furchen von einander getrennten Leisten übergehen, geben der Oberfläche dieses Teils ein eigentümliches Relief, und liefern die freie, stärker gefurchte Lippe als Labium salcatum bezeichnen. Am Rande der letzteren bilden die Erhebungen der Oberfläche dicht nebeneinander gestellte zahnartige Vorsprünge.

Der Nervus cochlearis bietet vor seinem Durchtritt durch das Labium perforatum besonders zu erwähnende Verhältnisse dar. Die Spindel der Schnecke mit der knöchernen Spirallamelle ist bereits oben als die ossifizirte Bahn bezeichnet worden, in welcher der Nerv zum Canalis cochlearis gelangt. Wie schon die Eintrittsstelle am Tractus foraminulenum des Meatus acusticus internus zeigt, ist der Nerv hier in eine Spiraltour aufgelöst; ebenso durchsetzt er die Spindel, wobei die äußereren Züge und Bündel zur ersten Windung, die innersten Bündel zur letzten Windung gelangen. Im Übergange zur Lamina spiralis gehen die Nervenfaserbündel eine Ganglienbildung ein, wobei sie sich unter einander verbinden, so dass jenes Ganglion für die ganze Ausbreitung des Schneckenerven eine continuirliche, spiralig ausgezogene Masse (Ganglion spirale) bildet. Es nimmt innerhalb der Spindel einen canalartigen Raum ein (Canalis spiralis mediot). Aus diesem Ganglion treten Nervenfaserbündel in die Lamina spiralis, in der sie sich verbreiten und die sie plexusartig durchsetzen. Sie liegen dabei näher der tympanalen Fläche jener Lamelle, wie sie denn auch durch das tympanale Labium des freien Randes der Spiralplatte zum Canalis cochlearis gelangen. Die bezüglichen Öffnungen des Labium perforatum sind demgemäß aufwärts gerichtet, dem Canalis cochlearis zugekehrt.

§ 332.

Das Corti'sche Organ oder der acustische Endapparat der Schnecke nimmt nicht ganz die Hälfte der Breite der Lamina basilaris ein. Von dem noch keineswegs in allen Theilen sicher erkannten Baue dieses Organes geben wir nur die
wesentlichsten Grundzüge. Im Allgemeinen erscheint in dem Apparate eine bedeutende und vielfache Differenzierung des Epithels, welches zunächst als eine Verdickung sich darstellt. Ein epithelialer Wulst ragt unmittelbar vom inneren Abschnitte der Lamina basilaris ins Lumen des Canalis cochlearis (Fig. 552) und verläuft spiralg durch die ganze Länge des letzteren. Von innen oder von der Spindelseite der Schnecke her finden wir die Auskleidung des Suleus spiralis durch niedrige Epithelzellen dargestellt, welche nach außen zu höher werden und allmählich in andere Formen übergehen. Ähnlich gewinnt das Epithel, welches den äußeren Theil der Lamina spiralis überkleidet, eine andere Beschaffenheit, indem es nach innen zu sich fortsetzt (Fig. 553). Die Zellen gestalten sich zu höheren Formen (Cylinderzellen) und weichen aus der zur Lamina basilaris senkrecht nach innen zu vorspringen, ab. Eine entgegengesetzte Richtung (Neigung nach außen) nimmt die an die Auskleidung des Sulcus spiralis sich anschließende Epithelzellenlage ein, welche dem Labium perforatum aufsitzt. Diese beiden epithelialen Abschnitte schließen auf der Lamina basilaris nicht unmittelbar an einander. Sie lassen vielmehr eine Lücke frei, über welche sie sich mit ihren terminalen Abschnitten hinweg brücken, so dass also innerhalb des Epithelwulstes ein gleich letzterem längs des ganzen Canalis cochlearis verlaufender Raum, der Corti'sche Cana (Fig. 553) besteht.

Derselbe erscheint auf dem Querschnitte dreisichtig, seinen Boden bildet die Lamina basilaris, das Dach jene Epithelialgebilde, die eine äußere und eine innere Wand vorstellen, beide in der Firste des Daches unter einander verbunden.

Die Zellen dieses Epithelwulstes ergeben verschiedene Befunde. Wir unterscheiden einmal die subepithelialen Canalis direct begrenzenden Elemente als Pfeiler, dann die innen und außen benachbarten Epithelgebilde. Die Pfeiler (Pfeilerzellen) sind langgestreckte Gebilde, die mit verbreitertem Fuße der Lamina basilaris aufsitzen und hier an der, dem von ihnen umwundenen Canal zugekehrten Seite noch einen Kern mit Protoplasma rest aufweisen, während die übrige Substanz des Pfeilers ein Differenzierungsprodukt der Zelle vorstellt. Das obere Ende des Pfeilers, der Pfeilerkopf, ist verdickt und in einen Fortsatz ausgezogen. Die Pfei-

Obwohl mit einiger Sicherheit nur die Haarzellen der inneren Reihe jene Verbindung mit Nerven erkennen ließen, so besteht für die übrigen Reihen doch wohl genügender Grund zu der gleichen Annahme. Ob aber noch andere Nervenendigungen vorkommen, ist in hohem Grade zweifelhaft. Auch die Angaben bezüglich spiralg verlaufender, der Lamina basilaris aufgelagerter Nervenfaszerzüge, deren
einer an der Basis der inneren Haarzellen, andere den äußeren Haarzellen entsprechend vorkommen sollen, bedürfen noch genauerer Prüfung.

2) Hilfsapparate des Gehörorgans.

a. Paukenhöhle (mittleres Ohr).

§ 333.

Die Trommel- oder Paukenhöhle (Cavitas tympanica) bildet einen im Schlafenbein befindlichen Raum, welcher ursprünglich an der Außenfläche des Primordialcraniums befindlich, erst durch die Verbindung des Tympanicum und Squamosum mit dem später das Petrosum darstellenden Theile des Primordialcraniums zu Stande kommt (S. 173. 175), insofern er durch jene Knochen seine Begrenzung empfängt. Diese Cavität besitzt eine unregelmäßige Gestalt, kann aber im Allgemeinen oben, unter ihrem Dache, etwas weiter gedacht werden als unten,
Vom Gehörorgane.

was besonders an der Stelle deutlich ist, wo das Trommelfell die laterale Wand bildet. Die gegenüberstehende mediale Wand umschließt das Labyrinth, daher sie Labyrinthwand der Paukenhöhle genannt wird. Die Detailverhältnisse dieser Wandfläche finden sich S. 172 beim Schläfenbein besprochen und abgebildet (Fig. 139, 140). Die Decke der Paukenhöhle bildet gleichfalls das Petrosum mit der als Tegmen tympani benannten Knochenplatte (Fig. 111). Nach hinten und oben setzt sich der Raum der Paukenhöhle in eine weite, zu den Cellulae mastoideae führende Communicationsöffnung fort (Fig. 140). Nach vorne und medial verengt er sich in einen zugleich etwas nach abwärts gerichteten Canal (Fig. 139), der fernerhin sich erweiternd als Tuba Eustachii in den oberen seitlichen Theil des Pharynx (Cavum pharyngo—nasale) ausmündet (Fig. 332). In der Paukenhöhle liegen die gleichfalls schon dargestellten Gehörknöchelchen, welche, wie auch die Wandungen, von der Schleimhaut überkleidet sind.

Das Trommelfell (Paukenfell, Membrana tympani) ist eine etwas durchscheinende dünne, 0,1 mm starke Membran, welche von annähernd kreisförmiger Gestalt, rings im Sulus tympanicus befestigt ist. Ihre äußere, in der Regel glänzende Fläche sieht in den äußeren Gehörgang, der durch das Trommelfell von der Paukenhöhle geschieden wird. Der Höhedurchmesser des Trommelfells beträgt ca. 10 mm, jener seiner Breite 9 mm. Wie der Sulus tympanicus des Os tympanicum bietet es eine schräge Stellung nach unten und vorne zu, so dass die Ebenen, in welchen die beiderseitigen Trommelfelle liegen, sich in einem spitzen Winkel schneiden würden. Die Membran zeigt auf ihrer äußeren Fläche eine Vertiefung, welcher eine Wölbung der entgegengesetzten Fläche entspricht. Die fast in der Mitte befindliche tiefste Stelle stellt eine triecherförmige Einziehung vor, den Nabel oder Umbo des Trommelfells, an dessen Innenseite der Handgriff des Malleus befestigt ist (Fig. 554). Über diesem Umbo ist äußerlich ein leichter Vorsprung bemerkbar, dessen Entstehung gleichfalls an den Malleus anknüpft, indem dessen kurzer Fortsatz sich hier wider das Trommelfell stützt. Darüber setzt sich das Trommelfell in eine minder straff gespannte, sogar eingebuchte Strecke bis zur knöchernen Umrahmung fort. Dieser Theil der Membrana tympani wird als Pars flaccida (M. flacc.) unterschieden. Zuweilen findet sich hier eine Durchbrechung: Foramina Rivini. Die Pars flaccida entspricht in ihrer peripherischen Begrenzung der Stelle, an welcher die Pars squamosa des Schläfenbeins die Lücke des Annulus tympanicus (S. 170) abschließt und so gewissermaßen mit zur Herstellung des Rahmens für das Trommelfell gelangt.

In die Zusammensetzung der Membran gehen drei verschiedene Schichten
Die Grundlage bildet die im Falz beginnende, dem Trommelfell eigene fibröse Membran; diese wird äußerlich von einer dünnen Fortsetzung der Auskleidung des äußeren Gehörganges überzogen, innen dagegen von der Schleimhaut der Paukenhöhle, welche zugleich das in die fibröse Membran des Trommelfells eingelassene Manubrium mallei mit überkleidet.

§ 334.

Der Hammer (Malleus) ragt mit seinem Kopfe gegen die Decke der Paukenhöhle, die er nahezu berührt. Es kommt somit nur der unterhalb des Halses befindliche Abschnitt des Hammers, der Processus brevis mit dem Manubrium hinter das Trommelfell zu liegen, wobei jene beiden Theile die vorhin beim Trommelfell erwähnten Beziehungen zu diesem darbieten (Fig. 554). Außerhalb des Bereiches des Trommelfelles, nach vorne und abwärts gerichtet, findet sich der sogenannte lange Fortsatz des Hammers (Processus Folii), welcher sich in die Glaser'sche Spalte erstreckt. Die überknorpelte Fläche des Hammer-Kopfes sieht nach hinten und wird von der Vertiefung umfasst, welche der Körper des
Amboß (Incus) darbietet (Fig. 551). Dieser ist gleichfalls dem Dache der Paukenhöhle genähert, und liegt so, dass sein kurzer Fortsatz fast horizontal nach hinten sieht (Fig. 162 A), wo sein Ende unterhalb des Eingangs zu den Cellulae mastoideae an der Wandung Befestigung findet (Fig. 555). Der lange Fortsatz sieht abwärts und sieht dabei fast parallel dem Manubrium mallei, dessen Ende er jedoch nicht erreicht. Dabei liegt dieser Fortsatz weiter medianwärts als der Hammer und ist mit seinem Ende etwas gegen die Labyrinthwand gekrümmt (Fig. 162 B). Mit der hier befindlichen Apophysis lenticularis verbindet sich der Steigbügel (Stapes). Er nimmt zum langen Fortsatz des Amboß fast eine rechtwinklige Stellung ein (Fig. 554). Seine Fußplatte (Basis) steht quer und fiigt sich auf die Fenestra ovalis. Die kürzere, gerade Spange des Bügels sieht nach vorne, die längere, mehr gekrümmte Spange nach hinten. Beide Spangen sind durch eine, in den inneren Falz derselben sich fügende Membran (Membrana obturatoria) unter einander verbunden, wodurch die von ihnen umfasste Öffnung verschlossen wird.

Die Gehörknöchelchen sind wie andere Skelettheile durch Gelenke verbunden. Das Hammer-Amboß-Gelenk bietet eigenthümliche Formverhältnisse. Es stellt ein »Sperrgelenk« vor, indem die Gelenkflächen mit scharfen Kanten in einander greifen. Die Gelenkflächen tragen einen dünnen Knorpelüberzug und werden durch ein straffes Kapselband zusammengehalten. Im Amboß-Steigbügel-Gelenk findet sich die Verbindung eines flachen, von der Apophysis lenticularis gebotenen Gelenkkopfes mit einer gleichfalls flachen Pfanne, beide durch eine schwächere Kapsel unter einander in Verbindung. Die straffe, ligamentöse Verbindung des kurzen Fortsatzes des Amboß mit der hinteren Wand der Paukenhöhle (Fig. 555) stellt dagegen kein wahres Gelenk vor (Lig. incudis posterius).
Die Verbindung des Hammers mit der Wand der Paukenhöhle geschieht noch durch Bänder, welche zum Theil in Schleimhautfalten eingelassen, und dann eigentlich durch diese gebildet sind. Andere entbehren jener Beziehungen. Das genaue Verhalten der wichtigsten dieser Bänder macht ein Eingehen auf die Lage des Hammers zum Tympanicum nothwendig. Schon beim Bestehen des Annulus tympanicus geht vom vorderen Schenkel des das Trommelfell umschließenden Rahmens ein nach hinten und einwärts gerichteter Fortsatz aus, die Spina tympanica posterior (Sp. tympanica major) (Fig. 554). Diese tritt gegen den Hals des Hammers, und unter ihm erstreckt sich der Processus Folii während des Jugendzustandes in die Glaser'sche Spalte. Von jener Spina tympanica aus gehen kurze, straffe Faserzüge zum Hammer, an dem sie sich, in senkrechter Linie divergirend, vom Processus folianus an bis zum Kopfe befestigen. Sie stellen das Ligamentum mallei anterius vor. Faserzüge, welche aus der Glaser'schen Spalte kommen, sind ihm zugemischt. Aufwärts setzt sich das Lig. mallei anterius in eine Schleimhautfalte fort, welche vom Kopfe des Hammers zur Decke der Paukenhöhle sich erstreckt und als Ligamentum mallei superius bezeichnet wurde (Fig. 555). Diese Falte ist nach Maßgabe des Abstandes jener Decke vom Hammerkopfe verschiedenweitig ausgebildet und ist schon aus diesem Grunde nicht als echtes Band aufzufassen. Da gegen besteht ein solches in dem Ligamentum mallei externum. Dieses entspringt breit von dem den oberen Abschluss des Annulus tympanicus bildenden Theile des Squamosum und befestigt sich mit convergirenden Zügen an der Crista mallei. Am bedeutendsten sind seine hinteren Züge entwickelt, die auch als Lig. mallei posterius beschrieben sind. Sie können mit dem Lig. mallei anterius zusammen als Ein Bandapparat (Axenband) aufgesetzt werden, in welchen der Hammer derart eingeschaltet ist, dass durch ihn die Drehungsaxe des Hammers verläuft. (Helmholtz; Mechanik der Gehörknöchelchen, im Archiv für Physiologie. Bd. 1.) Die Verbindung der Basis oder Platte des Steigbügels mit der Fenestra ovalis geschieht durch Bandmasse, welche vom Rande der Platte sich zum Fensterrande erstreckt (Ligamentum annulare). An der Vorhofssfläche wird der gesammte Verschluss des Fensters von dem Perioste des Vorhofes überkleidet. Die Verbindung gestattet eine geringe Stempelbewegung.

Die Bewegungen der Gehörknöchelchen hat man sich als minimale vorzustellen. Sie bewirken Veränderungen der Stellung der beiden an den Enden der Kette befindlichen Knöchelchen zu den mit diesen in Zusammenhang stehenden Theilen. Die diese Bewegungen leitenden Muskeln sind:

2) M. stapedius. Dieser kleinste, aus quergestreiften Elementen bestehende Muskel lagert ursprünglich der Außenfläche des Petrosum an, wird aber mit der Ausbildung der hinter der Paukenhöhle herabziehenden Strecke des Fallopischen Canals in die Eminentia pyramidalis mit eingeschlossen, deren Binnenraum er einnimmt. Seine dünne Endselhe begibt sich durch die feine Öffnung auf der Spitze jener Erhebung in die Paukenhöhle und befestigt sich am Capitulum des Steigbügels, am hinteren Rande desselben. Der Muskel bewirkt durch Anziehen des Steigbügels gegen die Fenestra ovalis eine Einwirkung der Steigbügelplatte auf das Labyrinthwasser (Perilymphe).

Die Schleimhaut der Paukenhöhle überkleidet die knöchernen Wandungen derselben als eine dünne, mit ihrer tieferen Lage zugleich das Periost vorstehende Membran, welche auch über sämtliche in die Paukenhöhle eingelegte Gebilde sich fortsetzt, sowie auf die mediale Fläche des Trommelfells, bei welchem ihrer bereits gedacht wurde. Ebenso erstreckt sich sie über die Membrana tympani secundaria der Fenestra triqueta und auf beide Flächen der Membrana obturatoria des Steigbügels. Indem sie auch die zwischen dem langen Fortsatz des Amboß und dem Stiele des Hammers hindurch tretende Chorda tympani (S. 535) überkleidet und sich dabei faltenförmig von dem oberen Umfange des Trommelfells her nach innen und abwärts erstreckt, bildet sie mit dieser Duplicatur die Trommelfelltaschen, die als vordere und hintere unterschieden werden, beide durch den Hammer von einander getrennt. Die sie bildenden Falten der Schleimhaut (Hammerfalten) begrenzen den abwärts sehenden Eingang in jene Taschen mit abwärts concavem Rande. Der Rand der hinteren Falte umschließt die Chorda tympani (Fig. 555). Die von dieser Falte gebildete Tasche ist tiefer als die vordere, welche auch weniger breit ist, aber gleichfalls mit ihrer Falte eine Strecke weit die Chorda tympani einhüllt. Aus dem hinteren Räume der Paukenhöhle setzt sich die Schleimhaut in die Auskleidung der Cellulae mastoideae fort. Sie ist hier noch bedeutend dünner und ärmer an Blutgefäßen.

Im fotalen Zustande stellt die Paukenhöhle noch keinen luftgefüllten Raum dar, und der Schleimhautüberzug der medialen Wandfläche bildet eine dicke Schichte von Gallertgewebe, die bis zum Trommelfell reicht. Erst nach der Geburt gestattet eine Reduction dieses Gallertgewebes die Bildung eines vom Pharynx her mit Luft sich füllenden Raumes, von welchem aus später auch die Pars mastoides des Schläfenbeins pneumatisch wird.

Die gesamte Schleimhaut der Paukenhöhle bietet beim Erwachsenen glatte Oberflächen. Ihr Epithel besteht aus einer einfachen Lage niederer Zellen, welche gegen

§ 335.

Aus dem vorderen, medial gerichteten Raume der Paukenhöhle setzt sich die Tuba Eustachii (Sulpinx, Ohr trompete) fort. Sie bildet ein circa 36 mm langes Rohr, welches in der angegebenen Richtung zugleich etwas nach abwärts zieht und in den Pharynx, an dessen oberer seitlicher Wand, ausmündet. Mit dem Horizonte bildet der Verlauf der Tuba einen Winkel von 40°. Sie bedingt eine Verbindung des Pharynx mit der Paukenhöhle, die dadurch mit dem umgebenden Medium communicirt, und wie ihre Nebenhöhlen, die Cellulae mastoideae, Luft führt. Nach der Beschaffenheit ihrer Wandungen gliedert sich die Tuba in zwei Abschnitte. Der erste beginnt mit dem wenig deutlich abge-
grenzten Ostium tympanicum und erstreckt sich, den Semicanalis tubae Eustachii einnehmend, durch die mediale Partie der Felsenbein-Pyramide (vergl. Fig. 139). Er besitzt also größtenteils knöcherne Wandungen und nur die schmale Communication mit dem darüber liegenden Semicanalis tensoris tympani erfordert einen membranösen Abschluss. An die an der Basis cranii zum Vor- schein kommende Mündung der knöchernen Tuba fügt sich eine etwas längere Strecke, deren Wandung durch eine Knorpelplatte gestützt wird. Dieser zweite Abschnitt setzt sich in eine trichterförmige Erweiterung fort, welche das Ostium pharyngeum vorstellt. In Fig. 556 ist die knorpelige Tuba Eustachii an der Basis cranii in ihren Lagebeziehungen zu benachbarten Skelettheilen dargestellt.

Der Knorpel dieser Strecke der Tuba bildet eine terminal sich verdickende Lamelle, welche die Gestalt einer lateralen und abwärts offenen Rinne besitzt (Fig. 556). An derselben vollzieht eine Membran den Abschluss zum Canal. Während das Lumen der knöchernen Tuba stets offen ist, von ca. 2 mm Weite, ist jenes der knorpeligen Tuba auf der größten Strecke ihrer Länge eine enge, verticale Spalte. Am Beginne ist der Knorpel vorwiegend oben und later- nal entfaltet, später gewinnt er in der medialen Wand der Tuba bedeutendere Ausdehnung. Auf Querschnitten erscheint daher der Tubenknorpel hakenförmig gebogen (vergl. Fig. 557). Nach und nach wird unter Zunahme des Volums des Knorpels die mediale Wand ausschließlich vom Knorpel gebildet, der mit seinem schmäleren Theile sich noch über die obere Wand erstreckt. Der Knorpel bettet sich dabei in eine flache Furche an der Wurzel des Processus pterygoideus des Keilbeines (S. 168).

Die Schleimhautauskleidung der Tuba kommt im Wesentlichen mit jener des Cavum pharyngo-nasale überein, in welche sie sich unmittelbar fortsetzt.

Gegen das Ostium tympanicum zu nimmt die Dicke der Schleimhaut ab, und auch das Epithel geht allmählich unter Verringerung seiner Schichten in das einfache Plattenepithel der Paukenhöhle über. Auch lymphoide Zellwucherungen fehlen der Tubenschleimhaut nicht, sie bilden nicht selten größere Massen. Wenn es auch zweifellos ist, dass die Tuba eine Communication der Paukenhöhle mit dem Pharynx vermittelt, so ist doch die Frage nach dem Zustande des Lumens der Tuba im Leben noch nicht endgültig zu beantworten. Es scheint, dass die enge Spalte im Leben durch Kontakt der medialen und lateralen, resp. hinteren knorpeligen und vorderen membranösen Wandfläche in einiger Entfernung vom Ostium tympanicum geschlossen ist, wenn auch dieser Verschluss keine große Widerstandsfähigkeit darbietet. Bezüglich der Wirkungen der zum Theil von der Tuba ihren Ursprung nehmenden Muskeln des weichen Gaumens ist gewiss die die Tuba eröffnende Wirkung des Tensor veli palatini (S. 466) die relativ bedeutendere, gegen welche die als antagonistisch aufgefasste des Levator veli palatini zurücktritt. Bei der Beurtheilung dieser Nebenwirkungen der genannten Muskeln hat
man sich vor Allem zu vergegenwärtigen, dass die Ursprungsbeziehungen der Muskeln zur Tuba keine constanten sind, wie schon die so sehr schwankenden Angaben erkennen lassen, und dass folglich in jenen Muskeln kein von vorne herein auf Bewegung der Tubenwandung gerichteter Apparat gegeben ist.

h. Äußerer Gehörgang und Ohrmuschel.

§ 336.

Als letzter Theil des gesammten Gehörapparates schliesst sich nach außen von der Paukenhöhle, und von dieser durch das Trommelfell geschieden, der äußere Gehörgang an, der sich in eine integumentäre Bildung, das äussere Ohr, fortsetzt.

Die Ohrmuschel, (Auricula) stellt den letzten und jüngsten dem Gehörgang zugeteilten Abschnitt vor, der erst bei den Säugethiere auftritt, nachdem bei den niederen Wirbeltieren das Integument nur vereinzelth, jenem nur entfernt ähnliche Bildungen lieferte. Dieser Theil des äusseren Ohres wird

Dem Anthelix der Vorderfläche entspricht eine tiefe, zum Theil durch Bindegewebe ausgefüllte Furchen, welche die Wölbung der Concha umkreist. An der letzteren stellt eine senkrechte Verdickeung (Agger) die Insertionsstelle des M. auricularis posterior vor.

Der Ohrrand besteht, wie der Knorpel des äußeren Gehörganges aus elastischem Knorpelgewebe (Netzknorpel), welches an einigen Partien die Beschaffenheit des Faserknorpels besitzt.

Wie das gesamte äußere Ohr durch Muskeln bewegt werden kann, welche von der Oberfläche des Schädels entspringen und an dem Knorpel des Ohres sich befestigen (S. 334), so kommen auch einzelnen Theilen des Ohrrandes Muskeln zu. In ihrem functionellen Werth befinden sich diese jedoch auf der tiefsten Stufe, denn es dürfte kaum eine Leistung, die doch nur eine Bewegung der betreffenden Knorpelstrecke sein könnte, von ihnen zu verzeichnen sein, wie sie denn auch, außer vielfachen Variationen ihres Volums, häufige Rückbildungen darbieten und in ihrer Mehrzahl so sehr von Bindegewebszügen durchsetzt sind, dass sie oftmales kaum als »Muskeln« angesehen zu werden verdienen. Sehr häufig fehlen einzelne derselben gänzlich.

Die gesamte Muskulatur vertheilt sich zwar auf beide Flächen des Ohres, liegt aber streng genommen auf einer und derselben Fläche des Ohrrandes, auf jener nämlich, welche der in den äußeren Gehörgang sich fortsetzenden Fläche abgekehrt ist. Es ist also nur die »Außenflächen« des Ohrrandes mit Muskeln ausgestattet, und durch die eigenthümlichen Krümmungen des Knorpels geschieht es, dass die Muskeln auf die vordere, laterale und auf die hintere, mediale Fläche des Ohres vertheilt erscheinen.

Diese Muskeln sind folgende:

2) M. helicis minor. Innerhalb der mit der vorige ist dieser Muskel dem aus der Concha hervortretenden Helix aufgelagert.

4) M. antitragicus. Lagert platt dem Knorpel des Antitragus auf und erstreckt sich dabei zuweilen auf die hintere Fläche. Seine Fasern sind wie jene des Tragi aufwärts gerichtet, gegen die untere Wölbung der Concha.

Diese sämtlichen Muskeln finden sich bei Säugetieren sowohl in mächtigerer Ausbildung, als auch mit bestimmten, oft sehr deutlich ausgesprochenen Leistungen. Sie sind bei diesen zum Theil von anderen, der mimischen Muskulatur des Kopfes angehörigen Muskeln ableitbar, und in dieser Beziehung ähnlich wie jene zu bezeichneten
Vom Gehörgange.

(vergl. § 107). Diese Zusammengehörigkeit haben sie auch noch beim Menschen bewahrt, indem sie sämmtlich vom N. facialis versorgt werden.

In dem Aufbau des gesammten vom Hörorgane dargestellten Apparates finden wir also, gleichwie bei dem anderen höheren Sinnesorganen, dem Auge, dem percipirenden Theile ganze Serien von Hilfsorganen successive zugegeben. Wie aber der percipirende Abschnitt, obwohl in beiden Organen gleich hochgradig differenziert, doch in jedem derselben eine ganz besondere, der spezifischen Funktion angepasste Ausbildung empfing, so dass nur in der fundamentalen Erscheinung Ähnlichkeiten bestanden, so sind auch an den aus der Umgebung hinzutretenden Hilfsorganen sehr bedeutend verschiedene Einrichtungen ausgeprägt, die ebenso verschiedenen Leistungen dienen. Aber bei allem bleibt als Gemeinsames die Verwendung des Integumentes zu einem Theile jener Hilfsorgane. Wenn also auch das Auge in seiner Netzhaut nicht direct integumentalen Ursprungs ist und das Ohr mit seinem Labyrinth sich weit von seiner ectodermalen Bildungsstätte entfernt, so haben doch beide wieder neue, obwohl verschiedenartige Beziehungen zum Integumente gewonnen, deren letzte in der Herstellung äußerer Theile als Hilfsorgane besteht.
Register.

A.

Acervulus 790.
Acetabulum 295.
Achillessehne 420.
Acinus 27.
Acromion 229.
Acus 836, 939, 945.
Aderrhaut des Auges 909, 914.
Aditus ad aquaeductum Sylvii 790.
» ad infundibulum 790.
» laryngis 522.
Alatergotisch 799, 800.
Ala cinerea 783.
» magna (temporalis) 166.
» parva (orbitalis) 164, 169.
» nasi 189.
Alisphenoidale 166.
Allantois 87.
Alveolargänge 531.
Alveolen der Lunge 531.
» der Zähne 192, 202.
Anboß 199, 935.
Ammonshorn 796, 799.
Anion 84.
Amphiarthrose 146.
Amputen 939.
Analphäsen 894.
Anastomosen der Arterien 631.
» der Nerven 849.
Annuli fibrosi cordis 626.
Annulus cruralis 414.
» inguinalis 365.
» tympanicus 170.
Ansae 847.
Ansae hypoglossi 850.
» Vienessen 875.
Antagonisten 302.
Antebrachium 238, 380.
Antelix 957.
Anthropotomie 2.
Antitragus 957.
Antrum Highmori 190.
Anns 494.
Aorta 644.
Aorten, primitive, 74.
Aortenhöhen 644.
Aponurosen 37, 297, 305.
Aponurosis palmaris 393.
» plantaris 426.
Apophyse 409.
Apophysis lenticularis 931.
Appendices epiploicae 493.
Appendix vermiformis 491.
Aqueductus cochleae 173, 943
» Sylvii 762.
» vestibuli 172, 936.
Arachnoidealscheide 906.
Arachnoidealzotten 815.
Arachnoides 811.
Arbeitstheilung 8.
Arbor vitae 781.
Arcus aortae 644.
» palato-glossus 464.
» palato-pharyngeus 464.
» plantaris 702.
» superciliaris 480.
» volaris 673, 675.
Arca germinativa 63.
» vasculosa 62, 74.
Areola mammae 896, 898.
Armuskeln 375.
Armmerven 831.
Arteria acetabuli 690.
» alveolaris inferior 655.
» alveolaris superior 656.
» anastomotica magna 697.
» angularis 650.
» anonyma 647.
» articularis genu 698.
» articularis genu superficialis 697.
» articularis genu suprema 697.
» auditiva interna 664.
» auricularis posterior 652.
Arteriae auriculares anteriores 653.
Register.

Arteria auricularis profunda 655.
- axillaris 661.
- basilicaris 663.
- brachialis 661.
- brachialis anterior 667.
- brachialis posterior 678.
- buccinatoria 656.
- bulbosa 692.

Arteriae cerebrales 659.

Arteria carotis cerebralis 657.
- carotis communis 648.
- carotis externa 649.
- carotis facialis 649.
- carotis interna 657.
- carpea dorsalis 673.
- caudalis 644.
- centralis retinæ 658.
- cerebelli inferior anterior 664.
- cerebelli inferior posterior 664.
- cerebelli superior 664.
- cerebri anterior 659.
- cerebri posterior 665.
- cervaalis ascendens 662.
- cervicis superficialis 662.
- cervicis profunda 665.
- chloriodea 659.

Arteriae cutáeae 638, 916.

Arteria circumflexa femoris externa 696.
- circumflexa femoris interna 696.
- circumflexa humeri anterior 670.
- circumflexa humeri posterior 670.
- circumflexa ilii 693.
- circumflexa scapulae 679.
- clitoriis 692.
- cocinea 681.
- colica dextra 685.
- colica media 685.
- colica sinistra 685.
- collateralis media 671.
- collateralis radialis 671.
- collateralis ulnaris inferior 671.
- collateralis ulnaris superior 671.
- comites nervi ischiadici 690.
- communicantes anterior 659.
- communicantes posterior 660.
- coronaria cordis dextra 646.
- coronaria cordis sinistra 646.
- coronaria labii inferioris 650.
- coronaria labii superioris 650.
- coronaria ventricularis dextra 683.
- coronaria ventricularis sinistra 681.
- corporis callosi 639.
- cruralis 694.
- cystica 682.
- deferentialis 691.

Arteriae digitales communes dorsales (pedis) 700.
- digitales communes manus 675.
- digitales communes plantares 703.
- digitales dorsales manus 673.
- digitales dorsales pedis 700.
- digitales tarsoes 673.

Arteria dorsalis clitoriis 692.
- dorsalis linguae 659.

Arteria dorsalis nasi 659.
- dorsalis pedis 699, 702.
- dorsalis penis 692.
- dorsalis scapulae 663.
- epigastrica inferior 693.
- epigastrica superficialis 691.
- epigastrica superior 668.
- ethmoidalis 658.
- femoralis 694.
- fossae Sylvii 659.
- frontalis 659.

Arteriae gastricae breves 683.

Arteria gastro-duodenalis 683.
- gastro-epiploica dextra 683.
- gastro-epiploica sinistra 683.
- glutea inferior 659.
- glutea superior 688.
- haemorrhoidalis externa 692.
- haemorrhoidalis inferior 692.
- haemorrhoidalis media 692.
- haemorrhoidalis superior 683.

Arteriae helicinae 599.

Arteria hepatica 682.
- hyogastrica 658, 924.
- hypogastrica 688.

Arteriae jejuneales 684.
- ilei 684.

Arteria ileo-colicæ 684.
- ileo-humoris 689.
- ilica 679.
- ilica communis 687.
- ilica externa 693.
- ilica interna 688.
- infraorbitalis 656.
- inguinalis 695.

Arteriae intercostales 678.
- intercostales anteriores 668.
- intercostales posteriores 678.

Arteria intercostalis prima 667.
- intercostalis suprema 667.
- interossea communis 674.
- interossea dorsalis 673.
- interossea externa 674.
- interossea interna 674.
- interossea perforans 674.
- interossea recurrents 674.

Arteriae interosseae colares 673.
- jejuneales et dei 664.

Arteria ischiadica 689.
- labialis posterior 692.
- laryngalis 658.
- laryngea superior 619.
- laryngea inferior 602.
- lateralis unaris posterior 637.
- lienalis 683.
- lingualis 650.
- lumbaris 650.
- lumbaris ima 687.

Arteriae maleolares anteriores 659.
- mammaries extreneæ 667.

Arteria mammaries internæ 667.
- masseterica 656.
- mastoidea 652.
- maxillaris externæ 650.
Register.

Arteria maxillaris interna 655.
 » mediana 674.
Arteriae mediastinales anteriores 667.
 » mediastinales posteriores 678.
Arteria meningea anterior 658.
 » meningea media 655.
 » meningea parva 655.
 » mentalis 656.
 » mesaraica inferior 655.
 » mesaraica superior 683.
 » mesenterica inferior 685.
 » mesenterica superior 683.
 » metacarpea dorsalis 665.
 » metatarsae 700.
 » musculo-phrenica 668.
 » myo-mastoidea 653.
 » nasalis anterior 658.
 » nasalis lateralis 650.
 » nasalis posterior 656.
 » nutritia femoris inferior 697.
 » nutritia femoris magna 697.
 » nutritia humeri 671.
 » nutritia tibiae 702.
 » obturatoria 690.
 » occipitalis 652.
Arteriae oesophageae 678.
Arteria omphalo-nasenterica 74, 639.
 » ophthalmica 637.
 » palatina ascendens 650.
 » palatina descendens 656.
 » palatina major 636.
Arteriae palatinae minores 656
Arteria palpebralis lateralis 658.
 » palpebralis media 658.
 » pancreato-duodenalis inferior 683.
 » pancreato-duodenalis superior 683.
 » penis 692.
 » perforans inferior 674.
 » perforans prima 696.
 » perforans secunda 697.
 » perforans superior 674.
 » perforans tertia 697.
 » pericardiaco-phrenica 676.
 » perinei 697.
 » peromae 702.
 » peromae ascendens 702.
 » peromae descendens 702.
 » pharyngea ascendens 654.
 » pharyngo-basilaris 652.
 » pharyngo-palatina 650.
 » phrenica inferior 679.
Arteriae phrenicae superiores 678.
Arteria plantaris 701.
 » poplitea 697.
 » princeps pollicis 673.
 » profunda brachii 671.
 » profunda cerebri 665.
 » profunda clitoridis 692.
 » profunda femoris 695.
 » profunda linguae 650.
 » profunda penis 692.
 » pterygoideae 656.
 » pterygo-palatina 656.
 » pudenda communis 692.

Arteria pudenda externa 695.
 » pulmonalis 641, 643.
 » radialis 672.
 » radialis 650.
 » recurrens interossea 674.
 » recurrens radialis 672.
 » recurrens tibialis 699.
 » recurrens utaris 673.
 » renalis 680.
Arteriae sacrales laterales 688.
Arteria sacralis media 614 687.
Arteriae scrotales anteriores 695.
 » scrotales posteriores 693.
 » septi unium 657.
Arteria spermatica externa 693.
 » spermatica interna 680.
Arteriae spinales 663.
Arteria sterno-clavomastoidea 652.
 » stromastoidea 653.
 » subclavia 661.
 » submentalis 650.
 » subscapularis 669.
 » supraorbitalis 658.
 » suprarenalis inferior 680.
 » suprarenalis media 668.
 » suprarenalis superior 679.
Arteriae surales 698.
 » tarseae 700.
Arteria temporalis media 633.
 » temporalis profunda 636.
 » temporalis superficialis 653.
 » thoracica longa 669.
 » thoracica prima 669.
 » thoracica suprema 669.
 » thoracica teria 659.
 » thoracico-acromialis 669.
 » thyrocra 657.
 » thyroidea inferior 661.
 » thyroidea superior 649.
 » tibialis antica 698.
 » tibialis postica 704.
 » transversa colli 665.
 » transversa faciei 653.
 » transversa perinae 692.
 » transversa scapulae 666.
 » tympanica 655.
 » utaris 673.
 » umbilicalis 691.
 » uterina 691.
 » vertebralis 663.
 » vesicalis 691.
 » Vidiana 657.
 » voralis indicis radialis 673.
Arterien 630.
Arteriensystem 639.
 » Anlage desselben 79, 639.
Arterienweand, Bau desselben 632.
Arthrodie 672.
Articulationen 443.
Articulatio acromio-claviculair 232.
 » atlanto-epistrophoealis 260.
 » atlanto-occipitalis 296.
Articulatio brachio-radialis 241.
 » brachio-ulnaris 241.
 » calcaneo-cuboidea 288.
 » carpalis 252.
 » costo-sternalis 451.
 » costo-vertebralis 149.
 » coxae 268.
 » crania-vertebrais 205.
 » erico-arytaenoidea 517.
 » erico-thyreoida 516.
 » cubiti 241.
 » digitorum manus 256.
 » digitorum pedis 290.
 » genou 247.
 » humeri 237.
 » metacarpo-carpalis 253.
 » metacarpo-phalangea 255.
 » metatarso-phalangea 290.
 » occipitalis 205.
 » radio-carpalis 251.
 » radio-ulnaris superior 241.
 » radio-ulnaris inferior 242.
 » sacro-iliaea 260.
 » sterno-clavicularis 233.
 » sterno-costalis 151.
 » talo-calcaneo-navicularis 286.
 » talo-cruralis 285.
 » tarso-metatarsen 289.
 » tibio-fibularis 278.

Astragalus 280.
Atavismus 11.
Allmungsorgane 512.
Atlas 125.
Atium 621.
Augapfel, Aufbau desselben 904.
Augen 904.
Augenblase 926.
Augenbrauen 904.
Augenkammern 916.
Augenlider 928.
Augenlidbänder 930.
Augenmuskeln 927.
Augenmuskelnerv 828.
Augenthal 930.
Augenwimpern 929.
Augenwinkel 929.
Auricula 956.
Ausführung von Drüsen 27.
Axenband des Hammers 952.
Axencylinder 51.

B.
Backzähne 454, 454.
Bänder 418.
Baldrüsen 460.
Balken 766, 797.
Balkenstrahlung 809.
Band scheiben 137.
Bartholin'sche Drüsen 602.
Basis der Hrnsteile 785.
Bauch 361.
Bauchaorta 679.
Bauchfell 509.

Bauchhöhle 509.
Bauchmuskeln 361.
Bauchnabel 81.
Bauchplatten 81.
Bauchpresse 360.
Bauchspeicheldrüse 495.
Becken 262.
Beckenausgang 262.
Beckenaxe 263.
Beckeneneigung 263.
Begattungssorgane 593.
Belegknochen 106.
Bindearm der Vierhügel 785.
Bündegewebe 31.
Bindelhaut 931.
Blase 532.
Blindung 914.
Blinddarm 490.
Blut 614.
Blutadern 631.
Blutgefäße 630.
Blutgefäßen 540.
Bocksharre 959.
Bogengänge, häufige 936.
 » knöcherne 939.
Bowman'sche Drüsen 474.
 » Kapsel 548.
Brachio conjunctiva 785.
Bronchi 525.
Bronchi 529.
Bronchialdrüsen 783.
Bronchioli 533.
Brücke 762, 775.
Brücke'scher Muskul 915.
Brückenarm 775.
Brückenhege 761.
Brückenkerne 776.
Brüste 896.
Brunner'sche Drüsen 487.
Brustregion 351.
Brustbein 147.
Brustfell 534.
Brustgang 738.
Brustkorb 143, 152.
Brustmuskeln 551.
Brustwarzen 895, 898.
Brustwirbel 127.
Bulbus oertiae 654.
 » artériosus 639.
 » oculi 904.
 » olfactorius 794.
 » vestibuli 601.
Bursa omentalisis 511.
Bursae mucosae 306.
 » mucosae subcutaneae 885.
Busen 897.

C.
Calamus scriptorius 770.
Calcaneus 280.
Calvar aris 797.
Calycae renis 547, 551.
Camereae oculi 916.
Canalis alveolaris 202.
 » caroticus 173.
 » centralis 733.
 » Cloqueti 924.
 » cochlearis 937.
 » condylodeus 461.
 » Fallopii 174.
 » Fontanae 174.
 » Haueri 413.
 » hypoglossus 166.
 » incisivus 192, 440.
 » infraorbitalis 491.
 » inguinalis 370.
 » lacrymalis 191.
 » masculo-palatinus 440.
 » Nuckii 573.
 » obturatorius 259, 402.
 » Petiti 911, 925.
 » pterygo-palatinus 209.
 » reuniens 937.
 » sacralis 131.
 » Schlemmii 912, 917.
 » semicircularis 936.
 » spiralis modiolus 945.
 » Vidianus 168.
Canaliculi caroticoc-tympanici 173.
 » lacrymale 932.
Canalicus pharyngens 168.
 » tympanicus 173.
Caudus 929.
Capillaren 638.
Capsula glassonii 504.
 » supercavallis 879.
Cupul galliaginii 594.
Cardia 481.
Caro quadrata Sylvii 430.
Carotiden 648.
Carpalgelenk 252.
Carpo-metacarpalgelenk 253.
Carpus 244.
Cartilagines sesamoideae 180.
Cartilago alaris 189.
 » arcylaenodea 516.
 » cricoides 513.
 » cuneiformis 522.
 » epiglottis 547.
 » interarticularis 145.
 » Santoriniana 317.
 » sepli nasi 180.
 » thyroidea 514.
 » triangularis 243.
 » triangularius nasi 189.
 » trilicea 515.
 » Wrisbergii 522.
Carnesca inclymalis 932.
 » sublingualis 440.
Carnunculae myrtiformes 585.
Cauda equina 847.
Caudalwirbel 134.
Caudex cerebri 767.
Cavitas tympanica 948.

Carum buccae 438.
 » oris 438.
 » pharyngo-laryngeum 472.
 » pharyngo-nasale 472.
 » praeperitoneale 369.
 » subarachnoidea 814.
Cellulae aereae 531.
 » ethmoidales 185, 470.
 » mastoidae 949.
Cement 447.
Centralcanal des Rückenmarks 745, 752.
Centraffurchen 804.
Centrafficchen 778.
Centrum tendineum 359.
 » Vienasseni 809.
Cerebellum 762, 776.
Cerebrum 766.
Cereumen 894.
Cervicalregion 343.
Charniergelenk 147
Chiasma nervorum opticorum 791, 793.
 » tendinum 384.
Chiasm 467.
Chorda dorsalis 69, 190.
 » transversa 243.
 » tympani 833, 835, 953.
 » vorticis 524.
Chorda tendinea 640.
Chorioides 906, 914.
Chorion 88.
Chylus 485, 740.
Chylusgefäße 738.
Chymus 485.
Ciliarrarterien 916.
Ciliarfortsätze 944.
Ciliarkörper 944.
Ciliarmuskel 945.
Cilen der Augenlider 930.
Cingulum 810.
Circuitus arteriosus iridis 917.
 » arteriosus Willidi 660.
 » venosus Ridley 744.
Cisterna chyli 738.
Clarkesche Sinülen 754.
Clausstrum 808.
Clava 770.
Clavicula 231.
Cliloris 592, 601.
Climus 465.
Cloake 478.
Cochen 937, 940.
Coeccum 490.
Coelom 433.
 » Bildung desselben 69.
Collateralkreislauf 631.
Columnae semiunalis 594.
Colon 490.
Colosstrum 897.
Columnae Berlini 547.
 » fornicis 789, 795.
 » Marguayii 494.
 » rugosum 586.
 » resicularedes 754.
Commissuren des Rückenmarks 754, 755.
Commissura anterior cerebri 755.
" magna cerebri 793, 798.
" media cerebri 790.
" mollis 790.
" posterior cerebri 799.
Complementärraum der Pleura 536.
Conarium 791.
Concha 857.
" Semicircularis 135.
" sphenoidealis 166.
Conchae nasii 184, 468.
Condylarthrosis 117.
Conus arteriosus 618.
" terminalis 748.
Conjugata 263.
Conjunctiva 909, 931.
Coriim 882, 884.
Cornea 906, 911.
Corniciilum 317.
Cornu Ammonis 8.
Corona ciliaris 914.
" radiata 810.
Corpus callosum 766, 795, 798.
" candidans 791.
" cavernosum clitoridis 601.
" cavernosum urethrae 596.
" dentatum cerebeui 781.
" dentatum olivae 771.
" geniculatum laterale 789.
" geniculatum mediale 785.
" Highmori 559.
" luteum 379.
" mamillare 791.
" quadrigeminum 763, 784, 786.
" restiforme 770, 774.
" spongiosum 596.
" striatum 764, 795, 800.
" vitreum 977, 923.
Corpuscula tactus 901.
Corpusculum triticeum 515.
Cortisches Organ 944.
Corti'sche Pfeiler 946.
Corti'scher Bogen 947.
Costae 120.
Cowper'sche Drüsen 597.
Cranium, knöchernes 157.
Crista acoustica 948.
" ethmoidalis oss. maxillae superioris 192.
" galli 183.
" lacrymalis 187.
" nasalis 192.
" spiralis 945.
" turbinalis 191.
" restiilum 931.
Cubitus 239.
Conus 504.
Cuticulae 25.
Cutis 882.
Cylinderc epithel 27.
Cystis fellea 533.

D.
Dachkern 781.
Dannu 603.
Damnmuskeln 603.
Dammhaut 592.
Darmbein 257.
Darmkanal 477.
Darmnabel 81.
Darmwallen 393.
Deckknöchchen 466.
Declive 779.
Decussatio pyramidum 769, 772.
Deltauuskeln 373.
Dentes 446.
" bicuspis 453.
" canini 452.
" cuspidi 452.
" incisores 451.
" molares 453.
" praemolares 453.
Denys sapientiae 455.
Dentige 447.
Derma 884.
Diaphagma 357.
" oris 342.
" pelvis 508.
" urogenitale 596.
Diaphyse 192.
Diarthrosis 110.
Diastole 618.
Dickdarm 490.
Dickdammkopf 492.
Didymis 559.
Differenzierung 8.
Diploe 97.
Diverticulum Vateri 504.
" ilei 489.
Dornfortsatz 122.
Dorsalaponeurose der Finger 397.
Dorsalskler des Rückenmarkes 754.
Dottergang 87.
Dottersack 80, 87.
Drehgelenk 418.
Drusen, Bau derselben 27.
" acinose 28.
" tubulose 27.
Ductus recti 560.
Ductus ureriosus Botalli 641.
" Bartholinianus 444.
" biliferi 503.
" choledochus 501.
" coceleirius 937.
" Curieri 705.
" cysticus 503.
" ejaculatorius 566.
" endodaphaticus 936.
" hepaticus 497, 503.
" lactiferi 896.
" naso-lacrimalis 470.
" omphalo-entericus 87, 477, 489.
" pancreaticus 493.
" papillares 549.
Ductus parotidens 445.
 » Rivini 443.
 » Stenonianus 443.
 » submaxillaris 444.
 » thoracicus 748.
 » venosus Arantii 708.
 » Whartonianus 444.
 » Wirsungianus 493.

Dundarum 485.
Duodenum 486, 488.
Duramater 815.
Duralscheide 906.

E.
Ecke 957.
Eckzähne 453.
Ectoderm 64.
Ei 38, 575.
Eichel, der Clitoris 602.
 » des Penis 596.
Eierstock 573.
Eileiter 579.
Eingeweide 13.
Eizelle 58.
Elastisches Gewebe 39.
Elfenbein 447.
Ellbogengelenk 241.
Email 447.
Embryo 66.
Eminentia capitata 235.
 » collateralis 501.
 »deo-pectinea 259.
 » intercondylica 271.
Eminentiae teretes 782.
Emissaria 177.
Enarthrosis 117.
Endocardium 627.
Endolymphe 943.
Entoderm 64.
Entwicklungsgeschichte 57.
 » Bedeutung derselben 92.
 » postembryonale 91.
Ependym 804.
Epiphragma 465.
Epicondylus 235, 268.
Epidermis 882.
Epidermoidalgebilde 886.
Epidermidis 562.
Epiglottis 547.
Epiglottiswulst 523.
Epiphysen der Knochen 402.
Epiphysis cerebri 763, 790.
Epiploa 541.
Epistrophus 426.
Epithelgewebe 22.
Erbsenbein 243.
Ermährungsfächer der Knochen 99.
Eustachische Klappe 622.
 » Tuba 954.
Excavatio recto-uterina 494, 551.
 » recto-vesicalis 494, 554.

Register.

F.
Facies auricularis 132.
Falx cerebelli 816.
 » cerebri 813.
Fascia buccopharyngea 331.
 » cervicalis 343.
 » Cooperi 570.
 » dentata 799.
 » dorsalis manus 393.
 » hypogastrica 609.
 » ilaca 609.
 » infraspinata 374.
 » ilaca 403.
 » lumbodorsalis 314, 317.
 » myo 341.
 » parotido-masseterica 443.
 » pelvis 609.
 » penis 599.
 » perinei 609.
 » subscapularis 375.
 » superficialis abdominis 362.
 » Tenonii 928.
 » temporalis 338.
 » transversa 368.
Fascien 304.
Faserhaut des Auges 904.
Faserknorpel 39.
Felsenbein 469.
 » Femur 266.
 » Fenestra ovalis 173, 941.
 » rotunda 173, 941.
 » trigonata 173, 941.
Fersenbein 280.
Fettgewebe 36.
Fettpolster der Haut 884.
Fibrae arcuatae 770.
Fish 272.
Filum terminale 748, 758.
Fimbriae des Ammonshorns 799.
Fimbriae oviductus 179.
Finger 299.
Pissura Glaseri 176.
 » occipitalis 215.
 » petro-sphenoidalis 215.
 » petro-lympanica 176.
 » Sylvii 794, 804.
 » transversa cerebri 763, 795.
Flecke, gelber 910, 923.
Fleisch 293.
Fleischhaut des Hodensackes 600.
Flexura sigmoidea 493.
Flaccus 779.
Flügelfortsatz 468.
Flügelgaumengrube 209.
Flügelmuskel 339.
Fœtus 66.
Folium cacuminis 779.
Folliculus dentis 949.
 » Graafii 574.
 » pili 887.
Fontanelle 210.
Fonticuli 210.
Register.

Foramen coecum ossis frontis 218.

» coecum linguae 538.
» condyloideum anterius 161.
» condyloideum posterius 161.
» ethmoidale 210.
» incisivum 216.
» infratroitale 191.
» intervertebrale 122.
» ischiadicum majus 262.
» ischiadicum minus 262.
» jugulare 243.
» jugulare spirale 717.
» lacera 215.
» Magendii 784.
» magnum 159.
» mandibulare 202.
» mentale 201.
» Magendii 784.
» » Wuns/ov 511.
» Mandibulare 202.
» M lacerum 215.
» Magendii 784.
» » Magendii 784.
» Mandibulare 202.
» M lacerum 215.
» » Wuns/ov 511.

Foramina nutritia ossium 99.

Foramen, occipitale 169.

» oburatorium 257.
» opisthion 169.
» ovale (oss. sphenoides) 166.
» ovale (ost. cordis) 622.
» palatinum 216.
» parietale 178.
» quadrilaterum 359.
» Ririni 949.
» rotundum 166.
» sacrale 433.
» sphenopalatinum 209.
» spinosum 166.
» stylo-mastoideum 172.
» supraorbitalis 179.

Foramina Thebesii 711.

Foramen transversarium 124.

» vertebrale 121.
» Winslowi 511.

Formatio reticularis des Rückenmarks 752.

» der Medulla oblongata 773, 776.

Forceps 818.

Forne cerebri 765, 793, 798.

Fossa occipitalis 374.

» canina 191, 211.
» ileopectinea 443.
» infraspinata 229.
» infratemporalis 208.
» intercondylaea 267.
» lacrymalis 130.
» nasociliaris 357.
» orbitalis 411.
» patellaris 812, 924.
» poplitea 411.
» pterygoidea 168, 215.
» ptérygopalatina 209.
» sacri bregmatis 310.
» sphenomaxillaris 209.
» sigmoides 239.
» subcapularis 229.
» supraspinata 229.
» Sytin 794.
» temporalis 208.
» transversa hepatis 499.

Fossa triangularis 957.

Fovea jugularis 343.

» oralis 414.
» supracriciclaris 343.

Frenulum ciliaris 601.

» epiglottidis 532.
» labii inferioris 440.
» labii superioris 446.
» linguae 440.
» praeputii 598.
» veli medullaris anterioris 783.

Frontalebene 14.

Frucht 66.

Fruchthof 63.

Fruchthüllen 84.

Fruchtwasser 86.

Funiculus anterior 751.

» canina 751, 759, 770.
» gracilis 751, 757, 770.
» lateralis 751.
» posterior 751.
» Rolandi 770.
» spermaticus 568.
» umbilicalis 89.

Furchen des Großhirns 804.

Furchungsproces 61.

Fuß der Hirnstiele 783.

Fußzelenke 284.

Fußsohle 279.

Fußwurzel 279.

G.

Galea aponeurotica 335.

Gallenblase 504.

Gallengänge 503.

Gallengangcapillaren 502.

Gallertgewebe 31.

Gallertkern 121, 127.

Ganglien der Cerebrospinalnerven 819.

» » Spinalnerven 847.

Ganglion cervicale inferius 875.

» cervicale medium 874.
» cervicale suprimum 840, 873, 874.
» ciilare 823, 873.
» coccygeum 875.
» Gasseri 825.
» geniculi 833.
» impar 875.
» interarticulare 648.
» jugulare gloso-pharyngei 837.
» jugulare rami 833.
» mand. 820.
» ophthalmoicum 823.
» olivum 832, 873.
» petrosum 837.
» semilunare 843.
» solare 877.
» sphenopalatinum 829, 873.

Ganglia spinalia 189, 846.

Ganglion sublinguale 832.

» submaxillare 832.

Ganglia sympathica 873.
Register.

Gangliennervensystem 870.
Ganglienzellen 59.
> der Spinalganglien 819.
> der sympath. Gangl. 873.
Graue becher 216, 438.
> weicher 438, 464.
Gaumenbein 194.
Gaumenhöhle 464.
Gaumenfalten 440.
Gaumenleisten 440.
Graumensegel 464.
Gehirnleisten 440.
Gebärmutter 580.
Gefaßhaut 906.
Gefaßhof 68, 74.
Gefäße, Bau der 819.
> der Venen 635.
Gegenkämpe 957.
Gegenschein 957.
Gehirn, Anlage desselben 71.
> Bau desselben 767.
> Differenzierung desselben 759.
Gehirngang, äußerer 170, 956.
> innerer 171.
Gehörknöchelchen 199, 950.
> Articulationen desselben 956.
Gehörorgan 934.
Gekröse 509.
Gelatinöse Substanz des Rückenmarks 753.
Gelenke, Bau der 113.
> Entwicklung derselben 111.
Gelenkfortsätze 122.
Gelenkkapsel 114.
Gelenkknorpel 98, 113.
Gelenkkopf 117.
Gelenkpflanze 117.
Genitalia 833.
Genitalbänder 591.
Genitalwulst 591.
Geriatschorn 902.
Geschlechtsorgane 556.
Geschmackskörper 903.
Gesichtsknochen 207.
Gesichtsmuskeln 326.
Gewebe 20.
Gewebelähme 21.
Gewölbe des Gehirns 797.
Gießbeckenknorpel 516.
Gingiva 440.
Ginglymus 117.
Glandula acini 440.
Glandulae labiales 442.
> lacrymalis 931.
> lactiferae 895.
Glandulae linguales 443.
> lymphaticeae 733.
> Littorii 597.
> glomeriformes 892.
> Metamorph 930.
> molares 442.
> Papioli 815.
> pilosa 442.
Glandula parae 444.
Glandulae Peyeri 448.
Glandula pinealis 790.
> piloidea 791.
> prostatica 594.
Glandulae salivae 594.
Glandula sublingualis 443.
> submaxillaris 444.
Glandulae sudoriferae 594.
Glandula suprarenalis 546.
> thyroidea 539.
Glandulae tracheales 527.
Glandula thyreoides 537.
Glandulae Tysoniana 600.
Glanz ebcrinis 602.
> penis 596, 598.
Glasplatten 806, 923.
Gliedermaßen, Entwicklung derselben 82.
> Skelet der selben 226.
Glissonsche Kapsel 501.
Glandulae 934.
Globuli 548.
Glottis 524.
Grenzstrang 872.
Grenzstrang 872.
Grenzstreifen 789.
Grifflfortsätze 175.
Grimm darm 490.
Großhirn 764.
Gubernaculum Hunteri 563.
Gürtelschicht der Med. oblongata 774.
> der Schlägel 792.
Glykis des Großhirns 804.
Glycus fornicatus 804.
> hippocampi 805.
> uncinius 805.

II.
Haare, Entwicklung und Bau derselben 886.
Haargzaume 638.
Haarwurzeln 890.
Haarzellen 947.
Hakenbein 247.
Halsanschwellung des Rückenmarks 747.
Halsmuskeln 343.
Halswirbel 124.
Hammer 200, 950.
Hammerfalten 953.
Harnröhre 487.
> intercavernosa 648.
Glandulae cotygea 687.
> Couperi 597.
> ductus deferentia 648.
Glandulae lacrimalis 442.
> lacrymalis 931.
> lactiferae 895.
Harnröhre, männliche 593.
» weibliche 553, 555.
Haut 780, 783.
Haubenkerne 786.
Haustra coli 490.
Haut, äußere 882.
Hautmuskeln 295.
Havers'sche Canälen 97.
Helicotrema 941.
Helix 957.
Hemisphären des großen Gehirns 763, 794.
» des kleinen Gehirns 777.
Hepar 496.
Herz, Anlage desselben 70.
» Bau desselben 618.
Herzbeutel 628.
Hirnanhang 763, 791.
Hirnhäute 811.
Hirnkapsel 155.
Hirnsichel 815.
Hirnstiel 784, 785.
Hirnvontrikel 766.
Histologie 21.
Hoden 559.
Hodensack 600.
Hörner, graue, des Rückenmarks 747.
Hörner, des Rückenmarks 747.
Hornblatt 68.
Hornhaut 906, 914.
Hornknoten des Oberhaut 883.
Hornscheitel 789.
Huftbein 237.
Huftpfeiler 260.
Huftmuskeln 398.
Humerus 234.
Humor aqueus 912.
Hunter'scher Canal 413.
Hyalinknorpel 38.
Hyaloida 924.
Hydatiden des Nebenhodens 563.
Hymen 586.
Hypochondria 364.

Hypophysis cerebri 763, 791.
Hypothear 392.

I.
Jacobson'sche Anastomose 838.
Jacobson'sches Organ 441, 903.
Illeum 486, 489.
Jejunum 486, 489.
Ileosacralgelenk 234.
Impressiones digitatae 246.
Incisura cardinae 528.
» clavicularis 418.
» ethmoidalis 180.
» intertragica 957.
» ischiatica 239.
» jugularis sinisi 148.
» occipitalis 161.
» mastoidea 170.
Incisurae Santorinianae 956.
Incisura sigmoides 289.
» supraorbitalis 179.
» vertebrales 122.
Iacus 193, 951.
Infundibula 532.
Infundibulum 763, 791.
Inscriptiones tendineae 299.
Ipsel 794, 804.
Insertion 298.
Integumentum commune 881.
Interzellulärschicht 30.
Interparietale 160, 163.
Intervertebralscheiben 121.
Intestinum cocccum 421.
» colon 490.
» crassum 480.
» duodenum 488.
» jejunum 489.
» ileum 489.
» rectum 494.
» tenue 485.
Introdus vaginae 600.
Iris 906, 914.
Isthmus fascianum 438.
» tubae 579.
» des Urogenitalcanals 539.
Jochbein 196.
Jochbogen 208.
Juga alveolaria 192, 202.
Jugale 196.

K.
Kahnbein 245.
Kammern des Herzens 619.
Kammuskeln 497.
Kammuskeln des Herzens 624.
Kapsel, der Gelenke 114.
» des Linsenkernes 593.
Kapselbänder 114.
Kehldeckel 517.
Kehlkopf 514.
Keilbein 163.
Keilstrang 770.
Register.

Larina vasorum 414, 673.
Lambdanuli 163.
Lamina basilaris der Schädelknochen 941.
> cribrosa oss. ethmoidei 183.
> modiolis 941.
> papyracea 185.
> perforata posterior 892.
> perpendicularis 183.
> quadrigenina 762.
> spiralis membranae 944.
> spiralis ossea 944.
> terminalis 763, 795.
> vitrea 944.
Lamigo 886.
Lappen 28.
Lappen 28.
Lauens 785, 787.
Larynx 541.
Leber 496.
Lederhaut 482, 884.
Leerdarm 486.
Leiste der Antructa 957.
> gezähnte 799.
Leistenband 363.
Leistencanal 370.
Leistengraben 370.
Leistenringe 370.
Leitband 567.
Lema 930.
Lenniscus 785, 787.
Lendenanschwellung des Rückenmarks 747.
Lendenwirbel 839.
Lens crystallina 924.
Lidrinne 929.
Lieberkuhinsche Drüsen 488.
Lien 740.
Ligamentum acromio-claviculare 332.
Ligamenta alaria des Occipitalgelenkes 207.
> alaria genu 278.
> annularia 393.
Ligamentum annulare radii 242.
> annulare stapedis 954.
> opicis dentis 298.
> arcuatums 254.
> arcuatums inferius pubis 262.
> Bertini 289.
> Botali 643, 643.
> calcaneo-cuboideum 288, 291.
> calcaneo-fibulare 286.
> calcaneo-naviculare 288.
> capituli costae 150.
> capituli fibulare 278.
Ligamenta capitulorum ossium metacarpi volaria 252.
Ligamentum capsulare 112.
> carpi dorsale 253, 386, 391.
Ligamentum carpi intersosseus 252.
Ligamentum carpi volare 254.
Ligamenta carpo-metacarpea 253.
Ligamentum clavare 915.
Ligamenta coli 190.
> coli costae 150.
Ligamentum conicum 517.

Keimblase 63.
Keimbälter 65.
Keimdrüse 541, 556.
Keimepithel 574.
Kerkring'sche Falten 486.
Kern 15, 18.
Kernkörperchen 46.
Kerne 770.
Kiefergelenk 203.
Kiemenbogen 77.
Kiemenspalten 77.
Klappdeckel 794.
Klappen des Herzens 619.
> der Venen 635.
> der Lympkhgefäße 730.
Kleinhirn 762, 776.
Kleinhirnzelt 762, 776.
Knie des N. facialis 838.
> des Balkens 797.
Kniegelenk 274.
Kniehücker 785, 789.
Kniekehle 411.
Kniescheibe 273.
Knochen, Knochenzellen 41.
» Entwicklung derselben 100.
Knochenscheibe 273.
Knochen, Bau derselben 96.
> Entwicklung derselben 100.
Knochengefäße 41.
Knochenvenen 637.
Knochenzellen 41.
Knorpelgewebe 38, 41.
Körperkreislauf 613.
Kopfmuskeln 326.
Kopfskelet 153.
Kranz 117.
Kranzvenen 637.
Kreislauf 610.
> footaler 616.
Kreuzbänder des Kniegelenkes 277.
> des Fußes 415.
Kreuzhein 131, 136.
Krummdarm 486.
Kristallinse 924.
Kugelgelenk 447.

L.

Labyrinth des Siebbeneins 184.
Labyrinth des Hororgans 934.
> Bau derselben 943.
> Entwicklung derselben 934.
Labyrinthfasern 934.
Labyrinthe 184.
Lacertus fibrosus 376.
Lacunae Murgagaii 397.
Lacuna muscularis 414.
Register.

971

Ligamentum conoides 233.
 » coraco-acromiale 233.
 » coraco-brachiale 237.
 » coraco-clavicular 233.
 » coronarium hepatis 508.
 » costo-clavicular 233.
 » crico-arytaenoideum 516.
 » crico-thyreoideum 516.
 » crico-tracheale 516.
Ligamenta cruciata digitorum (manus) 393.
 » cruciata genu 275.
Ligamentum deltoides 285.
 » denticulatum 812.
Ligamenta flava 419.
Ligamentum fascia formae 417.
 » gastro-lienale 741.
 » Gimbernatii 365.
 » glosso-epiglotticum 460.
 » hepato-duodenale 181, 506.
 » hepato-gastricum 481, 506.
 » hepato-renale 507.
 » hepato-umbilicale 189, 709.
 » hyo-epiglotticum 518.
 » ileo-femorale 269.
 » ileo-lumbarle 261.
 » ileo-sacrale 261.
 » incisus posterior 531.
 » inguinalle 353.
 » intercavicular 233.
Ligamenta intercostalia 134.
 » internatatarsalia 289.
Ligamentum intermusculare brachii 376.
 » interossesum antebrachii 242.
 » interossesum cruris 278.
Ligamenta interspinatilia 138.
 » intertransversaria 138.
 » intervertebralia 137.
 » ischio-sacralia 261.
Ligamentum laterale cubiti 242.
 » laterale externum des Kiefer-
 gelenkes 203.
 » laterale genu 276.
 » lateralia dentis epistrophei 207.
 » latem uteri 382.
 » longitudinalle anterius 139.
 » longitudinalle posterius 139.
Ligamenta mallei 952.
Ligamentum malleoli tibiale 278.
 » macesum 276.
 » nuchae 139.
 » ovarii 372.
Ligamenta palpebratia 930.
Ligamentum patellae 273.
 » percinatum iridis 916.
 » phrenico-lienale 741.
 » pisio-hamatum 255.
 » pisio-metacarpum 355.
 » popliteum obliquum 312.
 » Pompili 363.
 » pterygo-maxillare 331.
 » pubo-femorale 269.
Ligamenta pubo-prostatale 595.
Ligamentum palmonale 535.
Ligamentum radiata 150.
 » rhomboideum 254.
 » sacro-coccygeum 139.
 » spiralear cochleae 944.
 » sterno-clavicular 233.
Ligamenta sterna-costalia 154.
Ligamentum stylo-hyoideum 205.
 » stylo-maxillare 204.
 » suspensorium epistrophei 208.
 » suspensorium hepatis 506.
 » suspensorium penis 595.
Ligamenta tarto-calcanea 286.
 » tarto-fibularia 286.
Ligamentum tarto-naviculare dorsale 288.
 » teres femoris 269.
 » teres hepatis 198.
 » teres uteri 583.
 » thyreo-arytaenoideum 517.
Ligamentum thyreo-hyoideum 515.
Ligamenta tibiae-fibularia 278.
Ligamentum tibio-fibularia 288.
 » transversum carpi 393.
 » transversum scapulae 230.
 » transversum volare 254.
 » trapezoideum 233.
 » triangulare 506.
 » tuberculi costae 150.
 » tuberis sacrum 261.
 » vaginale 393.
 » vesico-umbilicale laterale 691.
 » vesico-umbilicale medium 543.
 » 554.
 » vulvae 517, 524.
Ligamenta volaria carpi 254.
Ligula 783.
Limbus Vieuxsenni 622.
Linea alba 362.
 » Douglasii 368.
 » glutaear 277.
 » innominata 262.
 » mylo-hyoidea 202.
 » nuchae 162.
 » poplitea 271.
 » Spigelii 368.
 » temporals 208.
 » terminalis 262.
Lingua 456.
Lingula sphenoidalis 165.
 » cerebellae 778.
Linse, Bau derselben 921.
 » Entwickelung 904.
Linsenkern des Grosshirns 806.
Linsenkern 924.
Linsenstern 923.
Lippens 438.
Lippenscheren 442.
Linneur-cerebro-spinalis 811.
Littre'sche Drüsen 597.
Lobulus 28.
 » centralis 778.
Lobus auriculae 937.
 » caudatus 540.
 » centralis 794.
 » euneiformis 779.
Lobus frontalis 794.
 » occipitalis 794.
 » olfactorius 763, 794.
 » semilunaris 779.
 » Spigelii 500.
 » quadratus 500.
 » temporalis 794.

Lobus coeruleus 783.

Luckzähne 443.

Luftrohre 525.

Luftwege 512.

Luftzellen 531.

Lumbalbürzel 429.

Lungen 512, 529.

Lungenarterien 644, 643.

Lungenbläschen 531.

Lungenkreislauf 613.

Lungenvenen 709.

L.ückzähne 443.

Luftröhre 525.

Lumina 512.

Lymphdrüsen, Bau derselben 733.
 » Vertheilung derselben 735.

Lymphfollikel 731.

Lymphgefässe 728.

Lymphgefässsystem 728.

Lymphherzen 731.

Lymphknoten 733.

Lymphräume 721.

Lyra 798.

M.

Macula acustica 943.
 » cribrosa 937.
 » germinativa 576.
 » lutea 910, 931.

Magen 480.

Mahlzähne 453.

Malleus 271. 273.

Mallus 200, 950.

Malpighischer Glomerulus 542.

Malpighische Pyramide 547.
 » Körperecken 741.

Mamma 895, 896.

Man 464.

Mandel 464.

Mandibulä 809.

Mandibula 200.

Mandibularis malleol 200.
 » sterni 447.

Mark der Knochen 99.

Markkleist 777.

Markräume 97.

Marksehnen, vorderes 780.
 » hinteres 779.

Masidarm 490, 494.

Matrix magnis 894.

Maxilla inferior 200.

Medius acusticus externus 170, 956.
 » acusticus internus 171.
 » narium 468.

Weckelscher Knorpel 498.

Medianbene 14.

Mediastinum 527.

Medulla spinalis 745.

Medullarplatte 745.

Medullarrinne 67, 745.

Mebom'sche Drüsen 930.

Membrana atlanto-occipitalis 206.
 » capsularis 926.
 » chorioocipitaria 944.
 » devia 91.
 » Desmici 913.
 » flaccida 949.
 » hyaloidea 918, 924.
 » interoressa 440.
 » limitans 918.
 » mucosa 335.
 » obturatoria 257.
 » papillaris 926.
 » quadrangularis 518.
 » Reissneri 944.
 » reticulares 917.
 » suprachorioidea 914.
 » tectoria 947.
 » thyreo-hyoida 515.
 » tympani 919.
 » tympani secundaria 941.
 » vocalis 524.

Meninges 811.

Mesenteriolum 514.

Mesenterium 578, 509.

Mesocolon 540.

Mesoderm 65.

Mesogastrium 481, 544.

Mesorectum 949.

Metacarpus 248.

Metaner 68.

Milch 898.

Milchdrüsen, Bau derselben 896.
 » Entwicklung 895.

Milchgänge 897.

Milchsaftgefäße 740.

Milchzähne 451.

Milz 740.

Mittelkiefer 527.

Mittelkieferbein 594.

Mittelhirn 762.

Modiolus 940.

Molarzähne 473.

Moll'sche Drüsen 930.

Monro'sches Loch 789, 798.

Montgomery'sche Drüsen 809.

Mundbühne 527.

Mundhöhle 434, 438.

Muschen 468.

Musculus adductor coccygis 271.
 » adductor digitii quadi manus 395.
 » adductor digitii quadi pedis 428.
 » adductor hallucis 227.
 » adductor pollicis brevis 393.
 » adductor pollicis longus 389.
 » adductor femoris brevis 408.
 » adductor femoris longus 408.
 » adductor femoris magnus 409.
 » adductor femoris minimus 410.
Musculus sphincter pylori 483.
... sphincter vesicae 534.
... spinales cervicis 321.
... spinalis dorsi 321.
... splenius 317.
... stapediaus 925.
... sterno-cleido-mastoides 344.
... sterno-hyoideus 315.
... sterno-thyreoideus 347.
... stylo-glossus 462.
... stylo-hyoideus 344.
... stylo-pharyngeus 476.
... subclavius 354.
... subcutaneus colli 327.
... subfascialis 407.
... subclavialis 407.
... subescapularis 375.
... supinator brevis 389.
... supinator longus 387.
... supraspinatus 373.
... temporalis 338.
... tensor fasciae latae 400.
... tensor tympani 952.
... tensor veli palatini 465.
... teres major 374.
... teres minor 374.
... thyreo-arytaenoideus inferior 521.
... thyreo-arytaenoideus internus 521.
... thyreo-arytaenoideus superior 521.
... thyreo-hyoideus 317.
... thyro-lymphaticus anterior 413.
... thyro-lymphaticus posterior 422.
... transverso-mastoides 320.
... trapezius 958.
... transversalis capitis 320.
... transversalis dorsi 320.
... transversalis plantae 428.
... transverso-analis 608.
... transverso-urethralis 606.
... transversus abdominis 367.
... transversus auricularis 958.
... transversus linguae 463.
... transversus menti 329.
... transversus nuchae 336.
... transversus perinaei profundus 606.
... transversus perinaei superficialis 608.
... transversus thoracis 357.
... trapaezius 311.
... triangularis 325.
... triangularis sterni 337.
... triceps brachii 378.
... triceps surae 420.
... ulnaris externus 389.
... ulnaris internus 382.
... urethralis 605.
... vastus externus 407.
... vastus internus 406.
... vastus lateralis 407.
... vastus medialis 406.
... vastus medius 406.
... zygomaticus 329.
Muskellähmungen 296.
Muskellehre 292.
Muskeln 293.
... Bau der selben 296.
... Wirkung der selben 301.
Muskelsystem 293.
... Anordnung der selben 307.
Müllerbänder 572.
Myocardium 623.

X.
Nabel 81.
Nabelarterien 642.
Nabelbläschen 89.
Nabelstrang 89.
Nabelvene 725.
Nachhirn 760, 767.
Nacken 311.
Nackenband 130.
Nackenbeuge 76.
Nackenhocker 76.
Nägel 891.
Nahrungscanal 477.
Nähte der Knochen 110.
Nasen 467.
Nase 489, 467.
Nasenbein 487.
Nasengänge 212, 468.
Nasenhöhle 211, 467.
Nasenmuscheln 468.
Nasenscheidewand 244.
Nasenscheidewand 470.
Nebenleitersack 571.
Nebenhöhlen 582.
Nebenhöhlen der Nase 469.
Nebenhöhlen der Nase 772.
Nebenmilz 741.
Nebennieren 546.
Nerven 54, 847.
Nervenfasern 53.
Nervengewebe 49.
Nervenplexus 849.
Nervensystem 743.
Nervi abdominales 833.
... accessorius Wiliéii 843.
... acusticus 836.
... alveolaris inferior 832.
Nervi alveolares superiores 828.
... ano-coecygii 870.
... auriculares anteriores 830.
Nervi auricularis magus 850.
... auriculares posteriores 844.
... auriculo-temporalis 839.
... axillares 833.
Nervi brachiales 853.
Nervus baccinatorius 830.
Nervi cardiaca 875.
... cardio-lymphatici 838.
Nervus caroticus 873.
Nervi cerebrales 829.
... cerebrospinales 818.
... cervicales 848.
Nervi cervicales descendens 850.
Nervi ciliares breves 828.
 » ciliares longi 826.
Nervus coccygeus 830.
 » cocleaee 836.
 » communicans faciei 833.
 » communicans fibularis 867.
 » communicans libialis 868.
 » cutaneus hypo-buccinatorius 829.
Nervi cranialis 863.
 » cutanei abdominis anteriores 861.
Nervi cutanei abdominis laterales 860.
 » cutaneus branchii externus 854.
 » cutaneus branchii internus major 856.
 » cutaneus branchii internus minor 853.
 » cutaneus brachii posterior inferior 858.
 » cutaneus brachii posterior superior 858.
Nervi cutanei ophthalmici 866.
 » cutanei ophthalmici 864.
Nervus cutaneus cruris posterior 867.
 » cutaneus dorsi pedis externus 869.
 » cutaneus dorsi pedis internus 867.
 » cutaneus femoris externus 863.
 » cutaneus femoris internus 864.
 » cutaneus femoris medius 864.
 » cutaneus femoris posterior 866.
Nervi cutanei pectorales anteriores 861.
 » cutanei pectorales laterales 860.
 » cutanei perioris 866.
 » dentales 828, 832.
 » digitales dorsales manus 857, 859.
 » digitales dorsales pedis 867.
 » digitales plantares 869.
 » digitales valares 853, 857.
Nervus cutaneus clitoridis 871.
 » dorsalis penis 870.
 » dorsalis scapulae 853.
 » ethmoidalis 826.
 » ethmoidalis posterior 826.
 » facialis 833.
 » femoralis 863.
 » fibularis 866.
 » frontalis 826.
 » genito-cruralis 862.
 » genito-femoralis 862.
 » glosso-phyaryngeus 837.
 » gluteus inferior 866.
 » gluteus superior 866.
Nervi haemorrhoidales inferiores 870.
Nervus hypoglossus 844.
 » Jacobsonii 838.
 » ileo-hypogastricus 862.
 » ileo-inguinalis 862.
 » infraorbitalis 828.
 » infratrochlearis 826.
Nervi intercostales 859.
Nervus intercosto-humeralis 860.
 » intercostae internum antebrachii 855.
 » intersosseus cruris 869.
 » ischiadicus 866.

Nervi labiales inferiores 832.
 » labiales superiores 838.
 » labiales posteriores 870.
Nervus laryngeus 825.
 » laryngeus inferior 842.
 » laryngeus superior 842.
 » lingualis 834.
Nervi lumbales 861.
Nervus lumbio-inguinalis 862.
 » mandibularis 831.
 » massetericus 830.
 » masticatorius 829.
 » maxillaris inferior 834.
 » mediumus 855.
 » mentalis 832.
 » musculo-lumbalis 854.
 » mylo-hyoides 831.
 » musculo-externalis 826.
Nervi nasales anteriores 826.
 » nasales interni 826.
 » nasales laterales 828.
 » nasales posteriores 827.
 » nasales posteriores inferiores 828.
Nervus naso-ciliaris 826.
 » nasso-palatinus 827.
 » obturatores 863.
 » occipitalis major 819.
 » occipitalis minor 850.
 » oculomotorius 823.
 » olfactorius 822.
 » ophtalmicus 825.
 » opticus 822.
 » 38, 72, 867.
Nerri palatini 828.
 » palpebrales inferiores 826, 828.
 » palpebrales superiores 826.
Nervus palatovagalis 824.
 » perforans 834.
Nervi perinei 870.
Nervus peroneus 867.
 » peroneus profundus 868.
 » peroneus superficialis 867.
 » petrosus profundus major 829, 834.
 » petrosus profundus minor 838.
 » petrosus superficialis major 829.
 » petrosus superficialis minor 832, 838.
Nervi phrenico-abdominales 834.
Nervus phrenicus 834.
 » plantaris 869.
 » pterygoideus externus 830.
 » pterygoideus internus 831.
 » pudendus 870.
 » pudendus inferior 866.
 » radialis 857.
 » recurrens 842, 843.
 » recurrens ophtalmicus 825.
 » recurrens ramii secundii n. trigemini 827.
 » recurrens ramii tertii n. trigemini 829.
 » respiratorius externus 853.
Nervi scrotales 870.
Nervi sacrales 849.
Nervus sapheous major 864.
Nervus saphenus minor 864.
 • sepalis nervum 827.
 • spermaticus externus 863.
 • spheno-palatinus 827.
Nervi spinales 846.
 • spinae nasi 875.
Nervus splenius 834.
 • stylo-hyoideus et digastricus 835.
 • subclavius 852.
 • subcutaneus colli 850.
 • subcutaneus malae 827.
 • sublingualis 834.
 • subocipitalis 848.
Nervi subscapulares 853.
 • subscapulares 848.
Nervus suprascapularis 853.
 • suprascapularis 853.
 • supratrochlearis 826.
 • suralis 868.
 • sympatheticus 871.
 • temporalis profundus 830.
 • temporalis superficialis 830.
 • tensoris tympani 831.
 • tensoris veli palatini 831.
 • tentorii 825.
Nervi thoracales 859.
 • thoracici anteriores 852.
Nervus thoracicus longus 852.
 • thoracicus posterior 853.
 • thalamus 868.
Nervi tracheales 842.
Nervi trocheeurius 824.
 • tympanicus 838.
 • mijarius 856.
 • vagus 839.
 • vesicalis 836.
 • vidianus 829.
Nest 779.
Netheuelt 541.
Netze 541.
Netzhaut 541.
Nidus avis 779.
Nieren, Bau derselben 544.
 • Entwickelung derselben 544.
Nierenarterien 659.
Nierenbecken 551.
Nierenkelche 547, 551.
Nierenpapillen 547.
Nierenpyramiden 547.
Nodus Avanti 649.
 • cerebelli 779.
Nück'scher Canalis 573.
Nucleus 15.
 • amygdalae 809.
 • caudatus 807.
 • dentatus cerebelli 781.
 • leuкоformis 807.
 • olivaris 771.
 • pulposus 847.
 • tegmenti 786.
Nüßgelenk 117.
Nymphae 600.

Oberarmknochen 234.
Oberarm 883.
Oberkiefer 190.
Oberlippe 327.
Oberschenkelknochen 256.
Ober 783.
Occipitale 450.
Olfaktoblasten 448.
Oesophagus 479.
Ohren 934.
Ohrklappe 957.
Ohrknorpel 957.
Ohrknöten 832.
Ohrmuschel 956.
Ohrschnauzdrüsen 893.
Ohrspeicheldrüse 444.
Ohr trompete 954.
Olcranon 240.
Olivenkern 771.
Omentum majus 493.
Omentum minus 566.
Ontogenie 7, 57.
Oolemma 59.
Operculum 794.
Ora serrata 910.
Orbielas ciliaris 915.
Orbita 209.
Orbitosphämoid 164.
Organ 8.
Organisches System 8, 42.
Ohrspitzdriise 954.
Ohrspitz 954.
Ohrschmalzdriise 893.
Ohrschmalzknorchen 266.
Ohrschmalz 266.
Obcrlippe 327.
Ohrschädelknorchen 266.
Ohrschädelknorchen 256.
Osteoplasma 58.
Oss capitatum 246.
 • centrale 244.
 • coxae 134.
 • corae 257.
 • cuboides 282.
 • ethmoidale 183.
 • femoris 266.
 • frontale 179.
 • humatum 267.
 • humeri 234.
 • hyoides 204.
 • ilae 257.
 • lacae 163.
 • incisivum 193.
 • innominatum 257.
 • intermaxillare 193.
 • ischi 258.
 • jugae 196.
 • lacrymale 186.
 • basatum 425.
 • mastae 196.
 • maxillare superius 190.
 • multangularia majus 246.
 • nasale 487.
 • navicularis 245.
 • palatinum 494.
 • parralae 177.
 • petrosum 170.
Ox pisiforme 245.
 - praenarillare 493.
 - spinus 599.
 - pterygoideum 474.
 - palis 258.
 - sacrum 131.
 - scaphoidea 245.
 - sphenoidale 463.
 - supraspinale 149.
 - tarsale 182.
 - temporale 169.
 - trapezium 246.
 - trapezoides 246.
 - tribasilare 164.
 - triquetrum 245.
 - turbinatum 183.
 - tympanicum 170, 475.
 - zygomaticum 196.

Osca carpalia 245.
 - metacarpalia 248.
 - metatarsalia 283.
 - sesamoida 115.
 - tarsalia 279.

Ossicul auditus 950.

Ossification 100.

Osteolasion 42.

Olifbenen 942.

Ovarium 573.

Ovar 575.

Oviduct 579.

P.

Pacchioméische Granulationen 815.
Pacchioméische Körperchen 55, 902.

Palam durum 246, 438.
 - male 464.

Palma 244.

Papilla renales 547.
 - nervi optici 898.

Papillae vaginae 457.

Papillae mammar 895, 898.
 - nervi optici 898.

Paradigmata 564.

Paraplastina 28.

Parietale 477.

Parietarium 571.

Patella 273.

Pankenfell 949.

Pankreßhöhle 948.

Pankrespecte 835.

Pecten pubicurn 259.
 - pedunculi cerebelli 770.
 - cerebrorum 785.

Pelvis 261.

Penis 593.

Penisknochen 599.

Pericardium 628.

Perichondrium 99.

Perllymph 942.

Perimysium 296.

Peritoneum 594, 683.

Perevermum 819.

Periodura 926.

Peristom 99.

Peritoneum 599.

Perone 472.

Pex auricularis 834.
 - hippocampi major 796.
 - hippocampi minor 801.

Petrosium 170.

Peyersche Drüsen 488.

Platane 147.

Pfeilhaut 478.

Pferdeschweif 847.

Pflugscharbein 488.

Pflügner 481.

Pflügnerlappe 483.

Fingernägel 172.

Phalangen der Finger 249.
 - der Zehen 283.

Pharynx 474.

Phalanx 467.

Pinna major 482.

Platscheide 906.

Placentra 90.

Plasma nachale 162.
 - occipitale 162.
 - popliteum 267.
 - temporale 208.

Plattenepithel 27.

Platyrrhina myodes 327.

Pleura-peritoneal-Höhle 433.

Plexus brachiialis 851.
 - caroticus 876.
 - carotis media 876, 878.
 - cærhalicus 849.
 - chorioides 790, 800.
 - chorioidea ventriculi quarti 784.
 - ciliaris 915.
 - coecygga 870.
 - coecyspurus 877.
 - coronarius cordis 877.
 - coronarius ventriculi 877.
 - cranialis 864.
 - cutaneus 877.
 - femoralis 864.
 - gastropéritoneal 843.
 - hemodrional 878.
 - hepaticus 877.
 - hypo-gastriacus 877.
 - ischio-sciaticus 866.
 - iliaceus 877.
 - lumbaris 864.
 - mesentericus inferior 878.
Plexus mesentericus superior 877.
» myentericus 877.
» nodosus 839.
» osphragides 842.
» paroideus 834, 836.
» pharyngeus 844.
» prostaticus 878.
» pudendus 866.
» pulmonalis 842.
» renaalis 877.
» sacralis 865.
» splanchnicus 877.
» spiralis 945.
» suprarenalis 877.
» thymicus 876.
» utero-vaginalis 878.
» vertebralis 876.
» vesicalis 878.
» venosus basilaris 714.
» venosus supraorbitalis 726.
» pterygoideus 716.
» pudendus 726.
» sacralis 865.
» spermaticus 723.
» spinalis 721.
» vaginalis et uterinus 726.
» vesicalis 726.

Plica ary-epiglottica 522.
Plica ciliata 522.
Plica epigastica 375.
» glosso-epiglottica 522.
Plica palatinae 582.
Plica narri larypei 522.
» semilunaris 930.
Plica sigmoideae coli 499.
Pola 789.
Ponu 514.
Pons Varoli 762, 775.
Ponticulus 783.
Porta hepatis 499.
Præcuneus 804.
Præmolarzahnwurzel 452.
Præputium 598, 601.
Primitivfallen 66.
Primitivorgane 65.
Primitivstreif 66.

Primordialcranium 153.
Processus accessorius 139.
» alveolaris 192, 202.
» articularis 122.
» ciliare 940, 941.
» clinoidei 165, 169.
» cochleariformis 174.
» condylar 202.
» coronoideus 230.
» coronoides 292.
» exoformis 147.
» ethmoidalis concha inferioris 186.
» falxformis 261.
» Follicus 290.
» interjugularis 174.
Register.

Ruphe stricta 592, 690.
Rautenmühle 762, 782.
Recessus rochei 939.
« ellipticus 939.
« labyrinthicus 936.
« larynges 592.
« sphaericus 939.
Rectum 490, 494.
Regenbogenhaut 915.
Regio olfactoria 469, 902.
« respiratoria 469.
Reissnersche Membran 944.
Reses 545.
Respirationsorgane 512.
Rete mirabile 627.
« mucosum Malpighi 882.
« vasculosum Hailer 569.
Retina, Anlage derselben 904.
«, Bau derselben 918.
Reticulum 385.
Reticulenum peroneorum 418.
Riechbein 483.
Riechknospen 791.
Riechdrüsen 794.
Riechnerven 822.
Riechzellen 902.
Riegel 783.
Riechen 783.
Rinde des Grosshirns 803.
Ringknotel 515.
Rippen 442.
Rippenknotel 446.
Rolando'scher Strang 770.
Rolatio 148.
Rollmuskeln des Oberschenkels 402.
Rückenmark, Anlage 745.
«, äusseres Verhalten 749.
«, innere Struktur 751.
Rückenmuskeln 310.
Rückgrat 420.
Rückgratkanal 121.
Rudimentare Organe 41.
Rumpf, Entwicklung desselben 80.
Ruthe 598.

S.

S romanoa 439.
Saccus ellipticus 936.
« sphaericus 937.
Saccus taenymalis 933.
Saccus laryngale 131.
Säulen des Gewölbes 797.
Salpinge 954.
Samen 561.
Samenblasen 564.
Samencanälen 559.
Samenfaden 561.
Samenblüte 594.
Samenleiter 564.
Samenstrang 568.
Sattel 465.
Sattelgelck 417.
Sattellehne 465.
Sattelknopf 465.
Saugadern 528.
Saum 799.
Scala tympani 941.
« vestibuli 941.
Seapha 957.
Schädel 456.
Schädelgruben 216.
Schadelknochen 158.
Schambein 239.
Schamflügel 262.
Schamrippen, grosse, 604.
«, kleine, 602.
Scheide 585.
Scheidengewölbe 585.
Scheidenkappe 586.
Scheidenvorhof 600.
Scheitelbein 477.
Schenkelknochen 413.
Schenkellhörner 413.
Scheibengelenk 117.
Schenkeln 271.
Schildraupe 537.
Schildknorpel 514.
Schlafkissen 159.
Schildfascie 338.
Schlafenrippen 794.
Schlagadern 630.
Scheibe 785.
Scheimbeutel 396.
«, subcutane 885.
Schleimdrüsen 442.
Scheimhäute 435.
Schlüsselbein 234.
Schlafkissen 474.
Schnecke 903.
Schneckenzellen 903.
Schmelz 448.
Schmelzprismen 448.
Schneecke 937, 940.
Schneckenzähne 451.
Schneckenkopf 594.
Schleimdrüsen 442.
Schleimhaut 585.
Schleimdrüsen 442.
Schleimhaut 435.
Schlüsselbein 234.
Schlafkissen 474.
Schleimhaut 585.
Schleimhaut 435.
Schleimhaut 585.
Register

Schnauhaube 333.
Schnaurollen 367.
Schnauzenösen 303.
Schnauze 822, 906.
Schnauzenverkreuzung 793.
Schnoll 904.
Seitenhorne des Rückenmarks 752.
Seitenrumpfmuskeln 293.
Selenstrang 747.
Selennervenkreuzung 713.
Selenorgan 904.
Seitenhorne des Rückenmarks 752.
Seta turcica 165.
Semicanalis lensoris maxillae 174.
Septum tympani 461.
» tubae Eustachii 174, 955
Septum linguae 174.
» mobile nasi 467.
» nasi 211.
» pellucidum 765, 796, 799.
Serosa 436.
Sera 615.
Sesambeine 115, 297.
Sicilia des großen Gehirns 815.
Siebbein 183.
Siebbeinzellen 184, 470.
Siebpläte des Siebbeines 183.
Sharpey'sche Fasern 101.
Sinnesorgane, allgemeiner Bau derselben 900.
Sinus 897.
» cavernosus 714.
» coronaerius 707, 713.
» ethmoidalis 469.
» frontalis 180, 469.
» genitalis 357, 594.
» lacteferus 897.
» maxillaris 190.
» occipitalis 713.
» piriformis 592.
» popularis 594.
» quartus 614.
» rectus 714.
» sagittalis 714.
» sphenoidalis 166.
» transversus pericardi 628.
» transversus (ven. 713).
» urogenitalis 543.
Sitzbein 258.
Sitzhöcker 258.
Skeletsystem 95.
Smegma praeputii 600.
Sonnengeteil 87.
Speicheldrüsen 443.
Speisebrei 450.
Spermatozoen 559.
Spina scapulae 229.
» tympanica posterior 951.
Spinalganglien 818.
Spindelhaut 941.
Spinnwebe haut 814.
Spiralplatte 941.
Splanchnologie 13.
Sprungbein 280.
Stäbchen 921.
Stabkranz 810.
Stammflappen 794.
Stammstrahlung 809.
Stapes 199, 951.
Staphyle 154.
Steigbügel 199, 951.
Steißbein 134.
Steißdrüse 887.
Stellcorpel 516.
Stirnbein 179.
Stirnfortsatz 78.
Strahlenblättchen 925.
Streifen 764, 795, 809.
Striae acusticae 782.
Striae cornea 789.
Striae medullares 782, 789.
» obtectae 798.
Striae terminalis 789.
» vascularis 945.
Strickkörper 770, 774.
Stützgewebe 36.
Subarachnoidealgewebe 813.
» der Schlägel 792.
Subduralraum 846.
Subcutan 865.
Sublingualdrüse 445.
Subserosa 437.
Substanz, graue, des Rückenmarks 753.
» weiß, des Rückenmarks 753.
Subkia des Großhirns 804.
Sublucus carolinus 165
» Jacobsonii 173.
» Rolandi 804.
» spiralis 945.
Superficialia 890, 926.
Sustentaculum tali 281.
Suturae 110.
Symphyse 262.
Synarthrose 410.
Synchronrose 440.
Syndesmose 440.
Synchronosis sphen-o-basilaris 164.
T.

Lacunae colli 490.

Tecum medullae oblongatae 783.

Talgdrusen 994.

Talus 980.

Tapetum 540.

Tapetum nigrum 901, 910.

Tarsaldrusen 930.

Tarsus 279.

Tarsus der Augenlider 929.

Tascheband 523.

Taschentränen 925.

Tastkörperehen 901.

Taschentaschen 901.

Tegmentum 785.

Tegmen tympani 472.

Tela chorioides 790.

Temonsche Kapsel 928.

Tectum cerebelli 815.

Testis (Testicula) 559.

Textur 29.

Thalamus opticus 787.

Theca 557.

Thecar 392.

Thora 452.

Thränenbein 187.

Thränenbeutel 929.

Thränencanalchen 932.

Thränenobrullen 931.

Thränenwillensgange 933.

Thränenpünkte 932.

Thränensee 929.

Thymus 539.

Tibia 271.

Tonsilla 464.

Tonsilla cerebelli 779.

Trachea 525.

Tractus ileo-liobialis 403.

» intermediolateralis 752.

» olfactorius 794.

» opticus 790, 792.

» spiralis foraminidentes 942.

Tragus 957.

Trapezium 246.

Trapezoidbein 256.

Trigonom cingulare 343.

» Liebautii 554, 594.

» Peteli 366.

Torus occipitales 163.

Tripus Halleri 681.

Trachyenter 266.

Trocken 233.

» des oberen schragen Augenumskels 927.

U.

Ulna 239.

Umba 949.

Unterhautbindegewebe 884.

Unterhorn 796.

Unterkiefer 290.

Unterkiefergelenk 293.

Unterlappen 974.

Unterschenkelknochen 270.

Unterzunge 547.

Urechus 88, 543.

Urether 561.

Urether 553, 555.

Urohichte 544.

Urmundgang 70, 542.

Urogenitalsystem 591.

Urevirilis 68, 293.

Uterus 580.

Uterus masculinus 594.

Uricaria 936.

Urethra 915.

Urula 454.

Urula cerebelli 779.

V.

Vagina 585.

Vaginae tendinae 305.

Vaginalportion 581.

Vaginula 839.

Vallula 778.

Vallula coli 492.

» Eustachii 622.

» foraminis ovatis 622.

» Heisteri 504.

» ileo-coccalis 492.

» nitratis 624.

» pylori 483.
Vena jugularis interna 706, 713.
 » jugularis primitiva 705.
 » laterialis 721.
 » lumbalis 722.
 » lumbalis ascendens 728.
 » magna cordis 711.
 » magna Galeni 715.
 » mammaria interna 713.
 » mediana antibrachii 719.
 » mediana colli 717.
Vena meningea 714.
Vena mesentrica magna 724.
 » mesentrica parva 744.
 » occipitalis 717.
Vena ophthalmitica 715.
Vena palpebralis 715.
 » phrenicae 722.
Vena papillae 736.
 » portae 724.
 » pudenda extrema 728.
 » palmaris 709.
 » renalis 723.
 » sacralis media 726.
 » saphena 727.
 » spermatica 723.
 » subclavia 718.
 » subcostalis vallis 717.
 » suprarenalis 723.
 » temporalis 717.
 » terminalis 715.
 » thyreoidea inferior 712A
 » umbilicalis 709, 725.
Vena uterina 726.
 » vertebrale 712.
Vena vorticosae 917.
Venae 633.
 » Bau ihrer Wandungen 636.
Venenkappen 635.
Ventriculus 880.
 » lateralis cerebri 764.
 » Morgagnii 523.
 » quartus cerebri 762.
Ventrikel des Herzens 618, 623.
Verlängerter Mark 761.
Vermis 777.
Vertebra prominens 124.
Vertebrae 120.
 » caudales 134.
 » cervicales 124.
 » lumbales 129.
 » sacrales 131.
 » thoracales 121.
Vesica fellea 503.
 » urinaria 552.
Vesicula prostatica 594.
 » seminalis 565.
Vestibulum auris 936, 938.
 » laryngis 523.
 » nasis 469.
 » oris 438.
 » vaginae 600.
Vibrissae 471, 890.
Register.

Wurm 777.
Wurmsfortsatz 491.
Wurzel der Spinalnerven 758.
Wurzelscheide der Haare 887.

Z.

Zähne 446.
 » Durchbruch derselben 453.
Zähnehen 464.
Zahnbein 447.
Zahnkanal 446.
Zahnkanälen 447.
Zahnknäuel 192, 202.
Zahnkleisch 440.
Zahnknöpfen 446.
Zahnwurzel 446.
Zange 456.
Zapfen 921.
Zehen 283.
Zelle 15.
Zirbel 763, 790.
Zitzenfortsatz 170.
Zona orbicularis 269.
 » pectinata 948.
 » pellucida 59.
Zona ciliaris 910, 925.
Zootomie 2.
Zotten des Dünnarms 486.
Zunge 456.
Zungenbänderchen 440.
Zungenbein 204.
Zungenbeinmuskeln 340.
Zungenpapillen 157.
Zwerchfell 357.
Zwickel 804.
Zwinge 810.
Zwischenwulst 804.
Zwischenhirn 760, 787.
Zwischenkieferbein 493.
Zwischenknorpel 143.
Zwölffingerdarm 486.
Emendanda.

S. 106. In der Erklärung der Fig. S7 lies: statt 16 Wochen 12 Wochen.
S. 130. Z. 19 v. o. statt mammillaris lies: mammillaris.
S. 199. Z. 11 v. u. lies: die eine etwas mehr gekrümmte Spange ist als die hintere, die andere, minder gekrümmte als vordere anzusehen.
S. 243. Z. 23 v. o. statt antibrachii lies: antebrachii.
S. 523. Z. 3 v. u. statt Morgagni lies: Morgagnii.
S. 693. Z. 8 v. u. statt ileum lies: ilei.