

NOAA NATIONAL STATUS & TRENDS

MUSSEL WATCH PROGRAM

An Assessment of Two Decades of Contaminant Monitoring in the Nation's Coastal Zone

Mentionoftradenamesorcommercialproductsdoesnotconstituteendorsementorrecommendationfortheir use by the United States government.

An Assessment of Two Decades of Contaminant Monitoring in the Nation's Coastal Zone

Citation for this Report

Kimbrough, K.L., W.E. Johnson, G.G. Lauenstein, J.D. Christensen and D.A. Apeti. 2008. An Assessment of Two Decades of Contaminant Monitoring in the Nation's Coastal Zone. Silver Spring, MD. NOAATechnical Memorandum NOS NCCOS 74. 105 pp.

K. L. Kimbrough, W. E. Johnson, G. G. Lauenstein, J. D. Christensen and D. A. Apeti.

National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Monitoring and Assessment 1305 East-West Highway Silver Spring, Maryland 20910

Director's Summary

It is with great pleasure that I welcome you to the National Status & Trends Program's "Mussel Watch: An Assessment of Two Decades of Contaminant Monitoring in the National Scoastal Zone." Based upon one of the National Oceanic and Atmospheric Administration (NOAA) foundational datasets, and one of the nation's longest running ecosystem monitoring programs, this report is the first in what will be come a series of routine updates. The National Status and Trends Program is part of NOAA's mandate called for by Congress under the National Coastal Monitoring Act and is a crucial component of NOAA's mission. Mussel Watch is but one of the many scientific activities under taken by NOAA's National Ocean Service and its National Centers for Coastal Ocean Science (NCCOS). NCCOS 'mission is to provide coastal managers with scientific information and tools needed to balances ociety 's environmental, social, and economic goals, and this report takes a significant step in that direction by providing a clear and concise summary of coastal contamination levels over the past 20 years. The report examines the impacts of regulating contaminants on their presence, distribution and levels in our coastal and Great Lakes waters, as well as other intriguing interpretations of why the levels are what they are to day.

National scale assessments such as this areo fimmens evalue, but they are rare in the ecological world. They provide a science based approach to highlight and quantify connectivity that is otherwise lost in a local or regional study alone. As can be seen with mercury contamination in the US coast alzone, what happens in one region can affect localities thousands of miles away. Linking localities, regions and ecosystems to gether is an important and necessary part of solving environmental problems. The long-term data collections (monitoring) necessary for assessments are expensive and difficult to sustain. These kinds of long-term, data collections are not the kind of glamorous, short-term items that gain much of society 's every day attention. But, the benefits of having the setypes of data over the long-term far outweight he costs of continuing them. Without the sedata, the kinds of scientifically based assessments presented in this report are not even possible.

NCCOS performs a wide range of coastal and Great Lakes characterization activities, including coral reef ecosystemassessments, land use impact assessments on coastal resources in the form of an annual oxygen depleted area ("dead zone") forecast, and harmful algal bloom (HAB) detection and forecasts, among many others. This impressive range of scientificende avorism adepossible through a world-class staff of scientists that work in laboratories and offices throughout the United States, including in Maryland, North and South Carolina, Alaska and Hawaii, and through its strength in partnership with other Federal, State, Territorial, Academic, Tribal and non-governmental organizations, and with private sector partners the world over. This collective body of work is intended to provide a basis for sound coastal management. By providing relevant and timely information and creative approaches for examining ecological issues, we strengthen the linkage between sound science and management. By using NCCOS's cientific information and tools, managers can balance the impacts of ecosystem stressors with social and economic goals. NCCOS is committed to implement ing this vision by providing world-class science that is credible, relevant, and timely. The Mussel Watch Program is central to this vision, and we stand committed to continuing this important activity for years to come. Iho peyou find the information provided herein to be bothen lightening and useful, and welcome your comments on the first ever National Status & Trends Program summary of coastal contamination.

Gary Matlock, Ph.D.
Director
National Center for Coastal Ocean Science

Executive Summary

Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarineand coast alpollutant monitoring effort conducted in the United States thatis national inscope each year. Hundreds of scientific journal articles and technicalreportsbasedonMusselWatchdatahavebeenwritten;however, this report is the first that presents local, regional and national findings across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public.

Pollutionoftenstartsatthelocalscalewherehighconcentrationspointto $aspeci fic source of contamination, yet some contaminants such as {\tt PCBs}$ are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Finding spresented hereshowed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas.

 $In addition to monitoring throughout the nation's coast alshores and {\tt Great}$ Lakes, Mussel Watch samples are stored in a specimen banks oth attrendscanbedeterminedretrospectivelyfornewandemergingcontaminantsof concern. For example, there is height ened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenylethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminantthreats.

> Wehopeyoufindthisdocumenttobevaluable, and that you continue to look towards the Mussel Watch Programforinformation on the condition of your coastal waters.

Gunnar G. Lauenstein, Ph.D., Mussel Watch Program Manager

Report Description

This report is designed to present

background information, results

and data interpretations in a clear

includeaguidewiththeinformation

needed to interpret the maps and

graphs. Appendix 2 summarizes the

information for each site by state.

and concise format. The results

Acknowledgements

This report could not have been completed without the cooperation, time and effort contributed by many, whose collective input has resulted in a document far superior to that which we envisioned on our own. We would like to thank all of the reviewers and collaborators for their invaluable assistance.

Richard Batuik U.S. Environmental Protection Agency

Benoit Beliaeff IFREMER - Institut français de recherche pour l'exploitation de la mer

Ken Buja National Oceanic and Atmospheric Administration

Chris Caldow Consolidated Safety Services, Inc.

Eric Carr Consolidated Safety Services, Inc.

Alicia Clark National Oceanic and Atmospheric Administration

Cliff Cosgrove National Oceanic and Atmospheric Administration

Russ Flegal University of California, Santa Cruz

Mike Fulton National Oceanic and Atmospheric Administration

Dominic Gregorio California Water Resources Control Board

Carl Hershner Virginia Institute of Marine Science, College of William & Mary

Katherine Nielsen National Oceanic and Atmospheric Administration

John Macauley U.S. Environmental Protection Agency

Keith Maruya Southern California Coastal Water Resources Project

Tom McDonald Texas A&M University

Terry McTigue National Oceanic and Atmospheric Administration

Kevin McMahon National Oceanic and Atmospheric Administration
Alan Mearns National Oceanic and Atmospheric Administration

Christine Negra The H. John Heinz III Center for Science, Economics and the Environment

Tony Pait National Oceanic and Atmospheric Administration

Oren Perez Aster Engineering Inc.

Gerhardt Riedel Smithsonian Environmental Research Center

Larry Robinson Florida A&M University

Michele Schantz National Institute of Standards and Technology

Jack Schwartz Division of Marine Fisheries, Massachusetts, Annisquam River Marine Fisheries Station

Michelle Tomlinson National Oceanic and Atmospheric Administration

Terry Wade Texas A&M University

Dave Whitall National Oceanic and Atmospheric Administration
Ed Wirth National Oceanic and Atmospheric Administration

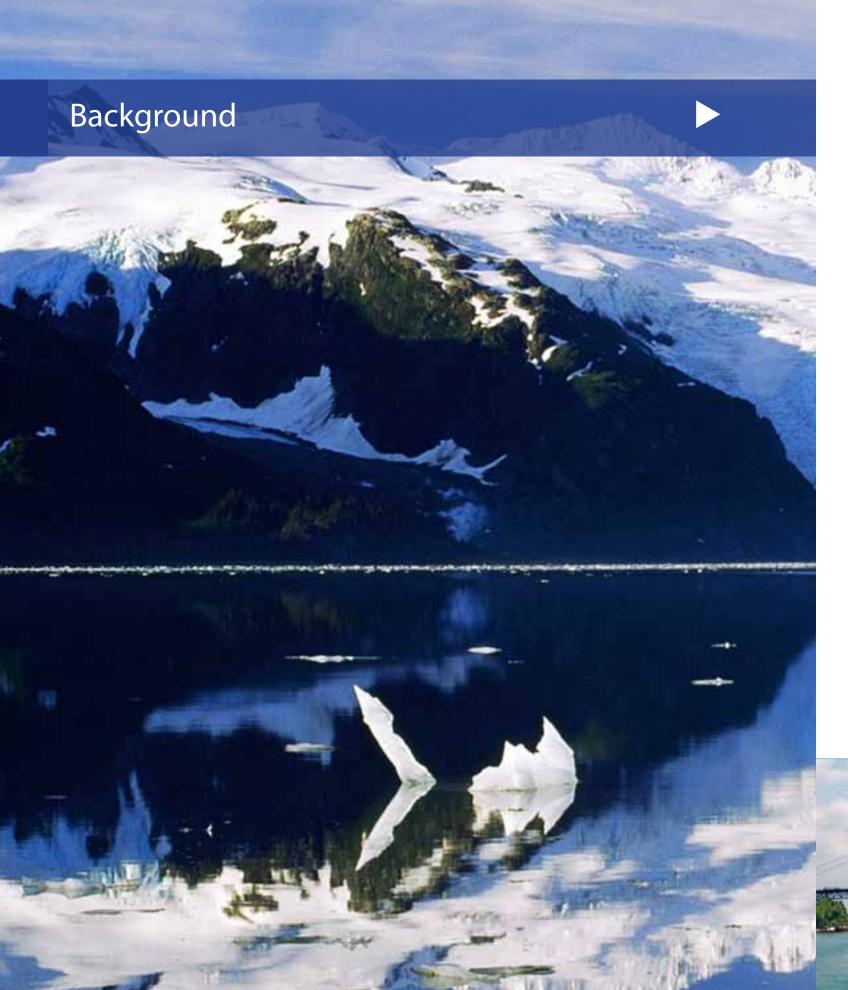


Table of Contents

Trends 31 Results 14 Reader's Guide 16 14 National Summary 18 24 Trace Metal and Organic Contaminant Status and Trends 26 Cadmium 28 Copper 93 Lead 32 Mercury 43 Nickel 55 Tin 38 Zinc 94 Butyttins 22 Chlordanes 44 DDTs 46 Dieldrins 48 PAHs 50 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alaska 62 Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47	Background	1	
Chemical Behavior 10	Program Design		3
Data Analysis and Interpretation 21 Status 22 Trends 33 Results 14 Reader's Guide 16 18 National Summary 18 24 Trace Metal and Organic Contaminant Status and Trends 26 Cadmium 28 Copper 93 Lead 32 Mercuty 43 Nickel 63 Tin 38 Zinc 94 Chlordanes 44 Dieldrins 44 Dieldrins 48 Dieldrins 48 PCBs 50 References 54 Appendix 1: Selected Mussel Watch Program Publications 62	Contaminants		8
Status Trends 21 Trends 31 Results 14 Reader's Guide 16 14 National Summary 18 24 Trace Metal and Organic Contaminant Status and Trends 26 Cadmium 28 Copper 90 Lead 32 Mercury 93 Nickel 63 Tin 38 Zinc 94 District 38 Zinc 94 District 44 District 45 District 45 District 45 District 45 District 45 District 46 District 47 District 48 District 49 Delevities 49 Delevities 50 Alabam 30 California 62 Alabam 30 California <td< td=""><td>Chemical Behavio</td><td>or 10</td><td></td></td<>	Chemical Behavio	or 10	
Trends 31 Results 14 Reader's Guide 16 14 National Summary 18 2 Trace Metal and Organic Contaminant Status and Trends 2.4 Arsenic 2.6 Cadmium 2.6 Copper .00 Lead .32 Mercury .33 Nickel .66 Tin .38 Zinc .00 Buyltins .24 Chlordanes .24 Doi's .46 Dickfirs .46 Dickfirs .46 Dickfirs .46 Dickfirs .46 Appendix 1: Selected Mussel Watch Program Publications .60 Appendix 2: Results by State .60 Alabida .22 Alabida .22 Alabida .22 Alabida .23 Alabida .24 Connecticut .26 Alabida .25 Indian <td></td> <td>Interpretation</td> <td>12</td>		Interpretation	12
Results 14 Reader's Guide 16 National Summary 18 Trace Metal and Organic Contaminant Status and Trends 24 Alsenic 26 Cospher 29 Cospher 39 Mercury 32 Mercury 32 Mercury 38 Miscle 38 Buythins 38 Chlordanes 46 DoTs 46 DoTs 46 DoTs 46 DoTs 46 Alsenic 48 PAHs 50 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alabama 36 California 36 California 36 California 36 California 36 California 36 Mississipi 36 Mississipi 36 Mississipi 38 Mississipi 39 Missingin 30 Missingin			
Reader's Guide 16 National Summary 18 Trace Metal and Organic Contaminant Status and Trends	Irends		31
National Summary 18 24 Trace Netal and Organic Contaminant Status and Trends 26 Cadmium 28 Copper 93 Lead 32 Mercuty 43 Nickel 55 Tin 98 Butyltins 94 DDTs 46 DDIdfins 48 PCBs 50 PCBs 50 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Indiana 76 Louisian 77 Maine 99 Maryland 80 New Hampshire 86 New Hampshire 86 New Ords 88	Results		14
Trace Metal and Organic Contaminant Status and Trends 24 A Asenic 28 Copper	Reader's Guide 16		
Arsenic 26 Cadmium 228 Copper 33 Recury 33 Mercury 43 Nickel 53 Tin 58 Zinc 94 Rutytins 94 Chlordanes 44 DDTs 46 Dieldrins 48 PAHs 50 DBS 66 Dieldrins 48 PAHs 50 Calfornia 66 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alaska 26 Alaska 26 Alaska 26 Alabama 36 California 64 Connecticut 88 Delaware 66 Florida 70 Georgia 47 Illinois 77 Maine 77 Maryland 97 Maryland 98 Mississippi 84 North Carolina 85 New Hampshire 86 New Hersey 97 New York 88 New Hampshire 86 New Hersey 97 New York 98 New Hampshire 86 New Hampshire 86 New Hersey 97 New York 98 New York 99 New Y	National Summar	y18	
Cadmium 28 Copper 93 Lead 32 Mercury 63 Nickel 63 Tin 38 Zinc 90 Butyltins 24 Chlordanes 44 DDTS 46 Dieldrins 48 PAB 50 PCBs 50 PCBs 50 PCBs 50 PCBs 50 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 60 Alaska 26 Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Maine 37 Mayland 96 Mascalcuetts 81 Michigan 36 Missessippi 86 New Hampshire 86 New York 88 New York 88 <td>Trace Metal and C</td> <td>Organic Contaminant Status and Trends</td> <td>24</td>	Trace Metal and C	Organic Contaminant Status and Trends	24
Copper .03 Lead .32 Mercury .48 Nickel .63 Tin .38 Zinc .00 Butyltins .22 Chlordanes .44 DDTs .46 Dieldrins .48 PAHs .50 PCBs .52 References 54 Appendix 1: Selected Musel Watch Program Publications .60 Appendix 2: Results by State .60 Alasha .26 California .61 Connecticut .64 Delaware .69 Florida .70 Georgia .47 Illinois .57 Indiana .76 Louisiana .77 Maine .97 Massachusetts .81 Michigan .38 Mississippi .84 North Carolina .85 New Hampshire .86 <tr< td=""><td>Arsenic</td><td></td><td>26</td></tr<>	Arsenic		26
Lead 32 Mercury 43 Nickel 53 Tin 38 Zinc 04 Butyltins 24 Chlordanes 44 DDTS 46 Dieldrins 48 PAHS 50 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alaska 26 Alabana 26 California 64 Connecticut 86 Delawre 69 Florida 70 Georgia 47 Illinois 57 Indiana 76 Louislana 76 Louislana 76 Maryland 98 Massachusetts 81 Michigan 38 Misconsispin 84 New Hampshire 86 New York 88 New York 88 New Y	Cadmium		28
Mercury			
Nickel 55 Tin 38 Zinc 94 Butyltins 24 Chlordanes 44 DDTs 46 Dieldrins 48 PAHs 50 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 55 Indiana 76 Louisiana 76 Maryland 98 Massachusetts 81 Michigan 38 Mischigan 85 New Jersey 87 New Jersey 87 New Jersey 87 New John 98 Ohio 99 Origon 91 Rhode Island 94 Vi	Lead		32
Tin 38 Zinc 04 Butyltins 24 Chlordanes 46 DDTS 46 Dieldrins 48 PAHs 50 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alaska 26 Alabama 36 California 64 Connecticut 88 Delaware 69 Florida 70 Georgia 47 Illinois 55 Indiana 76 Louisiana 77 Marine 97 Maryland 98 Mischigan 38 Mischigan 85 New Jersey 87 New Yark 88 Ohio 96 Oregon 91 Rhodsissippi 86 New Jersey	Mercury		43
Zinc 04 Butyltins 24 Chlordanes 46 DDTS 46 Dieldrins 48 PAHs 50 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alabama 36 California 64 Connecticut 86 Delawae 69 Florida 70 Georgia 47 Illinois 55 Indiana 76 Louisina 77 Maryland 98 Massachusetts 81 Michigan 38 Mischigan 38 New Hampshire 86 New Jersey 87 New Jork 88 Ohio 99 Origon 91 Rout Carolina 93 Texas 94 Virginia 97 Wisconsin 100 <td>Nickel</td> <td></td> <td></td>	Nickel		
Butyltins 24 Chlordanes 46 DDTS 46 Dieldrins 48 PAHs 55 PCBs 52 References 54 Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alaska 26 California 64 Connecticut 86 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 55 Indiana 76 Louisiana 77 Marie 97 Maryland 98 Michigan 38 Mississippi 84 North Carolina 85 New Jersey 87 New York 88 Ohio 90 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97	Tin		38
Chlordanes .44 DDTs .46 Dieldrins .48 PAHs .50 PCBs .52 References 54 Appendix 1: Selected Mussel Watch Program Publications .60 Appendix 2: Results by State .62 Alasha .26 Alabama .36 California .64 Connecticut .86 Delaware .69 Florida .70 Georgia .47 Illinois .57 Ildina .76 Louislana .76 Massachusetts .81 Michigan .38 Mississippi .84 North Carolina .85 New Hampshire .86 New Jersey .87 New York .88 Ohio .90 Oregon .91 Rhode Island .25 South Carolina .93 Wisconsin .94 Wisconsin .90	Zinc		
DDTS .46 Dieldrins .48 PAHs .50 PCBs .52 References 54 Appendix 1: Selected Mussel Watch Program Publications .60 Appendix 2: Results by State .62 Alaska .26 Alabama .36 California .64 Connecticut .86 Delaware .69 Florida .70 Georgia .47 Illinois .51 Indiana .76 Louisiana .77 Maine .97 Maryland .98 Massachusetts .81 Michigan .38 Mississippi .84 North Carolina .85 New Jersey .87 New Vork .88 Ohio .00 Oregon .91 Rhote Island .25 South Carolina .93 Texas .94 Virginia .97 Wisconsin <t< td=""><td>Butyltins</td><td></td><td>24</td></t<>	Butyltins		24
Dieldrins PAHs .50 PCBs .52 References 54 Appendix 1: Selected Mussel Watch Program Publications .60 Appendix 2: Results by State .62 Alaska .27 Alabama .36 California .64 Connecticut .86 Delaware .69 Florida .70 Georgia .47 Illinois .55 Indiana .76 Louisiana .77 Maryland .08 Massachusetts .81 Michigan .38 Mississippi .84 North Carolina .85 New Hampshire .86 New Jersey .87 New York .88 Ohio .09 Oregon .91 Rhode Island .22 South Carolina .93 Texas .94 Virginia .97 Washington	Chlordane	S	44
PAHs PCRS .50 PCBs .52 References 54 Appendix 1: Selected Mussel Watch Program Publications .60 Appendix 2: Results by State .62 Alaska .26 Alabama .36 California .64 Connecticut .86 Delaware .69 Florida .70 Georgia .47 Illinois .57 Indiana .76 Louisiana .76 Maryland .97 Maryland .98 Massachusetts .81 Michigan .38 Mississippi .84 North Carolina .85 New Hampshire .86 New Jersey .87 New Vork .88 Ohio .90 Oregon .91 Rhode Island .29 South Carolina .93 Texas .94 Virginia <	DDTs		46
PCBs .52 References 54 Appendix 1: Selected Mussel Watch Program Publications .60 Appendix 2: Results by State .62 Alaska .26 Alabama .36 Calfornia .64 Connecticut .86 Delaware .69 Florida .70 Georgia .47 Illinois .55 Indiana .77 Louisiana .77 Maryland .06 Massachusetts .81 Michigan .33 Mississippi .84 North Carolina .85 New Hampshire .86 New Jersey .87 New York .88 Ohio .90 Oregon .91 Rhode Island .25 South Carolina .93 Texas .94 Wirginia .97 Wistonsin .100	Dieldrins		48
References 54 Appendix 1: Selected Mussel Watch Program Publications .60 Appendix 2: Results by State .62 Alaska .26 Alabama .36 California .64 Connecticut .88 Delaware .69 Florida .70 Georgia .47 Illinois .55 Indiana .76 Louisiana .77 Marie .97 Maryland .90 Massachusetts .81 Michigan .38 Mississispi .84 North Carolina .85 New Hampshire .86 New Jersey .87 New York .88 Ohio .09 Oregon .91 Rhode Island .29 South Carolina .93 Texas .94 Virginia .97 Washington .88 Wisconsin .100	PAHs		50
Appendix 1: Selected Mussel Watch Program Publications 60 Appendix 2: Results by State 62 Alaska 26 Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 55 Indiana 76 Louisiana 77 Maine 99 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 00 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 88 Wisconsin 100	PCBs		52
Appendix 2: Results by State 62 Alaska 26 Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 57 Indiana 76 Louisiana 77 Maine 97 Mayland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New Jersey 87 New York 98 Ohio 90 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 88 Wisconsin 100	References	54	
Alaska 26 Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 57 Indiana 76 Louisiana 77 Marjen 97 Mayland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 25 South Carolina 93 Texas 94 Virginia 97 Washington 88 Wisconsin 100	Appendix 1: Selec	ted Mussel Watch Program Publications	60
Alabama 36 California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 57 Indiana 76 Louisiana 77 Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 Neu Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100	Appendix 2: Resu	Its by State	62
California 64 Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 57 Indiana 76 Louisiana 77 Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 94 Virginia 97 Washington 89 Wisconsin 100			26
Connecticut 86 Delaware 69 Florida 70 Georgia 47 Illinois 57 Indiana 76 Louisiana 77 Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 94 Virginia 97 Washington 89 Wisconsin 100			36
Delaware 69 Florida 70 Georgia 47 Illinois 57 Indiana 76 Louisiana 77 Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 94 Virginia 97 Washington 89 Wisconsin 100			
Florida 70 Georgia 47 Illinois 57 Indiana 76 Louisiana 77 Maine 97 Maryland 81 Michigan 38 Mississispipi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio .09 Oregon 91 Rhode Island .29 South Carolina .93 Texas .94 Virginia .97 Washington .89 Wisconsin 100	Connectic	ut	
Georgia .47 Illinois .57 Indiana .76 Louisiana .77 Maine .97 Maryland .08 Massachusetts .81 Michigan .38 Mississippi .84 North Carolina .85 New Hampshire .86 New Jersey .87 New York .88 Ohio .09 Oregon .91 Rhode Island .29 South Carolina .93 Texas .94 Virginia .97 Washington .89 Wisconsin .100	Delaware		69
Illinois 57 Indiana 76 Louisiana 77 Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
Indiana 76 Louisiana 77 Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 88 Wisconsin 100			47
Louisiana 77 Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			57
Maine 97 Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 90 Oregon 91 Rhode Island 22 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100	Indiana		76
Maryland 08 Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
Massachusetts 81 Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
Michigan 38 Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
Mississippi 84 North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100	Massachu		
North Carolina 85 New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100	9		
New Hampshire 86 New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
New Jersey 87 New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
New York 88 Ohio 09 Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
Ohio .09 Oregon .91 Rhode Island .29 South Carolina .93 Texas .94 Virginia .97 Washington .89 Wisconsin .100			
Oregon 91 Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
Rhode Island 29 South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
South Carolina 93 Texas 94 Virginia 97 Washington 89 Wisconsin 100			
Texas .94 Virginia .97 Washington .89 Wisconsin .100			
Virginia .97 Washington .89 Wisconsin .100			
Washington			
Wisconsin			
Appendix 3: Hawaii Trace Metal and Organic Results	Wisconsin		100
	Annendiy 3: Haw	aji Trace Metal and Organic Results	102
	APPENDIA TO UCI	to Rico Trace Metal and Organic Contaminant Results	104

OAA's Mussel Watch Program was designed to monitor the status and trends of chemical contamination of U.S. coastal waters, including the Great Lakes. The Program began in 1986 and is one of the longestrunning, continuous coastal monitoring programs that is national inscope. The Program is based on yearly collection and analysis of oysters and mussels. These bival vesares essile organisms that filter and accumulate particles from water; thus, measuring contaminant levels in their tissue is a good indicator of local contamination. Mussel Watch data are useful for characterizing the environmental impact of new and emerging contaminants, extreme events (hurricanes and oil spills), and for assessing the effectiveness of legislation, management decisions and remediation of coastal contamination levels.

NOAA established Mussel Watch in response to a legislative mandate under Section 202 of Title II of the Marine Protection, Research and Sanctuaries Act (MPRSA) (33 USC 1442), which called on the Secretary of Commerce to, among other activities, initiate a continuous monitoring program "to assess the health of the marine environment, including monitoring of contaminant levels in biota, sediment and the water column." As part of the NOAA Authorization Act of 1992, the overall approach and activities of NOAA's National Status and Trends Program (NS&T), including Mussel Watch, we recodified under provisions of the National Coastal Monitoring Act (Title V of the MPRSA).

In 1986, the inaugural year of the Mussel Watch Program, 145 sites were sampled. Today, Mussel Watch is comprised of nearly 300 monitoringsites, wheremore than 140 chemical contaminants, chosen through consultation with experts and scientists from a cademia and government, are measured. Many of the secontaminants are listed as Environmental Protection Agency (EPA) Priority Pollutants (Keith and Teillard, 1979). Legislation has been passed to regulate most of the

Program Goal

To supporte cosystem-based management through an integrated nation wide program of environmental monitoring, assessment and research to describe the status and trends of our nation's estuaries and coasts.

Highlight

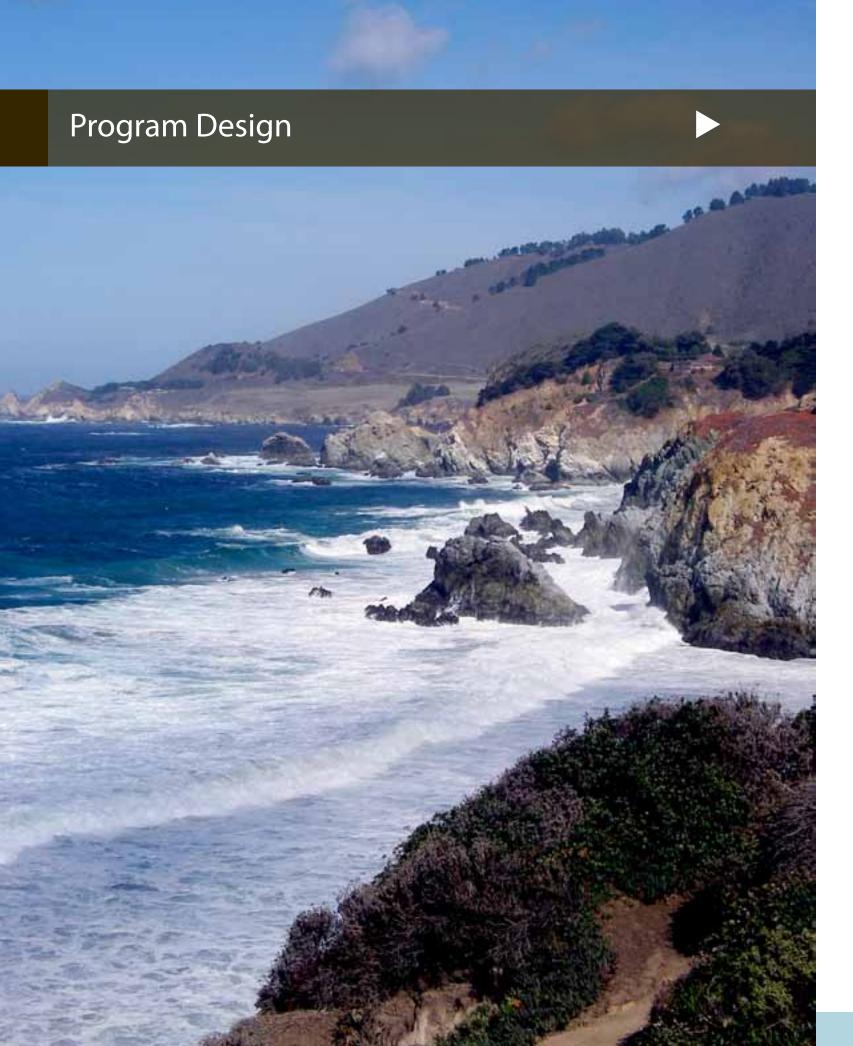
ManymusselWatchsitesarecoincidentwiththe 1976-1978 EPA Mussel Watch sites.

Programstaff consulted with state officials, a cademic professionals and others when sites were established.

Manysites are located in ornear NOAA-managed areas (National Estuarine Research Reserves, National Marine Sanctuaries).

Sites were selected in shell fish beds large enough for repeated sampling.

Samples are only collected from natural substrates, caged mussels are not used.


Municipal sewage outfalls or industrial effluents are generally avoided when sites are established.

organic contaminants analyzed by the Mussel Watch Program. Most are toxic to a quatic organisms, and some are taken up and stored in an imal tissues with the potential to be transferred through foodchains to humans.

This first ever national summary brings together twenty years of MusselWatchdataoncontaminantlevelsinmusselsandoysters, and is intended for use by resource managers, policy makers, legislators and concerned citizens. This report compares the status and trends of chemical concentrations at the national level to those found locally or regionally. In cases where no human consumption guidelines are available for shell fish, comparisons can be used to determine if the concentrations are high relative to the rest of the nation.

More detailed information can be accessed at http://NS and T.noaa.gov.

ussels and oysters are widely distributed along the coasts, minimizing the problems inherent incomparing data from markedly different and mobile species, and making them better integrators of contaminants in a given area (Berneretal., 1976; Farrington et al., 1980; Farrington, 1983; and Tripp and Farrington, 1984). They are goods urrogates for monitoring environmental quality because contaminant levels in their tissue respond to changes in ambient environmental levels and accumulate with little metabolic transformation (Roesijadi et al., 1984; Sericano, 1993).

Mussel Watch sites were selected to represent large coastal areas that can be used to construct an ation wide assessment. Sites selected for monitoring are generally 10 to 100 km apart along the entire U.S. coast line, including the Great Lakes, Puerto Rico and Hawaii. Where possible, sites were selected to coincide with historical mussel and oyster monitoring locations from other programs, such as the U.S. EPA's Mussel Watch sites that were sampled from 1976 to 1978 (Goldberget al., 1983), and to complements it essampled through state programs, such as the California Mussel Watch Program (Martin, 1985).

Because one single species of mussel or oyster is not common to all coastal regions, a variety of species are collected to gain a national perspective. At arget species is identified for each site based on abundance and ease of collection. Mussels (*Mytilus species*) are collected from the North Atlantic and Pacific coasts, oysters (*Crassostreavirginica*) from the mid-Atlantic (Delaware Bay) southward and along the Gulf Coast, and zebra mussels (*Dreissena species*), an invasive species, are collected from sites in the Great Lakes (Figure 1; Table 1; Appendix 2).

In spite of the number of sites for a coastline as large as that of the U.S., relatively few species are required to determine a national contaminant perspective. For organic contaminants it is possible to compare a cross all sites because Mussel Watch species have a similar ability to bio accumulate contaminants. For trace metals there are clear differences in bio accumulation a bilities between coast almussels and oysters. Oysters have a greater affinity for zinc, copper and silver while mussels are better able to accumulate lead and chromium.

Program at a Glance


- Approximately 300 active monitoring sites in the continental U.S., Alaska, Puerto Rico and Hawaii.
- Stations 10 to 100 km apart along the entire U.S. coastline.
- Approximately 140 contaminants monitored in resident bivalve populations

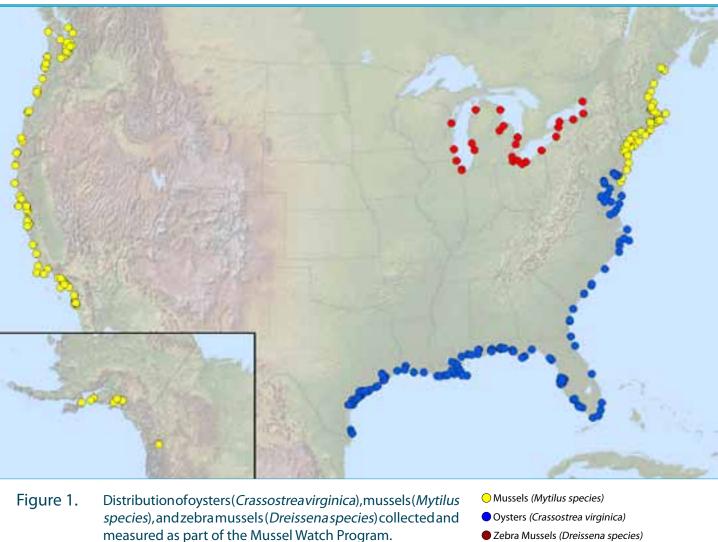


Table 1. Musselandoysterspeciesusedtoassessnationalcoastalcontamination.

Region	Number of Sites*	Target Species	Name Used in this Report
Northeast, Southwest, Northwest and Alaska	108	Mytilus edulis, Mytilus californianus, Mytilus galloprovincialis and Mytilus trossulus	Mussels
Southeast and Gulf of Mexico	105	Crassostrea virginica	Oysters
Great Lakes	23	Dreissena polymorpha and Dreissena bugensis	Zebra Mussels

^{*} A subset of sites were used in this report.

The oysters and mussels analyzed are collected by hand or dredged from intertidal to shallow subtidal zones, brushed clean, packed in iced containers and shipped to analytical laboratories within two days of collection. Sample collection protocols are described in detail in McDonaldetal., (2006), Lauenstein et al., (1997), and Lauenstein and Cantillo (1993a-dand 1998). Sample preparation, extraction techniques and analytical methods are to ovoluminous to report in this document. Detailed analytical methods used by the Mussel Watch Programare available (Kimbroughand Lauenstein, 2006; Kimbroughetal., 2006) on line at http://NS and T.noaa.gov.

Alongwithpartnerlaboratories, sampling and analytical methods for monitoring chemicals in oysters, mussels and sediment have been developed. The Mussel Watch Program uses a performance based quality assurance (QA) process to ensure data quality. This effort has been in operation since 1985 and is designed to document sampling protocols, analytical procedures and laboratory performance. Analytical laboratories used by the Mussel Watch Program are required to participate in exercises with assistance from the National Institute of Standards and Technology (NIST) and the National Research Council of Canada (NRC) to ensure data are comparable in accuracy and precision (Willie, 2000; Schantz et al., 2000).

Contaminants

he Mussel Watch Program monitors approximately 140 contaminants including both metals and organic compounds. A subset of this broad suite of contaminants was chosen for presentation in this report, drawing from compounds that have the greatest geographic and temporal extent, and contemporary relevance. Eight metals (Table 2), representing 35% of all metals evaluated by the Mussel Watch Program, and 61 unique organic contaminants aggregated into eight chemical classes are reported here (Table 3; Appendix 2).

Table 2. Metals measured in the Mussel Watch Program. Those in bold type are included in this reportbecause of their spatial and temporal extent of coverage and relevance.

Symbol	Element
Al	Aluminum
Sb	Antimony
As	Arsenic
Cd	Cadmium
Cr	Chromium
Cu	Copper
Fe	Iron
Pb	Lead
Mn	Manganese
Hg	Mercury
Ni	Nickel
Se	Selenium
Si	Silicon
Ag	Silver
TI	Thallium
Sn	Tin
Zn	Zinc

^{*} For simplicity, the term metal is used without distinction between the true metals and metalloids (elements with metallike properties, e.g., antimony, arsenic and silicon).

Metals

Metalsoccurnaturallyintheenvironment, buthumanuse of metals, particularly since the industrial age, has resulted in excessive releases. How metals are released into the environment is most important in determining distribution and concentration. Anthropogenic sources of metals include fossil fuel and was teburning, mining and ore processing, chemical production, and agriculture. These sources are largely responsible for the elevated environmental concentrations observed in coastal waters. Transport of metals to coastal and estuarine water occurs primarily from run of fandat mospheric deposition. The relative contribution from each mechanism varies by metal, proximity to sources, and chemical phase (dissolved or particulate bound). Metals can exist in the environment in several forms of varying toxicity. The analytical methods used by the Mussel Watch Program do not distinguish between the sevarious forms, but in stead report values as total metal (aggregation of all species of a metal).

We have chosen to present a subset of the status and trends for trace metals in this report. There are two principal reasons for this, 1) several of these elements are considered to be abundant "earth metals" and 2) the current state of science and associated methods are less certain of guaranteeing accurate and precise quantitation of several metals. Chromium (Cr), Antimony (Sb), Silver (Ag) and Thallium (Tl) can be counted among those difficult to quantify. Moreover, Thallium is generally found in such low concentrations that our ability to detect its mere presence is restricted. A luminum (Al), Iron (Fe), Silicon (Si) and Manganese (Mn) are all abundante arthmetals. Assuch, the overriding signal for the sechemical stends to be a direct correlation to local earth crustal composition.

Creosote piling are sources of polycylic aromatic hydrocarbons.

Organics

Organic chemicals reported here are mostly manufactured and released to the environment either intentionally (e.g., pesticides) or through manufacturing or disposal processes, such as PCBs. Others, such as PAHs, occur both naturally and as a result of human activities. Some of

the chemicals presented here are industrial by products and represent major components of other manufactured chemicals. An example of this is the pesticide dieldrin, which itself is a pesticide but also a degradation product of aldrin.

Contaminants

Table 3. Organiccontaminant classes summarized in this report. A complete list of the organic contaminants monitored by the Mussel Watch Program is available online at http://NSandT.noaa.gov.

Compound class	Organic compound
PCB* (Sum of 18 PCBs) Polychlorinated biphenyls	PCB8/5, PCB18, PCB28, PCB44, PCB52, PCB66, PCB101/90, PCB105, PCB118, PCB128, PCB138, PCB153/132/168, PCB170/190, PCB180, PCB187, PCB195/208, PCB206, PCB209
PAH** Polycyclic aromatic hydrocarbons (Sumof19parentPAHcompoundsplus19groups of alkylated PAHs)	Sum of 7 parent low molecular weight PAHs (with 2 or 3 rings): naphthalene,biphenyl,acenaphthene,acenaphthylene,fluorene,phenanthrene,anthracene plus the sum of 12 parent high molecular weight PAHs (4 or more rings): fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene plus the sum of 19 groups of alkylated PAHs: C1-Chrysenes, C1-Dibenzothiophenes, C1-Fluoranthenes/Pyrenes, C1-Fluorenes, C1-Naphthalenes, C1-Phenanthrenes/Anthracenes, C2-Chrysenes, C2-Dibenzothiophenes, C2-Fluorenes, C2-Naphthalenes, C3-Phenanthrenes/Anthracenes, C3-Dibenzothiophenes, C3-Fluorenes, C3-Phenanthrenes/Anthracenes, C4-Chrysenes, C4-Naphthalenes, C4-Phenanthrenes/Anthracenes, C4-Chrysenes, C4-Naphthalenes, C4-Phenanthrenes/Anthracenes
DDT (Sum of 6 compounds)	2,4'-DDD; 2,4'-DDE; 2,4'-DDT; 4,4'-DDD; 4,4'-DDE; 4,4'-DDT
Butyltin (Sum of 3 compounds)	Monobutyltin, Dibutyltin, Tributyltin
Chlordane (Sum of 4 compounds)	Alpha-Chlordane, Heptachlor, Heptachlor-Epoxide, Trans-Nonachlor
Dieldrin (Sum of 2 compounds)	Aldrin, Dieldrin

^{*} Currently 51 PCB congeners are quantified by the program.

^{**} Currently 65 PAHs are quantified by the program.

Chemical Behavior

nemical contaminants enter the environment through point or non-point sources. Point source pollution, such as industrial and municipal effluents from a pipe or smokestack, are more easily regulated. In contrast, pollution from non-point sources are diffuse releases of chemical stothe environment such as run off froma gricultural and urban lawns and volatilization of chemicals from landorwatertotheatmosphere. As a result, non-point source pollution is difficult to measure and regulate.

Once released, a chemical will interact with its environment based upon its unique chemical and physical properties, and the prevailingenvironmental conditions. These properties can be used to predict achemical's movement (transport) and its transformation (fate) into otherchemicalsofgreaterorlesserenvironmentalconsequence. Once achemicalisregulated, overtime one would expect a net decrease in thecontaminant(parentcompound)andnetincreaseintransformation products. These processes can result in dilution and/or concentration ofchemicalsinspecificenvironmentalmedia, such as water, sedimentor biota. Fate and transport processes are briefly summarized here. For a more detailed discussion, see Manahan (2005).

Atmospheric Fate and Transport

At mosphere releases can occur from both point and nonpoint sourcessuchassmokestackemission, motorvehicle exhaust, volatilization of pesticides from soil and plants, volcanic eruptions, and forest fires. Many chemical contaminants spend part of their life in the atmospherebound to air borne particles and transported short or long distances.Contamination of remote environments including coastal areas occurs in the form of wet and dry deposits of particles.

Atmospherictransport, incontrast to other forms of chemical transport, results in diffuse regional, intercontinental and global distribution of contaminants, especially for persistent compounds that degradeslowly. Wide dispersion results in ambient levels being found globally. The "grasshopper effect" (global distillation) is a type of a tmospheric $transport where by volatile chemicals released to the environment in {\tt transport} where {\tt transport} w$ lower(warmer)latitudesvolatilizefromlandandsurfacewatersand are transported in the atmosphere and redeposited in higher (cooler)latitudes. The process is repeated in "hops" and leads to a net gain in concentration at higher latitudes where these chemicals remain trapped.TheArcticandnearArcticenvironmentshavebecomeasinkfor some chemicals far from where they were used or released by humanactivities.

Aquatic Fate and Transport

Point and non-point sources of pollution to our streams, rivers and coastal waters have left a legacy of pollution in some areas from industrial discharges, along with agricultural and urban runoff. Contaminants that enterwater may be come more reactive, attach tosuspended particles, settle to the bottom or betaken up by organisms. Resuspension of sediments can reintroduce contaminants to the overlyingwatercolumn, thereby making sediments both as our ceand a sink for contaminants. In addition, sediment accumulation is also associated with permanent storage of contaminants.

Bioaccumulation

An organism's behavior and physiology, coupled with a chemical contaminant's physico-chemical properties and bioavailability, determine which compounds are taken up by an organism and the associatedbiological effects. Some chemicals may be toxic to an organism while $others\,may\,simply\,accumulate\,in\,tissue\,without\,harm. Metals\,tend$ to accumulate in selected tissues such as liver, kidney or bone, whileorganic contaminants usually accumulate in fattissues. Carnivores, particularly those at the top of the food chain (including humans), can be exposed to large amounts of contaminants that are accumulatedin tissue of their prey. Mussels and oysters accumulate contaminantsacross their gills and bying estion of particles. For some metals, mussels andoy sters do not regulate concentrations in their tissue, but insteadrespondtochangesintheirimmediateenvironment.Zebramusselsmay haveelevatedlevelsofsomemetalsasaresultofdifferencesbetween fresh and saline water chemistry.

Mussel Watch Histopathology

ThehistopathologycomponentoftheMusselWatch Program, quantifies the stage of game tedevelopment, and the prevalence of nearly 70 diseases and parasites foundinmusselsandoysters. Trends in histopathology datamayhelptoassesstheeffectsofglobalwarming.

Special Event Sampling

Mussel Watch assesses environmental impacts in response to catastrophic events. By using historical Mussel Watch measurements, environmental impacts in affected areas are determined. Special event assessments include, but are not limited to:

- · San Franscisco Bay Cosco Busan oil spill
- · Gulf Coast Hurricanes Katrina and Rita
- Delaware Bay Athos 1 oil spill
- · Attack on the World Trade Center
- · North Puget Sound Point Wells oil spill

Mussel Watch site under bridge in Mississippi after Hurricane Katrina.

Ciliated parasites in

Crassostreavirginica.

Data Analysis and Interpretation

Results for each contaminant presented in this report are divided into two sections. Status provides a current measure of the degree of chemical contamination in the environment, while trends provides historical context about how concentrations have changed over time. This report provides our interpretation to help the reader better understand how human actions have resulted in what we see to day. Armed with this information, the nation can take meaningful action to improve future coastal conditions. As hort discussion of how we have chosen to convey both status and trends in this report follows. Understanding how the secomponents are derived and presented is critical to the interpretation of information presented in results section of this report.

Status

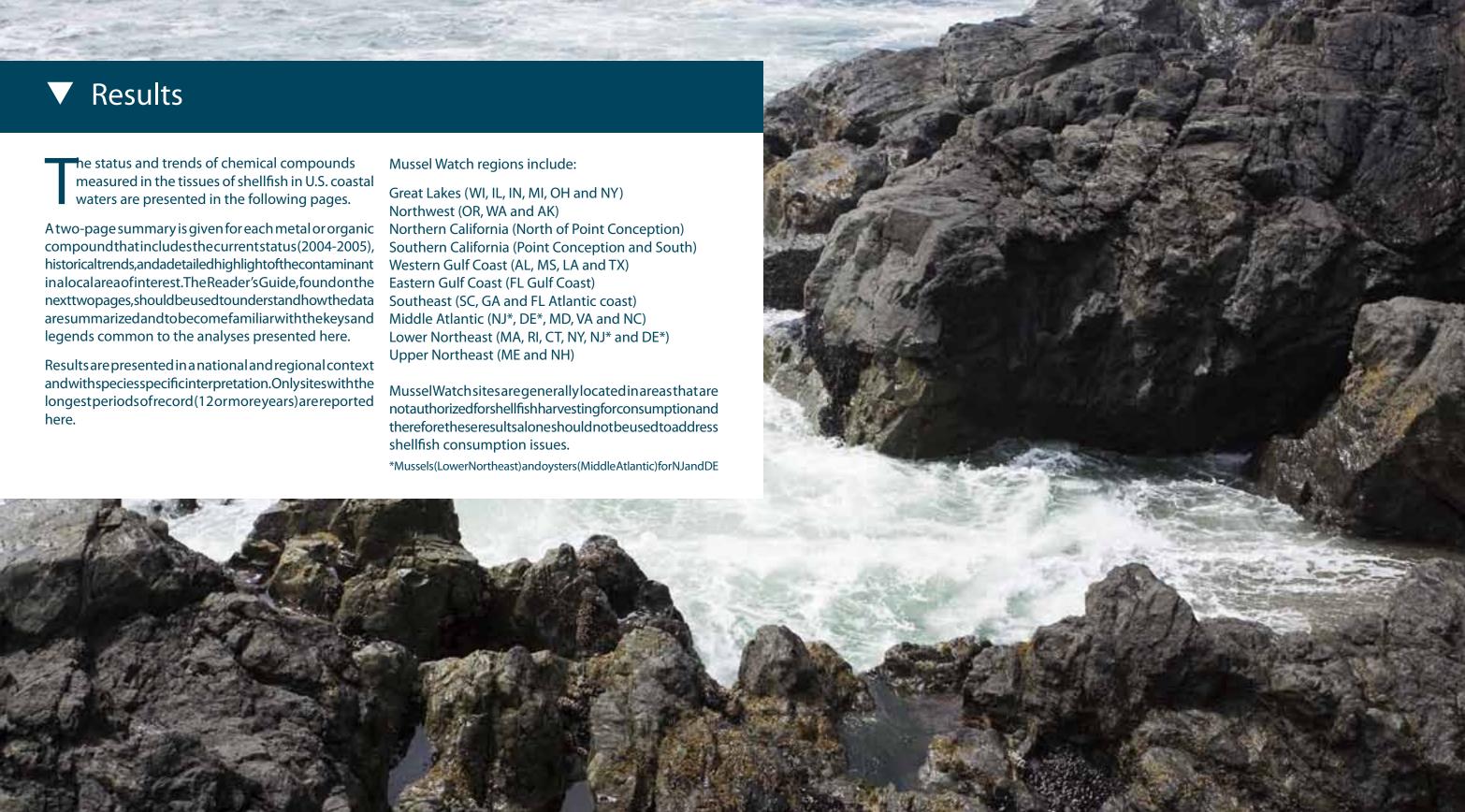
The status of a contaminant was derived from the most recent (2004-

2005) chemical concentration measurements taken at each sampling site. These site-specific measurements were assigned to a concentration range: high, medium or low. Ranges were calculated using a statistical procedure called "clustering" – or statistical classification – that partitions contamination levels into groups so that the data in each subset share a common trait. Numbers contained within a group are more like each other than any number in a different group. Cluster values are not associated with action levels or human health advisory concentrations. Each designated classifications how srelative differences between sites. Clustering was performed on regional, national and summarized data as described below.

Concentrationrangesforeachcontaminantweredeterminedseparately foreachspeciesgroup-mussels(*Mytilusspecies*), oysters(*Crassostrea virginica*) and zebra mussels (*Dreissena species*) - to account for

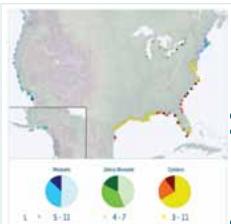
species behavior and physiological differences that effect the levels of chemicals measured in their tissues. The results of these analyses appear in the Regional Species Comparison maps found in the Trace Metals and Organic Contaminant Status and Trends section. Species related concentration differences are found for some metals. For example, zincand copper concentrations are usually 10 times higher in oysters than in mussels, whereas lead is often three times higher in mussels than in oysters. This implies that the presentation of Great Lakes results is distinct from the results of analysis of oysters, which are distinct from mussels. As such, it is equally important to note that each classification analysis will result in a separate high, medium or low category, and that when compared among species will not necessarily be the same range. As presented, the status can be viewed as a relative measure among locations that share a common species.

Towards developing an overall national summary, results of the aforementioned national assessment cluster analyses were used. Specifically, low, medium and high cluster results were numerically weighted by assigning each a value of 0, 1 and 2 respectively. For example, if a measurement for a metal was categorized as low it received a score of 0. For each site the numbers were added to $determine the site with the most elevated concentrations of metals or {\tt metals} and {\tt metals} are {\tt metals$ organic contaminants. The results were grouped using cluster analysis, into three categories resulting in the low, medium and high categoriesthat are found in the National Summary section of the results. Clusteranalysis was applied to all concentration measurements, irrespectiveof species, to highlight national variability for each contaminant. Thispresentation can be used to make inter-species comparisons and assessnational differences in contaminant concentration. Differences in specie suptake will be apparent in the National Comparison Map and theRegional Comparison of Concentration bar charts.


Trends

Chemical concentration trends were assessed by correlating contaminant measurements with time. Spearman's rank correlation was used to evaluate whether concentrations co-varied predictably as a function of time (Zar, 1998). That is, as time progressed from the beginning of our monitoring records (1986) to the end of our records (2005), did the concentration of contaminants also progress in an increasing or decreasing manner? The Spearman's rank correlation procedure is a nonparametric technique that is free of assumptions about concentrations being normally distributed with a common variance about sites. The variables used for the Spearman's test were year and site concentration rank median (n=10). Concentration was standardized by ranking to allow for inter-species comparison.

 $Spearman's \ rank \ correlation \ statistical \ test \ was \ used \ to \ evaluate \ individual \ contaminants \ at the site, \ regional \ and \ national \ scales.$ $Results are presented as decreasing \ (G), increasing \ (H) \ or exhibiting \ not \ rend \ (4). The \ symbology \ allows the \ reader to \ quickly \ ascertain if \ concentrations are changing. It is important to note that "not \ rend" \ is not \ necessarily \ an indication \ of a lack \ of \ management. \ Rather, it is \ possible that some \ contaminants \ are \ already \ at \ very low \ levels \ and \ that \ significant \ reductions \ are \ unlikely. \ As \ such, it is \ critical \ to keep \ the \ status \ component \ in \ mind \ as \ the \ reader \ interprets \ the \ trends \ section.$



Great Lakes field sampling.

Look here to find one or more of the most significant findings from our analysis of this particular contaminant. We will draw your attention to items with national significance.

Regional Species Characterization

Colors indicate current levels of contamination, and are common to the map and pie chart summaries.

Color themes represent different organisms.

L = LowM = MediumH = High

Concentrationareinparts per million (ppm) for metalsandpartsperbillion (ppb) for organics.

Interpretation

The oyster pie chart indicates that for oysters, about 70% of sites along the Gulf, Southeastern and Middle Atlantic U.S. coasts exhibited low concentrations(3-11ppm),about23%exhibitedmediumconcentrations(12 - 22 ppm), and about 7% exhibited high concentrations (23 - 57 ppm).

· 13 · 57

National Characterization

This figure does not distinguishbetweenspecies and thus can be used for interspecies comparisons.

Regional comparison of contaminantconcentrations from National Characterization Map.

Interpretation

Site Trends

In this example, the bar chart indicates that in the Southeastern US, roughly25% of sites exhibited low concentrations,50% exhibited medium concentrations, and 25% exhibited high arsenic concentrations.

Trends Summary

SIGNIFICANT REGIONAL TRENDS:

& Caster Soft Steel

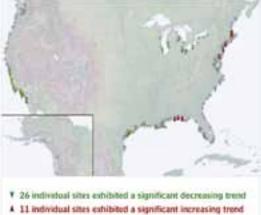
Spearman's rank correlations used to determine

COMMANY OF SITE THROUGH MAP

· Laser Mothers: Lower Hardword, Milette Alberto, Southeast Biotecin Carl Colors, Northern Cottonia, Northwest

Interpretation

Inthis example, the barchart indicates that in the Great Lakes, roughly 35% of sites exhibitedstatisticallysignificant decreasing trends, while the remainder exhibited no discernable trend.


national and site trends. Arrow color and direction indicate contamination trends at each site.

Interpretation

Inthis example, the piechart indicates that for the nation,roughly11% of sites exhibited a statistically significant decreasing trend, 5% exhibited a statistically significant increasing trend, and the remaining 84% showed no discernable trend.

Summaryofnationaltrendspiechartgraphically displays the percentage of sites that have decreasing, increasing or have no trend.

No Overall National Trend

Chemical Description

Sources

The primary sources, relative importance, and origin of contaminants for the coastal ocean and Great Lakes are mentioned here.

Toxicity

Exposure pathways and toxicity to humans is discussed here along with any Food and Drug Administration (FDA) safety guidelines or threshold levels designed to protect human health. General informationaboutaquaticlifeexposure, bioaccumulation and toxicity is also mentioned.

Fate and transport

Chemical sreleased to the environmentare subject to physical, chemical and biological forces that may transform or transport a chemical. The most indicate the contraction of the contimportant processes relative to the coastal environmentare mentioned, particularly in regard to transport from sources to sinks and partitioning of the coastal environmentare mentioned, particularly in regard to transport from sources to sinks and partitioning of the coastal environmentare mentioned, particularly in regard to transport from sources to sinks and partition in the coastal environmentare mentioned, particularly in regard to transport from sources to sinks and partition in the coastal environmentare mentioned, particularly in regard to transport from sources to sinks and partition in the coastal environmentare mentioned and the coa chemical between environmental matrices; including air, water, soil/sediment and biota.

Case Study Highlight

Detailed highlight map derived from Species Characterization Map.

Background

A statement of relevant facts regarding the highlighted region. Each acknowledge and the property of the prohighlighted region represents an area with unique results or areas of national concern.

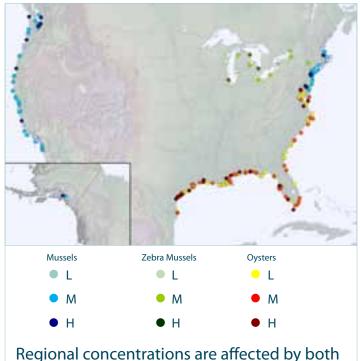
Status Map

- · Significant contaminant status findings for the highlighted area.
- · Comparison of Status in set map to Regional Species Characterization Мар.
- · Discussion and comparison region based on the National Characterization Map.
- Overall interpretation of regional status.

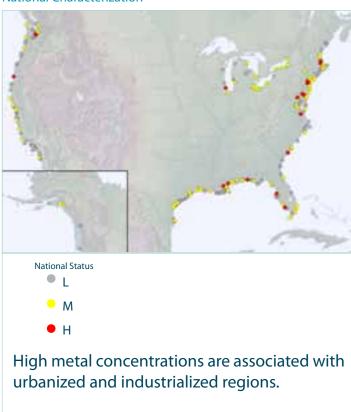
Trend Map

- Regional trend statement
- Comparison to nation
- · Overall interpretation of regional trend

No Trend 4


Detailedhighlightmapderivedfrom Site Trends Map.

National Summary


Metals Status

Regional Species Characterization

anthropogenic and natural phenomena.

National Characterization

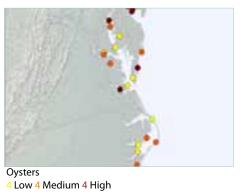
Metal Trends

Significant Regional Trends:


G Southern California

4 Upper Northeast, Lower Northeast, Middle Atlantic, Southeast, EasternGulf Coast, Western Gulf Coast, Northern California, Northwest, GreatLakes

NOAA National Status & Trends | Mussel Watch Report


Metals Status

- Elevated levels of metals are found near urban and industrial areas.
- In Alaska elevated levels of metals occur naturally in some areas.
- Elevated levels of metals were found in oysters and mussels from Delaware Bay.
- Although different species accumulate metals at different rates, elevated summary levels were found throughout the country.
- The Middle Atlantic Region has the highest percentage of sites with medium and high concentrations.
- The Southern California Region has the lowest percentage of sites with elevated metal concentrations.
- Elevated levels of metals were found in mussels from the Hudson-Raritan Estuary.

Great Lakes Characterization

Alaska Characterization

Mussels 4 Low 4 Medium 4 High

* Overall Status Findings

Urban and industrial areas represent the largest source of contaminants to the environment.

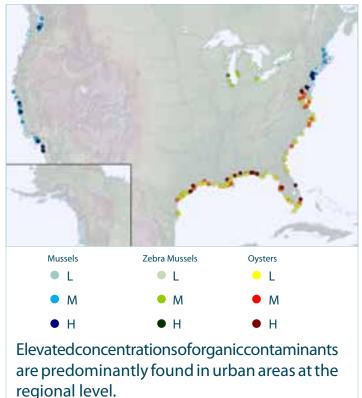
Metals Trends

- · Nationally metal trends vary by site and region.
- · Southern California has a regional decrease in metal concentrations.
- The Northeast shows a mixture of increasing and decreasing sites.

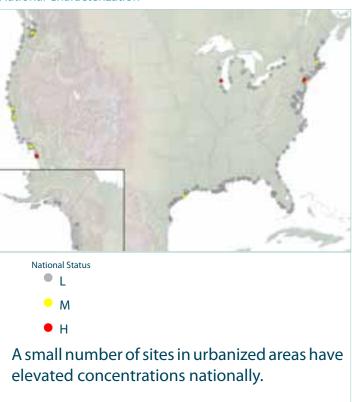
California Characterization

Northwest Characterization

G Decreasing


H Increasing

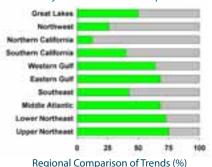
H Increasing


National Summary

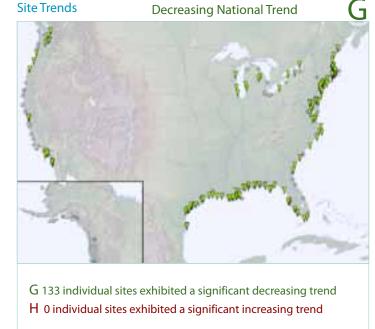
Organic Status

Regional Species Characterization

National Characterization


Organic Trends

Significant Regional Trends:


GUpperNortheast, LowerNortheast, Middle Atlantic, Southeast, Eastern ${\it Gulf Coast, Western Gulf Coast, Southern California, Northwest, Great}$ Lakes

4 Northern California

Summary of Site Trends Map:

Organic Status

- Elevated levels of organic contaminants are found near urban and industrial areas.
- · Most organic contaminants do not have natural sources; yet, their distributions are ubiquitous.
- $\bullet \ \ Elevated levels of organic contaminants were found in oysters and mussels from the Hudson-Raritan Estuary in the southern Northeast region.$
- The Lower Northeast Region has the highest percentage of sites with elevated organic contaminant levels.
- The Eastern Gulf and Upper Northeast Regions have the lowest percentage of sites with elevated organic contaminant levels.
- The Southern California Region has the highest percentage of medium and high organic contaminant concentration levels, as result of his toric contaminant concentration and the highest percentage of the southern California Region has the highest percentage of medium and high organic contaminant concentration levels, as result of his toric contaminant concentration and the highest percentage of the highuse and manufacturing of TBT and DDT, respectively.

California Characterization

Northeast Characterization

Northwest Characterization

* Overall Status Findings

Organic contaminants are higher in areas of historic use and production.

Organic Trends

G Decreasing

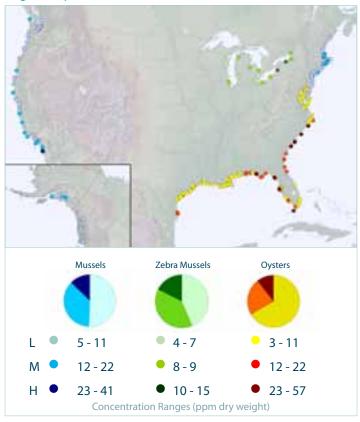
- $\bullet \ \ A reas with the highest levels of organics are experiencing declining concentrations, especially in Southern California and the Central Gulf.$
- $\bullet \ \ The regions that his torically had the highest organic contaminant concentrations now have the highest percentage of declining concentration. \\$
- The Great Lakes and the Middle Atlantic both show significant decreasing regional trends.

Central Gulf Coast Characterization

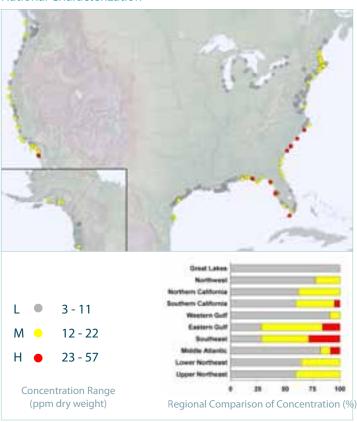
H Increasing

Great Lakes Characterization

Middle Atlantic Characterization



H Increasing **G** Decreasing

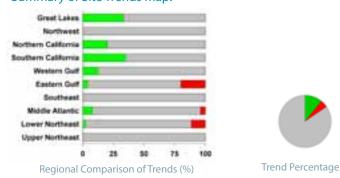


Elevated arsenic levels are associated with natural land-based sources. None of the measurements exceed the FDA action level.

Regional Species Characterization

National Characterization

Trends Summary


Significant Regional Trends:

G Western Gulf Coast, Southern California, Great Lakes

H Eastern Gulf Coast

4 Upper Northeast, Lower Northeast, Middle Atlantic, Southeast, Northern California. Northwest

Summary of Site Trends Map:

G 26 individual sites exhibited a significant decreasing trend H 11 individual sites exhibited a significant increasing trend

Chemical Description

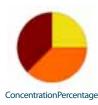
Sources

Arsenicisfound in the environmentathigh levels as a result of natural sources and industrial production. Products that contain arsenic include: preserved wood, semiconductors, pesticides, defoliants, pigments, antifouling paints, and veterinary medicines. In the recent past, as much as 90% of arsenic was used for wood preservation (ATSDR, 2007a). At mospheric sources of arsenic includes melting, fossil fuel combustion, power generation, and pesticide application.

Toxicity

Arsenicistoxicathighconcentrationstofish, birdsand plants. In animals and humans prolonged chronic exposure is linked to cancer (Goyer, 1986). In organic arsenic, the most toxic form, represents approximately 10% of total arsenic in bivalves. Less harmful organic forms, such as arsenobetaine, predominate in seafood (Edmonds and Francesconi, 1977, 1988, 1993; Phillips, 1990; FDA, 1993a). The FDA action level for arsenic in clams, oysters and mussels is 86 ppm wet weight (FDA, 2001). In years 2004-2005 of the Mussel Watch Program, a maximum arsenic concentration of 4.8 ppm wet weight was measured in Beaufort Inlet, North Carolina (BIPI).

Fate and Transport


Centuries of human activities have changed the natural biogeochemical cycle of arsenic resulting in contamination of land, water and air. Movement of arsenic to coastal and estuar in ewater occurs primarily from river run of fandatmospheric deposition. The major source of elevated levels of arsenic in the nation is natural crustal rock. This is important because it affects concentrations on the regional level. As it relates to trend analysis, continuous natural sources are associated with neither decreasing nor increasing trends.

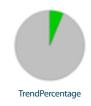
Southeast Highlight

Status

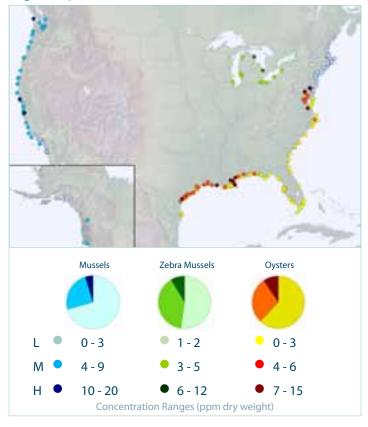
Background

The Savannah Riverbasin drains an area that encompasses a Department of Energy Superfunds it eknown to have elevated levels of metal contaminants (WSRC, 1997). However, relatively high levels of arsenic in the Southeast region are of geologic origin (Valette-Silver et al., 1999).

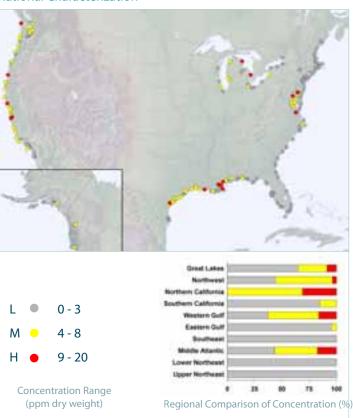
Statu


- Elevated levels of arsenic exist in the Southeast.
- ArsenicinoystersfromtheSoutheastisamongthehighestinthenationforall species.
- Arsenicconcentrations are elevated compared to the rest of the nation, but still are an order of magnitude lower than the FDA action level.

No Trend 4


Trend

- In contrast to the nation, there is no trend for the Southeast region.
- The Southeast region has a low percentage of decreasing sites.



High and medium cadmium measurements are absent from the Northeast and Southeast regions. None of the cadmium measurements exceed the FDA action level.

Regional Species Characterization

National Characterization

Trends Summary

Significant Regional Trends:

G Western Gulf Coast

4UpperNortheast,LowerNortheast,MiddleAtlantic,Southeast,Eastern Gulf Coast, Southern California, Northern California, Northwest, GreatLakes

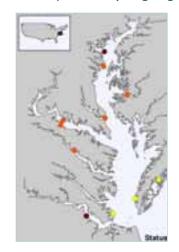
Summary of Site Trends Map:

Site Trends Decreasing National Trend G 29 individual sites exhibited a significant decreasing trend H 3 individual sites exhibited a significant increasing trend

Chemical Description

Sources

Cad miumoccurs naturally in the earth's crust as complex oxides and sulfides in ores (Plachy, 2003) but is not an essential element for life. In the earth's crust as complex oxides and sulfides in ores (Plachy, 2003) but is not an essential element for life. In the earth's crust as complex oxides and sulfides in ores (Plachy, 2003) but is not an essential element for life. In the earth's crust as complex oxides and sulfides in ores (Plachy, 2003) but is not an essential element for life. In the earth's crust as complex oxides and sulfides in ores (Plachy, 2003) but is not an essential element for life. In the earth of taddition to the abundant industrial applications, other products that contain cadmium include: batteries, color pigment, plastics and phosp hatefertilizers. Industrial sources and uses include: zinc, lead and copper production; electroplating and galvanizing; smelting; mining; fossil fuel burning; was teslag; and sewages ludge (ATSDR, 1999a; FDA 1993b). Anthropogenic emissions, or iginating from a large number of diffuses our ces, and the contraction of the contractioexceed natural emissions.


Toxicity

Cadmium is toxic to fish, salmonoid species and juveniles are especially sensitive, and chronic exposure can result in reduction of growth.Respiration and food represent the two major exposure pathways for human stocad mium; exposure to high levels occurs primarily as a result of the primarily asoccupational exposure. The FDA action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, oysters and mussels is 4ppm wetweight (FDA, 2001). In years 2004-2005 of the action level for cadmium in clams, or call the action level for cadmium in clams, oMussel Watch Program, a maximum cadmium concentration of 1.6 ppm wet weight was measured in Delaware Bay.

Fate and Transport

Environmental contamination of cadmium in coastal and estuarine environments can be linked to both natural and non-point anthropogenic sources (Roesijadi, 1984). Natural sources can be linked to river run off from cadmium rich soils, leaching from bedrock, and upwelling from the contraction of themarine sediment deposits (Sokolova et al., 2005). As a result of fossil fuel burning, erosion, and biological activities, cadmium is transported byatmospheric processes. Land-based run of fan doce an upwelling are the main conveyors of cadmium into coastal environments. Nationally, elevatedcad mium levels are primarily located in freshwater-dominated estuaries (e.g., Mississi ppi Delta, Great Lakes and Chesapeake Bay; see status chart)consistent with river transport of cadmium to coastal environments.

Chesapeake Bay Highlight

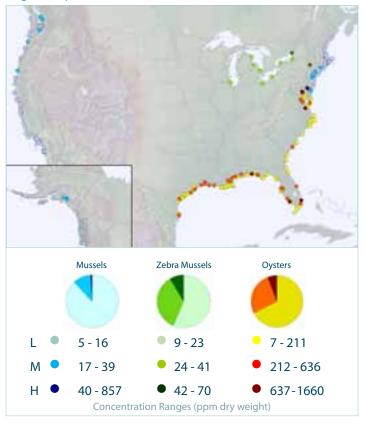
Background

Cadmium is identified as a toxinof concern by the Chesapeake Bay Program. In putsofcadmiumwereestimatedtobe27,800kg/year(Eskinetal.,1996).TheChesapeake Bay watershed stretches across five states (NY, PA, MD, DE, VA) and the District of Columbiaandisamixedusewatershedwithsomedevelopedandindustrializedareas. Chemical contaminant discharge into the Bayoriginates from industrial was tewater.discharge, urban stormwater runoff, and atmospheric deposition (Chesapeake Bay Program, 1999).

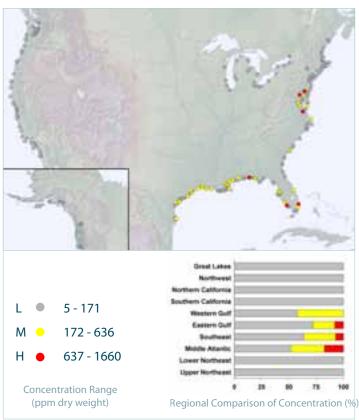
ConcentrationPercentage

Status

- The Chesapeake Bay has a much higher proportion of high and medium measurements relative to oysters nationwide.
- In comparison to the nation, the Chesapeake Bay has elevated levels of cadmium.


Trends

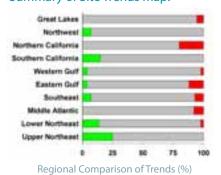
- As a region there is no cadmium trend.
- $\bullet \ \ Cadmium is of a particular concern in Chesapeake Bay because, in contrast to the$ nation, its concentration is not decreasing despite years of restoration efforts.


The highest concentrations are observed in oysters, which have an enhanced ability to concentrate copper, relative to mussels and zebra mussels.

Regional Species Characterization

National Characterization

Nation at a Glance:


Trends Summary

Significant Regional Trends:

G Southern California

4 Upper Northeast, Lower Northeast, Middle Atlantic, Southeast, Western Gulf Coast, Eastern Gulf Coast, Northern California, Northwest, Great Lakes

Summary of Site Trends Map:

G 16 individual sites exhibited a significant decreasing trend

H 12 individual sites exhibited a significant increasing trend

No Overall National Trend

Chemical Description

Sources

Copperisanaturally occurring element that is ubiquitous in the environment. Trace amounts of copperare an essential nutrient for plants and animals. Anthropogenic sources include: mining, manufacturing, agriculture, sewages ludge, antifouling paint, fungicides, wood preservatives, and vehicle brakepads (ASTDR, 2004; Denier van der Gonetal., 2007). The U.S. ranks third in the world for utilization and second in production. The EPA phase-out of chromated copperarse nate (CCA) wood preservatives and the 1980 srestrictions on tributyl tin marine antifouling paint has stimulated a transition to copper-based wood preservatives and marine antifouling paint.

Toxicity

Coppercanbetoxictoaquaticorganisms; juvenilefishes and invertebrates are much more sensitive to copper than adults. Although copper is not highly toxic to humans, chronic effects of copper occur as a result of prolonged exposure to large doses and can cause damage to the digestive tract and eye irritation (ATSDR, 2004). There is no recommended FDA safety level for copper in fish and fish products.

Fate and Transport

ThemostcommonformofcopperinwaterisCu(II), it is mostly found bound to organic matter. Transport of copper to coastal and estuarine water occurs as a result of run of fand river transport. At mospheric transport (Denier van der Gonetal., 2007) and deposition of particulate copper into surface waters may also be a significant source of copper to coastal waters.

South Florida Highlight

States

Background

In a special study of oyster tissue from five sites in southeast Florida (St. Lucie River), elevated levels of copper were attributed to copper used in agriculture (Hameedi, et al. 2006). Copper is an active ingredient in some antifouling paints, fungicides and algaecides, which are heavily used in the region (USGS, 2008; Srinivasan and Swain, 2006; Gianessi, et al., 2002; Leslie, 1992).

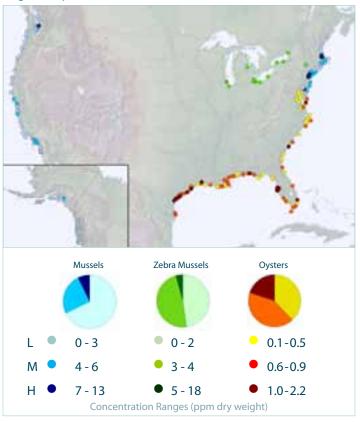
Status

- The proportion of middle and high sites found in South Florida is similar to those found nationally.
- Two of the sites in South Florida are among the highest in the nation.

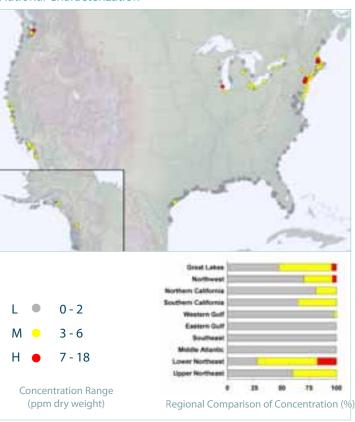
No Trend 4

Trends

- As a region, South Florida copper does not have a significant trend.
- Three sites, located near urban population centers on the Gulfand Atlantic Coasts (Fort Myers, Naples Bay, and Gould's Canalin southern Biscayne Bay), have increasing copper trends.
- No site in South Florida has a decreasing trend.


Site Trends

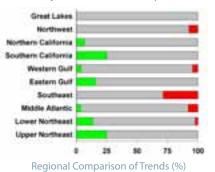
Lead (Pb)


Status Summary

The highest concentrations of lead are found in mussels near urban and industrial centers.

Regional Species Characterization

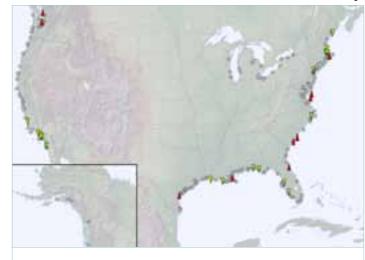
National Characterization


Trends Summary

Significant Regional Trends:

G Lower Northeast, Southern California

4 Upper Northeast, Middle Atlantic, Southeast, Eastern Gulf Coast, Western Gulf Coast, Northern California, Northwest, Great Lakes


Summary of Site Trends Map:

Site Trends

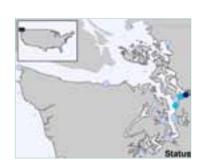
rends No Overall National Trend

G 20 individual sites exhibited a significant decreasing trend H 11 individual sites exhibited a significant increasing trend

Chemical Description

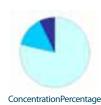
Sources

Leadisaubiquitous metalthatoccurs naturally in the earth's crust. Environmentalle velso flead increased worldwide over the past century because of leaded gas olineuse (ATSDR, 2007b). Significant reductions in source and load resulted from regulation of leading as oline and lead based paints. Highlevels found in the environment are usually linked to anthropogenic activities such as manufacturing processes, paint and pigment, solder, ammunition, plumbing, in cineration and fossil fuel burning. In the communications industry, leadisstillused extensively as protectives heathing for underground and underwater cables, including transoceanic cable systems (USGS, 2008).


Toxicity

Lead has no biological use and is toxic to many organisms, including humans. Exposure of fish to elevated concentrations of lead results in neurological deformities and blackfins in fish (Mance, 1987). Lead primarily affects the nervous system, which results in decreased mental performance and mental retardation in humans. Exposure to lead may also cause brain and kidney damage, and cancer (IARC, 2006). The FDA action level for lead in clams, oysters and mussels is 1.7 ppm wet weight (FDA, 2001 and 1993c). In years 2004-2005 of the Mussel Watch Program, a maximum lead concentration of 1.9 ppm wet weight was measured in Lake Michigan.

Fate and Transport


Loadingsofleadintocoastalwatersareprimarilylinkedwithwastewaterdischarge, riverrunoff, atmospheric deposition and natural weathering of rock. Lead can be found in air, soil and surface water. (ATSDR, 2007b).

Puget Sound Highlight

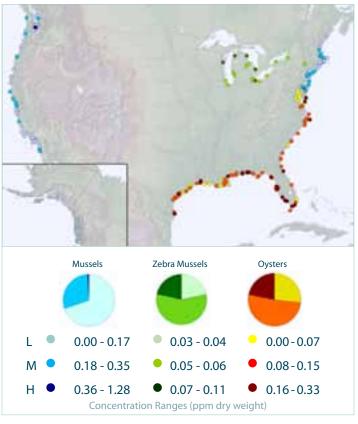
Background

LeadcontaminationinPugetSoundresultedinelevatedconcentrationsinfish,and hasbeenidentifiedasachemicalofconcernbasedonanevaluationperformedbythe Puget Sound Action Team (2007)

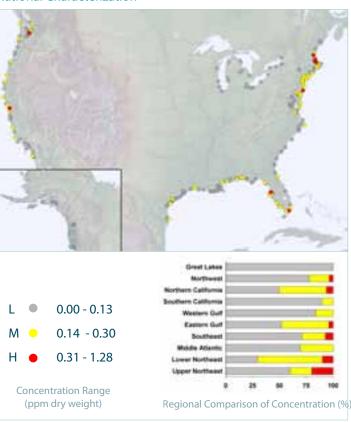
Statu

- Threesites with the highest levels in Puget Soundwere Mukilteo Ferry, Everett Harbor and Edmonds Ferry.
- The proportion of low, medium and high is similar to mussels nationally, but is different than proportions for oysters and zebra mussels.

No Trend 4


Trends

- TwositesinPugetSoundhavesignificantincreasingtrends;however,asaregion there is no significant trend.
- In comparison to the national trend, the overall proportion of sites with increasing lead is higher in Puget Sound.


The national characterization map indicates medium and high concentrations are spread throughout the nation with the exception of the Great Lakes and Alaska. Relative to mussels and oysters, zebra mussels have low concentrations.

Regional Species Characterization

National Characterization

Nation at a Glance:

Trends Summary

Significant Regional Trends:

G Upper Northeast, Eastern Gulf Coast, Southern California

H Middle Atlantic

4LowerNortheast, Southeast, WesternGulfCoast, NorthernCalifornia, Northwest, Great Lakes

Summary of Site Trends Map:

Trend Percentage

Site Trends

No Overall National Trend

G 24 individual sites exhibited a significant decreasing trend H 11 individual sites exhibited a significant increasing trend

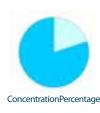
Chemical Description

Sources

Mercury is a highly toxic, non-essential trace metal that occurs naturally. Elevated levels occur as a result of human activity (ATSDR, 1999b). In the level of the result of the resuU.S., coalfired-electric turbines, municipal and medical wastein cinerators, mining, land fills, and sewages ludge are the primary emitters of mercury into the air.

Toxicity

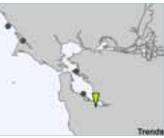
Mercury is a human neuro to x in that also affects the kidneys and developing fetuses. The most common human exposure route for mercury is the support of the fetuses of the fetuses of the fetuses of the fetuses. The most common human exposure route for mercury is the fetuse of the fetuses. The most common human exposure route for mercury is the fetuse of the fetuses. The most common human exposure route for mercury is the fetuse of the fetuses. The most common human exposure route for mercury is the fetuse of the fetuses. The most common human exposure route for mercury is the fetuse of the fetuconsumption of contaminated food. The FDA has not established as a fetyle velformer cury but has set an action level of 1.0 ppm wetweight for the following the followinmethylmercury(FDA,2001).TheMusselWatchProgrammeasurestotalmercury.Children,pregnantwomenorwomenlikelytobecomepregnant are advised to avoid consumption of sword fish, shark, king macker eland tile fish and should limit consumption to fish and shell fish recommended by the consumption of the constant of the


Fate and Transport

In the environment, mercury may change forms between elemental, in organic and organic. Natural sinks, such as sedimentands oil, represent the environment, mercury may change for most between elemental, in organic and organic. Natural sinks, such as sedimentands oil, represent the environment, mercury may change for most between elemental, in organic and organic. Natural sinks, such as sedimentands oil, represent the environment, mercury may change for most between elemental, in organic and organic. Natural sinks, such as sedimentands oil, represent the environment of the enlargest source of mercury to the environment. Estimates suggest that we tand dry deposition accounts for 50-90% of the mercury load to many largest source of the contract oestuaries, making atmospheric transport a significant source of mercury worldwide. Longrange atmospheric transport is responsible for the estuaries of the contract of the cpresence of mercury at or above background levels in surface waters in remote areas.

San Francisco Highlight

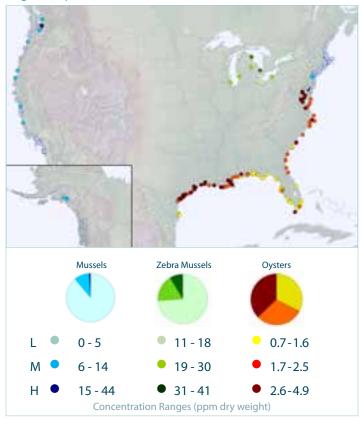
Background


Mercury has been identified as one of the top water quality concerns in San FranciscoBay(SFEI,2005). Miningin local watersheds of Tomales Bayand San Francisco Bay have left a legacy of sediment contamination. Sediment concentrations throughoutSan Francisco Bay exceed the Total Mean Daily Limit (TMDL) regulatory target (SFEI, and the Second Second2005).

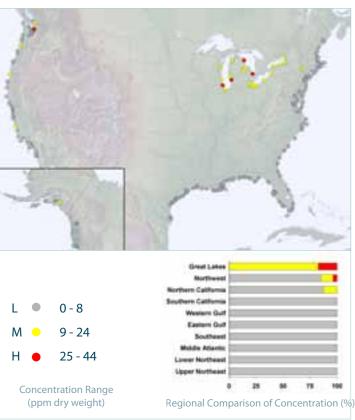
Status

- $\bullet \ \ Elevated mercury levels were measured throughout San Francisco Bayandin$ Tomales Bay at Point Reyes National Seashore.
- San Francisco Bay measurements are amongst the highest in the nation.

Decreasing Trend **G**



• San Francisco Bay has a higher mercury concentration than the national average, but has a significant decreasing trend.



The highest concentrations of nickel occur in the Great Lakes. All other regions in the nation generally exhibit low concentrations. None of the measurements exceed the FDA action level.

Regional Species Characterization

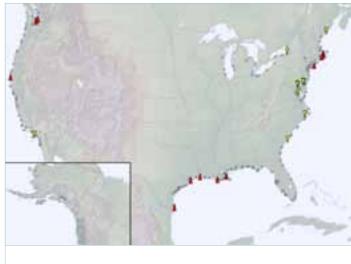
National Characterization

Trends Summary

Significant Regional Trends:

G Middle Atlantic

4 Upper Northeast, Lower Northeast, Southeast, Eastern Gulf Coast, Western Gulf Coast, Southern California, Northern California, Northwest, Great Lakes


Summary of Site Trends Map:

Site Trends

ends No Overall National Trend

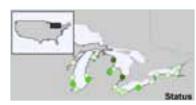
G 12 individual sites exhibited a significant decreasing trend

H 12 individual sites exhibited a significant increasing trend

Chemical Description

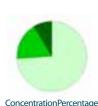
Sources

Nickelisanaturally occurring, biologically essential trace element that is widely distributed in the environment. It exists in its alloy formand as a soluble element. Nickelis found in stainless steel, nickel-cadmium batteries, pigments, computers, wire, and coin age; and is used for electroplating (ATSDR, 2005b).


Toxicity

Food is the major source of human exposure to nickel (ATSDR, 2005b). Exposure to large doses of nickel can cause serious health effects, such as bronchitis, while long-term exposure can result in cancer. The FDA has established an action level of 80 ppm wet weight for nickel in shell fish (FDA, 2001 and 1993d). In years 2004-2005 of the Mussel Watch Program, a maximum nickel concentration of 10 ppm wet weight (equivalent) was measured in Puget Sound (PSMF). There is no evidence that nickel biomagnifies in the food chain (McGeer et al., 2003; Suedel et al., 1994).

Fate and Transport


Nickelderivedfromweatheringrocksandsoilistransportedtostreamsandriversbyrunoff. Itaccumulates insedimentand becomes inertwhen it is incorporated into minerals. Riverand stream input of nickelare the largest sources for oceans and coastal waters. At mospheric sources are usually not significant, except in the Great Lakes where the atmospheric input of nickelac counts for 60-80% of the total anthropogentic input to Lake Superior and 20-70% of total inputs to Lakes Erie and Ontario (Nriagu et al., 1996).

Great Lakes Highlight

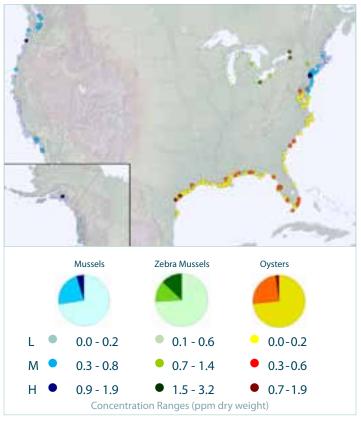
Background

Possibles our ces in this region include mining and smelting operations in Sudbury, Ontario, Canada where the largest nickel smelting operation in the western hemisphere is found. EPA through its Great Lakes Sediment Remediation activities found that sediment contaminated with nickel and other contaminants are a significant problem and raised concernabout potential risks to a quaticorganisms and humans (EPA, 2004).

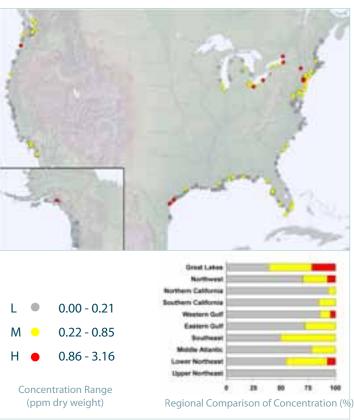
Status

- Whencompared to both mussels and oysters, concentrations in zebramussels from the Great Lakes are relatively high.
- AlthoughthehighestsitesoccurinLakeHuronandthelowestinLakeOntario, allmeasurementsarehigherthanthosefoundinotherregionsforoystersand mussels.

No Trend 4


Trends

 Proportionallythepercentageofdecreasingsitesissimilartowhatisseenfor the nation.



Medium and high tin concentrations are found nationwide. The highest concentrations occur in eastern Great Lakes zebra mussels.

Regional Species Characterization

National Characterization

Trends Summary

Significant Regional Trends:

4 Lower Northeast, Upper Northeast, Middle Atlantic, Southeast, WesternGulfCoast, EasternGulfCoast, SouthernCalifornia, Northern California, Northwest, Great Lakes

Summary of Site Trends Map:

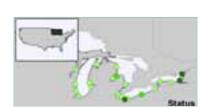
No Overall National Trend

G 15 individual sites exhibited a significant decreasing trend H 3 individual sites exhibited a significant increasing trend

Chemical Description

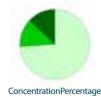
Sources

Tin sources in coastal water and soil include manufacturing and processing facilities. It also occurs in trace amounts in natural waters. Concentrations in unpolluted waters and the atmosphere are often near analytical detection limits. Tinhas not been mined in the U.S. since 1993 (USGS, 2008); however, Canadian tin mining occurs in the Great Lakes Region.


Toxicity

Humansare exposed to elevated levels of tin by eating from tin-lined can sand by consuming contaminated seafood (ATSDR, 2005b). Exposure to elevated levels of tin compounds by humans leads to liver damage, kidney damage, and cancer. There is no U.S. FDA recommended guideline for tin in seafood.

Fate and Transport


Tinenters coastal waters bound to particulates, and from riverine sources derived from soil and sedimenter osion. Bioconcentration factors for inorganic tinwere reported to be 1,900 and 3,000 for marine algae and fish (Seidelet al., 1980; Thompsonet al., 1972). Inorganic tin can be transformed into organometalic forms by microbial methylation and is correlated with increasing organic content in sediment (Hadjispy ouetal., 1998). Tinis regarded as being relatively immobile in the environmentand is rarely detected in the atmosphere. It is mainly found in the atmosphere near industrial sources as particulates from combustion of fossil fuels and solid waste (Gerritse et al., 1982; WHO, 1980).

Great Lakes Highlight

Background

Possible sources in this region include mining and smelting operations.

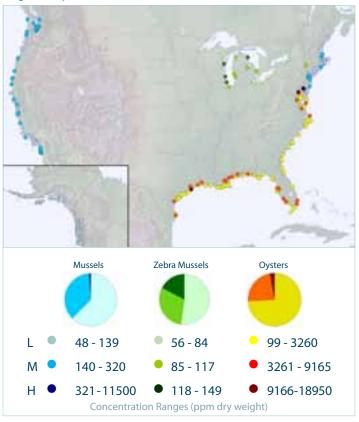
Status

- Some of the highest tin concentrations in the nation occur in zebra mussels.
- The highest concentrations are found in the eastern Great Lakes.

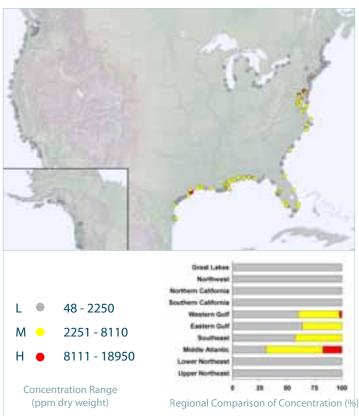
No Trend 4

Trends

• The Great Lakes, like the nation, has no trend.



38


Site Trends

Regional differences can be attributed to variability in species uptake of zinc. An increased ability of oysters to concentrate zinc results in high concentrations relative to mussels and zebra mussels.

Regional Species Characterization

National Characterization

Trends Summary

Significant Regional Trends:

G Southern California, Northwest, Great Lakes

4 Upper Northeast, Lower Northeast, Middle Atlantic, Southeast, Eastern Gulf Coast, Western Gulf Coast, Northern California

Summary of Site Trends Map:

G 25 individual sites exhibited a significant decreasing trend H 3 individual sites exhibited a significant increasing trend

Chemical Description

Sources

Asthefourthmostwidely used metal, zinc's anthropogenic sources far exceed its natural ones. The major industrial sources include electroplating, smelting and drain age from mining operations (Mirenda, 1986). The greatest use of zinc is as an anti-corrosive coating for iron and steel products (sheet and stripsteel, tube and pipe, and wire and wire rope). Canadais one of the largest producers and exporters of zinc. The United States is the largest customer for Canadian refined zinc, and the automobile industry is the largest user of galvanized steel.

Toxicity

Zincisanessentialnutrient. Humanexposureto high doses of zincmay cause an emia ordamage to the pancreas and kidneys (ATSDR, 2005c). However, zinc does not bio accumulate in humans; therefore, toxic effects are uncommon and associated with excessively high doses. Fish exposed to low zinc concentrations can sequester it in some cases (McGeeretal., 2003). There is no FDA recommended safety level for zincin fish and fish products.

Fate and Transport

Dissolved zincoccurs as the free hydratedion and as dissolved complexes. Changes in water conditions (pH, redox potential, chemical speciation) can result in dissolution from or sorption to particles (EPA, 1979d). In air, zincis primarily found in the oxidized form bound to particles. Zinc precipitates as zinc sulfide in an aerobic or reducing environments, such as wetlands, and thus is less mobile, while remaining as the free ion at lower pHs. As a result of natural and anthropogenic activities, zincis found in all environmental compartments (air, water, soil, and biota).

Southern California Highlight

Background

The Southern California Bight is a heavily populated and industrialized coastal region that extends from Point Conception to San Diego. Previous assessments have identified zincas a contaminant of concern. Most pollution to the Bight is derived from stormwater, outfall pipes, power plants, harboractivities, natural upwelling phenomenon, and erosion of metal-rich soil.

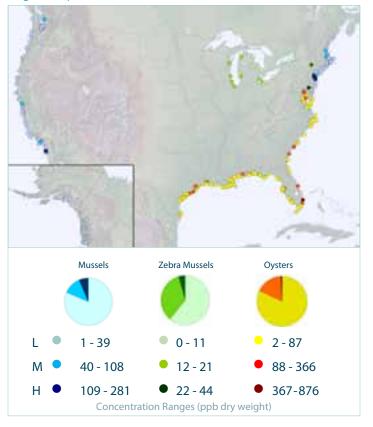
Status

• Sevenofthe 20 sites in this region have concentrations in the medium range and all but one of these lie in San Diego County.

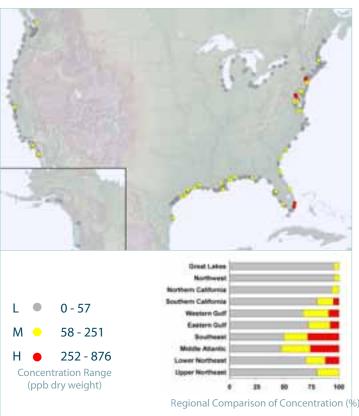
Decreasing Trend **G**

Trend

- Significant decreasing zinctrends are observed throughout the Bight, and appears to be the result of efforts to improve water quality by the State of California.
- The decreasing national trend is duplicated in Southern California.



Butyltins


Status Summary

High and medium concentrations appear to be associated with boating activity and use of marine antifouling paint.

Regional Species Characterization

National Characterization

Trends Summary

A Summary of Regional Trends:

 $\label{lem:GLowerNortheast,EasternGulfCoast,SouthernCalifornia,Northern California, Northwest$

4 Upper Northeast, Middle Atlantic, Southeast, Western Gulf Coast, Great Lakes

Summary of Site Trends Map:

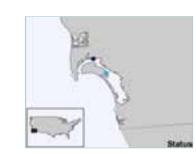
As individual sites exhibited a significant decreasing trend H 0 individual sites exhibited a significant increasing trend

Chemical Description

For this document, but yltinist he sum of three organometalic compounds: tribut ylin, the parent compound, and two of its transformation products (dibut yltin and monobut yltin).

Sources

Tributyltinis used as an antifouling agentin marine paints applied to boat hulls. Slow release from the paint into the aquatic system retards organism attachment and increase sambient environmental levels. The U.S. partially banned the use of tributyltinin 1988 for use on boats less then 25 m in length, drastically limiting use on many recreational vessels.


Toxicity

Tributyltinisan extremely toxic biocide that is regulated as a result of its toxic effects (reproduction and endocrine disruption) on non-target a quatic species. Organotin compounds a rereadily bioaccumulated by a quatic organisms from water but the reisnoevidence for biomagnification up the food chain. Sex changes have been shown to occur in gastropod sexposed to elevated levels of tributyltin. There is no FDA recommended safetyle vel for butyltins in fish and fish products.

Fate and Transport

Tributyltinissparinglysolubleinwaterandassociatesreadilywithsuspendedparticlesinthewatercolumn.Butyltinsarepersistentintheaquatic environmentandaccumulateinsediment;therefore,theywillcontinuetobeasourceofbutyltintotheaquaticenvironment(GibbsandBryan,1994; EPA,2003).Tributyltintransformstodibutyltinandthentomonobutyltin.Releasesoforganotinstotheatmospherearenotsignificantduetotheir low vapor pressure and rapid photodegradation.

San Diego Bay Highlight

Background

San Diego Bay supports commercial, military and recreational boating.

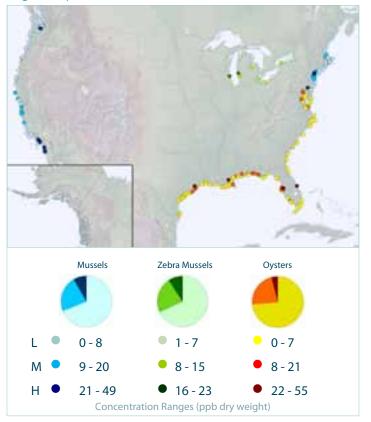
Status

- Concentrations inside the bay are higher than those outside the bay.
- Relative to the nation, San Diego Bay has an elevated level of butyltin contamination, however they are not among the highest in the country.

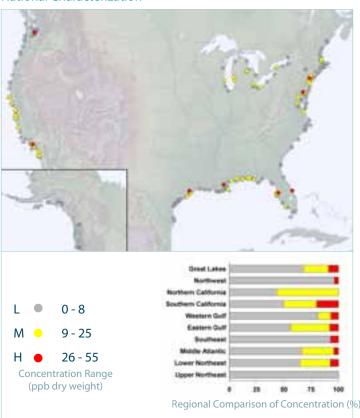
Decreasing Trend **G**

Trends

- Sites with decreasing concentrations are found inside and outside the bay.
- The proportion of sites with decreasing trends is greater than that found nationally.
- RegionalbutyltinconcentrationsaredecreasinginSanDiegoBayliketherestof nation.



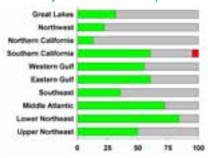
Nation at a Glance:


Status Summary

The highest concentrations are associated with historic agricultural use and urban termite control. High chlordane concentrations are found near urban centers and metropolitan areas.

Regional Species Characterization

National Characterization



Trends Summary

A Summary of Regional Trends:

G Upper Northeast, Lower Northeast, Middle Atlantic, Southeast, EasternGulfCoast, WesternGulfCoast, Southern California, Northern California, Northwest, Great Lakes

Summary of Site Trends Map:

Regional Comparison of Trends (%)

Trend Percentage

National Trends Decreasing National Trend G 129 individual sites exhibited a significant decreasing trend H 1 individual sites exhibited a significant increasing trend

Chemical Description

Chlordane belongsto agroup of organic pesticides called cyclodienes. It is a technical mixture whose principle components are alpha-chlordane, gamma-chlordane, heptachlorand nonachlor. Chlordane as reported here is the sum of three prominent compounds, alpha-chlordane, heptachlorand trans-nonachlor, plus one transformation product (heptachlor epoxide).

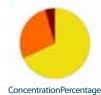
Sources

Technical chlordane, an insecticide, is a complex mixture of at least fifty compounds. It was used in the U.S. from 1948-1983 for a gricultural and urban setting sto control in sect pests. It was also the predominant in secticide for the control of subterranean termites. A gricultural uses were banned in 1983 and all uses were banned by 1988. The secompounds are some of the most ubiquitous contaminants measured by the Mussel Watch Program. The FDA action level for chlordane in all fish is 0.3 ppm wet weight (FDA, 2001). In yeas 2004-2005 of the Mussel Watch Program, a maximum chlordane concentration of 0.01 ppm wet weight was measured in Indian River, Florida (IRSR) and Sinclair Inlet, Washington (SIWP).

Toxicity

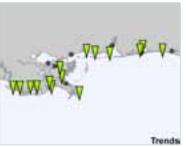
Exposure to chlordane can occur through eating crops from contaminated soil, fish and shell fish from contaminated waters, or breathing contaminated air. Chlordane can enter the body by being absorbed through the skin, inhalation and ingestion. At high levels, chlordane can affect the nervous system, digestive system, brain and liver, and is also carcinogenic. Chlordane is highly toxic to invertebrates and fish.

Fate


Removal from both soil and water sources is primarily by volatilization and particle-bound run off. In air, chlord an edegrades as a result of photolysis and oxidation. Chlord an exist sintheat mosphere primarily in the vapor-phase, but the particle-bound fraction is important for long-range transport. Chlord an eisprevalent in the Arctic due to the grasshopper effect and distributed in the food web (Hargrave et al., 1992). Chlord an ebind sto dissolved organic matter, further facilitating its transport in natural waters.

Central Gulf Coast Highlight

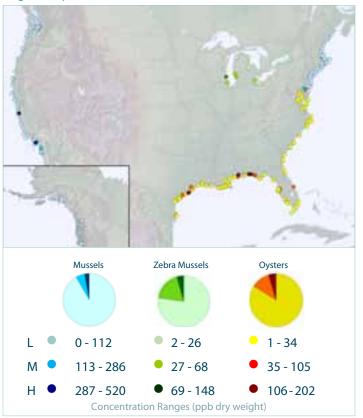
Background


Decreasing concentration trends are consistent with earlier reporting.

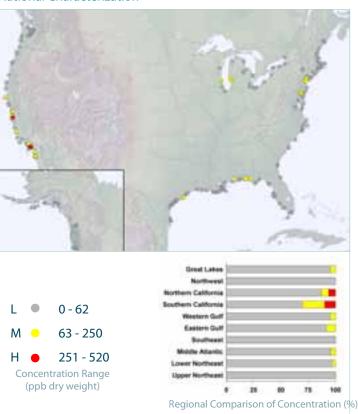
Status

- On the Western Gulf Coast chlordane is the highest in enclosed bays.
- Regional concentrations are similar to those found for nationwide.

Decreasing Trend **G**


Trends

- Nearlyallsitesshowdecreasingconcentrationtrends, which is consistent with the ban of all chlordane use in 1988.
- Regionally and nationally chlordane concentrations are decreasing.


The highest concentrations are associated with historic DDT manufacturing facilities. High and moderate concentrations occur primarily in estuaries and bays as a result of industrial discharge on the Southwest Coast.

Regional Species Characterization

National Characterization

National Trends

Trends Summary

A Summary of Regional Trends:

GUpperNortheast,LowerNortheast,MiddleAtlantic,Southeast,Eastern GulfCoast,WesternGulfCoast,SouthernCalifornia,Northwest,Great Lakes

4 Northern California

Summary of Site Trends Map:

Regional Comparison of Trends (%)

G 130 individual sites exhibited a significant decreasing trend

H 0 individual sites exhibited a significant increasing trend

Decreasing National Trend

Chemical Description

Sources

DDTwasusedworldwideasaninsecticideforagriculturalpestsandmosquitocontrol. Its use in the United States was banned in 1972, but it is still used in some countries today (ATSDR, 2002a).

Toxicity

Duetoitsenvironmentalpersistenceandhydrophobicnature, DDT bioaccumulates in organisms. Manyaquaticand terrestrialorganisms are highly sensitive to DDT. As a result of DDT stoxic effection wild life, in particular birds, its usage was banned in the United States. The FDA action level for DDT in all fish (edible portion) is 5 ppm wetweight (FDA, 2001). In years 2004-2005 of the Mussel Watch Program, a maximum DDT concentration of 0.09 ppm wet weight was measured in Southern California Bight.

Fate and Transport

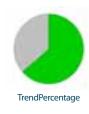
DDTtransformstoDDDandDDE, the latter being the predominant form found in the environment. Evaporation of DDT from soil followed by long distance transport (the grasshopper effect) results in its wides pread global distribution. DDT and its transformation products are very persistent and accumulate in the environment because they resist bio degredation. DDT that enters surface waters is subject to volatilization, adsorption to suspended particulates and sediment, and bio accumulation. About half of the atmospheric DDT is adsorbed to particulates (Bidleman, 1988).

Southern California Highlight

Decreasing Trend **G**

Background

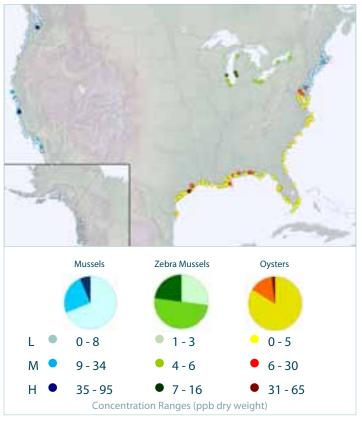
DDT is present in sediments of the Palos Verdes Shelf largely as a result of wastewaterdischargesfromtheformerMontroseChemicalCorporation,aDDT manufacturing plant in Torrance, California, that operated from 1947 to 1983.

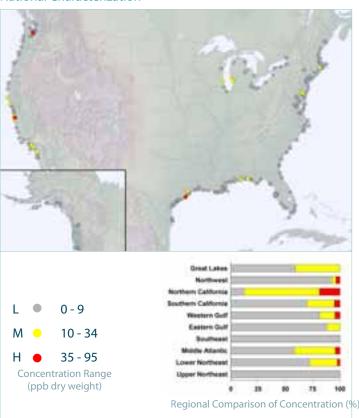


Status

- The Southern Californian Coast has a much higher proportion of middle and high DDT measurements relative to the rest of the nation.
- The majority of sites characterized as high in the nation are in the Southern Californian region.
- · Highconcentrationsareprimarilyfoundinthevicinityofthemanufacturingplant.

Trende


- $\hbox{-} Decreases in DDT concentrations in Southern California are similar to what is recorded for the nation. \\$
- The decreases found in Southern California come as a result of the cessation of manufacturing of DDT in the region and transport to the deep ocean.

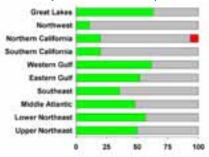


The highest concentrations are associated with pesticide use and manufacturing adjacent to urban bays and estuaries.

Regional Species Characterization

National Characterization

Decreasing National Trend


Trends Summary

A Summary of Regional Trends:

GUpperNortheast,LowerNortheast,MiddleAtlantic,Southeast,Eastern Gulf, Coast, Western Gulf Coast, Great Lakes

4 Southern California, Northern California, Northwest

Summary of Site Trends Map:

Regional Comparison of Trends (%)

G 108 individual sites exhibited a significant decreasing trend

H 1 individual sites exhibited a significant increasing trend

National Trends

Chemical Description

Sources

Inthis document, diel drin is defined as the sum of two compounds, diel drin and aldrin. Diel drin and are lated compound (aldrin) were widely used as in secticides in the 1960s for the control of termites around buildings and general cropprotection from in sects (ATSDR, 2002b). In 1970, all uses of aldrin and diel drin were canceled based on concern that they could cause severe aquaticen viron mental change and their potential as carcinogens (EPA, 1980). The cancellation was lifted in 1972 to allow limited use of aldrin and diel drin, primarily for termite control. All uses of aldrin and diel drin were again cancelled in 1989 (EPA, 1990).

Toxicity

Exposure to aldrinand diel drinoccurs throughing estion of contaminated water and food products, including fish and shell fish, and through in halation of indoor air in building streated with these in secticides. Aldrinis rapidly metabolized to diel drin in the human body. Acute and long-term human exposures are associated with central nervous system intoxication. Aldrin and diel drin are carcinogenic to an imals and classified as likely human carcinogens. The FDA hase stablished an action level of 0.3 ppm wet weight for ald rin/diel drin in all fish (FDA, 2001). In years 2004-2005 of the Mussel Watch Program, a maximum diel drin concentration of 0.02 ppm wet weight (equivalent) was measured in Monterey Bay, California (MBES).

Fate and Transport

Aldrinisreadilyconverted to dieldrin, while dieldrinisres is tant to transformation. Dieldrin bio accumulates and is magnified through a quatic food chains and has been detected in tissue of freshwater and saltwater fish, and marine mammals. Aldrin and dieldrin applied to soil are tightly bound, but may be transported to streams and rivers by soilerosion. Volatilization is the primary loss mechanism from soil. Dieldrin under goes minor degradation to photo dieldrin in marine environments.

Central Gulf Coast Highlight

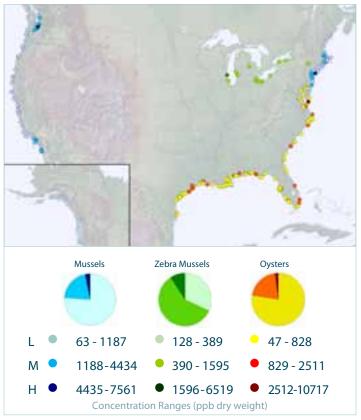
Background

Highlypersistentandwidelyappliedasapesticide, dieldrincontinues to be found at medium levels in the region.

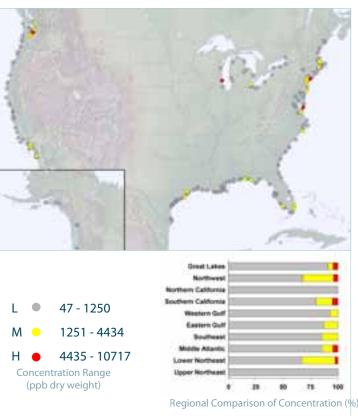
Status

- On the Central Gulf Coast dieldrin is the highest in enclosed bays.
- Regional concentrations are elevated relative to those found nation wide.

Decreasing Trend **G**


Trends

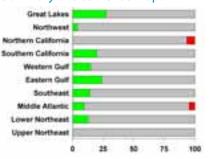
- Morethanhalfthesitesshowdecreasingtrends, which is consistent with the 1974 ban from agricultural use.
- The region as a whole has a significant decreasing trend.


Elevated concentrations are associated with petroleum manufacturing, creosote use and wood burning.

Regional Species Characterization

National Characterization

Nation at a Glance:


Trends Summary

A Summary of Regional Trends:

G Southeast, Eastern Gulf Coast, Great Lakes

4 Lower Northeast, Upper Northeast, Middle Atlantic, Western Gulf Coast, Southern California, Northern California, Northwest

Summary of Site Trends Map:

Regional Comparison of Trends (%)

Trend Percentage

National Trends

Decreasing National Trend

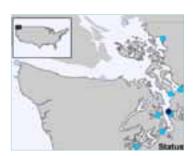
G 33 individual sites exhibited a significant decreasing trend

H 2 individual sites exhibited a significant increasing trend

Chemical Description

Sources

Polycyclic aromatic hydrocarbons (PAHs) are found increosote, soot, petroleum, coal, and tar; and are the only organic contaminants measured by the contaminant of the properties of the contaminant of the properties of the propthe Mussel Watch Program that have natural sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (automobile semissions, and the fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic sources (e.g., for est fires, volcanoes) in addition to anthropogenic source (e.g., for est fires, fires, for est fires, for esthome heating, coal fired power plants). PAHs are formed from the fusing of benzenering sduring the incomplete combustion of organic materials.They are also found in oil and coal. The main sources of PAHs to the environment are forest fires, coal fired power plants, and automobile exhaustand local releases of oil.


Toxicity

Made upo fasuite of hundreds of compounds, PAHs exhibit a wide range of toxicities. Sources appear on the 2005 Priority List of Hazardous and PAHs exhibit a wide range of toxicities. Sources appear on the 2005 Priority List of Hazardous and PAHs exhibit a wide range of toxicities. Sources appear on the 2005 Priority List of Hazardous and PAHs exhibit a wide range of toxicities.Substances, as do specific compounds (ATSDR, 1995). Human exposure to PAHs can come as a result of being exposed to smoke from forest fires, automobile exhaust, home he ating using wood, grilling and cigar et tes. To xic responses to PAHs also occur in a quatic organisms and includes a constant of the property oreproduction in hibition, mutations, liver abnormalities and mortality. Exposure to a quaticorganisms can come as a result of oil spills, boat exhaust a comparable of the cand urban runoff. There is no FDA recommended safety level for PAHs in fish and fish products.

Fate and Transport

The fate and transport of PAHs is variable and dependent on the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly associate and the physical properties of each individual compound. Most PAHs strongly as the physical properties of each individual compound and the physical prwithparticles; larger PAH compounds (high molecular weight) associate to a higher degree with particles relative to smaller PAH compounds (low molecular weight). Smaller compounds predominate in petrole umproducts whereas larger compounds are associated with combustion.(ATSDR, 1995).

Puget Sound Highlight

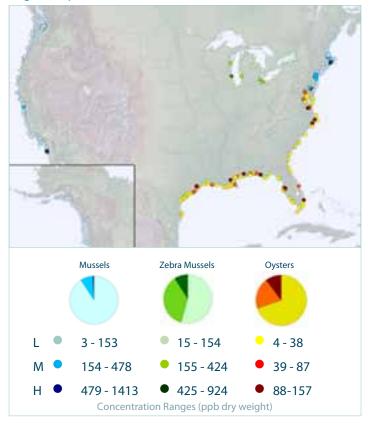
Background

Decreases in PAHs observed in Puget Sound in the 1970s and 1980s are likely due to the properties of $to a switch from coal too il and natural gas power generation. The increase of {\sf PAHs}$ in recent years has been attributed to urban sprawl and increased vehicle traffic.In the past 15 years the amount of ship traffic transporting oil has increased butthe number of oil releases have decreased steadily since 2000, while the volume of spilled oil has remained steady (Puget Sound Action Team, 2007).

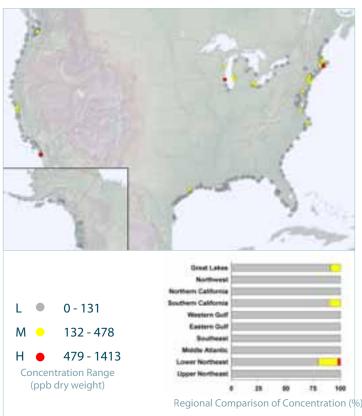
Status

- SitesinPugetSoundhavePAHconcentrationsthatareamongthehighestin
- Nearly2/3ofthesitesinthePugetSoundarecategorizedasmediumtohigh, nearly double what is observed nationally.

No Trend 4



• Overall there is no significant Puget Sound wide trend.


At the national level high and medium PCB contamination is localized, a limited number of sites at the national level have elevated concentrations.

Regional Species Characterization

National Characterization

Nation at a Glance:

Trends Summary

A Summary of Regional Trends:

 ${\Large GLower Nor the ast, Eastern Gulf Coast, Western Gulf Coast, Great Lakes}$

4 Upper Northeast, Middle Atlantic Southeast, Southern California, Northern California, Northwest

Summary of Site Trends Map:

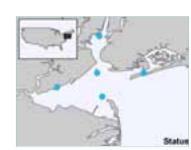
National Trends Decreasing National Trend G 46 individual sites exhibited a significant decreasing trend H 1 individual sites exhibited a significant increasing trend

Chemical Description

There are 209 possible PCB (polychlor in a ted bip henyl) compounds, called "congeners", that were marketed as mixtures known as Aroclor.

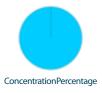
Sources

PCBs are synthetic organic chemicals composed of biphenyl substituted with varying numbers of chlorine atoms. They were manufactured between the composed of the property of the composed of the property of1929 and 1977. Polychlorinated biphenyls appear on the 2005 list of hazardous substances (ATSDR, 2000). PCB usewas regulated in 1971, new uses a constant of the contraction of the cowere banned in 1976. PCBs were used in electrical transformers, capacitors, lubricants and hydraulic fluids. Other uses included paints, adhesives, and the context of thplasticizers and flameretardants. Manufacturing of PCBs for use as flameretardants and lubricants stopped in 1977 (ATSDR, 2000). Currently, PCBs are predominately used in electrical applications and can still be found in transformers and electrical equipment.


Toxicity

The main human exposure route for PCBs is through eating contaminated seafood and meats. PCBs are associated with skin ail ments, neurological and the property of the propeand immunological responses and a thigh doses can decrease motors kills and cause liver damage, and memory loss. Exposure of a quatic life toPCBsresultsinbirthdefects, lowered fecundity, cancer and death. PCBs are hazardous because they are toxic, degrades lowly and bioaccumulate. The FDA tolerance level for PCBs in all fish (edible portion) is 2ppm wetweight, irrespective of which mixture of PCBs is present as the residue(FDA,2001;CFR,2003).Inyears2004-2005oftheMusselWatchProgram,amaximumPCBconcentrationof0.28ppmwetweightwasmeasuredin Buzzards Bay, Massachusetts.

Fate and Transport


PCBs are persistent in the environment and associate with particles in a quatic systems as a result of their strong hydrophobic nature. They are long a strong hydrophobic nature. They are long as the property of the proplived in the environment; improper disposal and leakage is responsible for environmental introduction.

Hudson Raritan Highlight

Background

Sediment in parts of the upper Hudson River remain heavily contaminated with PCBsand will remain a source of PCBs in the lower Hudson River for years to come.

Status

 The Hudson Raritan Estuary has a higher proportion of moderate levels of contamination relative to other mussels measured.

Decreasing Trend **G**

- · Four of the five sites show decreasing concentration trends.
- Like the nation, this region exhibits a decreasing trend.

ATSDR(AgencyforToxicSubstancesandDiseaseRegistry).1995.ToxicologicalProfileforPolycyclicAromaticHydrocarbons(PAHs).August1995.

ATSDR (Agency for Toxic Substances and Disease Registry). 1999a. Toxicological Profile for Cadmium. July 1999.

ATSDR (Agency for Toxic Substances and Disease Registry). 1999b. Toxicological Profile for Mercury. March 1999.

ATSDR (Agency for Toxic Substances and Disease Registry). 2000. Toxicological Profile for Polychlorinated Biphenyls (PCBs). November 2000. Toxicological Profile for Polychlorinated Biphenyls (PCBs). Toxicological Profile for Poly

ATSDR (Agency for Toxic Substances and Disease Registry), 2002a. Toxicological Profile for DDT, DDE, DDD. September 2002.

ATSDR (Agency for Toxic Substances and Disease Registry), 2002b. Toxicological Profile for Aldrin/Dieldrin. September 2002.

ATSDR (Agency for Toxic Substances and Disease Registry). 2004. Toxicological Profile for Copper. September 2004.

ATSDR (Agency for Toxic Substances and Disease Registry). 2005a. Toxicological Profile for Nickel. August 2005.

ATSDR (Agency for Toxic Substances and Disease Registry), 2005b. Toxicological Profile for Tin. August 2005.

ATSDR (Agency for Toxic Substances and Disease Registry). 2005c. Toxicological Profile for Zinc. August 2005.

ATSDR (Agency for Toxic Substances and Disease Registry). 2007a. Toxicological Profile for Arsenic. August 2007.

ATSDR (Agency for Toxic Substances and Disease Registry). 2007b. Toxicological Profile for Lead. August 2007.

Berner, L.H., J.McGowan, J.H.Martin, and J.Teal. 1976. Sampling marine organisms. In: Strategies for Marine Pollution Monitoring, E.D. Goldberg, (ed.). John Wiley & Sons, NY. pp. 269-73.

Bidleman, T.1988. Atmospheric processes: Wet and drydeposition of organic compounds are controlled by their vapor-particle partitioning. Environmental Science and Technology 22(4):361-367.

CFR(CodeofFederalRegulations).2003.Tolerancesforpolychlorinatedbiphenyls(PCB's).Title21,part109,section30,U.S.GovernmentPrinting Office, Washington, DC.

ChesapeakeBayProgram.1999.ChesapeakeBayBasinToxicLoadingandReleaseInventory.ChesapeakeBayProgram,Annapolis,MD.22Apr.2008 http://www.chesapeakebay.net/content/publications/cbp_12982.pdf.

DeniervanderGon, H.A.C., J.H.J. Hulskotte, A.J.H. Visschedijk, and M. Schaap. 2007. Arevised estimate of copper emissions from road transportin UNECE Europe and its impact on predicted copper concentrations. Atmospheric Environment 41(38):8697-8710.

Edmonds, J.S., and K.A. Francesconi. 1977. Methylated arsenic from marine fauna. Nature 265:436.

 $Edmonds, J.S., and K.A. Francesconi.\,1988. The origin of arseno betaine in marine animals.\,Applied\,Organo metallic\,Chemistry\,2:297-302.$

Edmonds, J.S., and K.A. Francesconi. 1993. Arsenicinsea food: human health aspects and regulations. Marine Pollution Bulletin 26:665-674.

Eisler, R. 1987. Polycyclicaromatic hydrocarbon hazardstofish, wildlife, and invertebrates: asynoptic review. U.S. Fish Wildlife. Service. Biol. Rep. 85 (1.11).

EPA(U.S.EnvironmentalProtectionAgency).1980.Ambientwaterqualitycriteriaforaldrin/dieldrin.CriteriaandStandardsDivision.PB81-11730/OWRS. Washington, D.C.

EPA(U.S.EnvironmentalProtectionAgency).1990.Suspended,canceled,andrestrictedpesticides.OfficeofPesticidesandToxicSubstances,OfficeofCompliance Monitoring. EPA/2OT-1002. Washington, D.C.

EPA(U.S.EnvironmentalProtectionAgency).2003. Ambientaquaticlifewaterqualitycriteriafortributyltin(TBT) – Final. OfficeofScience and Technology EPA822-R-03-031. Washington, D.C.

Eskin, R.A., K.H.Rowland, and D.Y.Alegre. 1996. Contaminants in Chesapeake Bay 1984-1991. U.S. Environmental Protection Agency, EPA 903-R-96-003, Chesapeake Bay Program (CPB), CPB/TRS 145/96. Annapolis, MD.

Farrington, J. W. 1983. Bivalves as sentinels of coastal chemical pollution: the Mussel (and oyster) Watch. Oceanus 26(2):18-29.

Farrington, J.W., J. Albaiges, K.A. Burns, B.P. Dunn, P. Eaton, J.L. Laseter, P.L. Parker, and S. Wise. 1980. Fossil fuels. In: The International Mussel Watch. National Research Council. National Academy of Sciences - Office of Publications, Washington, D.C. pp. 7-77.

FDA(FoodandDrugAdministration).1993a.GuidanceDocumentforArsenicinShellfish.U.S.DepartmentofHealthandHumanServices,PublicHealth Service, Office of Seafood (HFS-416), 200 C Street, SW, Washington, D.C. 44 pp.

FDA(FoodandDrugAdministration).1993b.GuidanceDocumentforCadmiuminShellfish.U.S.DepartmentofHealthandHumanServices,Public Health Service, Office of Seafood (HFS-416), 200 C Street, SW, Washington, D.C. 20204. 44 pages.

FDA(FoodandDrugAdministration).1993c.GuidanceDocumentforLeadinShellfish.U.S.DepartmentofHealthandHumanServices,PublicHealth Service, Office of Seafood (HFS-416), 200 C Street, SW, Washington, D.C. 45 pp.

FDA(FoodandDrugAdministration).1993d.GuidanceDocumentforNickelinShellfish.U.S.DepartmentofHealthandHumanServices,PublicHealth Service, Office of Seafood (HFS-416), 200 C Street, SW, Washington, D.C. 39 pp.

FDA(FoodandDrugAdministration).2001.FishandFisheryProductsHazardsandControlsGuide.3rdEd.DepartmentofHealthandHumanServices, PublicHealthService,CenterforFoodSafetyandAppliedNutrition,OfficeofSeafood,Washington,DC.22Apr.2008http://www.cfsan.fda.gov/~comm/haccp4.html.

Gerritse, R.G., R. Vriesema, J.W. Daleberg, and H.P. de Roos. 1982. Effect of sewages ludge on trace element mobility in soils. Journal of Environmental Quality 11:359-364.

Gianessi, L.P., C.S. Silvers, S. Sankulaand J.E. Carpenter, 2002. Plant Biotechnology: Current and Potential Impact for Improving Pest Management in U.S. Agriculture an Analysis of 40 Case Studies: Bacterial Resistant Citrus. National Center for Food and Agriculture Policy. Washington, DC. 22 Apr. 2008 http://www.ncfap.org/40 Case Studies/Case Studies/Citrus BR.pdf.

Gibbs, P.E., and G.W. Bryan. 1994. Biomonitoring of tributyltin (TBT) pollution using the imposex response of neogastropod mollusks. In: Biomonitoring of coastal waters and estuaries. K. J. M. Kramer (ed.). CRC Press: Boca Raton, Florida. pp. 209-222.

Goldberg, E.D., M. Koide, V. Hodge, A.R. Flegal, and J. Martin. 1983. U.S. Mussel Watch: 1977-1978 results on tracemetals and radionuclides. Estuarine Coastal Shelf Science 16:69-93.

Goyer, R.A. 1996. "Toxic Effects of Metals." In: Casarettand Doull's Toxicology: The Basic Science of Poisons. 5th Edition. C.D. Klaassen, M.O. Amdur, and J. Doull, (eds). New York, NY. McGraw Hill. Chap. 23, pp 691-736.

Hargrave, B.T., G.C. Harding, W.P. Vass, P.Eriksson, B.R. Fowler, and V. Scott. 1992. Organochlorine pesticides and polychlorinated biphenyls in the Arctic Ocean food web. Archives of Environmental Contamination and toxicology 22(1):41-54.

Hadjispyrou, S.A., A. Anagnostopoulos, K. Nicholson, M.K. Nimfopoulos, and K.M. Michailidis. 1998. Correlation of them ethylating capacity of riverand marine sediments to their organic sediment index. Environmental Geochemistry and Health 20(1):19-27.

Hameedi,M.J.,W.E.Johnson,K.L.Kimbrough,andJ.A.Browder.2006.Sedimentcontamination,toxicityandinfaunalcommunitycompositioninSt.Lucie Estuary,Floridabaseduponmeasuresofthesedimentqualitytriad.FinalReport.22Apr.2008https://www8.nos.noaa.gov/cit/nsandt/download/documents/SLE/SLE_report.pdf.

IARC (International Agency for Research on Cancer). 2006. Inorganic and organic lead compounds 10-17 February 2004. . Vol. 87.

Keith, L.H., and W.A. Teillard. 1979. Priority pollutants I: a perspective view. Environmental Science and Technology 13(4):416-423.

Kimbrough, K.L., and G.G. Lauenstein (eds.). 2006. Trace Metal Analytical Methods of the National Status and Trends Program: 2000-2006. NOAA Technical Memorandum NOS NCCOS 29 Silver Spring, MD. 21 pp.

Kimbrough, K.L., G.G. Lauenstein, and W.E. Johnson (eds.). 2006. Organic Contaminant Analytical Methods of the National Status and Trends Program: Update 2000-2006. NOAA Technical Memorandum NOS NCCOS 30 Silver Spring, MD. 137 pp.

Lauenstein, G.G., and A.Y. Cantillo. 1993 a. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Overview and Summary of Methods, Volume INOAA Technical Memoran dum NOSORCA 71 Silver Spring, MD.

Lauenstein, G.G., and A.Y. Cantillo (eds.). 1993b. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Comprehensive Descriptions of Complementary Measurements, Volume IINO AATechnical Memorandum NOS ORCA 71 Silver Spring, MD.

Lauenstein, G.G., and A.Y. Cantillo (eds.). 1993c. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Comprehensive Descriptions of Elemental Analytical Methods, Volume IIINO AATechnical Memorandum NOS ORCA 71 Silver Spring, MD.

Lauenstein, G.G., and A.Y. Cantillo (eds.). 1993d. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Comprehensive Descriptions of Trace Organic Analytical Methods, Volume IV. NOAATechnical Memorandum NOS ORCA 71 Silver Spring, MD.

Lauenstein, G.G., and A.Y. Cantillo, 1998. Analytical Methods of the National Status and Trends Program Mussel Watch Project - 1993 - 1997 Update. NOAA Technical Memorandum NOS ORCA 130 Silver Spring, MD.

Lauenstein, G.G., A.Y. Cantillo, S. Kokkinakis, J. Jobling, and R. Fay. 1997. Mussel Watch Project Site Descriptions, through 1997. NOAATechnical Memorandum NOS ORCA 112 Silver Spring, MD. 354 pp.

Leslie, A.J. 1992. Copper Herbicide Use-Patterns in Florida Waters. Florida Department of Natural Resources, Tallahassess, Florida. 9pp. 22 Apr. 2008 http://www.floridadep.org/lands/invaspec/2ndlevpgs/pdfs/cuconfnc.pdf.

Manahan, S.E., 2005. Environmental Chemistry. 8th Edition. CRC Press: Boca Raton, Florida. 783 pp.

Mance, G. 1987. Pollution Threat of Heavy Metals in Aquatic Environments. Elsevier Science New York, NY.

Martin, M. 1985. State Mussel Watch: Toxics surveillance in California. Marine Pollution Bulletin 16(4):140-146.

McDonald, S.J., D.S. Frank, J.A. Ramirez, B. Wang, and J.M. Brooks. 2006. Ancillary Methods of the National Status and Trends Program: 2000-2006 Update. NOAA Technical Memorandums NOS NCCOS 28 Silver Spring, MD. 17 pp.

McGeer, J.C., K.V.Brix, J.M.Skeaff, D.K.DeForest, S.I.Brigham, W.J.Adams, and A.Green. 2003. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazardassessment of metals in the aquatic environment. Environmental Toxicology and Chemistry 22(5):1017-1037.

Mirenda R.J. 1986. Acutetoxicity and accumulation of zincinthe crayfish *Orconectes virilis* (Hagen). Bulletino f Environmental Contamination and Toxicology 37(1):387-394.

MercuryStudyReporttoCongress.1997.Volume7:CharacterizationofHumanHealthandWildlifeRisksfromMercuryExporsureintheUnitedStates. 52pp.EPA-452/R-97-009.Washington,DCU.S.EnvironmentalProtectionAgency,OfficeofAirQualityPlanningandStandardsandOfficeofResearch and Development. 22 Apr. 2008 http://www.epa.gov/mercury/report.htm.

Nriagu, J.O., G. Lawson, H.K.T. Wong, and V. Cheam. 1995. Dissolved tracemetals in Lakes Superior, Erie, and Ontario. Environmental Science and Technology 30(1):178-187.

Phillips, D.J.H. 1990. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquatic Toxicology 16(3):151-186.

Plachy,J.2003.Cadmium.MineralsYearbook.US.GeologicalSurvey.22Apr.2008http://minerals.usgs.gov/minerals/pubs/commodity/cadmium/cadmimyb03.pdf.

PugetSoundActionTeam.2007.2007PugetSoundUpdate:NinthReportofthePugetSoundAssessmentandMonitoringProgram.PugetSoundAction Team. Olympia, Washington. 260 pp.

Roesijadi, G., J.S. Young, A.S. Drum, and J.M. Gurtisen. 1984. Behavior of tracemetals in *Mytilus edulis* during are ciprocal transplant field experiment. Marine Ecology Progress Series 18:155-70.

Schantz, M.M., R.M. Parris, and S.A. Wise. 2000. NIST/NOAANS&TIntercomparison Exercise Program for Organic Contaminants in the Marine Environments. Descriptions and Results of the 1999 Organic Intercomparison Exercise. NOAATechnical Memorandum NOSNCCOSCCMA146 Silver Spring, MD.

Seidel, S.L., V.F. Hodge, and E.D. Goldberg. 1980. Tin as an environmental pollutant. Thalassia Jugoslavica 16:209-223.

Sericano, J.L. 1993. The American Oyster (*Crassostreavirginica*) as a Bioindicator of Trace Organic Contamination. Doctoral dissertation, Texas A&M University, College Station, TX. 242 pp.

SFEI(San Francisco Estuary Institute). 2005. The Pulse of the Estuary: Monitoring and Managing Water Quality in the San Francisco Estuary. SFEI Contribution 78 Oakland, CA.

Suedel, B.C., J.A. Boraczek, R.K. Peddicord, P.A. Clifford, and T.M. Dillon. 1994. Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Reviews of Environmental Contamination and Toxicology 136:21-89.

Sokolova, I.M., A.H. Ringwood, and C. Johnson. 2005. Tissue-specific accumulation of cadmium in subcellular compartments of eastern oysters *Crassostrea virginica* Gmelin (Bivalvia: Ostreidae). Aquatic Toxicology 74(3):218-228.

Srinivasan, M., and G.W. Swain. 2006. Managing the use of copper-based antifouling paints. Environmental Management 39(3):423-441.

Thompson, S.E., C.A. Burton, D.J. Quinn, Y.C. Ng. 1972. Concentration factors of chemical elements in edible a quaticorganisms. Livermore, CA: Lawrence Livermore Laboratory, Biomedical Division, University of California. 77 pp.

Tripp, B.W., and J.W. Farrington. 1984. Using sentine lorganisms to monitor chemical changes in the coastal Zone: progress or paralysis. Submitted to the Coastal Society, 9th Annual Conference, October 1984, Atlantic City, NJ. Woods Hole Oceanographic Institution Contribution No. 5830.

USGS (U.S.Geological Survey). 2008. Minerals Yearbook: Volume I. Metals and Minerals. Reston, Virginia. 22 Apr. 2008 < http://minerals.usgs.gov/minerals/pubs/commodity/myb/>.

Valette-Silver, N.J., G.F. Riedel, E.A. Crecelius, H. Windom, R.G. Smith, and S.S. Dolvin. 1999. Elevated arsenic concentrations in bivalves from the southeast coasts of the USA. Marine Environmental Research 48:311-333.

Willie, S. 2000. NOAANational Status and Trends Program Thirteenth Round Intercomparison Exercise Results for Trace Metals in Marine Sediments and Biological Tissues. NOAA Technical Memorandum NOS NCCOS CCMA 142 Silver Spring, MD.

WHO(WorldHealthOrganization).1980.Tinandorganotincompounds:Apreliminaryreview.EnvironmentalHeathcriteria15.Geneva,Switzerland. 22 Apr. 2008 http://www.inchem.org/documents/ehc/ehc/ehc015.htm.

References

WSRC (Westinghouse Savannah River Company). 1997. Record of Decision Remedial Alternative Selection. Report to the U.S. Department of Energy Under Contract DE-AC09-96 SR 18500 Savannah River Operations Office, Aiken, South Carolina. 22 Apr. 2008 http://www.epa.gov/superfund/sites/rods/fulltext/r0497026.pdf.

Zar, J.H. 1999. Biostatistical Analysis. 4th Edition. Prentice-Hall: Upper Saddle River, NJ. 931 pp.

Appendix 1: selected publications of the mussel watch program

The concept of environmental monitoring and characterization using bival vemollusks as the sentine lorganisms has along history dating back at least to 1895. The references provided below containinformation about all aspects of NOAA's Mussel Watch Program that has been actively quantifying contaminants in the nation's coast alandest uarine waters ince 1986. A more comprehensive list of publications and the related electronic files can be found at our website: http://www8.nos.noaa.gov/nccos/ccma/publications.aspx. For a larger perspective of this kind of work performed internationally, including the earliest work alluded to above, see our publication "World Mussel Watch Database" found at: http://www.ccma.nos.noaa.gov/publications/tm109.pdf

Peer Reviewed

Johnson, W.E., K.L. Kimbrough, G.G. Lauenstein, and J. Christensen. (Inpress). Chemical Contamination Assessment of Gulfof Mexico Oysters in Response to Hurricanes Katrina and Rita, Environmental Monitoring and Assessment.

Lauenstein, G.G., and K.L. Kimbrough. 2007. Chemical contamination of the Hudson-Raritan Estuary as a result of the attack on the World Trade Center: Analysis of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in mussels and sediment, Marine Pollution Bulletin 54(3):284-289.

Kim, Y., and E.N. Powell. 2007. Distribution of parasites and pathologies in sentinel bivalves: NOAA Status and Trends "Mussel Watch" Program, Journal of Shellfish Research 26(4):1115-1151

Apeti, D.A., and G.G. Lauenstien. 2006. An assessment of mirex concentrations along the southern shorelines of the Great Lakes, USA. American Journal of Environmental Sciences 2(3):95-103.

O'Connor, T.P., and G.G. Lauenstein. 2006. Trends inchemical concentrations in mussels and oysters collected along the U.S. coast: update to 2003. Marine Environmental Research 62:261-285.

O'Connor, T.P., and G.G. Lauenstein. 2004. Status and trends of copper concentrations in mussels and oysters in the USA, Marine chemistry 97:45-49.

Cantillo, A.Y. 2003. Comparison of results of Mussel Watch Programs of the United States and France with worldwide Mussel Watch studies, Marine Pollution Bulletin 39(9):712-717.

Valette-Silver, N.J., and G.G. Lauenstein. 1995. Radionuclide concentrations in bivalves collected along the coastal United States, Marine Pollution Bulletin 30(5):320-333.

noaa technical Memoranda

Lauenstein, G.G., and A.Y. Cantillo. 2002. Contaminant trends in USN ational Estuarine Research Reserves, NOAATechnical Memorandum, NOAANOS NCCOS 156, Silver Spring, MD. 22 Apr. 2008 http://www.coastalscience.noaa.gov/documents/nerrs.pdf.

Willie, S. 2000. Thirteen Round Intercomparison for Trace Metals in Marine Sediments and Biological Tissues, NOAATechnical Memorandum, NOS NCCOS CCMA 142, Silver Spring, MD. 22 Apr 2008 http://ccma.nos.noaa.gov/publications/techmemo142.pdf>.

Schantz, M.M., R.M. Parris, and S.A. Wise. 2000. NIST/NOAANS&TIntercomparison Exercise Program for Organic Contaminants in the Marine Environment-Description and Results of 1999 Organic Intercomparison Excercises, NOAATechnical Memorandum, 146, Silver Spring, MD. 22 Apr. 2008 http://ccma.nos.noaa.gov/publications/techmemo142.pdf>.

Johnson, W.E., T.P.O'Connor, A.Y. Cantillo, and G.G. Lauenstein. 1999. Spatial Distribution of Chlorpyrifosand Endosulfanin USA Coastal Waters and the Great Lakes NOAA Technical Memorandum, NOSNCCOSCCMA140, Silver Spring, MD. 22 Apr. 2008 http://ccma.nos.noaa.gov/publications/tm140.pdf.

Lauenstein, G.G., A.Y. Cantillo, S. Kokkinakis, J. Jobling, and R. Fay. 1997. National Status and Trends Program for Marine Environmental Quality: Mussel Watch Project Site Descriptions, through 1997, NOAATechnical Memorandum, NOSORCA 112, Silver Spring, MD. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/tm112.pdf.

Appendix 1: selected publications of the mussel watch program

Daskalakis, K.D., and T.P.O'Connor. 1994. Inventory of Chemical Concentrations in Coastal and Estuarine Sediments, NOAATechnical Memorandum, 76, Silver Spring, MD. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/tm112.pdf>.

NationalOceanicandAtmosphericAdministration.1991.SecondSummaryofDataonChemicalConcentrationsinSedimentsfromtheNational StatusandTrendsProgram,NOAATechnicalMemorandum,NOSOMA59,SilverSpring,MD.22Apr.2008http://www.ccma.nos.noaa.gov/publications/tm59.pdf>.

Mearns, A.J., M. Matta, G. Shigenaka, D. MacDonald, M. Buchman, H. Harris, J. Golas, and G. Lauenstein. 1991. Contaminant Trends in the Southern California Bight: Inventory and Assessment, NOAA Technical Memorandum, NOS ORCA 62, Silver Spring, MD.

Methods Documents

Kimbrough, K.L., G.G. Lauenstein, and W.E. Johnson. 2007. Organic Contaminant Analytical Methods of the National Status and Trends Program: Update 2000-2006, NOAATechnical Memoranda, NOSNCCOS30, Silver Spring, MD. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/organicsmethods.pdf.

Kimbrough, K.L., and G.G. Lauenstein. 2007. Majorand Trace Element Analytical Methods of the National Status and Trends Program: 2000-2006, NOAATechnical Memorandum, NOSNCCOS 29, Silver Spring, MD. 22 Apr 2008 < http://www.ccma.nos.noaa.gov/publications/nsandtmethods.pdf > .

McDonald, S. J., D. S. Frank, J. A. Ramirez, B. Wang, and J. M. Brooks. 2006. Ancillary Methods of the National Status and Trends Program: Update 2000-2006, NOAATechnical Memorandum, NOSNCCOS28, Silver Spring, MD. 22Apr. 2008 http://coastalscience.noaa.gov/documents/ancillarymethodsnsandt.pdf.

Kim,Y.,K.A.Ashton-Alcox,andE.N.Powell.2006.HistologicalTechniquesforMarineBivalveMolluscs:Update,NOAATechnicalMemorandum,NOS NCCOS 27, Silver Spring, MD. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/histopathtechmemofinal.pdf.

Lauenstein, G.G., and A.Y. Cantillo. 1998. Sampling and Analytical Methods of the National Status and Trends Program Mussel Watch Project: 1993-1996 Update, NOAATechnical Memorandum, 130, Silver Spring, MD. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/tm130.pdf.

Lauenstein, G.G., and A.Y. Cantillo. 1993. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Overview and Summary of Methods-Voll, NOAA Technical Memorandum, NOSORCA 71, Silver Spring, MD. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/tm71v1.pdf>.

Lauenstein, G.G., and A.Y. Cantillo. 1993. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Comprehensive Descriptions of Complementary Measurements-Volll, NOAATechnical Memorandum, NOS ORCA 71, Silver Spring, MD. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/tm71v2.pdf.

Lauenstein, G.G., and A.Y. Cantillo. 1993. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Comprehensive Descriptions of Elemental Analytical Methods-Volume III, NOAATechnical Memorandum, NOS ORCA 71. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/tm71v3.pdf.

Lauenstein, G.G., and A.Y. Cantillo. 1993. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992: Comprehensive Descriptions of Trace Organic Analytical Methods-Voll V, NOAA Technical Memorandum, NOS ORCA 71. 22 Apr. 2008 http://www.ccma.nos.noaa.gov/publications/tm71v4.pdf.

Alaska (AK)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t)

National Trend

G Decreasing H Increasing

Zebra Mussels (ZM)

Oysters (O) 4 Medium 4 High

4 Medium

4 Medium

4 High

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
KTMP	М	11		4		7.1	4	4		7				0.06				1.2				0.59				0				97			
NBES	М	9.2				5.4	4	4		6				0.1				2				2.1				0				72			
PVMC	М	12	4	4		3.5		4	4	27	4			0.09				8.9	4	4		3	4	4		0.18				89			
UISB	М	12	4	4		2.6				33	4			0.11				7.4	4			2				1.4	4	4		108			
CIHS	М	12	4			1.7				10			. 4	0.12				3.4				1.3				0				105			

Site

KTMP

NBES

PVMC

UISB

CIHS

Latitude

55.2938

59.4533

61.1328

60.9608

59.6145

Longitude General Location

Ketchikan

Nahku Bay

Port Valdez

Cook Inlet

Unakwit Inlet

-131.5480

-135.3365

-146.4610

-147.6460

-151.4442

Location

East Side

Siwash Bay

Homer Spit

Mountain Point

Mineral Creek Flats

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
KTMP	М	2.1				0.47				1.4				0.58				152				3.5			
NBES	М	3.7				2.7				2.2				0.98				316				7.7			
PVMC	М	7.3				2.6				1.7				0.31				441				6.4			
UISB	М	1.7				0.87				0.38				0.56				176				3.7			
CIHS	М	4.4				1.1				0.3				0.42				250				11			

Appendix 2: Results by State

Alabama (AL)

Regional (r) Status (s)

Mussels (M) **National Status** 4 Medium 4 Medium 4 High

Trend (t)

National Trend G Decreasing H Increasing

Site	Latitude	Longitude	General Location	Location
MBDR	30.5917	-88.0398	Mobile Bay	Dog River
MRCP	30 3155	-88 1338	Mohile Bay	Cedar Point Reef

Zebra Mussels (ZM)

4 Medium

4 High

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
MBDR	0	5.7				3.7	4	4		287	4			0.11	4			2.8	4			0.23				0.27	4	4		4410	4		
MBCP	0	7.1				2.4				86				0.07	4			1.5				0.29				0.16				876			

Sites	Spec	Butyltins	r	S	t	Chlordane	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
MBDR	0	106	4	4		9.5		4		202	4	4		6.8		4		1187				125		4	
MBCP	0	20			-	3.1				45				3.5				190				36			

4 High

California (CA)

Regional (r) Status (s)
Mussels (M) National Status

National Status

4 Medium

G Decreasi

Trend (t)
National Trend
G Decreasing
H Increasing

Zebra Mussels (ZM) 4 Medium

Oysters (O) 4 Medium

4 Medium

4 High

4 High

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
IBNJ	32.5877	-117.1335	Imperial Beach	North Jetty
SDCB	32.6865	-117.1592	San Diego Bay	Coronado Bridge
PLLH	32.6805	-117.2488	Point Loma	Lighthouse
SDHI	32.7247	-117.1947	San Diego Bay	Harbor Island
MBVB	32.7675	-117.2420	Mission Bay	Ventura Bridge
LJLJ	32.8515	-117.2738	La Jolla	Point La Jolla
OSBJ	33.2017	-117.3937	Oceanside	Municipal Beach Jetty
SCBR	33.4517	-118.4873	South Catalina Island	Bird Rock
NBWJ	33.5910	-117.8900	Newport Beach	West Jettv

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
IBNJ	М	9.2				0.78				7.6	1			0.05				0.54				1.5				0				146	4		
SDCB	М	6.7				2.5				14			_	0.12				1.1				2.5				0.21				196	4		
PLLH	М	27	4	4		2.3				9.9				0.25	4			3.8				2.6				0				320	4		
SDHI	М	7.5				2.7				15				0.12				1				1.9				0.25	4			187	4		
MBVB	М	8				1.4				5.9				0.04				0.66				0.8				0				133			
LJLJ	М	15	4			1.6				7.4				0.07				1.5				1.7				0				148	4		
OSBJ	М	12	4			2.6				7.6				0.05				1				1.3				0.06				203	4		
SCBR	М	15	4			5	4	4		6.9				0.08				2.5				1.4				0				130			
NBWJ	М	11				1.3				6.8				0				0.9				4.7	4			0.14				125			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
IBNJ	М	20				3.6				58				2				268				99			
SDCB	М	81	4			12				54				1.7				1811	4			571	4		
PLLH	М	16				6.8				12				2.8				268				50			
SDHI	М	133	4	4		23	4	4		97	4			3				3762	4			642	4		
MBVB	М	18				5.9				14			lue .	1.1				297				40			
LJLJ	М	14				11				14				4.5				133				20			
OSBJ	М	30				25	4	4		177	4			22	4	4		195				129			
SCBR	М	5.1				0.85				8.9				0.23				63				16			
NBWJ	М	8.4				8.2				61				3.6				96				31			

Appendix 2: Results by State

California (CA)

Regional (r) Status (s)
Mussels (M) National Status

4 Medium 4 Medium 4 High

Trend (t)
National Trend
G Decreasing
H Increasing

Zebra Mussels (ZM) 4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
ABWJ	33.7335	-118.1010	Anaheim Bay	West Jetty
LBBW	33.7232	-118.1735	Long Beach	Breakwater
SPFP	33.7067	-118.2742	San Pedro Harbor	Fishing Pier
PVRP	33.7170	-118.3227	Palos Verdes	Royal Palms State Pk.
RBMJ	33.8320	-118.3928	Redondo Beach	Municipal Jetty
MDSJ	33.9618	-118.4580	Marina Del Rey	South Jetty
TBSM	34.0390	-118.5972	Las Tunas Beach	Santa Monica Bay
PDPD	34.0010	-118.8088	Point Dume	Point Dume
SCFP	34.0580	-119.9203	Santa Cruz Island	Fraser Point

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	РВ	r	S	t	SN	r	S	t	ZN	r	s t	
ABWJ	М	8.7				0.59				7.7				0				1				1.4				0.1				82			
LBBW	М	7.3				0.57		A		7.9				0.06				1.1				3	4			0				127		-	
SPFP	М	9.5				0.71				13				0				1.9				1.7				0.55	4	4		99		-	
PVRP	М	14	4		-	1.4				8.9				0.07				1.4				1.1				0.14				93		-	
RBMJ	М	9.6				0.62				8.6				0.1				1.9				3.2	4			0				114			
MDSJ	М	8.4				1.4				9.5				0.07				1				4.7	4			0.26	4	4		86		-	
TBSM	М	7.7				0.96				9.4				0.08				2.5				2.5				0.12				108			
PDPD	М	7.9			-	1.6				8				0				1.4				2				0.14				88			
SCFP	М	18	4		-	5.5	4	4		6.5				0.05				1.8				0.83				0				204	4		

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
ABWJ	М	13				17	4	4		175	4			2.5				522				107			
LBBW	М	44		4		25	4	4		286	4			14	4			222				104			
SPFP	М	75	4	4		5.5				452	4	4		1.8				4434	4	4		94			
PVRP	М	13				5.9				462	4	4		1.9				90				44			
RBMJ	М	18				15		4	١,	152	4			6.6				278				58			
MDSJ	М	11				37	4	4		96	4			12	4			2093	4			75			
TBSM	М	6.7				15		4		77	4	4		5.6				347				35			
PDPD	М	6.3				4.7				57				1.9				69				20			
SCFP	М	3.5				6.2				12				3.4				121				15			

California (CA)

Regional (r) Status (s)
Mussels (M) National Status

National Status National Trend
4 Medium G Decreasing
4 High H Increasing

Trend (t)

Zebra Mussels (ZM)

4 Medium 4 High

4 Medium

4 High

Oysters (O)

4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
SBSB	34.3957	-119.7275	Point Santa Barbara	Point Santa Barbara
PCPC	34.4438	-120.4570	Point Conception	Point Conception
SLSL	35.1607	-120.7558	San Luis Obispo Bay	Point San Luis
SSSS	35.6347	-121.1947	San Simeon Point	San Simeon Point
PGLP	36.6272	-121.9165	Pacific Grove	Lovers Point
MBML	36.8012	-121.7897	Monterey Bay	Moss Landing
MBES	36.8098	-121.7852	Monterey Bay	Elkhorn Slough
MBSC	36.9542	-122.0247	Monterey Bay	Point Santa Cruz
SFSM	37.5780	-122.2537	San Francisco Bav	San Mateo Bridge

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
SBSB	М	8.6				1.3				6.7	1			0				1.5				0.68				0				68			
PCPC	М	12	4	4		6.8	4	4		6.6				0.15				2.7				1.9				0.17				126			
SLSL	М	11				5.7	4	4		10				0.08				1.9				0.61				0				107			
SSSS	М	17	4			7.6	4			11				0.3	4			9.2	4			1.6				0				157	4		
PGLP	М	13	4			8.4	4	4		7.8				0.08				1.7				5.5	4			0				166	4		
MBML	М	8.5				13	4	4		8.1				0.04				1.7				0.98				0				145	4		
MBES	М	8.1				11	4	4		8.7				0.04				1.5				0.6				0				110			
MBSC	М	10				4.5	4			7.4				0.06				1.6				1.5				0				111			
SFSM	М	7.2				3.7	4			11	J			0.21	4			5.6	4			1.4				0.11				114			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
SBSB	М	3.2				7.9				18				2.7				112				18			
PCPC	М	4.1				3.3				26				1.5				247				17			
SLSL	М	7.3				7.5				101	4			6.8				348				72			
SSSS	М	2				14				15				5.3				117				17			
PGLP	М	3.6				17	4			33				11	4			131				23			
MBML	М	6.9				9.6				250	4			34	4	4		218				27			
MBES	М	16				17	4			520	4	4		95	4	4		174				46			
MBSC	М	4.9				16	4			91	4			19	4	4		193				13			
SFSM	М	38				11				56				6.6				834				257	4		

Appendix 2: Results by State

California (CA)

Regional (r) Status (s)
Mussels (M) National Status

4 Medium 4 High 4 Medium 4 High Trend (t)

National Trend G Decreasing H Increasing

Zebra Mussels (ZM)

4 Medium 4 High

Oysters (O)

4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
SFYB	37.8152	-122.3715	San Francisco Bay	Yerba Buena Island
SFDB	37.5027	-122.1213	San Francisco Bay	Dumbarton Bridge
TBSR	38.1495	-122.9040	Tomales Bay	Spenger's Residence
BBBE	38.3050	-123.0660	Bodega Bay	Bodega Bay Entrance
PALH	38.9530	-123.7430	Point Arena	Lighthouse
PDSC	40.0225	-124.0733	Point Delgada	Shelter Cove
HMBJ	40.7642	-124.2375	Eureka	Humboldt Bay Jetty
EUSB	40.8215	-124.1713	Eureka	Samoa Bridge
SGSG	41.7478	-124.2077	Crescent	Point St. George

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
SFYB	М	6.6				3.2				13				0.34	4	4		5				2.8	4			0.14				197	4		
SFDB	М	4.9				3.6	4			7.2				0.19	4			3.7				0.88				0				92			
TBSR	М	7.4				5.3	4			4.9				0.19	4			3.7				0.46				0				94			
BBBE	М	11				11	4	4		8.1				0.12				2.7				3.5	4			0				142	4		
PALH	М	15	4			7.7	4			7.9				0.18	4			3.4				1				0				139			
PDSC	М	11				5.1	4			8.2				0.11				1.2				1.7				0				161	4		
HMBJ	М	10				7.3	4			8.4				0.06				2.9				1.7				0				180	4		
EUSB	М	8.2				4.6	4			8.4				0.14				6.2	4			0.81				0				146	4		
SGSG	М	13	4			8.5	4	4		36	4			0.17				14	4			1.6				0.85	4			155	4		

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
SFYB	М	87	4	4		7.2				56				7.9								153	4		
SFDB	М	12				14				75	4			6.2				831				259	4		
TBSR	М	4.7				2.8				13				1.2				424				13			
BBBE	М	5.8				16	4			24				14	4			125				68			
PALH	М	4.7				14			w.	68	4			11	4			159				100			
PDSC	М	2.2				5.8				3.6				6.4				184				4.4			
HMBJ	М	1.2				2.7				2		-		4.7				169				6.9			
EUSB	М	19				1.9				5.3				0.68				721				23			
SGSG	М	1.9				8.2				4.8				6.5				172				7.3			

Connecticut (CT)

Regional (r) Status (s)
Mussels (M) National Status

National Status

Mational Trend

Medium

High

Hincreasing

Trend (t)

Site	Latitude	Longitude	General Location	Location
LICR	41.3183	-72.3583	Long Island Sound	Connecticut River
LISI	41.0527	-73.4173	Long Island Sound	Sheffield Island

Zebra Mussels (ZM)

4 Medium

4 Medium

4 High

4 High

Oysters (O)

4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
LICR	М	9.2				1.4				19	4			0.13				3.9				2.6				0.28	4	4		103			
LISI	М	8.2				1.5				18	4			0.15				2.9				4.5	4			0.25	4			82			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
LICR	М	10				6.8				26				1.6				439				117			
LISI	М	14				9				30				3.5				1069				126			

Appendix 2: Results by State

Delaware (DE)

Regional (r) Status (s)

Mussels (M) National Status
4 Medium 4 High 4 High

Trend (t)

National Trend G Decreasing H Increasing

Site	Latitude	Longitude	General Location	Location
DBKI	39.2032	-75.3590	Delaware Bay	Kelly Island
DBCH	38.7835	-75.1205	Delaware Bay	Cape Henlopen

Zebra Mussels (ZM)

4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
DBKI	0	9				4.3	4	4		201				0.12	4			3.2	4			1.4	4			0.28	4			4980	4		
DBCH	М	9.8				0.76				8.8				0.19	4			2.7				2.3				0.23	4	4		112			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
DBKI	0	49				6.2				75				8.5				207				69			
DBCH	М	17				2.2				22				1.5				241				37			

Florida (FL)

Regional (r) Status (s) Mussels (M)

Trend (t)

National Status National Trend 4 Medium G Decreasing 4 High H Increasing

Zebra Mussels (ZM) 4 Medium

Oysters (O) 4 Medium

4 Medium

4 High

4 High

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
SJCB	30.3810	-81.4400	St. Johns River	Chicopit Bay
MRCB	29.7640	-81.2618	Matanzas River	Crescent Beach
IRSR	27.8295	-80.4743	Indian River	Sebastian River
NMML	25.9377	-80.1497	North Miami	Maule Lake
BBGC	25.5333	-80.3232	Biscayne Bay	Gould's Canal
FBJB	25.2122	-80.5340	Florida Bay	Joe Bay
FBFO	25.1412	-80.9237	Florida Bay	Flamingo
EVFU	25.9023	-81.5123	Everglades	Faka Union Bay
RBHC	26.0270	-81.7388	Rookery Bay	Henderson Creek

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
SJCB	0	20	4	4		1.6				71				0.1	4			1.8	4			0.49	4			0				2010			
MRCB	0	16	4			1.9				89				0.19	4			1.8	4			0.38				0				2560			
IRSR	0	7.3				1.2				374	4			0.08	4			0.81				0.67	4			0				2910			
NMML	0	8.3				0.81				984	4	4		0.06				1				1.7	4			0.63	4	4		4690	4	4	
BBGC	0	9.5				0.25				572	4			0.15	4			0.72				0.29				0.24	4			4180	4		
FBJB	0	7.5				1.5				44				0.32	4	4		1.9	4			0.5	4			0.32	4			994			
FBFO	0	17	4			1.7	94			52				0.16	4			0.91				0.53	4			0.16				1210			
EVFU	0	7.9				1.8				91				0.21	4			1.5				0.44				0.13				1660			
RBHC	0	12	4			2.9				121				0.16	4			1.2				0.38				0.11				1180			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
SJCB	0	70				2.5				6.6				1.1				638				34			
MRCB	0	23				0.86				2.4				0				234				13			
IRSR	0	113				55		4		42				3.4				875				68			
NMML	0	876	4	4		6.6				25				1.7				1598	4			109		4	
BBGC	0	288	4			4.6				13				0.58				2280	4			33			
FBJB	0	6.5				1.3				1.1				0.09				244				15			
FBFO	0	6.7				0.79				3.5				0				371				20			1
EVFU	0	18				0.72				1.4				0.09				591				19		1	
RBHC	0	27				2.3				3				0.36				286				20			

Appendix 2: Results by State

Florida (FL)

Regional (r) Status (s) **National Status** Mussels (M)

4 Medium 4 Medium 4 High 4 High

Trend (t) **National Trend** G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
NBNB	26.1118	-81.7852	Naples Bay	Naples Bay
CBBI	26.5143	-82.0345	Charlotte Harbor	Bird Island
TBCB	27.6810	-82.5177	Tampa Bay	Cockroach Bay
TBHB	27.8548	-82.3947	Tampa Bay	Hillsborough Bay
TBKA	27.9097	-82.4538	Tampa Bay	Peter O. Knight Airport
TBOT	28.0237	-82.6328	Tampa Bay	Old Tampa Bay
TBPB	27.8443	-82.6115	Tampa Bay	Papys Bayou
TBMK	27.6208	-82.7265	Tampa Bay	Mullet Key Bayou
TBNP	27.7872	-82.7540	Tampa Bay	Navarez Park
CKRP	29 2067	-83 0695	Cedar Key	Black Point

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
NBNB	0	12	4	4		1.1				1400	4	4		0.11	4			1.1				0.63	4			0.41	4			6300	4		
CBBI	0	10				2.2				256	4			0.24	4			1.1				0.49	4			0				4930	4		
ТВСВ	0	7.3				3				92				0.16	4			1.6	4			0.55	4			0.11				1550			
ТВНВ	0	6.3				2.6				81				0.08	4			1.1				0.71	4			0.36	4	4		2490			
ТВКА	0	6.5				2.2				234	4			0.09	4			1.2				1.6	4			0.52	4			4460	4		
ТВОТ	0	4.2				3.1				229	4			0.33	4	4		1.6				1.1	4			0.22	4			6450	4		
ТВРВ	0	7.2				1.7				72				0.12	4			1.4				1.6	4			0.21	4			1650			
TBMK	0	15	4			2.7				23				0.14	4			1.5				1.2	4			0.15				374			
TBNP	0	37	4	4		1.3				99				0.08	4			1				1	4			0.2	4			1970			
CKBP	0	17	4			1				14				0.1	4			0.74				0.18				0				364			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
NBNB	0	87	4			12				7.1				3.9				1443	4			27			
CBBI	0	46				2.7				3.8				0.62				217				6.5			
ТВСВ	0	8.8				10				20				0.39				228				21			
ТВНВ	0	67	4			7.5				14				1.3				993		4		49			
TBKA	0	134	4	4		37		4		62		4		4				507				126		4	
TBOT	0	5.9				14		4		19				1.1				637				44		4	
ТВРВ	0	9.9				21		4		12				2.3				628				32			
TBMK	0	1.5				5.5				3.1				0.61				115				19			
TBNP	0	15				20		4		14				2.4				375				32			
CKBP	0	5.8				1.7				1.8				0.34				138				3.9			

Florida (FL)

Regional (r) Status (s) Mussels (M)

Trend (t) National Trend G Decreasing H Increasing

National Status 4 Medium 4 High

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
SRWP	0	35	4	4		1.7				16				0.17	4			0.93				0.14				0.25	4			819			
AESP	0	15	4	4		2.6				24				0.1	4			0.89				0.27				0				381			
APCP	0	15	4	4		2.1				45				0.08	4			1.4				0.23				0				356			
APDB	0	15	4			2.2				36				0.08	4			1.5				0.24				0				322			
SAWB	0	31	4	4		1				266	4			0.08	4			0.78				0.69	4			0.09				2530		4	
PCMP	0	36	4	4		1.4				308	4			0.1	4			0.82				0.49	4			0				2050			
PCLO	0	22	4	4		1.2				38				0.06				0.7				0.32				0				1580			
CBSR	0	11				2.3				61				0.25	4			1.3				1.3	4			0.21	4			2030			

Site

SRWP

AESP

APCP

APDB

SAWB

PCMP

PCLO

CBSR

Latitude

29.3292

30.0633

29.7242

29.6725

30.1425

30.1512

30.2513

30.4120

Longitude

-83.1742

-84.3220

-84.8842

-85.0657

-85.6322

-85.6630

-85.6810

-86.2037

General Location

Suwannee River

Apalachee Bay

Apalachicola Bay

Apalachicola Bay

Choctawhatchee Bay

St. Andrew Bay

Panama City

Panama City

Location

West Pass

Dry Bar

Spring Creek

Cat Point Bar

Watson Bayou

Municipal Pier

Little Oyster Bar

Off Santa Rosa

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
SRWP	0	5.7				2.3				1.7				0.19								3.9			
AESP	0	8.3				2.1				7.7				0.27				194				5.1			
APCP	0	5.2				4.1				11				2.5				340				10			
APDB	0	5.7				5				14				3.7				342				11			
SAWB	0	79				11		4		52		4		1.8				1202				103		4	
PCMP	0	110				10		4		52		4		1.2				1374	4			66		4	
PCLO	0	8.4				4.3				77	4	4		1.4				359				23			
CBSR	0	14				13		4		138	4	4		9.8		4		479				43		4	

Appendix 2: Results by State

Florida (FL)

Regional (r) Status (s) Mussels (M)

Zebra Mussels (ZM)

National Status 4 Medium 4 Medium 4 High

Trend (t) National Trend G Decreasing

H Increasing

4 Medium	
4 High	
O (O)	

4 High

4 High

Markers represent the Regional Species Characterization (r),

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	РВ	r	S	t	SN	r	S	t	ZN	r	S	t
CBPP	0	12	4			2.4				79				0.24	4			1				0.84	4			0.11				2540		4	
СВЈВ	0	17	4			3.5	4			821	4	4		0.16	4			1.1				0.64	4			0.23	4	4		7710	4	4	
PBSP	0	17	4			2.7				52				0.17	4			1.7	4			0.54	4			0.17				1010			
PBIB	0	13	4			2.2				41				0.1	4			2.1	4			0.36				0				739			
PBPH	0	12	4			2.8				84				0.17	4			1.4				0.75	4			0.13				3200		4	

Site

CBPP

CBJB

PBSP

PBIB

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
CBPP	0	14				13		4		138	4	4		9.2		4		451				38			
CBJB	0	42				6.5				26				1.9				2372	4	4		45		4	
PBSP	0	8.1				3.2				7.9				1.7				187				28			
PBIB	0	1.7				3.2				9.9				1.7				142				83		4	-
PBPH	0	8.1				11				20				9.5		4		360				58			-

Latitude

30.4823

30.4108

30.3498

30.5167

Longitude

-86.4793

-86.4908

-87.1547

-87.1117

General Location

Pensacola Bay

Pensacola Bay

Choctawhatchee Bay

Choctawhatchee Bay

Location

Postil Point

Joe's Bayou

Sabine Point

Indian Bayou

Georgia (GA)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t) National Trend G Decreasing H Increasing

Site	Latitude	Longitude	General Location	Location
SRTI	32.0165	-80.8825	SavannahRiverEstuary	Tybee Island
SSSI	31.3928	-81.2880	Sapelo Sound	Sapelo Island
ARWI	31.3242	-81.3108	Altamaha River	Wolfe Island

Zebra Mussels (ZM)

4 Medium

4 Medium

4 High

4 High

Oysters (O)

4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
SRTI	0	20	4			2.5				87				0.08	4			2.2	4			0.43				0				1530			
SSSI	0	19	4			1.7				51				0.1	4			1.8	4			0.41				0				969			
ARWI	0	21	4			1.8				54				0.08	4			1.7	4			0.18				0				947			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDIs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
SRTI	0	101				2.1				4.3				0				561				10			
SSSI	0	8.8				0.77				2.7				0.62				175				5.8			
ARWI	0	8.7				1.8				4.2				0.8				192				11			

Appendix 2: Results by State

Illinios (IL)

Regional (r) Status (s) Mussels (M)

National Status

4 Medium

4 High

Trend (t) **National Trend** G Decreasing H Increasing

Site	Latitude	Longitude	General Location	Location	
LMNC	42.3047	-87.8273	Lake Michigan	North Chicago	

Zebra Mussels (ZM) 4 Medium

4 Medium

4 High

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site																									
LMNC	ZM	6.8	4		5	4	4	31	4		0.05	4		30	4	4	18	4	4	0.25		149	4		

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
LMNC	ZM	15				3.1				45				6.2		4		1120				90			

Indiana (IN)

Regional (r) Status (s) Mussels (M)

Trend (t) National Status National Trend 4 Medium G Decreasing

H Increasing

General Location Latitude Longitude Location LMHM 41.6987 -87.5083 Lake Michigan Hammod Marina

Zebra Mussels (ZM)

4 Medium

4 Medium

4 High

4 High

Oysters (O)

4 Medium 4 High

Concentrations derived from 2004-2005 data.

4 High

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
LMHM	ZM	4				2.4	H			19				0.05	4			12				2.9	4			0.27				91	4		

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
LMHM	ZM	21		4		4.5				18				6		4						128		4	

Appendix 2: Results by State

Louisiana (LA)

Regional (r) Status (s)

Mussels (M) **National Status** 4 Medium 4 Medium 4 High

G Decreasing 4 High H Increasing

Trend (t)

National Trend

Zebra Mussels (ZM) 4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
LPNO	30.0363	-90.0413	Lake Pontchartrain	New Orleans
LBGO	29.9448	-89.8353	Lake Borgne	Gulf Outlet
LBMP	29.8670	-89.6785	Lake Borgne	Malheureux Point
BSBG	29.5980	-89.6208	Breton Sound	Bay Gardene
BSSI	29.4057	-89.4838	Breton Sound	Sable Island
BBMB	29.2767	-89.9420	Barataria Bay	Middle Bank
BBSD	29.4048	-89.9988	Barataria Bay	Bayou Saint Denis
TBLF	29.2642	-90.3982	Terrebonne Bay	Lake Felicity
TBLB	29.2595	-90.5943	Terrebonne Bay	Lake Barre
CLCL	29.2532	-90.9267	Caillou Lake	Caillou Lake

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
LPNO	0	4.7				9.4	4	4		636	4			0				4.1	4	-		0.63	4			0.28	4	4		6440	4		
LBGO	0	7.2				7.9	4	4		300	4			0.08	4			2.5	4			0.41				0.17				4260	4		
LBMP	0	6				9.9	4	4		238	4			0.06				3	4		j	0.93	4			0.11				3210			
BSBG	0	3.5				3.7	4			93				0.09	4			2.9	4		-	0.94	4			0.12				1350			
BSSI	0	6.7				12	4	4		211				0				2.7	4			0.81	4			0.17				2600			
ВВМВ	0	6.4				1.5				45				0.09	4			1.5				0.46				0.14				1170			
BBSD	0	7.5				1.4				39				0.09	4			1.9	4		Ď	0.31				0				969			
TBLF	0	7.2				2.6				93				0				2	4			0.61	4			0				1890			
TBLB	0	6.9				2.3				79				0				2.1	4			0.62	4			0				1380			
CLCL	0	5.6				4.2	4			152				0.05				2.9	4			0.47				0				1970			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
LPNO	0	76				40		4		28				5				828				96		4	
LBGO	0	13				4				4.5				1.8				350				24			
LBMP	0	11				1.5				4				1.5				291				23			
BSBG	0	4.8				0.49				2				0.54				177				18			
BSSI	0	22				9.4				32				6.2				550				62		4	
BBMB	0	79	4			0.83				5.1				1.3				703				14			
BBSD	0	45				1				3.7				0.85				437				12	þ		
TBLF	0	1.9				0.09				2.8				0.13				171				13			
TBLB	0	2.4				0.36				1.5				0.26				220				21			
CLCL	0	6.3				1.5				3.5				0.43				249				17			

Louisiana (LA)

Location

Oyster Bayou

Southwest Pass

St. Johns Island

Blue Buck Point

Lake Charles

Joseph Harbor Bayou

Regional (r) Status (s) Mussels (M)

National Status 4 Medium

Trend (t)

National Trend G Decreasing H Increasing

4 Medium 4 High 4 High Zebra Mussels (ZM) 4 Medium

Oysters (O)

4 High

4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
ABOB	0	5.3				2.9				77				0.09	4			2.6	4			0.39				0				1430			
VBSP	0	6.5				9	4	4		545	4			0.07				2.7	4			0.81	4			0				3260			
JHJH	0	5.7				6.3	4			250	4			0.06				2.1	4			0.33				0				2000			
CLSJ	0	5.1				4.7	4			252	4			0.22	4			3.3	4			0.71	4			0				3230		4	
CLLC	0	4.2				6.4	4			382	4			0.24	4			3.5	4			1.3	4			0.18				5220	4		
SLBB	0	4.3				4.7	4			257	4			0.11	4			2.9	4			0.25				0				3810	4		

Site

ABOB

VBSP

JHJH

CLSJ

CLLC

SLBB

Latitude

29.2555

29.5795

29.6368

29.8290

30.0587

29.7908

Longitude

-91.1362

-92.0510

-92.7668

-93.3840

-93.3075

-93.9063

General Location

Atchafalaya Bay

Joseph Harbor Bayou

Vermilion Bay

Calcasieu Lake

Calcasieu Lake

Sabine Lake

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
ABOB	0	10				0.99				5.6				0				250				31			À.
VBSP	0	3.7				2.5				25				2.3				295				34			
JHJH	0	13				1.3				31				1.8				932				54		4	
CLSJ	0	38				1.6				6.4				0.84				465				23			
CLLC	0	97		4		2.7				6.5				1.5				950				36			
SLBB	0	65				4.2				7.8				1.5				551				30			

Appendix 2: Results by State

Maine (ME)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 Medium 4 High 4 High

Trend (t)

National Trend G Decreasing H Increasing

Site	Latitude	Lor
PBPI	44.2648	-68
PBSI	44.4567	-68
MSSP	43.7578	-69

43.3453

Longitude	General Location	Location
-68.7337	Penobscot Bay	Pickering Island
-68.8832	Penobscot Bay	Sears Island
-69.9977	Merriconeag Sound	Stover Point
-70.4743	Cape Arundel	Kennebunkport

Zebra Mussels (ZM)

4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
PBPI	М	7.8				1.1				5.3				0.09			-	0.92				0.89				0				81			
PBSI	М	8.5				0.75				5.2			-	0.12				1.1				1				0				78			
MSSP	М	9.5				0.8				6.4				0.11				1				1.3				0				79			
CAKP	М	11		4		1.4				6.7				0.17				1.5				2.4				0				104			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
PBPI	М	1.3				1.6				7.4				1.2				202				17			
PBSI	М	6				1.4				10				0.89				995				19			
MSSP	М	3.2				1.7				8				0.79				256				24			
CAKP	М	11				1.7				15				0.64				507				22			

NOAA National Status & Trends | Mussel Watch Report

Maryland (MD)

Regional (r) Status (s) Mussels (M)

4 Medium 4 High

Trend (t) **National Status**

National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
СВВО	0	7.4				14	4	4		867	4	4		0.07				3.7	4			0.33				0.44	4	4		12000	4	4	
СВНР	0	7.2				6.4	4	4		301	4	4		0.03				4.7	4			0.24				0.25	4	4		4570	4	4	
СВСР	0	5.7				3.9	4	4		121				0.04				3.4	4			0.12				0				2170			
CBHG	0	6.4				4.1	4	4		96				0.03				3.6	4			0.22				0.11				2550			
PRSP	0	5.9				3.2	4	4		141				0.07				3.3	4			0.2				0				2660			

Site

CBBO

CBHP

CBCP

PRSP

Latitude

39.1573

38.9695

38.6073

38.3123

38.2817

Longitude

-76.4048

-76.4147

-76.1200

-76.3978

-76.9337

General Location

Chesapeake Bay

Chesapeake Bay

Chesapeake Bay

Chesapeake Bay

Potomac River

Location

Bodkin Point

Hog Point

Swan Point

Hackett Point Bar

Choptank River

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
СВВО	0	366	4	4		12		4		29				6.9		4		481				79			
СВНР	0	297	4	4		11		4		29				6.6		4						64		4	
СВСР	0	22				6				14				6.9		4		306				23			
CBHG	0	112		4		5.7				13				3.9								21			
PRSP	0	76				9.6				27				5.2				266				60			

Appendix 2: Results by State

Massachusetts (MA)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t) National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium

4 High

4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
CAGH	42.6577	-70.5973	Cape Ann	Gap Head
SHFP	42.5135	-70.8442	Salem Harbor	Folger Point
MBNB	42.4198	-70.9072	Massachusetts Bay	Nahant Bay
BHDI	42.3573	-70.9730	Boston Harbor	Deer Island
BHDB	42.3022	-71.0363	Boston Harbor	Dorchester Bay
ВННВ	42.2760	-70.8833	Boston Harbor	Hingham Bay
BHBI	42.3432	-70.8783	Boston Harbor	Brewster Island
MBNR	42.1603	-70.7425	Massachusetts Bay	North River

Duxbury Bay

Clarks Island

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
CAGH	М	14	4			1				7.1				0.13				2.8				1.8				0.16				148	4		
SHFP	М	14	4			1.2				9.1				0.35	4	4		1.9				10	4	4		0.17				115			
MBNB	М	10				1.7				7.9				0.33	4	4		1.6				3.6	4			0				128			
BHDI	М	11				1.4				7.7				0.19	4		-	1				4.6	4			0.13				91			
BHDB	М	11				1.6				9.9			-	0.28	4			1.5				11	4	4		0.23	4			172	4		
вннв	М	8.8				1.1				9				0.26	4			1.1				7.3	4	4		0.12				121			
внві	М	13	4			1				6.4				0.25	4			1.3				3.9	4			0				110			
MBNR	М	11				1.2				6.5				0.33	4	4		1.1				2.9	4			0				86			
DBCI	М	8.5				0.81				6.6				0.18	4			0.81				2.6				0				94			

DBCI

42.0137

-70.6365

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
CAGH	М	7.9				3.2				7.6				0.73				284				23			
SHFP	М	57	4	4		11				51				1.4				671				121			
MBNB	М	16				3.8				15				0.83				557				85			
BHDI	М	81	4	4		9.1				52				2.2				2089	4	4		390	4		
BHDB	М	108	4	4		11				59				2.2				2752	4	4		478	4		
ВННВ	М	55		4		6.4				34				1.7				956				231	4		
BHBI	М	12				5.4				24				1				959				162	4		
MBNR	М	20				7				46				2.6				1764	4	4		159	4		
DBCI	М	10				3.9				23				1.9				407				102			

Latitude

41.7958

41.6067

41.7402

41.5797

41.5397

41.4817

Longitude

-69.9462

-70.6528

-70.6157

-70.8590

-70.9283

-71.0373

General Location

Cape Cod

Buzzards Bay

Buzzards Bay

Buzzards Bay

Buzzards Bay

Buzzards Bay

Location

Nauset Harbor

West Falmouth

Cape Cod Canal

Goosebury Neck

Angelica Rock

Round Hill

Massachusetts (MA)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t) **National Trend** G Decreasing

H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
CCNH	М	10				0.68				7.5				0.09				0.62				1.1				0				95			
BBWF	М	19	4	4		1.4				9.7				0.13				2.1				1.3				0				95			
BBCC	М	15	4	4		0.94				7.3				0.16				1.6				3.8	4			0				77			
BBAR	М	14	4	4		0.86				7.9				0.1				1.4				1.9				0				88			
BBRH	М	16	4	4		1.1				8.4				0.16				1.7				2.2		4		0				109			
BBGN	М	16	4			1				7.6				0.16				2.2				1.8				0				102			

Site

CCNH

BBWF

BBCC

BBAR

BBRH

BBGN

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
CCNH	М	7.4				3.2				13				1.5				252				33			
BBWF	М	6.9				4.9				13				3.1				198				163	4		
BBCC	М	6.7				4.2				14				3.8				238				105			
BBAR	М	17				2.7				47				2.9				780				1413	4	4	
BBRH	М	9.4				1.5				22				1.2				662				632	4		
BBGN	М	5.6				0.97				7.8				1.5				305				126			

Appendix 2: Results by State

Michigan (MI)

Regional (r) Status (s) Mussels (M)

4 Medium

4 High

National Status 4 Medium 4 High

Trend (t) National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Longitude General Location Latitude Location LMHB 42.7732 -86.2150 Lake Michigan HollandBreakwater

LMMU	43.2258	-86.3470	Lake Michigan	Muskegon
TBLL	45.2057	-85.5368	Traverse Bay	LeelanauStatePark
LHTB	44.9222	-83.4135	Lake Huron	Thunder Bay
SBSR	43.6735	-83.8367	Saginaw Bay	Saginaw River
SBSP	43.9098	-83.4002	Saginaw Bay	Sandpoint
LHBR	43.0443	-82.4387	Lake Huron	Black River Canal
LESP	41.9587	-83.2330	Lake Erie	Stony Point
LERB	41.6745	-83.2262	Lake Erie	Reno Beach

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
LMHB	ZM	5.6				3.8	4			11				0.06	4			25	4	4		0.44				0.08				114	4		
LMMU	ZM	4.9			_	3.6	4			9.1				0.05	4			14				0.7				0.09				101	4		
TBLL	ZM	7.1	4			4.1	4			23				0.11	4			18		4		0.39				0.09				101	4		
LHTB	ZM	5.1				12	4	4		26	4			0.09	4			33	4	4		0.49				0.09				140	4		
SBSR	ZM	6.9	4			0.95				18				0.05	4			24	4			2.1	4			0.2				113	4		
SBSP	ZM	3.1				2				33	4			0.06	4			16		4		0.95				0.74	4	4		81			
LHBR	ZM	7.5	4			11	4	4		31	4			0.11	4			41	4	4		0.99			ľ	0.08				117	4		
LESP	ZM	5.1				2.2				16				0.06	4			16		4		3.2	4			0.3				77			
LERB	ZM	6.4	4			3.3	4			21				0.05	4			17		4		2.4	4			0.36				67			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
LMHB	ZM	19		4		15				68	4	4		12	4	4		745				266	4		
LMMU	ZM	7.8				22	4	4		67	4			16	4	4		960				154	4		
TBLL	ZM	14		4		1.7				3.2				5.4				128				20			
LHTB	ZM	8.3				1.4				3.5				2.3				205				17			
SBSR	ZM	6.2				9.7				26				1				730				119		4	
SBSP	ZM	11				3.1				4.9				1.9				173				25			
LHBR	ZM	7.6				4.8				4.1				2.9				235				17			
LESP	ZM	12		4		13				57				2.4				1595	4	4		424	4	4	
LERB	ZM	7.2				4.7				12				5.7				607				96			

Mississippi(MS)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t) National⁻

National Trend	Site	Latitude
G Decreasing	MSPB	30.3360
H Increasing	MSBB	30.3925

Longitude General Location Location Mississippi Sound Pascagoula Bay Mississippi Sound Biloxi Bay 30.3023 MSPC -89.3272 Mississippi Sound Pass Christian

Zebra Mussels (ZM)

4 Medium

4 Medium

4 High

4 High

Oysters (O) 4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
MSPB	0	11				2.3				133				0.15	4			2	4			0.89	4			0.4	4			3070			
MSBB	0	7.6				3.6	4	4		373	4			0.11	4			1.6	4			0.66	4			0.16				6660	4		
MSPC	0	5.8				8.2	4	4		232	4			0.19	4			1.8	4			0.57	4			0				5020	4	4	

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
MSPB	0	83				2.6				11				1.4				373				30			
MSBB	0	62				15	-	4		22				6.5				928		4		72			
MSPC	0	5.8				5.7				16				2				596				24			

Appendix 2: Results by State

North Carolina (NC)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t) National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium

4 Medium

4 High

4 High

Site	Latitude	Longitude	General Location	Location
RSJC	35.8898	-75.6337	Roanoke Sound	John Creek
PSWB	35.4123	-76.0397	Pamlico Sound	Wysocking Bay
PSPR	35.2960	-76.4392	Pamlico Sound	Pungo River
PSNR	35.0897	-76.5290	Pamlico Sound	Neuse River
PSCH	35.2028	-75.7162	Pamlico Sound	Cape Hatteras
BIPI	34.7183	-76.6755	Beaufort Inlet	Pivers Island
CFBI	33.9158	-78.0035	Cape Fear	Battery Island

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
RSJC	0	6.2				2.9				178				0.08	4			2.1	4			0.41				0				4400	4	4 -	_
PSWB	0	8.2				3.8	4	4		86				0.09	4			3.1	4			0.36				0				1260			
PSPR	0	6.6				2.5				59				0.07	4			1.8	4			0.2				0				2870		4	5 6
PSNR	0	8.3				3				72				0.09	4			2.5	4			0.23				0				1880			
PSCH	0	15	4			2				52				0.2	4			2	4			0.68	4			0.11				1470			
BIPI	0	47	4	4		1.2				136				0.11	4			1.7	4			0.62	4			0.16				2320		4	
CFBI	0	32	4	4		1.6		no.		78				0.13	4			2.3	4			0.44				0.16				1910			377

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDIs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
RSJC	0	53				2.7				5.3				0.88				856		4		13			
PSWB	0	7.2				2				4.5				1.5				190				150		4	
PSPR	0	5				2.6				11				1.6				183				14			
PSNR	0	5.1				2.6				8.9				2.1				168				96		4	
PSCH	0	6.8				2.6				6.8				1				333				31			
BIPI	0	29				3				15				0.94				1543		4		18			
CFBI	0	17				1.2				3				0.57				152				13			

4 Medium

4 High

New Hampshire (NH)

Regional (r) Status (s)
Mussels (M) National Status

Status (s) Trend (t)
National Status National Trend

National Trend G Decreasing H Increasing Site Latitude Longitude General Location Location

GBDP 43.1207 -70.8265 Great Bay Dover Point

Zebra Mussels (ZM)

4 Medium

4 Medium

4 High

4 High

Oysters (O)

4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
GBDP	М	11				1.3				6.7				0.34	4	4		1.9				2.7				0.14				111			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
GBDP	М	50				2.5				14				1.2								70			

NOAA National Status & Trends | Mussel Watch Report

Appendix 2: Results by State

New Jersey (NJ)

Regional (r) Status (s)
Mussels (M) National Status

National Status 4 Medium 4 High Trend (t)
National Trend
G Decreasing
H Increasing

Zebra Mussels (ZM)

4 Medium

4 High

4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
NYSH	40.4875	-74.0333	New York Bight	Sandy Hook
NYLB	40.2948	-73.9787	New York Bight	Long Branch
NYSR	40.1870	-74.0090	New York Bight	Shark River
BIBL	39.7617	-74.0950	Barnegat Inlet	Barnegat Light
AIAC	39.3672	-74.4112	Absecon Inlet	Atlantic City
DBCM	38.9822	-74.9613	Delaware Bay	Cape May
DBBD	39.2523	-75.3028	Delaware Bay	Ben Davis Pt. Shoal
DBAP	39.3833	-75.4500	Delaware Bay	ArnoldsPointShoal
DBHC	39.4267	-75.4933	Delaware Bay	Hope Creek

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
NYSH	М	8.2				1.5				15				0.25	4			3.3				8.3	4	4		1.1	4	4		148	4		
NYLB	М	11				0.88				13				0.16				2.3				1.7				0.31	4			158	4		
NYSR	М	10				0.79				12				0.16				2.3				2.2				0.35	4			143	4		
BIBL	М	8.9				0.74				10				0.25	4			3.1				4.3	4			0.38	4			100			
AIAC	М	9.3				1.2				13				0.33	4	4		3.6				5.1	4			0.28	4			165	4		
DBCM	М	10				1				18	4			0.22	4			4.5				4	4			0.47	4			118			
DBBD	0	8.1				5.4	4			498	4			0.14	4			4	4			1.3	4			0.39	4			9165	4	4	
DBAP	0	5.1				15	4	4		1660	4	4		0.24	4			4.9	4			1.4	4			0.28	4			18950	4	4	
DBHC	0	4.3				20	4	4		857	4	4		0.2	4			4.4				0.72				0.17				11500	4	4	

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
NYSH	М	143	4	4		11				80	4			4.6				3014	4	4		331	4		
NYLB	М	160	4	4		13				50				4				2026	4	4		195	4		
NYSR	М	158	4	4		13				48				4.4				1928	4	4		186	4		
BIBL	М	20				2.1				13				0.68				761				59			
AIAC	М	18				1.8				11				0.86				1508	4	4		56			
DBCM	М	35				1				16				0.81				622				38			
DBBD	0	92		4		12				105		4		13				368				105		4	
DBAP	0	129		4		11				87				10				701				94		4	
DBHC	М	184	4	4		27	4	4		219	4			24	4	4						225	4		

New York (NY)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t) National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Site	Latitude	Longitude	General Location	Location
LIMR	40.9418	-73.7032	Long Island Sound	Mamaroneck
LITN	40.8167	-73.7983	Long Island Sound	Throgs Neck
LIHH	40.8558	-73.6753	Long Island Sound	HempsteadHarbor
LIHU	40.9220	-73.4285	Long Island Sound	HuntingtonHarbor
LIPJ	40.9573	-73.0937	Long Island Sound	Port Jefferson
LIGB	40.9982	-72.1162	Long Island	Gardiners Bay
MBTH	40.7767	-72.7558	Moriches Bay	Tuthill Point
LIFI	40.6252	-73.2795	Long Island	Fire Island Inlet
HRJB	40.5667	-73.8953	Hudson/RaritanEstuary	Jamaica Bay

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
LIMR	М	5.2				1.8				15				0.11				2.4				6	4	4		0.26	4			97			
LITN	М	8				2.2				16				0.15		4		2.7				7.6	4	4		0.4	4			138			
LIHH	М	6.5				1.8				12				0.11	d			2.5				3.7	4	4		0.18				109			
LIHU	М	5.1				1.9				11				0.11				2.3				2.9	4			0.14				100			
LIPJ	М	8.3				2.1				11				0.16				2.9				2				0.12				107			
LIGB	М	9.4				1.4				9.7				0.15				3.2				1.6				0				90			
MBTH	М	17	4			0.77				10				0.2	4			2.8				3.9	4			0.31	4			119			
LIFI	М	9.7				1.2				12			q	0.28	4			2.4				3.5	4			0.33	4			105			
HRJB	М	9.1				1.3				15				0.27	4			2.8				5	4			0.52	4			127			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
LIMR	М	25				22	4	4		50				6.5				635				143	4		
LITN	М	25				32	4	4		81	4			7.9				2868	4			337	4		
LIHH	М	16				20	4	4		47				6.8				699				169	4		
LIHU	М	13				6.4				21				2.5				342				93			
LIPJ	М	18				4.5				16				1.7				352				69			
LIGB	М	7.1				1.2				12				0.85				759				31			
МВТН	М	8.7				2.6				11				0.8				324				38			
LIFI	М	15				2.5				11				1.1				7561	4	4		36			
HRJB	М	64	4			11				44				4.2				2921	4			201	4		

Trend (t)

National Trend

G Decreasing

H Increasing

New York (NY)

Regional (r) Status (s) Mussels (M) **National Status**

4 Medium 4 Medium 4 High 4 High

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Appendix 2: Results by State

Cruger Island

Site Longitude General Location Latitude Location HRUB 40.6893 -74.0432 Hudson/RaritanEstuary Hudson/RaritanEstuary HRLB 40.5660 -74.0508 Lower Bay HRRB -74.1845 Hudson/RaritanEstuary Raritan Bay 40.5190 Dunkirk LEDK 42.5292 -79.2777 Lake Erie LOOC 43.3553 -78.6867 Lake Ontario Olcott LORC -77.4953 Lake Ontario Rochester 43.2578 LOOS 43.4528 -76.5508 Lake Ontario Oswego LOCV 44.1442 -76.3247 Lake Ontario Cape Vincent

Hudson River

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
HRUB	М	5.6				2.5				26	4			0.29	4			8.1	4			13	4	4		1.9	4	4		143	4		
HRLB	М	8.1				1.5				13				0.22	4			2.6				3.5	4			0.49	4			113			
HRRB	М	7				1.9				17	4			0.22	4			7	4			13	4	4		1.7	4	4		203	4		
LEDK	ZM	9.9	4			3.8	4	4		13				0.04				14				1.5				0.16				56			
LOOC	ZM	6.6	4			1.6				35	4			0.05	4			13				3.2	4			0.38				67			
LORC	ZM	9.3	4			1.2				16				0.04				15				4.1	4			0.58				66			
LOOS	ZM	8.4	4			1.2				27	4			0.05	4			14				0.38				2.3	4	4		56			
LOCV	ZM	8.5	4			1.9				70	4			0.04				16				2.5	4			3.2	4	4		65			
HRCI	ZM	2.7				0.98				51	4			0.05	4			12				3.8	4			1.4	4	4		109	4		

HRCI

42.0338

-73.9293

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
HRUB	М	281	4	4		12				86	4			5.9								422	4		
HRLB	М	156	4	4		12				78	4			4.6				2873	4			338	4		
HRRB	М	85	4			15				112	4			5.6								202	4		
LEDK	ZM	2.8				3.9				7.3				2.6				389				42			
LOOC	ZM	5.1				10				19				3.9				569				73			
LORC	ZM	4.3				4.9				13				3				844				34			
LOOS	ZM	0				4.9				12				4.4				290				65			
LOCV	ZM	4				2.7				2.4				1.9				166				15			
HRCI	ZM	44		4														606							

Ohio (OH)

Regional (r) Status (s)
Mussels (M) National Status

National Status National Tren 4 Medium G Decreasing 4 High H Increasing

Trend (t)

National Trend
G Decreasing
H Increasing

Site	Latitude	Longitude	General Location	Location
SBPP	41.6597	-82.8250	Lake Erie	Peach Orchard Pt.
LEOW	41.3850	-82.5187	Lake Erie	Old Woman Creek
LELR	41.4612	-82.2070	Lake Erie	Lorain
LEAB	41.9247	-80.7183	Lake Erie	Ashtabula

Zebra Mussels (ZM)

4 Medium 4 High

4 Medium

4 High

Oysters (O) 4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
SBPP	ZM	6.1	4			2.8	4			20				0.08	4			17				3.2	4			0.47				69			
LEOW	ZM	5				2				39	4			0.03				17				1.5				1.9	4	4		84			
LELR	ZM	6.8	4			3	4			19				0.05	4			17				2.9	4			0.53				76			
LEAB	ZM	7.3	4			2.7	4			41	4			0.05	4			20	4			3.2	4			1.1	4	4		70			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
SBPP	ZM	14				5.7				14				3.1				624				198	4	4	
LEOW	ZM	4.2				7.2				13				5.8				558				51			
LELR	ZM	8.4				10				11				4.2				1047				64			
LEAB	ZM	4.9				5.7				9.1				3.1				598				108			

NOAA National Status & Trends | Mussel Watch Report

Appendix 2: Results by State

Oregon (OR)

Regional (r) Status (s)
Mussels (M) National Status

Mussels (M) National Status
4 Medium
4 High 4 High

Trend (t)
National Trend
G Decreasing
H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium

4 High

Site	Latitude	Longitude	General Location	Location
CBCH	43.3500	-124.3308	Coos Bay	Coos Head
CBRP	43.4313	-124.2212	Coos Bay	Russell Point
YBOP	44.5752	-123.9890	Yaquina Bay	Oneatta Point
YHFC	44.8370	-124.0520	Yaquina Bay	Fogarty Creek
TBHP	45.5472	-123.9075	Tillamook Bay	Hobsonville Point
CRSJ	46.2287	-124.0232	Columbia River	South Jetty

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
СВСН	М	8.7				2.9				7.1				0.07				1.7				0.7				0				92			
CBRP	М	10				4.2	4			13				0.2	4			3.4				1.6				0.12				231	4		
YBOP	М	5.3				2.2				6.1				0.08				1.7				0.28				0				96			
YHFC	М	7.7				4.3	4			7.4				0.06				2.1				0.52				0				96			
ТВНР	М	7.3				4.4	4			39	4			0.07				13	4			1.1				1.6	4	4		96			
CRSJ	М	9.7				3				9.8				0.08				2.6				0.87				0.06				115			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
СВСН	М	1.6				2.7				2.6				3.7				96				14			
CBRP	М	9.8				0.24				2.6				0.21				441				21			
YBOP	М	10				0.89				5.4				0.29				1187				30			
YHFC	М	3.3				6.6				4.1				3.8				78				11			
ТВНР	М	6				0.34				2.4				0.24				298				14			
CRSJ	М	25				1.8				23				1.1				380				33			

Rhode Island (RI)

Regional (r) Status (s) Mussels (M)

National Status National Trend 4 Medium G Decreasing 4 High H Increasing

Trend (t)

Longitude **General Location** Site Latitude Location NBDI 41.6048 -71.3052 Narragansett Bay Dyer Island NBPI 41.6523 -71.3567 Narragansett Bay Patience Island NBDU 41.5013 -71.3928 Narragansett Bay **Dutch Island**

Block Island Sound

Block Island

-71.5922

Zebra Mussels (ZM)

4 Medium

4 Medium

4 High

4 High

Oysters (O)

4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
NBDI	М	9.9				0.94				9.7				0.12				1.1				2.9	4			0.16				132			
NBPI	М	8				0.4				10				0.06				0				0.82				0				48			
NBDU	М	13	4			1				8.4				0.12				1.8				2				0				117			
BIBI	М	11				1.3				8.9				0.12				1.8				1.4				0				150	4		

41.1982

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
NBDI	М	50				8				26				6.4				1540	4	4		239	4		
NBPI	М	12				6.1				27				20	4	4						141	4		
NBDU	М	14				4.5				14				4.6				520				102			
BIBI	М	13				1.8				4.3				0.87				285				24			

Appendix 2: Results by State

South Carolina (SC)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium

4 High

National Tren G Decreasing H Increasing

Trend (t)

ıd			
J			

Site Latitude Longitude General Location Location **WBLB** 33.2433 -79.1972 Winyah Bay **Lower Bay** SRNB 33.1683 -79.2417 Santee River North Bay CHFJ 32.7505 -79.9003 **Charleston Harbor** Fort Johnson CHSF 32.7735 -79.9122 **Charleston Harbor** Shutes Folly Island

Zebra Mussels (ZM) 4 Medium

4 High

4 Medium

4 High

Oysters (O) 4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
WBLB	0	45	4	4		1.9				97				0.13	4			1.8	4			0.57	4			0.34	4	4		1460			
SRNB	0	34	4	4		1.5				77				0.08	4			3.3	4			0.41				0.6	4			783			
CHFJ	0	31	4	4		1.7				221	4	4		0.07				1.4				1.2	4			0.39	4			2840		4	
CHSF	0	31	4	4		1.9				188				0.07				1.2				0.3				0.28	4			3160			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
WBLB	0	5.9				1.2				3.1				0.7				122				14			
SRNB	0	3.2				1.2				4.7				0.65				162				15			
CHFJ	0	72				6				9.4				0.96				1013				23			
CHSF	0	127			-	2.4				5.6				0.74				885				19			

Texas (TX)

Regional (r) Status (s) Mussels (M)

National Status 4 Medium 4 High

Trend (t) National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

4 Medium

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Longitude **General Location** Site Latitude Location **GBHR** 29.4803 -94.7418 Hanna Reef **Galveston Bay GBYC** 29.6220 -94.9958 **Galveston Bay** Yacht Club GBTD -94.8960 Todd's Dump 29.5030 **Galveston Bay GBOB** 29.2840 -94.8363 **Galveston Bay** Offatts Bayou **GBCR** 29.2633 -94.9163 Confederate Reef **Galveston Bay BRFS** 28.9212 -95.3395 **Brazos River** Freeport Surfside BRCL 28.8580 -95.4647 **Brazos River** Cedar Lakes **MBEM** 28.7112 -95.8833 Matagorda Bay East Matagorda MBTP Tres Palacios Bay 28.6663 -96.2335 Matagorda Bay

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
GBHR	0	4.7				3.8	4	4		117				0.04				3.5	4			0.5	4			0				1440			
GBYC	0	4.5				3.4	4	4		185				0.06				3.1	4			0.47				0.25	4			4220	4	4	
GBTD	0	4.9				3.2				145				0.03				3.1	4			0.67	4			0.08				2250			
GBOB	0	6.2				0.67				287	4			0.03				1.5				1.2	4			0.08				12700	4	4	
GBCR	0	5.8				2.7				111				0.1	4			2.7	4			0.6	4			0				1450			
BRFS	0	6.7				2.3				171				0.06				2.5	4			0.8	4			0.16				2320		4	
BRCL	0	6.4				3.7	4	4		237	4			0.09	4			3.3	4			1.4	4			0.08				1960			
MBEM	0	9.8				5.5	4	4		142				0.06				2.5	4			0.58	4			0.11				809			
MBTP	0	4				2.9				95			-	0.05				3.1	4			0.61	4			0				1080			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
GBHR	Ο	36				3.7				6.7				1.7				447				22			
GBYC	0	251		4		31		4		55				15				2511		4		144		4	
GBTD	0	66				11				14				6				1640				48			
GBOB	0	21				20		4		9.1				4.1				1250		4		28			
GBCR	0	55				1.8				3.4				0.52				588				21			
BRFS	0	123	4	4		8.8		4		182	4	4		65	4	4		1399	4	4		87		4	
BRCL	0	34				5.7				73	4	4		30		4		972		4		42		4	
MBEM	0	133	4	4		1.9				6.3				1.3				221				9.9			
MBTP	0	5.6				1.4				43				0.56				259				8.6			

Appendix 2: Results by State

Texas (TX)

Regional (r) Status (s) Mussels (M)

4 Medium

4 High

National Status 4 Medium 4 High

Trend (t) National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium 4 High

MBAR ABLR

Site Latitude

Longitude General Location Location **MBCB** 28.6650 -96.3830 Matagorda Bay Carancahua Bay **MBGP** 28.5788 -96.5630 Matagorda Bay **Gallinipper Point ESBD** -96.4490 Espiritu Santo Bill Days Reef 28.4118 **ESSP** 28.2982 -96.6220 Espiritu Santo South Pass Reef SAMP 28.3440 -96.7123 San Antonio Bay Mosquito Point SAPP -96.7082 Panther Point Reef 28.2323 San Antonio Bay 28.1730 -96.8350 Mesquite Bay Ayres Reef 28.0548 -96.9512 Aransas Bay Long Reef

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
MBCB	0	5.2				3.5	4			126				0.11	4			2.3	4			0.6	4			0				1370			
MBGP	0	5.3				3.8	4			155				0.2	4			3	4			0.51	4			0				1780			
ESBD	0	11	4			3.2	4			110				0.09	4			3.4	4			1.3	4			0				924			
ESSP	0	9.6				4.7	4			139				0.11	4			2.8	4			2.2	4	4		0				1070			
SAMP	0	4.6				4	4			68				0				3.2	4			1.4	4			1.9	4	4		562			
SAPP	0	5.4				6.3	4			200				0.1	4			3.1	4			1.8	4			0				1150			
MBAR	0	4.7				3.9	4			104				0.09	4			2.8	4			0.48	4			0				690			
ABLR	0	8.2				3				80				0.15	4			2.9	4			0.51	4			0				682			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
MBCB	0	7				2.2				26				1.8				217				13			
MBGP	0	32				1				25				1.2				248				14			
ESBD	0	13				0.98				8.1				0.57				171				19			
ESSP	0	4.1				0.43				1.6				0.1				93				9.7			
SAMP	0	3.4				1.6				6.4				1.3				171				31			
SAPP	0	4.4				0.25				2.2				0.34				153				14			
MBAR	0	9.4				0.84				2.3				0.66				113				9.1			
ABLR	0	5.5				0.73				1.8				0.11				100				8.9			

Texas (TX)

Mussels (M)

4 Medium

4 High

4 High

Regional (r) Status (s)

National Status National 4 Medium G Decrea 4 High H Increas

Trend (t)
National Trend
G Decreasing
H Increasing

al Trend
easing
(asing)

Longitude General Location Site Latitude Location CBCR 28.1420 -97.1280 Copano Bay Copano Reef CCNB 27.8522 -97.3598 Corpus Christi **Nueces Bay LMAC** 26.2825 -97.2853 Lower Laguna Madre Arroyo Colorado **LMPI** 26.0748 -97.1995 Lower Laguna Madre Port Isabel LMSB South Bay 26.0432 -97.1760 Lower Laguna Madre

Zebra Mussels (ZM) 4 Medium

Oysters (O) 4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
CBCR	0	7.9				8	4	4		322	4			0.11	4			2.9	4			1.3	4			0				1330			
CCNB	0	8.6				4.2	4	4		141				0.11	4			1.8	4			1.6	4			1.1	4	4		5070	4	4	
LMAC	0	18	4			1.9				43				0.12	4			1.4				0.82	4			0				898			
LMPI	0	16	4			1.1				402	4			0.1	4			1.3				0.85	4			0.17				6260	4		
LMSB	0	13	4			2.1				134				0.17	4			1.3				0.67	4			0				2180			

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
CBCR	0	3.4				1.3				7.1				0.37				123				19			
CCNB	0	25				2				6.6				0.49				553		þ		24			
LMAC	0	3.1				1.1				7.9				0.91				117				12			
LMPI	0	115				0.39				3.6				0.04				780				31			
LMSB	0	24				0				0.88				0				47				11			

Appendix 2: Results by State

Virginia (VA)

Regional (r) Status (s)
Mussels (M) National Status

) National Status 4 Medium 4 High Trend (t)
National Trend
G Decreasing
H Increasing

Zebra Mussels (ZM)

4 Medium

4 High

Oysters (O) 4 Medium

4 Medium

4 High

4 High

Site	Latitude	Longitude	General Location	Location
PRMC	38.2233	-76.9615	Potomac River	Mattox Creek
RRRR	37.9020	-76.7878	Rappahannock River	Ross Rock
CBDP	37.0983	-76.2948	Chesapeake Bay	Dandy Point
CBJR	37.0653	-76.6322	Chesapeake Bay	James River
CBCC	37.2845	-76.0153	Chesapeake Bay	Cape Charles
CBCI	37.9385	-75.3758	Chincoteague Bay	ChincoteagueInlet
OIUB	37.5250	-75.7138	Ouinby Inlet	Upshur Bav

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
PRMC	0	5.3				4.8	4			308	4			0.05				2.8	4			0.26				0.15				3770	4		
RRRR	0	5.4				4.8	4	4		285	4			0.06				2.8	4			0.15				0				2720			
CBDP	0	9.3				1.3				77				0.11	4			1.9	4			0.67	4			0				3200			
CBJR	0	4.3				10	4	4		1460	4	4		0.15	4			3.8	4			0.39				0.1				8110	4		
CBCC	0	10				1.2				43				0.07				1.7	4			0.34				0				1340			
CBCI	0	10				2.6				66				0.21	4		-	2	4			0.7	4			0				2230			
QIUB	0	11				2.4				552	4			0.22	4			2.5	4			1.3	4			0				4750	4		

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
PRMC	0	119				12				26				4.8				207				57			
RRRR	0	24				3.8				8.1				0.92				200				21			
CBDP	0	62				9.3				34				2.9				1583		4		50			
CBJR	0	65				3.6				13				0				232				157	4	4	
CBCC	0	14				3.9				30				4.1				307				21			
CBCI	0	6.8				2.8				14				0.99				315				25			
QIUB	0	6.9				0				12				0				10717	4	4		14			

96

Washington (WA)

Regional (r) Status (s) Trend (t) Mussels (M) **National Status** 4 Medium

National Trend 4 Medium G Decreasing 4 High H Increasing

Zebra Mussels (ZM) 4 Medium 4 High

Oysters (O) 4 Medium

4 High

4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	s t
WBNA	М	6.9				3.8	4	4		7.5				0.18	4			2.5				0.55				0				176	4	
GHWJ	М	11		4		6.9	4	4		12				0.07				2.9				0.89				0.28	4			162	4	
JFCF	М	16	4	4		11	4	4		14				0.25	4	4		4.6				1.1				0				186	4	
PSPA	М	8.1				5.6	4	4		13				0.07				0.91				0.62				0				142	4	
PSHC	М	8.3				4	4	4		6.5				0.11				1.7				0.73				0				156	4	
SSBI	М	5.3				2.1				5.6			-	0.09				0.88				0.83				0				118		
СВТР	М	7.9				2.8			y	18	4			0.09				7	4			1.3				0				174	4	
EBDH	М	6.8				2.2				8.9				0.07				3.1				2.6				0.19				160	4	

Site

WBNA

GHWJ

JFCF

PSPA

PSHC

SSBI

CBTP

EBDH

Latitude

46.4992

46.9097

48.3825

48.1397

47.8318

47.0993

47.3312

47.5958

Longitude General Location

-124.1177 Gray's Harbor

-122.6883 Puget Sound

-124.0272

-124.7280

-123.4202

-122.8942

-122.5043

-122.3867

Willapa Bay

Puget Sound

Elliott Bay

Strait of Juan de Fuca

South Puget Sound

Commencement Bay

Location

Nahcotta

Westport Jetty Cape Flattery

Port Angeles

Hood Canal

Tahlequah Point

Duwamish Head

Budd Inlet

Organics (ppb)

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
WBNA	М	13				0.87				4.1				0.46				617				15			
GHWJ	М	15				2.9				9				4.9				167				20			
JFCF	М	5.4			-	6.4				1.6				4.2				134				12			
PSPA	М	10				1.3				4.6				0.81				471				27			
PSHC	М	16				0.83				2.3				0.55				528				16			
SSBI	М	9.6				3.1				6.7				1.9				1502	4			62			
СВТР	М	14				2.7				8				1				2214	4			48			
EBDH	М	36				4.4				16				1.3				3277	4			131			

Appendix 2: Results by State

Washington (WA)

Regional (r) Status (s) Mussels (M) **National Status** 4 Medium 4 Medium

4 High 4 High Trend (t) National Trend G Decreasing H Increasing

Zebra Mussels (ZM) 4 Medium

4 High

Oysters (O) 4 Medium

4 High

Site	Latitude	Longitude	General Location	Location
EBFR	47.6388	-122.4138	Elliott Bay	Four-Mile Rock
SIWP	47.5852	-122.5708	Sinclair Inlet	Waterman Point
PSEF	47.8140	-122.3823	Puget Sound	Edmonds Ferry
PSMF	47.9497	-122.3016	Puget Sound	Mukilteo
WIPP	47.9053	-122.3770	Whidbey Island	Possession Point
PSEH	47.9727	-122.2303	Puget Sound	Everett Harbor
BBSM	48.7522	-122.4978	Bellingham Bay	Squalicum Marina Jet.
PRPR	48.9903	-123.0883	Point Roberts	Point Roberts

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
EBFR	М	7.7				2.2				12				0.1				4.2				2.4				0.38	4			204	4		
SIWP	М	11				3.6	4	4		16				1.3	4	4		2.2				2.4				0.33	4			257	4		
PSEF	М	8.4				3.7	4	4		8.1				0.09				2.3				3.1	4			0.13				183	4		
PSMF	М	8.4				2.6				14				0.07				44	4	4		4.7	4			0.6	4			172	4		
WIPP	М	8.1				2.7			ie	14	Ŋ			0.15				3.5				1.3				0.14				201	4		
PSEH	М	7.4				3.3				13				0.13				4.1				7.6	4	4		0.16				187	4		
BBSM	М	9.1				4	4	4		18	4			0.21	4			8.9	4			1.4				0.44	4			238	4		
PRPR	М	6.2				2.7				20	4			0.1				4.2				1.8				0.37	4			126			

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
EBFR	М	39				4.2				29				1.2				6962	4	4		144	4		
SIWP	М	11				49	4	4		15				82	4	4		2397	4			82			
PSEF	М	15				3.6				13				1.3								45			
PSMF	М					5.8				15				2.1								53			
WIPP	М	25				0.8				4.7				0.94				2329	4			33			
PSEH	М	9.4				1.9				4				1.8				1445	4			30			
BBSM	М	106	4	4		3				8.5				1.5				2586	4			40			
PRPR	М	11				0.32				1.9				0.28				364				14			

4 Medium

4 High

Regional (r) Status (s) Mussels (M)

Trend (t) National Status

National Trend G Decreasing

H Increasing

Longitude General Location Latitude Location 44.6370 -87.8082 **Green Bay Bayshore Park**

Lake Michigan

-87.8952

Milwaukee Bay

Zebra Mussels (ZM)

4 Medium

4 Medium

4 High

4 High

Oysters (O)

4 Medium 4 High

Concentrations derived from 2004-2005 data.

Markers represent the Regional Species Characterization (r), National Characterization (s) and National Trends maps (t).

Metals (ppm)

Site	Spec	AS	r	S	t	CD	r	S	t	CU	r	S	t	HG	r	S	t	NI	r	S	t	PB	r	S	t	SN	r	S	t	ZN	r	S	t
GBBS	ZM	5.4				0.75				18	Ŋ	-	-	0.1	4			15				1.1				0.11				141	4		
LMMB	ZM	4.4				1.2				11				0.04				11				1.6				0.18				140	4		

LMMB

43.0322

Sites	Spec	Butyltins	r	S	t	Chlordanes	r	S	t	DDTs	r	S	t	Dieldrins	r	S	t	PAHs	r	S	t	PCBs	r	S	t
GBBS	ZM	21				2.4				16				0.99				387				213	4		
LMMB	ZM	21				23	4	4		148	4	4		15	4	4		6519	4	4		924	4	4	

Appendix 3: Results

Hawai'i (HI)

Site		Latitude	Longitude	General Location	Location
HHKL	4	21.3167	-157.8860	Honolulu Hrb.	Keehi Lagoon
BPBP	4	21.3203	-158.1200	Barber's Point	Barber's Pt. Harbor
ННКВ	4	21.4118	-157.7790	Hawaii	Kaneohe Bay
KAUI	4	21.9567	-159.3560	Kauai	Nawiliwili Harbor

Metals

Site	Year	AS	CD	CU	HG	NI	PB	SN	ZN
HHKL	2004	15	0.41	2510	0.28	2.6	6.2	0.79	970
HHKL	2002	14	2.26	2280	0.36	1.3	1.8	3.1	909
HHKL	2000	0	0.00	2280	0.23	2.7	1.6	2.1	834
HHKL	1998	19	0.64	3460	0.27	19.8	2.6	1.7	1090
HHKL	1996	16	0.87	2456	0.20	4.9	8.4	0.9	1061
HHKL	1994	16	0.30	3100	0.33	3.1	5.5	3.2	1000
HHKL	1992	21	0.41	2500	0.29	5.2	33.7	2.9	1400
HHKL	1990	14	0.33	1600	0.24	3.1	13.0	3.0	890
HHKL	1989	12	0.30	2100	0.21	2.2	6.8	5.1	1100
HHKL	1988	23	0.50	2600	0.37	2.1	9.7	5.6	1100
BPBP	2002	11	0.47	1610	0.05	1.3	5.3	0.36	742
BPBP	2000	0	0.00	2390	0.00	2.7	1.7	1.6	608
BPBP	1998	9	0.43	2840	0.18	4.6	1.5	0.7	1010
BPBP	1992	18	0.86	1700	0.11	9.6	1.4	2.6	3800
BPBP	1990	17	0.49	1900	0.08	4.1	0.6	3.3	990
BPBP	1989	21	0.65	1800	0.10	2.1	0.6	1.9	730
BPBP	1988	13	0.66	640	0.09	3.8	0.8	1.6	720
BPBP	1986	18	2.50	950	0.21	1.5	0.7	0.00	940
ННКВ	2004	16	0.76	724	0.12	1.9	0.8	0.23	1450
ННКВ	2002	14	0.65	1150	0.15	1.8	0.8	0.26	1590
ННКВ	2000	11	0.59	1010	0.10	1.6	0.4	0.00	1270
ННКВ	1998	9	0.50	884	0.14	2.1	0.6	0.00	1400
ННКВ	1996	12	0.48	665	0.08	0.6	0.2	0.07	1012
KAUI	1986	6	0.28	840	0.16	38.0	0.7	2.0	690

Appendix 3: Results

Hawai'i (HI)

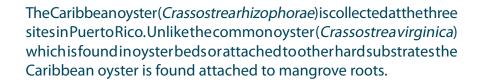
The Hawaiian oyster (*Ostrea sandvicensis*) unlike most of the other bivalves found in the saline waters of the US has no close relatives in the Mussel Watch Program. These oysters grow in clusters on rocks and pilings and are a dominant element on the reefs in Kaneohe Bay, Oahu.

Organics

Sites	Year	Butyltins	Chlordanes	DDTs	Dieldrins	PAHs	PCBs
HHKL	2004	247	34	47	12	14200	115
HHKL	2002	723	11	12	5.6	1163	68
HHKL	2000	1963	13	14	5.1	5254	84
HHKL	1998	1605	14	15	5.4	4553	116
HHKL	1996	2531	32	50	10	15105	149
HHKL	1994	141	39	39	38	6101	84
HHKL	1992	1501	8.4	9.2	3.5		80
HHKL	1990	2862	68	40	45		147
HHKL	1989		41	28	13		135
HHKL	1988		18	20	4.4		
BPBP	2002	1386	1.5	1.7	0.2		32
BPBP	2000	1066	0.3	1.2	0.2		54
BPBP	1996	198	1.5	0.8	0.0		16
BPBP	1994	1774	0.0	0.0	0.0		7.2
BPBP	1992	1584	2.7	2.1	0.0		19
BPBP	1990		1.9	2.0	1.6		22
BPBP	1989		27	29	11.5	A	
					-		
ННКВ	2004	6	233	20	314	677	119
ННКВ	2002	19	55	15	125	124	55
ННКВ	2000	28	11	6.0	5.1	79	31
ННКВ	1998	30	64	14	62	292	68
ННКВ	1996	48	274	44	114	896	163
KAUI	1986		13	36	1.5		113

Appendix 4: Results

Puerto Rico (PR)


Site		Latitude	Longitude	General Location	Location
PRBB	4	18.0078	-67.1752	Puerto Rico	BahiadeBoqueron
PRBJ	4	17.9391	-66.1813	Puerto Rico	Bahia de Jobos
PRRM	1	17 9710	-66 9895	Puerto Rico	Rahia Montalya

Metals

Site	Year	AS	CD	CU	HG	NI	РВ	SN	ZN
PRBB	2002	18	0.35	55	0.09	1.4	0.33	0.41	807
PRBB	2000	8	0.32	28	0.04	1.2	0.10	0.07	414
PRBB	1998	8	0.40	39	0.05	2.9	0.22	0.00	522
PRBB	1996	18	0.25	37	0.08	2.2	0.10	0.20	1187
PRBB	1994	9	0.44	53	0.08	1.8	0.28	1.3	907
PRBB	1992	10	0.41	51	0.09	1.8	0.09	0.04	631
PRBJ	2002	14	0.66	190	0.09	0.7	0.37	0.28	2260
PRBJ	2000	18	0.44	129	0.08	0.7	0.13	0.00	1200
PRBJ	1998	11	0.74	155	0.07	1.2	0.35	0.00	971
PRBJ	1996	12	0.65	141	0.11	0.8	0.20	0.18	960
PRBJ	1994	12	0.95	121	0.10	0.7	0.28	0.00	689
PRBJ	1992	14	0.75	141	0.09	1.1	0.16	0.00	708
PRBM	2004	13	0.83	225	0.12	1.6	0.35	0.33	2810
PRBM	2002	16	0.50	155	0.10	1.4	0.21	0.27	2130
PRBM	2000	16	0.73	333	0.15	1.3	0.17	0.70	3680
PRBM	1998	13	0.64	358	0.11	1.7	0.30	0.00	3100
PRBM	1994	13	0.53	189	0.10	0.9	0.23	0.00	2334
PRBM	1992	15	0.65	266	0.16	1.3	0.22	0.00	2803

Appendix 4: Results

Puerto Rico (PR)

Organics

Sites	Year	Butyltins	Chlordanes	DDTs	Dieldrins	PAHs	PCBs
PRBB	2002	66	0.16	1.5	0.00	245	5
PRBB	2000	44	0.28	0.56	0.09	63	4
PRBB	1998	44	2.52	2.1	0.11	92	9
PRBB	1996	291	0.83	3.0	0.85	227	25
PRBB	1994	191				459	
PRBB	1992	236	0.53	2.1	0.81	164	5
PRBJ	2002	24	0.27	0.91	0.39	379	21
PRBJ	2000	12	0.54	0.76	0.11	41	9
PRBJ	1998	28	0.61	2.6	0.91	123	8
PRBJ	1996		0.89	1.4	0.77	127	14
PRBJ	1994	165				389	
PRBJ	1992	15	0.91	1.8	1.0	149	8
PRBM	2004	31	0.14	3.2	0.00	324	28
PRBM	2002	88	0.47	4.4	0.00	88	31
PRBM	2000	314	0.61	2.4	0.12	76	22
PRBM	1998	11	1.62	6.5	0.35	140	59
PRBM	1994	59				424	
PRBM	1992	10	0.94	5.8	0.89	181	19

